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ABSTRACT 

In the last decade, developments and advancement in computer technology, espe

cially the availability of the massively parallel machine, have escalated the numerical 

treatment of complex fluid flow problems to a new height. Numerical simulation 

of incompressible viscous fluid flow, often associated with practical industrial and 

environmental situations, is receiving intense scrutiny to perform in the promising 

distributed parallel computing environment. On the other hand, the field of compu

tational fluid dynamics continues to explore and exploit unified and versatile formu

lations, in contention with the notorious divergence-free velocity field constraint, for 

incompressible Navier-Stokes equations that encompass fluid flow in two- and three

dimensions. The velocity-vorticity formulation for the incompressible Navier-Stokes 

equations is chosen with the full extent to resolve these issues. 

In the present dissertation, a new finite element implementation for two- and 

three-dimensional incompressible fluid flow is developed in the velocity-vorticity form. 

Pressure is eliminated analytically by taking the curl of the momentum equations, 

and vorticity is introduced as the active variable. The formulation consists of the 

three derived vorticity transport equations in conjunction with three velocity Poisson 

equations. Satisfaction of the continuity constraint is cast onto the specific treatment 

of the kinematic vorticity boundary condition for the no slip wall. A divergence-free 

solution is guaranteed with equal order finite element interpolation functions for all 

state variables. 

IV 



The fully coupled system for the velocity-vorticity formulation on solved on a 

distributed-memory parallel computer. The CM5 machine with 32 processors at the 

University of Tennessee is utilized to perform computations for 3-D problems. The 

biconjugate gradient stablized (BiCGSTAB) sparse iterative solver is employed to 

yield an efficient parallel solution algorithm. 

A broad range of verifications and benchmark test problems in two and three 

dimensions are examined to establish the validity and accuracy of the newly developed 

velocity-vorticity formulation for the unsteady laminar incompressible Navier-Stokes 

equations 
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Chapter 1 

INTRODUCTION 

1.1 General Review 

Batchelor (1967) mentioned in his classic :fluid dynamics book that: "I regard 

:flow of an incompressible viscous :fluid as being the center of :fluid dynamics by virtue 

of its fundamental nature and its practical importance." With the advent and avail

ability of computer resources, Computational Fluid Dynamics (CFD) has emerged as 

an important and economical research and development tool in the scientific world. 

Numerical simulation of incompressible viscous :fluid :flow is commonly used nowa

days to solve practical industrial and environmental :fluid :flow problems. The finite 

element method, with a rigorous mathematical history and a wide range of applica

bility, is currently a hot topic of research in CFD especially for three dimensional 

incompressible viscous flow simulation. 

Different finite element formulations to predict viscous incompressible :flows have 

been introduced in the last decade. They may be classified into two major categories, 

primitive variable formulations, and derived variable (vorticity) formulations. Gresho 

& Sani (1987) point out that the pressure appearing in the incompressible Navier

Stokes equations (INS) is not a thermodynamic variable. Instead, it is a mathematical 
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lagrangian constraint that enforces conservation of mass via a divergence-free velocity 

field throughout the entire flow field at any time. The primary challenge of all INS 

formulations is to satisfy the continuity equation, V · u = 0, either contending with 

how the pressure variable works in a CFD theory, or working around it. 

1.1.1 Primitive Velocity-Pressure Formulation 

For a direct finite element formulation for the INS equations, the momentum and 

the continuity equations are solved simultaneously. A specific combination of mixed 

finite element bases for velocity and pressure has to be used to guarantee a stable 

convergent solution. This set of bases is required to satisfy the div-stability condition, 

also known as the LBB or the inf-sup condition, as stated by Ladyzhenskaya (1969) 

, Babuska {1973) , and Brezzi {1974). The terminal solution matrix resulting from 

the direct method is ill-conditioned due to a large number of zeros on the diagonal, 

corresponding to the absence of the pressure variable in the continuity equation. In 

three dimensions, the direct mixed finite element method is also expensive to compute, 

hence its application tends to be limited for two dimensional incompressible fluid flow 

problems. 

In the penalty method (Temam 1968, Hughes, Liu & Brooks 1979), the pres

sure term is replaced by a constraint expression comprised of the divergence of an 

approximation to the velocity and a lagrange multipler. Solutions to the momentum 

equations are then "encouraged" to satisfy continuity as the lagrange multipler ap

proaches infinity. Penalty solutions are proven to converge to exact solutions in linear 
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Stokes flow only. The major advantage of the penalty method is the total elimination 

of the appearance of pressure in the momentum equations, hence it can be postpr<r 

cessed from the obtained velocity field. The truly significant disadvantage is the high 

degree of ill-conditioning introduced into the terminal matrix algebra statement. For 

fluid flow at large Reynolds number, the Newton jacobian matrix is close to singu

lar which makes it extremely expensive to solve and requires direct, e.g., Gaussian 

elimination, methodology. 

A "pressure-relaxation" method is by far the most widely used formulation for 

production CFD codes. The momentum solution is initially started with a pseudo 

pressure distribution. The velocity is then projected to a divergence free vector field by 

solving a Poisson equation for a correction field. Velocity correction and/or pressure 

correction is then used to update the state variables iteratively. Gresho {1991b) states 

that a divergence free velocity field may be s<robtained by solving the momentum 

equations and a pressure Poisson equation with proper boundary conditions imposed. 

It is appropriate that the pressure Poisson equation, in such cases, has to be used to 

capture the genuine pressure field. However, the formulation is intrinsically transient 

since it is evolved from the basic ideas of projection method developed by Chorin 

(1968). As a result, a large time step may not be used. Thus obtaining a steady-state 

solution for a three dimensional problem could be expensive. 

A detailed comparison of various pressure relaxation schemes is documented by 

Williams (1993). The Continuity Constraint Method (CCM) developed by Williams 

(1993) addresses the key theoretical issues. An upwind finite element scheme for three 
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dimensional incompressible flow problems based on such methodology is reported by 

Fujima, Tabata & Fukasawa (1994). 

1.1.2 Streamvector-Vorticity Formulation 

In contrast to primitive variable formulations, pressure can be eliminated ana

lytically by taking the curl of the momentum equations, and the vorticity vector ,0, 

is introduced as a dependent variable. The compatibility equation, V 2'1i + 0 = 0, 

exists with the streamfunction vector, '11', which may be used to solve INS equations 

in conjunction with the derived vorticity equation. By definition, the streamvector 

definition satisfies the continuity equation identically. The streamfunction-vorticity 

formulation is very successful for two dimensional flow computations that are not 

pressure-difference driven. 

The first finite element implementation of the 2-D w - t/J method is reported 

by Baker (1973). However, the formulation suffers from severe limitations when 

extended to three dimensional streamvector-vorticity form since the streamvector is 

not unique and must itself be divergence-free, or constrainted to be so. A gradient of 

any scalar function may be added to the streamvector without affecting the velocity 

field. Specific restrictions have to be imposed on the formulation to ensure a solendial 

flow. As a remedy, Aregbesola & Burley (1977) introduced the vector and scalar 

potential vorticity formulation. The velocity vector field is decomposed into potential 

and divergence-free components. The continuity constraint is satisfied automatically 

by the scalar potential. However, boundary conditions for the scalar and the vector 
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potentials are often difficult to implement, especially at an outflow boundary. A 

solution for a three dimensional curved duct fl.ow was presented by Yang & Camarero 

(1991). 

1.1.3 Velocity-Vorticity Formulation 

By using the definition of vorticity, the continuity equation, and the curl of the 

momentum equations, the incompressible Navier-Stokes equations can be rewritten 

exclusively in terms of velocity and vorticity. The formulation consists of three ve

locity Poisson equations and three vorticity transport equations. 

There are several distinctive advantages to using the velocity-vorticity formula

tion for INS equations. First, pressure does not explicitly appear in the field equations, 

thus difficulties associated with the determination of the pressure boundary condi

tions, especially at the outflow boundary (Gresho 1991c), are avoided. Second, the 

boundary conditions for the formulation are clearer and easier to impose than for the 

vector potential formulation. Third, it can be directly extended to three dimensional 

flow computations. 

The formulation is shown by Gunzburger & Peterson (1988) to be well posed. 

The incompressibility constraint is satisfied implicitly within the context of the ve

locity Possion eqautions. However, in order to. solve the velocity-vorticity equations 

system successfully, one must make up a boundary condition for the vorticity on 

boundary segments where the velocity is specified, e. g. no-slip. Such boundary con

ditions represent a crucial ingredient towards resolving a mass-conserving convergent 

5 



solution. It is pointed out by Daube (1992) that satisfying the continuity equation is 

equivalent to enforcing the definition of the vorticity as the curl of the velocity field, 

and that this requirement reduces to boundary conditions coupling the velocity and 

vorticity on a solid wall. 

The velocity-vorticity formulation was first reported by Fasel (1976) to study the 

stability of the boundary layers in two dimensions. It was extended by Dennis, Ingham 

& Cook (1979) and Agarwal (1973) to compute steady three dimensional cavity flows. 

Gatski, Grosch & Rose (1982) applied the compact finite difference Keller-Box scheme 

to unsteady incompressible flows. Farouk & Booz (1984) presented a numerical study 

of the natural and forced convection and heat transfer in a two-dimensional annulus. 

When the velocity-vorticity formulation is written in terms of a standard finite 

difference discretization, the numerical solution may not satisfy the continuity con

straint and is found to be very sensitive to the discretization of the equation used to 

evaluate the vorticity at a solid wall via the vorticity kinematic boundary condition. 

In order to satisfy the constraint that the velocity field be divergence free, a spatial 

discretization based on a staggered grid arrangement is generally employed. Using 

such grid arrangement, Orlandi (1987) was able to obtain a solution for :flow over 

a two dimensional backward facing step using a block ADI method. Steady state 

solutions for two dimensional driven cavity flows at Re :5 5000, were reported by Guj 

& Stella (1988) using the false transient method with parabolized Poisson velocity 

equations on a staggered grid. An influence matrix technique was used by Daube 

(1992) to solve an axisymmetric flow in a closed cylinder. 
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A velocity-vorticity formulation of the two dimensional N avier-Stokes equations 

using the finite element method was first reported by Guevremont, Habashi & Hafez 

(1990). Their methodology used mixed finite element interpolation functions for the 

velocity components and the vorticity similiar to that employed in the primitive valu

able formulation. A quadratic finite element interpolation was used for the velocity 

components while linear was used for the vorticity. A fully coupled Newton ma

trix system of equations was solved simultaneously by a direct solver. The vorticity 

boundary condition at a no-slip wall was imposed by evaluating the weighted area in

tegral of the definition of vorticity in terms of the velocity at each boundary element. 

The formulation was also used to solve a subsonic internal enclosed flow problem. 

Solutions for the three dimensional driven cavity benchmark using a finite dif

ference method in conjunction with a staggered grid arrangement were reported by 

Dacles & Hafez (1990) and Napolitano & Pascazio (1991). A direct extension of the 

false transient method for three dimensional driven cavity solutions for Re ~ 2000 

was reported by Guj & Stella (1993). A three dimensional extension of the velocity

vorticity formulation using the finite element method was also presented by Guevre

mont, Habashi, , Kotiuga & Hafez (1993) for driven cavity flow at Re = 100 and 

Re= 400. 

1.2 Present Research Investigation 

Quartapelle (1993) observes that: " this pair of variables (velocity and vorticity) 

is most suited from the viewpoint of a fluid dynamic description of incompressible 
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viscous flow. In fact the vorticity is governed by an extensively studied and well 

understood dynamical equation while the velocity field, which by definition embodies 

the kinematical aspect of the problem, can be related to the vorticity field by a very 

simple elliptic equation." 

As mathematically viable as the velocity-vorticity formulation can be, numerical 

solutions for the three dimensional incompressible Navier-Stokes equations using such 

a formulation remain a challenge for researchers. Solutions for simple fluid flow prob

lems are predominantly solved by using finite differences on regular staggered grids. 

On the other hand, the finite element solutions presented by Guevremont et al. (1993) 

inherit the rigidity of the staggered grid arrangement with a pair of unequal order 

shape functions chosen for the velocity components and the vorticity components. 

The three dimensional velocity-vorticity formulation contains six variables. Of

ten, the system of velocity-vorticity equations has to be solved coupled together to 

guarantee a solenoidal velocity field Guj & Stella (1993). Solving such a fully coupled 

system implicitly on a sequential machine would be prohibitively expensive. Hence, 

efficient parallel numerical algebra procedures represent an important issue to be 

pursued. It is these reasons that motivate this investigation of a new time accurate, 

parallel finite element algorithm for the incompressible Navier-Stokes equations in 

velocity-vorticity form. 

The present finite element methodology uses equal order of finite element inter

polation functions for the velocity and vorticity components on a finite element mesh. 

A new second order kinematic vorticity boundary condition is derived to guarantee 
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the satisfaction of the incompressibility constraint. The three dimensional system 

of velocity-vorticity equations is solved on a distributed-memory parallel computer. 

The Newton jacobian matrix and residual vector within elements can be calculated 

simultanously on multiple processor nodes. The conjugate gradient squared {CGS) 

(Sonneveld 1989) and the biconjugate gradient stabilized (BiCGSTAB) {Van der Vorst 

1992) sparse iterative solvers are used to solve the terminal matrix statement. They 

can be effectively implemented on a distributed memory parallel machine such as the 

CM5. The global Newton jacobian matrix is not formed; instead, vector data needed 

for matrix-vector multiplication operations are transported through a message passing 

communication subroutine to the corresponding processor node. 

Although these sparse solvers are effective in parallel computations, they are not 

robust. For large Reynolds (Re) or Rayleigh {Ra) number flows, where convection 

dominates the flow processes, the Newton jacobian becomes ill-conditioned and stiff. 

As the condition number of the jacobian matrix increases, these conjugate-like sparse 

solvers have a tendency to diverge. An effective preconditioner, like the incomplete 

LU decomposition which can vastly improve the condition number of the matrix, 

is unfortunately difficult for efficient parallel implementation. One viable way to 

overcome the problem is to keep the time step small, Llt < 1.0, hence the well

conditioned mass matrix of the finite element procedure for the unsteady time term 

will help to diagonalize the terminal jacobain matrix, and consequently will reduce 

its condition number. 
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A discussion of the mathematical formulation in the velocity-vorticity form is 

presented in Chapter 2. In Chapter 3, a detail description of the parallel finite 

element procedure is illustrated. Chapter 4 summarizes the implementation of the 

parallel programming procedure. In Chapter 5, relevant test cases and benchmarks 

used to validate various aspects of the formulation are given and finally, conclusions 

of this research are presented in Chapter 6. 



Chapter 2 

VELOCITY-VORTICITY FORMULATION 

2.1 Governing Equations 

2. 1.1 Primitive Variable Form 

The nondimensional laminar incompressible Navier-Stokes equations system with 

Boussinesq gravity body-force approximation is 

Continuity : 

Momentum: 

Energy: 

8u ( ) 1 2 Gr 0 .. -+ u•v' u=-v'P+-v' u---g 
8t Re Re2 

80 1 
-+ (u • v')0 = --v'20 
8t RePr 

(2.1) 

(2.2) 

(2.3) 

where u = u(x, t) = (u, v, w) is the velocity vector field, tis the time, x = (x, y, z) is 

the spatial coordinate, 0 is the potential temperature, g is the gravity unit vector and 

P is the kinematic pressure. The nondimensional parameters are Reynolds number 

(Re), Prandtl number (Pr), and Grashof number (Gr) defined as, 

Re= UrLr Pr= ll Gr= {3gt:,.TrL: 
ll Q' 112 

11 



where L,. and U,. are the reference length and velocity respectively, g is the gravity 

acceleration, v is the kinematic viscosity, f3 is the coefficient of volume expansion, a 

is the thermal diffusivity, and .6.T,. is the reference temperature difference. 

For isothermal flow, such as straight channel flow and the lid-driven cavity, the 

energy equation is not used and the Boussinesq buoyancy term is neglected in the 

momentum equations. 

The system of equations (2.1) - {2.3) is subjected to suitable boundary conditions 

for t > 0 and initial conditions at t = 0. Typical boundary conditions are 

u(xs, t) = b(xs, t) (2.4) 

0(x5 , t) = f(x5, t) (2.5) 

(n · V)ulc = 0 {2.6) 

n-v016 = o (2.7) 

where n is the unit normal to the boundary, Sis the boundary surface segment for a 

known temperature, f, and C is the heat flux boundary which, here, is assumed to be 

adiabatic for simplicity, S is the boundary surface segment for a known velocity field, 

xs is a spatial point on S, b is the boundary velocity, and C is the outflow boundary 

for the velocity. When the boundary is a rigid no-slip solid wall in contact with the 

fluid, the boundary velocity, b, is zero. For a simplified case where outflow boundary 

does not exist, C = 0, the boundary velocity, b, must satisfy the global condition 

f ft · bdS = 0 t ~ 0 (2.8) 
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Boundary conditions of Dirichlet or Neumann type may be enforced for the pressure 

on inflow or outflow boundaries. 

The initial conditions are 

u(x,0) = uo(x) ; V · uo = 0 

0{x, 0) = 0 0{x) 

(2.9) 

(2.10) 

where u0 is an initial solenoidal velocity field and 0 0 is the initial temperature. 

Equations (2.1) - (2.10) represent a well-posed system for the incompressible 

Navier-Stokes equations in primitive variable form which will admit a unique solution 

(Quartapelle 1993). 

2.1.2 Velocity-Vorticity Form 

The vorticity vector, n = (O:i:, Oy, Oz), is defined as 

{2.11) 

Taking the curl of the vorticity vector definition, (2.11), together with the incom

pressibility constraint (2.1) and the vector identity, 

V X {l = V X V X U = V{V · u) - V2u {2.12) 

the velocity Poisson vector equation is 

{2.13) 
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For the momentum equation, the nonlinear term is first expressed in the following 

form 

Again, taking the curl of the momentum equation, (2.2), all the gradient fields are 

eliminated. The momentum equation becomes 

an 1 Gr A - + V X (n X u) = -v2n - -V X 0g 
8t Re Re2 

Consider now the vector identity 

(2.15) 

V x (n x u) = (u · V)n - (n · V)u + nv · u - uV · n (2.16) 

But V • n = 0 and V • u = 0, hence the vorticity equation assumes the form 

an ( ) ( 1 2 Gr A - + u · V n - n · V)u = -V n - -V x 0g 
8t Re Re2 

(2.17) 

which displays, in order, the unsteady term, the convection term, the stretching term, 

the viscous diffusion term and the buoyancy term. 

Hence, the velocity-vorticity formulation for the laminar incompressible Navier

Stokes equations system with Boussinesq approximation in 3-D can be written as 

.C(u) = V 2u + V X n = 0 (2.18) 

.C(O) = ~~ + (u · V)O- (O • V)u - ~e v 2n + ~; V X 0g = 0 (2.19) 

80 1 
.C(0) = 8t + (u · V)0 - RePr V20 = 0 (2.20) 
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For an isothermal system, the formulation is subjected to the following initial and 

boundary conditions, 

O(x, 0) = V x u0(x) 

u(xs, t) = b(xs, t) 

(n · V)ulc = 0 

(ft· V)Olc = 0 

V · u(xs,t) = 0 

V · O(xs,t) = 0 

ft· O(xs,t) =ft• Vs x b(xs,t) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

The equation system (2.18)-(2.27) in the velocity-vorticity form for C = 0 is proved 

by (Quartapelle 1993) to be equivalent to the primitive velocity-pressure form, (2.1)

(2.10). 

Such formulation consists of three velocity Poisson equations that couple the 

velocity and vorticity components kinematically via the continuity constraint, and 

three vorticity transport equations that describes the dynamics of flow mechanisms. 

Gunzburger & Peterson (1988) point out that the problem is well posed even though 

just u is specificed at the solid wall. However, to successfully solve the momentum 

equation, a boundary condition for the vorticity on the no-slip wall must be specified. 

Such a boundary condition is given in Equation (2.27). As indicated by Quartapelle 
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(1993), Equation (2.27) is simply the component of the equation O = V x u normal 

to S, in which the velocity boundary condition Ii x uls = Ii x b has been taken into 

account to express Ii V x u in terms of Ii Vs x b. 

2.1.3 Two Dimensional Formulation 

The isothermal velocity-vorticity formulation in two dimensions consists of two 

velocity Poisson equations and a single vorticity transport equation, 

an 
.C(u)=V2u+-=0 ay 

an 
£( V) = V 2v - ax = 0 

an 1 
.C(n) = 8t + (u · V)n - Re V2n = 0 

(2.28) 

(2.29) 

(2.30) 

which is greatly simplified. The stretching term vanishes in the two dimensional 

setting, and the V x n condition is not required. Instead of using the velocity Poisson 

equations, Gatski et al. (1982) solved the continuity equation, V • u = 0, the vorticity 

definition, V x u = n, and the vorticity transport equation, (2.30), with a compact 

finite difference scheme. 

2.2 Boundary Conditions 

2.2.1 Velocity Poisson Equations 

Boundary conditions for the velocity Poisson equations are readily available. At 

the inflow boundary, a Dirichlet boundary condition is imposed with a known inlet 
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velocity profile. A homogeneous Neumann boundary condition may be enforced at 

the fl.ow exit. On solid walls, no-slip boundary conditions with b = 0 in Equation 

(2.22) are appropriate. 

2.2.2 Vorticity Transport Equations 

By specifying the velocity distribution at the inlet, the inflow vorticity distribu

tion is also known. A homogeneous Neumann boundary condition for the vorticity is 

appropriate at a fl.ow exit. However, careful determination of the vorticity boundary 

condition at a no-slip wall is critical. 

Daube (1992) points out that the requirement to satisfy the continuity equation 

reduces to the boundary conditions coupling the velocity and vorticity at the solid 

wall. A convergent solution which is divergence-free has been found by many re

searchers to be sensitive to the numerical implementation of the "make-up" vorticity 

kinematic boundary condition. Guj & Stella (1993) indicate that a solenoidal veloc

ity field for an arbitrary vorticity distribution may be assured only by coupling the 

velocity Poisson equations and the vorticity transport equations. The conservation of 

mass, and hence the conservation of the solenoidality of vorticity field, are satisfied 

implicitly in the bulk of the fluid by the kinematic velocity Poisson equation and 

are to be imposed explicitly on the boundary of the fluid domain by the kinematic 

vorticity boundary condition. 

A new second order vorticity kinematic boundary condition is developed and 

implemented in the present formulation. Using Equation (2.27), the vorticity at a 
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no-slip wall is represented by retaining only the normal component of the equation 

(2.11), 

flwall = ii • VS X U (2.31) 

A schematic of a typical flow geometry is shown in Figure 2.1, where wO, wl, and w2 

represent computational node points on the wall, next to the wall, and second next 

to the wall along an axis normal to boundary walls. 

Inlet 

y-axis 

/ WO 
Z·axls -,-- (!)w1 

- Qw2 ~ n,.,.-klnematic 
,,; w2 

,,' : W1 

,,' : WO 

- ,-' _,,>------------- ?_wo ---
, 0 w1 

~ 0-0--0 . w2 

, , 
, 

, , , , 

,/WO w1 w2 w2 

w1 

WO 

n._,.aklnematlc x-axis 

Figure 2.1 : Schematic of kinematic vorticity boundaries 

For the wall normal to the x-axis, from Equation (2.31),and (2.11), the vorticity 

components at the wall are 

n __ aw 
y - ax 
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For the wall normal to the y-axis, the vorticity components are 

aw au n,7; = - ; f!y = 0 ; nz = --ay ay (2.33) 

For the wall normal to the z-axis, the vorticity components are 

av au n,7; = -- ; f!y = - ; nz = 0 8z 8z 
(2.34) 

Various orders for interpolation of the kinematic wall equations for vorticity were 

presented and studied by Agarwal (1981). They are the first order equation, 

(2.35) 

the second order equation, 

(2.36) 

the third order equation, 

n = (2qwcill+3 - 9qwcill+2 + lBqwcill+I - llqwcill) + 0(.6. )3 
wcill b.Bh Z (2.37) 

and the Wood's formula (Roache, 1972), 

O = 2(qwcill+I - qwcill) _ f!wcill+I + 0(.6. )2 
wcill fih2 2 Z (2.38) 

where n denotes a vorticity component, q denotes a velocity component, and .6.h is 

the grid size. 

Equations (2.35) and (2.38) were tested in the present finite element framework 

on a fully developed two dimensional channel. Neither kinematic vorticity boundary 

conditions was able to produce a correct solution. Using a bilinear finite element inter

polation, Equation (2.36) and (2.37) will put an entry outside the banded structure of 
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the terminal jacobian matrix. Thus, Equation (2.37), as implemented in conjunction 

with a biquadratic finite element interpolation, was found to be inappropriate. 

A fairly different kinematic vorticity boundary enforcement was presented by 

Guevremont et al. (1990). Instead of using the normal component of the vorticity 

definition at wall, which acts on a line, a finite element volume integral weak formu

lation for the vorticity definition is used, 

JNo(O-V x u)dV = 0 (2.39) 

where N is the finite element basis for n. This equation was not shown to enforce 

continuity of the flow field. In the case of an open channel flow, mass conservation is 

accounted for by using the continuity equation to modify the surface integral of the 

normal velocity equation at an exit (Guevremont et al. 1990). 

2.2.3 Present Vorticity Kinematic Equations 

The kinematic vorticity boundary condition is imposed at the end of the finite 

element assembly process. A vorticity kinematic equation will then replace the dis

cretized nodal vorticity equation at the corresponding node on a no-slip wall. These 

vorticity kinematic equations are obtained by using a Taylor series expansion of Equa

tions (2.31). A detailed description of derivation for one of the equations follows. 

Using Taylor series expansion for the x-velocity component, u, at wall normal to 

the z-axis, 

(2.40) 
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Using Equation (2.30) 

Az2 dOy,tu0 ( )3 
Uw1 = Uwo + AzOy,wO + - 2- dz + 0 Az (2.41) 

Expanding Oy,wl in terms of 0 11,w0, 

(2.42) 

Combining Equations (2.41) and (2.42), 

A n Az2 ( Oy,wl - Oy,wO) O( A )3 
Uu,l = Uu,o + L.l.ZHy + 2 Az + uz (2.43) 

the result is 

(2.44) 

For the wall normal parallel to the positive x-axis, the resultant vorticity kine

matic equations are, 

O:i:,w0 = 0 (2.45) 

(2.46) 

(2.47) 

For the wall normal parallel to the negative x-axis, the vorticity kinematic equations 

are, 

(2.48) 

2 
(Oy,wl + Oy,u,0)- Ax(ww1 - w,u0) = 0 (2.49) 
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(2.50) 

Derivation for the other two derivatives follows this process. For the wall normal 

parallel to the positive y-axis, the vorticity kinematic equations are, 

(2.51) 

(2.52) 

(2.53) 

For the wall normal parallel to the negative y-axis, the vorticity kinematic equations 

are, 

(2.54) 

(2.55) 

(2.56) 

For the wall normal parallel to the positive z-axis, the vorticity kinematic equations 

are, 

(2.57) 

(2.58) 

(2.59) 
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For the wall normal parallel to the positive z-axis, the vorticity kinematic equations 

are, 

(2.60) 

(2.61) 

(2.62) 

A higher order kinematic vorticity equation is also dervied when the biquadratic 

finite element basis is used for both velocity and vorticity. It is important to derive 

a compatible order of vorticity kinametic boundary condition that utilizes the entire 

element nodal point map in the normal direction. Using the Taylor expansion again 

for the vorticity component on the bottom wall, see Figure 2.1, 

du Az2 d2u Az3 d3u 4 
Uw1 = Uwo + Az dz + - 2- dz2 + - 6- dz3 + 0( Az) (2.63) 

du (2..6.z )2 d2u (2Az )3 d3u 4 
Uw2 = Uwo + 2..6.z dz + 2 dz2 + 6 dz3 + 0( Az) (2.64) 

Using Equation (2.30), 

Az2 dOy,w0 Az3 d2Oy,w0 ( 4 
Uw1 = Uwo + AzOy,wO + -2- dz + -6- dz2 + 0 Az) (2.65) 

- 2 A n (2Az )2 dOy,wO (2Az )3 d2ny,w0 0( A )4 
Uw2 - Uwo + uZ.uy,wO + 2 dz + 6 dz2 + uz (2.66) 

Eliminating the O(Az)3 term from Equations (2.65) and (2.66), 

( ) 2d2Oyw0 ( )4 Suw1 - Uw2 = 7uw0 + 6AzO31,w0 + 2Az dz~ + 0 Az (2.67) 
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Expanding !131,w2 and !131,wi in terms of Oy,wo, 

d!131,wo Az2 d2!131,w0 O( )3 
Oy,wl = Oy..,o + Az dz + 2 dz2 + Az (2.68) 

d!131,w0 2( Az )2 d2!131,w0 ( ) 3 
!131,wi = Oy..,o + 2Az dz + 2 dz2 + 0 Az (2.69) 

Eliminating the O(Az)2 term from Equations (2.68) and (2.69), 

(2.70) 

Combining Equations (2.67) and (2. 70), 

The result is 

(2.72) 

Similar kinematic vorticity equations are developed and used for each compu

tational node on various solid walls. These third order equations are tested in two 

dimensional channel flow with a biquadratic finite element basis function for velocity 

and vorticity. Accurate divergence free velocity solutions were obtained. However, 

an unacceptable solution is found when a second order type equations, e.g. Equation 

(2.44), is implemented in conjunction with a biquadratic finite element basis function. 
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Chapter 3 

PARALLEL FINITE ELEMENT ALGORITHM 

3.1 Finite Element Formulation 

The three dimensional velocity-vorticity formulation for the laminar incompress

ible Navier-Stokes equations in a cartesian coordinate system with gravity acting in 

the z (vertical) direction is, 

( ) 2 any an% 
C,u =-v'u+---=0 az ay (3.1) 

C,(v) = -v'2v + anz - an:,;= 0 ax az (3.2) 

C,(w) = -v'2w + an:,; - any= 0 ay ax (3.3) 

an:,; 1 2 Gr a0 
£(0:1:) =at+ (u. v')0:1: - (0. v')u - Rev' n:1: - Re2 ay = 0 (3.4) 

£(0 ) = anv + (u · v')n - (0 · v')v - _!_v'20 + Gr 09 = O 
v at v Re v Re2 ax (3.5) 

anz ) 1 2 
£(Oz) = 8t + (u · v')nz - (0 · v' w - Rev' nz = 0 (3.6) 

£(0) = ~~ + (u · v')0 - Re~r v'20 = 0 (3.7) 
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3.1.1 Galerkin Weak Statement 

The semi-discrete finite element approximation assumes 

where u denotes the continuum physical domain of£( q), Equations (3.1 )-(3. 7), and uh 

denotes the discretization of the continuum domain as the union of ue, the individual 

finite element sub-domains. Each member of the state variable 

within an element is written in terms of the spatial finite element basis functions, 

also called the trial functions or the element shape functions, {Nk(x)}, and time 

dependent nodal expansion coefficients as 

Ue(X, t) = {N1c(x)}T {U(t)}e 

Oe(X, t) = {Nk(x)}T {O(t)}e 

0e(X, t) = {Nk(x)}T {T(t)}e 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

Here k is the polynomial degree of interpolation for the basis function, U ( t) = 
(U, V, W) is the nodal velocity vector array, O(t) = (O:i-, Oy, Oz) is the nodal vor

ticity vector, and T(t) is the nodal temperature. 

The finite element semidiscretization of a (Galerkin) weak statement is obtained 

by determining the stationary point of the residual of the velocity-vorticity formu

lation, Equations (3.1) - (3.7), over the domain, u, for arbitrary choice of a weight 

26 



function (or test function). For a Galerkin statement, the weight function is chosen to 

be identical to the trial function, to within some boundary condition details, which 

minimizes the approximation error in the sense of distributions for the discretized 

state variable. The Galerkin finite element weak statement for the velocity-vorticity 

formulation is thus 

(3.12) 

where Q = (U, 0, T), S denotes the finite element assembly procedure carrying local 

element entries into the global matrix array, and M is the number of elements in the 

discretized domain. 

3.1.2 Discrete Finite Element Weak Statement For The Velocity 

Writing {Nk(x)} = {N}, for simplicity the Galerkin weak statement for .C(u) is 

GWS(u•) ={FU)= S~1 (J• {N}(-V2u• + B~! - a:;)dV) = O (3.13) 

Applying Green's theorem, and recognizing that all interior generated surface inte

grals vanish identically yields 

(3.14) 

where 8u is the boundary of u. The surface integral in Equation (3.14), will be zero 

for any homogenous Neumann boundary condition. Substituting finite element basis 

function forms for uh and Oh, then 

{FU} = S:!1 {FU}e 
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where 

Following the compact finite element notation given by Baker (1983), the discretized 

finite element weak statements for the state variable velocity resolution are, 

where 

{FU}e = [c2kke]{U}e + [c20ze]{Oy}e - [c20ye]{Oz}e = 0 (3.17) 

{FV}e = [c2kke]{V}e + [c20xe]{ Oz}e - [c20ze]{ Oz}e = 0 (3.18) 

{FW}e = [c2kke]{W}e + [c20ye]{Oz}e - [c20xe]{Oy}e = 0 (3.19) 

[c2kke] = Je V{N} · V{N}T dV 

[c20xe] = Je {N} B{~}T dV 

[c20ye] = Je {N} B{~}T dV 

[c20ze] = Je { N} B{~}T dV 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

3. 1.3 Discretized Finite Element Weak Statements For The Vorticity 

The Galerkin weak statement for .C(nz) is 

GWS(n:/) = {FOz} = S~1<Jh {N}(a~; +(uh· V)nzh - (Oh· V)uh 

_ _.!_ v2n,Z' h - Gr aeh )dV) = 0 (3.24) 
Re Re2 8y 
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Applying Green's theorem, dropping the surface integral, and using Equations (3.8) 

- (3.10), then yields 

(3.25) 

where 

The discretized finite element weak statements for the discretized vorticity resolution 

are, 

{FOi:}e - [c200e)d{~;}e 

+ ({U};[c30x0e) + {V};[c30y0e) + {W};[c30z0e)) {Oi:}e 

- ({01:};[c30x0e) + {O11 };[c30y0e) + {Oz};[c30z0e)) {U}e 

I Gr 
+ Re[c2kke]{Oi:}e- Re2 [c20ye){T}e = 0 (3.27) 

{FO11 }e - [c200e)d{~;}e 

+ ({U};[c30x0e) + {V};[c30y0e] + {W};[c30z0e)) {O11 }e 

- ({01:};[c30x0e] + {O11 };[c30y0e) + {Oz};[c30z0e]) {V}e 

I Gr 
+ Re [c2kke]{ O11 }e+ Re2 [c20xe]{T}e = 0 (3.28) 
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- (c200e] d{ O,}e 
dt 

+ ({U};(c30x0e] + {V};(c30y0e] + {W};(c30z0e]) {O,}e 

- ({O,:};(c30x0e] + {Oy};(c30y0e] + {Oz};(c30z0e]) {W}e 

1 + Re [c2kke]{ Oz}e = 0 (3.29) 

where 

[c200e] = J. { N}{ N}T dV 

(c30x0e] = J. {N} ai;} {N}T dV 

[c30y0e] = t. {N} a!;} {N}T dV 

[c30z0e] = t. {N} ar} {N}T dV 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

3.1.4 Discretized Finite Element Weak Statement For The Temperature 

The Galerkin weak statement for £(0) is, 

Applying Green's Theorem and using the Equations (3.8) - (3.10), the discretized 

finite element weak statement for the temperature is, 

{FT}e = [c200e]d{Ji}e 

+ ({U};[c30x0e] + {V};[c30y0e] + {W};[c30z0e]) {T}e 

1 
+ RePr [c2kke]{T}e = 0 
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3.1.5 Newton Statement 

The semi-discretized finite element velocity-vorticity weak statements form the 

following system of algebraic-ordinary differential equations, 

{FU}= {RU}= 0 

dO 
{FO} = [M]dt + {RO} = 0 

dT 
{FT}= [M]dt + {RT} = 0 

(3.36) 

(3.37) 

(3.38) 

where [M] is the global assembled mass matrix associated with the time term and 

{RQ} is the global steady state residual vectors which represents all other weak 

statement terms. Equations (3.37) and (3.38) are a system of ordinary differential 

equation, for which the 80 - implicit, one step Euler scheme is used to integrate 

through the transient solution. The terminal computable algebraic statements are 

then, 

{FU} = {RU} = [D]{U} + {S(O)} = 0 (3.39) 

where n denotes the time station tn, tn+l = tn + flt, {S(O)} is the source term 

contribution from vorticity, 80 = 0.5 represents the trapezoidal rule, while 80 = 1 

represents the full implicit backward Euler integration scheme. 
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The residual vector {RQ} is a nonlinear function of the state variables, U , 0, 

and T. Equations (3.39) - (3.41) represent a coupled, nonlinear system of algebraic 

equations that must be solved iteratively. The Newton-Raphson algorithm is used 

and the subsequent procedure is, 

{Q}~+l = {Q}n 

{FQ}~+i = {FQ}n 

Q = (U, V, W, 0:, Oy, Oz, T) 

for p = 0, 1, 2, .... until convergence n + 1 

[J AC]= [JQQ] = [8{FQ}lp 
8{Q} n+I 

[JAG] {6Q}:t~ = -{FQ}:+1 

{Q}:t~ = {Q}:+I + {6Q}:t~ 

where [JAC) is the jacobian matrix of the terminal non-linear algebraic statement. 

3.1.6 Jacobian Matrix 

The residual equations, (3.39) - (3.41), are differentiated with respect to the state 

variables to produce the Newton jacobian. The resultant 7x7 block matrix is shown 

in Figure 3.1, each term in which is formed via differentiation of {FQ} on the element 

domain ae, then assembled to global form. 
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JUU 0 0 0 JUO11 JUOz 

0 JVV 0 JVO:r: 0 JVOz 

0 0 JUW JUO:r: JUO11 0 

JO:r:U JO:r:V JO:r:W JO:r:O:r: JO:r:O11 JOxOz 

JO11 U JO11V JO11W JO11 O:r: JO11O11 JO11Oz 

JOZU JOzV JOzW JOzO:r: JOzO11 JOZOZ 

JTU JTV JTW 0 0 0 

Figure 3.1 : Layout of jacobian matrix 

The element contributions to the global block sparse matrix are: 

[JUU] = [JVV] = [JWW] = [c2kke] 

[JVO 11 ] = -[JWO:r:] = [c20xe] 

[JWO:r:] = -[JUOz] = [c20ye] 

[JUO11] = -[JVO:r:] = [c20ze] 

[JO:r:U] = 00 At [{ O:r:};[c30x0e] - [vconv]] 

[JO11 V] = 00 At [{ O11 };[c30y0e] - [vconv]] 

[JOz W] = 00 At [{ Oz};[c30z0e] - [vconv]] 

[JO;Uk] = 0oAt{O;};[c30k0e] 

0 

0 

0 

JO:r:T 

JO11T 

0 

JTT 

1 
[JO:r:O:r:] = [c200e] + 00 At[{U};[c30x0e] + [uconv] + Re [c2kke]] 

1 
[JO11 O11] = [c200e] + 00 At[{V};[c30y0e] + [uconv] + Re[c2kke]] 
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where 

1 
[JOzOz] = [c200e] + 80 .6.t[{W};[c30z0e] + [uconv] + Re [c2kke]] 

[JO;Ok] = Ba.6.t{U;};[c30k0e] 

Gr 
[J01:T] = -80 .6.t Re2 [c20ye] 

Gr 
[JO11T] = 80 .6.t Re2 [c20xe] 

1 
[JTT] = [c200e] + 80 .6.t[+[uconv] + RePr[c2kke]] 

[JTUk] = 80 .6.t{T};[c30k0e] 

k,j = (x,y,z),Ux = U,U11 = V,Uz = W 

[uconv] = - [{U};[c30x0e] + {V};[c30y0e] + {W};[c30z0e]] 

[vconv] = - [{Ox};[c30x0e] + {011 };[c30y0e] + {Oz};[c30z0e]] 

3.1. 7 Vorticity Kinematic Boundary Conditions 

The general form of the vorticity kinematic equations (2.45)-(2.62) are, 

For example, Equation (2.44), the coefficients are 

a110 = a111 = 1 
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To apply the kinematic vorticity boundary conditions, the residual vorticity equations 

at the boundary nodes where no-slip velocity are imposed are replaced by the vorticity 

kinematic equations, J(Owall). At the same time for the jacobian matrix, the entire 

row of the corresponding vorticity component at the boundary node is zeroed out 

and replaced by the coefficients a and b of f(Owall) at the corresponding entries, 

Figure 3.2. 

(q) II (u) (v) (w) 

( ·. ·) . . . ... . . . . . . . . . ... 

(011) JO11 U JO11 V JO11 W 1O11 O:c JO11 O'11 JO'/IOZ 

(Oy,wall) 0 · · · , b:co, b:c 1, · · · 0 . . ·O· .. .. ·O·· . . ··O··. 0 · · ·, a11o, a11 1, • • • O .. ·O·· . 

(011) JO11 U JO"V JO11 W 1O11 O:c 10110 11 JO11Oz 

(·. ·) ... . .. . . . . . . . . . . .. 

Figure 3.2 : Imposing kinematic vorticity equation in jacobian matrix 
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Chapter 4 

PARALLEL COMPUTATIONAL PROCEDURE 

Solving the Newton system, Equation (3.39)-(3.41), for the fully coupled velocity

vorticity FE weak statement in three dimensions requires enormous computer time 

and memory. In a parallel computing environment, the burden of excessive functional 

execution and memory storage may be distributed over a number of processors. The 

finite element method, which involves a large amount of computations among individ

ual elements, can be done efficiently in parallel. If Gaussian elimination is employed 

for the solution of the terminal global matrix statement, the degree of parallelism 

will deteriorate. Alternatively, the new class of CG-like sparse iterative solvers, such 

as CGS (Sonneveld 1989) and BiCGSTAB (Van der Vorst 1992), is parallel-efficient, 

hence implemented for this project. These solvers mainly involve operations of matrix

vector product and vector inner product, hence are ideal for parallel implementation, 

provided suitable preconditioning can be determined. Details of the developed par

allel computational procedure are presented in this chapter. 

4.1 CMS Parallel Computer 

The Thinking Machines CM5 at the University of Tennessee (Department of 

Computer Science) has 32 parallel processing nodes and one front-end control pro-
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cessor(host ). Each node is a 32 Mhz Spare processor equipped with 4 vector units. 

There is a full 32Mbytes of memory, four banks of 8 Mbytes each, in each processor. 

Processing nodes are connected in a three level fat tree network. 

The CM5 computer may be programmed as a single instruction multiple data 

(SIMD) machine or as a multiple instruction multiple data (MIMD) machine ( CM5 

User's Guide, Version 1.0 1993). SIMD programming requires implementation in 

CM Fortran which distributes data elements of arrays evenly over processors. MIMD 

programming uses CMMD message passage subroutines to exchange necessary infor

mation between functional units within a parallel program. These functional units 

are assigned to specific processors by the programmer. 

The MIMD programming technique is used in the present methodology. A host

node program is constructed in standard Fortran 77, in conjunction with CMMD 

library subroutines for message passing. Input data are processed at the host and 

passed along to corresponding processing nodes to initiate execution. Primary compu

tations are carried out concurrently at all processing nodes. Results are then gathered 

at the host and output for postprocessing. Vector units of the CM5 were not utilized 

for the purpose of portability. The floating-point performance of the scalar unit of 

each node is approximately 5 Mflops. 

4.2 Parallel Strategy 

The major concern in designing a MIMD type program is the cost of communi

cation. Message passing is fairly expensive compared to floating-point computation 
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within processors. The other factor is data allocation across processors. The de

veloped program is tailored to minimize both communications and data memories 

over processors. A typical finite element maximum mesh size of M=32x32x32 is used 

to match the CM5 number of processors. The natural arrangement is to subdivde 

the computational mesh into 32 subdomains along one direction and assign each one 

to a processor. A schematic of the computational grid with some major parame

ters is shown in Figure 4.1. The same programming instructions will be executed 

simultanously on processors, however data for computation at each processor will be 

different. The sequence of computation is summarized as follows: 

** HOST: preprocess input data, pass to corresponding nodes 

* NODE: receive input data from host 

1. start time integration loop 

2. start Newton iteration loop 

3. do i=l,nelemp 

• form element jacobian matrix contributions, [JQQ]e 

• form residual right hand side, {FQ}e 

• assemble to form [JQQ] 

• assemble to form {FQ} 

4. apply Dirichlet boundary condition 

5. apply vorticity kinematic boundary condition 

6. solve : CGS, BiCGSTAB 
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global computational geometry 

, , 

I 
I 
I 
I 
I 

1,------, , , , 

processor number 

nnode = total number of node = 35937 

nelem = total number of element= 32768 

local processor 10 geometry 

2145(35210) 

I global node number 
local node number 

33(363) 

nnodp = number of node per processor= 2178 

nelemp = number of element per processor = 1024 

Figure 4.1 : A schematic of the computational domain 
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• diagonal scaling preconditioner (Barrett et al, 1994) 

• vector inner product (message passing) 

• matrix vector product (message passing) 

* NODE: send solution to host 

** HOST: gather nodal data and output printout 

4.3 Sparse Matrix Data Structure 

The terminal Newton jacobian for the fully coupled velocity-vorticity formulation 

is a 7x7 block matrix. Each jacobian block is a sparse matrix with a large number 

of zeros. A compressed row storage scheme is used to minimize-the memory storage. 

Nonzeros of the jacobian matrix are stored in a :floating-point vector, SMXY, in a 

contiguous rowwise order. Two addressing integer vectors hold information for the 

location of a element entry of the matrix. The first vector, JC, stores the column 

indices of element entries and has the same length as SMXY. The second one, NR, 

contains pointers to positions where each new row begins. An example of a 4x4 sparse 

matrix as follows, 
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1111 1 

1112 2 

1114 4 

1121 1 
1 

["" 
1112 0 ... I 1122 2 

4 

[A] = 11:1 
1122 1123 0 => {SMXY} = 1123 3 

{NR} = {JC}= 7 
1132 1133 1134 1132 2 

10 
1141 0 1143 1144 1133 3 

13 
1134 4 

1141 1 

1143 3 

1144 4 

The integer pointer arrays, JC and NR, are constructed and stored in each pro

cessor. Since the structure of every jacobian matrix block is the same, only one 

set of JC and NR is needed. A total of twenty seven SMXY vectors are required 

for the isothermal fully coupled velocity-vorticity equations system. Six more are 

needed when the energy equation is added. The vector length of SMXY is 37637 

for M=32x32x32. Thirty three SMXY vectors require approximately 10 MBytes of 

memory. A total of 14 Mbytes of memory per node is needed for the developed 

program. 

The pseudocode for the matrix vector product x = Ar, using compressed row 

storage format, can be written as, 

** for i = 1 , n 

x(i) = 0 

for j = NR(i) , NR(i+l) -1 
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x(i) = x(i) + SMXY(j) * r( JC(j) ) 

** end 

which is a major kernal for the sparse iterative solvers. 

4.4 Sparse Iterative Solvers 

The CGS and BiCGSTAB sparse iterative solvers are used to compute the so

lution of Ax = b. These solvers are an extension of the conjugate gradient method 

(Golub & Van Loan 1989}, for a symmetric positive definite matrix, to a nonsymmet

ric matrix. These are Krylov subspace methods (Freund, Golub & Nachtigal 1991) 

based on the nonsymmetric Lanczos process. Their distinct advantage is that they 

operate on vector recursions, thus storage requirements per iteration are low and 

roughly constant. 

The major kernel of these solvers is a matrix vector multiplication operation 

which can be efficiently implemented on a parallel computer. A comprehensive de

scription of various Krylov subspace iterative solvers is given by Barrett et al. (1994). 

4.4.1 Conjugate Gradient Squared Method (CGS) 

The CGS method was developed by Sonneveld (1989). It is a modification of the 

BiConjugate Gradients (BiCG) method by Fletcher {1976). In the BiCG method, 

two sequences of mutually orthogonal residual vectors, r and f, are generated. They 

are updated along two search directions augmented by multiplication of the matrix, 
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A, and its transpose, AT. The idea of the CGS method is to contract the residual 

vector r twice by the matrix, A, while r remains unchanged. The convergence rate is 

observed to be twice as fast as that of BiCG. CGS requires about the same number 

of operations per iteration as BiCG, but does not involve computation of the matrix 

transpose. The pseudocode for the CGS algorithm (Dias da Cunha & Hopkins 1992) 

1s, 

**CGS Algorithm 

* choose xo 

* ro = Q(b- Axo) 

* Po = So = ro = ro 

* -T Po= ro ro 

* for k = I, 2, 3, ..... . 

• check stopping criterion 
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**END CGS 

where Q is a preconditioning matrix for A. 

4.4.2 BiConjugate Gradient Stablilized Method (BiCGSTAB) 

The CGS method has a tendency to give an irregular convergence pattern, 

BiCGSTAB was derived by Van der Vorst (1992) to give a considerably smoother 

behavior. The pseudocode for the BiCGSTAB method (Dias da Cunha & Hopkins 

1992) is 

**BiCGSTAB Algorithm 

* choose xo 

* ro = Q(b- Axo) 

* ro = fo 

* po=vo=O 

* po=oo=wo=l 

* fork= 1,2,3, ..... . 
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• /3k = (pkO'.k-1)/(Pk-1 Wk-1) 

• Pk = Tk-1 + /3k(Pk-1 - Wk-1 Vk-i) 

• Vk = QAp1; 

• ek = r5 Vk 

• O'.k = p1;/ek 

• if 11s11 < 10-16 j Xk = Xk-1 + O'.kPk stop 

• tk = QAs1; 

• Wk= (tf s1;)/(tf t1;) 

• check stopping criterion 

**END BiCGSTAB 

CGS requires two matrix vector products and two vector inner products. BiCGSTAB 

requires two more vector operations of inner product. 

The stopping criterion (Barrett et al. 1994) for these iteration methods is 

(4.1) 

where e; is the error tolerence relative to llbll, the magnitude of the right hand side 

residual vector. For the three dimensional cavity flow simulations conducted in this 

project, BiCGSTAB is used primarily and e; is chosen to be 10-6 , and llbll ~ 100 for 

driven cavity and I lbl I ~ 10 for thermal cavity in three dimensions. 
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4.4.3 Preconditioner 

The convergence rate of iterative methods depends on the condition number of 

the jacobian matrix A. The linear system, Ax = b, may be transformed by some 

suitable choice of preconditioning matrix, Q, such that the condition number of the 

transform matrix, A* = QA, is improved, and the transformed linear system, Q Ax = 

Qb, has the same solution as the original system. The ideal but impractical choice 

of Q is Q = A-1 ; then the condition number of the preconditioned matrix is 1! 

Applying preconditioning to matrix A incurs extra computations, hence there is a 

trade-off between the efficiency and convergence of an algorithm. 

One of the most popular and effective preconditioning techniques is based on 

incomplete factorization of the coefficient matrix, A, (Saad 1989). The conventional 

LU factorization method for solving A directly will generate full triangular matrices 

L and U because of generated fill-in entries to zero positions of A. The incomplete 

LU preconditioner is derived such that during the factorization process certain fill-in 

entries are ignored. However, such a preconditioning strategy will severely down

grad the parallelism of CGS and BiCGSTAB methods. In this project, the simple 

Jacobi(diagonal scaling) preconditioner, Q = [diag(A)J-1, is used. The effect of pre

conditioning may be small, however it can be efficiently implemented in parallel. 

4.5 Matrix Vector Multiplication 

The goal is to simulate the result of a global matrix vector product under the 

framework of the finite element method by a series of local matrix and vector algebraic 
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steps in conjunction with message passing subroutines over a number of processors. 

In order to minimize memory storage, non-overlapping regions of subdomains are as

signed to processors. A simple example, composed of two, 3-D trilinear basis elements, 

A and B, illustrates the developed computing procedure. 

Assume for simplicity that there are only two processors in the parallel computer, 

hence element A is assigned to processor 1 and element B is assigned to processor 2. 

A finite element mesh for the example is shown in Figure 4.2. Global node numbers 

are used to indicate indices for the finite element assembled matrices. There is only 

one interface boundary in this example. Nodes 3, 4, 9, and 10 are shared by both 

elements, hence communication is required along this interface for computation of 

matrix-vector products between processor 1 and processor 2. 

The weak statement matrix and residual vector for element A in processor 1 are 

al 1 a2 1 a3 1 a4 1 a7 
1 

a• 1 a9 1 alO 1 ral 

ai a2 
2 

a3 
2 

a4 
2 

a7 2 a• 
2 

a9 
2 

alO 
2 ra2 

al 3 a2 3 a3 3 a4 3 a7 3 af ag alO 3 ra3 

al a2 a3 a4 a7 a• a9 alO ra4 
[SAXY] = 

4 4 4 4 4 4 4 4 
{RA}= 

aJ a~ a' a* a7 a• a9 aJO ra7 7 7 7 

al a a2 a a3 a a4 a a7 
8 a• 8 

a9 
8 

alO 
8 r48 

41 
9 

42 
9 

43 
9 

44 
9 

a7 
9 a! 41 410 

9 r49 

4io a?o afo a1o aio a1o a?o 410 10 ralO 

The finite element matrix and residual vector for element B in processor 2 are 
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processor 1 

Figure 4.2 A finite element mesh for the example problem 
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b3 3 b4 3 bs 3 b& 
3 

b9 3 
bl0 3 bu 3 b12 3 rb3 

b3 
4 

b4 
4 

bs 
4 

b& 
4 

b9 
4 

bl0 4 bu 
4 

b12 
4 rb4 

b3 
5 

b4 
5 

bs 
5 

b& 
5 

b9 s bl0 s bu s b12 s rb5 

b3 b4 bs bs b9 bl0 bu b12 rb6 
[SEXY]= 

6 6 6 6 6 6 6 6 
{RB}= 

b3 b4 bs bs b9 bl0 bu b12 rb9 9 9 9 9 9 9 9 9 

bfo bfo bio bfo b?o bl0 10 bu 10 
b12 10 rblO 

bf 1 bf1 bi1 bf1 b?1 bl0 
11 

bu 
11 

b12 
11 rbll 

bf2 bf2 bi2 bf2 b?2 bl0 12 bu 12 b12 12 rbl2 

Assembling SAXY and SBXY, the global finite element matrix is 

al 1 a2 1 a3 1 a4 1 0 0 a7 1 as 1 a9 1 
al0 

1 0 0 

al 2 a2 2 a3 2 a4 2 0 0 a7 2 as 2 a9 2 
al0 

2 0 0 

al 3 a2 3 aj + bj a!+ bl bs 3 bs 3 a7 3 as 3 ag + bg a}o + b}o bll 3 
b12 3 

al 
4 

a2 
4 a~+ b: a!+ b! bs 

4 
bs 

4 
a7 

4 
as 

4 a:+ b: a}o + b}o bll 
4 

b12 
4 

0 0 b3 s b4 s bs 
5 

bs 
5 0 0 b9 s bl0 

5 
bu 

5 
b12 s 

0 0 b3 b4 bs b& 0 0 b9 bl0 bll b12 

[SGXY] = 6 6 6 6 6 6 6 6 

a~ a~ a~ a~ 0 0 a7 as a' a~o 0 0 7 7 

al 
8 

a2 
8 

a3 
8 

at 
8 0 0 a7 

8 
as 

8 at al0 
I 0 0 

al 
9 

a2 9 a~+ b~ a:+ b: bs 9 bs 9 a7 9 08 9 a;+ b; aio+w bu 
9 

b12 
9 

alo aio afo + bfo afo + bfo bio bfo aio a1o a?o + b?o al&+ bi& bu 10 b12 10 

0 0 bf 1 bf 1 bi1 bf1 0 0 b?1 bl0 
11 

bu 
11 

b12 
11 

0 0 bf2 bf2 bi2 bf2 0 0 bf2 bl0 12 bu 12 b12 12 

49 



The assembled residual vector and the global matrix vector products are 

{RMT} = 

ral 

ra2 

ra3+ rb3 

ra4 + rb4 

rb5 

rb6 

ra7 

ra8 

ra9 + rb9 

ralO+ rblO 

rbll 

rbl2 

The value of { GX} at node 3 is, 

{ GX} = [SGXY]{RMT} = 

g:d 

g:,:2 

g:,:3 

g:,:4 

g:,:5 

g:,:6 

g:,:1 

g:,:8 

g:,:9 

g:,:10 

g:,:11 

g:,:12 

gx3 = (a~)(ral) + (a~)(ra2) +(a~+ b~)(ra3 + rb3) + (a1 + b1)(ra4 + rb4) + 

(b~)(rb5) + (bg)(rb6) + (a~)(ra7) + (ag)(raS) +(a~+ b~)(ra9 + rb9) + 

(a~0 + b~0 )(ra10 + rblO) + (b~1)(rbll) + (b~2)(rb12) (4.2) 

A sequence of operations is carried out among processor nodes to produce exactly 

the same global matrix-vector product { GX} as illustrated in the following, 

**STEP 1 : Put values of residual vectors on interface boundary in new vectors 

{VPA} and {VPB}, 

{VPA}= I ra3 I I rb3 I ra4 rM 
{VPB} = 

ra9 rb9 

ralO rblO 
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**STEP 2 : Pass {V PA} to processor 2 and {VP B} to processor 1 and add them 

to the corresponding position of residual vector, {RA} and {RB}, 

{RA}+{VPB}={TRA}= 

ral 

ra2 

ra3+ rb3 

ra4+ rb4 

ra1 

ra8 

ra9 + rb9 

raIO+ rblO 

{RB}+{VPA}={TRB}= 

**STEP 3 : Multiple SAXY and SBXY by {T RA} and {T RB}, 

al 1 a2 1 a3 1 a• 1 a7 1 a8 1 a9 1 al0 1 ral 

a½ a2 2 a3 2 a• 2 a1 2 a& 2 a9 2 a½O ra2 

al 3 a2 3 a3 3 a• 3 a1 3 a8 3 a9 3 al0 3 ra3+ rb3 

al a2 a3 a• a7 a8 a9 al0 ra4 + rb4 
[SAXY]{TRA} = {PRA} = • • • • • • • 4 

a} a2 a3 a• a1 aJ a9 al0 ra1 7 7 7 7 7 7 

al 
8 

a2 
8 

a3 
8 a• 8 

a1 
8 

a8 
8 

a9 
8 

al0 
8 ra8 

al 9 a2 9 a3 9 a• 9 a7 
9 

aa 9 a9 
9 

al0 
9 ra9+ rb9 

aio a~o aio a1o aio a~o aro al0 10 ralO+ rblO 

b3 3 b• 3 bs 3 b& 3 b9 3 b10 3 bu .3 b12 3 rb3+ ra3 

b3 • b• • bs • b6 • b9 • bl0 • bll • b12 
4 rb4 + ra4 

b3 
5 b• 5 

bs 
5 

b& 
5 

b9 
5 

bl0 
5 

bu 
5 

b12 
5 rb5 

b3 b• bs b& b9 bl0 bll b12 rb6 
[SBXY]{TRB} = {PRB} = 6 6 6 6 6 6 6 6 

b3 b• bs bs b9 bl0 bll b12 rb9+ ra9 9 9 9 9 9 9 9 9 

bio b1o bto bfo bro bl0 10 bll 10 b12 10 rblO+ ralO 

bi1 b11 bt1 bf1 bf1 bl0 
11 

bll 
11 

b12 
11 rbll 

bi2 b!2 bt2 bf2 bf2 bl0 12 bll 12 b12 12 rb12 
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rb3+ra3 

rb4 + ra4 

rb5 

rb6 

rb9+ra9 

rbIO+ ralO 

rbll 

rb12 

pal 

pa2 

pa3 

pa4 
-

pa7 

pa8 

pa9 

palO 

pb3 

pb4 

pb5 

pb6 

-
pb9 

pblO 

pbll 

pb12 



Values of {PRA} and {PRE} at node 3 are, 

pra3 = (a~)(ral) + (a~)(ra2) + (a~)(ra3 + rb3) + (a:)(ra4 + rb4) + 

(a~)(ra1) + (a~)(raS) + (ag)(ra9 + rb9) + (a~0)(ral0 + rblO) (4.3) 

prb3 = (b~)(ra3 + rb3) + (b:)(ra4 + rb4) + (b~)(rbl) + (bI)(rb2) + 

(b:)(ra9 + rb9) + (b~0 )(ral0 + rblO) + (b~1 )(rbll) + (bi2)(rb12) (4.4) 

It can be seen that gx3 = pra3 + prb3. 

**STEP 4: Extract values of {PRA} and {PRA} on interface boundary, put them 

in {VPA} and {VPB}, and pass them to adjacent processors, 

I pra3 I 
{VPA} = pra4 

pra9 

pralO 

I prb3 I 
{VPB} = prb4 

prb9 

prb10 

**STEP 5: Add {VPA} and {VPB} to {PRA} and {PRA} and the sequence is 

complete. 

{PRA}+{VPB}={FRA}= 

Jal 

Ja2 

Ja3 

Ja4 

Ja7 

Ja8 

Ja9 

Jato 
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{PRB}+{VPA}={FRB}= 

Jb3 

Jb4 

Jb5 

Jb6 

Jb9 

Jb10 

Jb11 

/1>12 



The jacobian matrix and residual vectors produced by the system of velocity

vorticity equations are 

JUU 0 0 0 JUny Jun,, 0 RU 

0 JVV 0 JVn,,, 0 JVn,, 0 RV 

0 0 JWW JWn,,, JWny 0 0 RW 

[JQQ] = Jn,,,u Jn,,,v Jn,,,w Jn,,,n,,, Jn,,,n'/1 Jn,,,n,,, Jn,,,e {RVEC}= Rn,,, 

JnyU JnyV JnyW Jnyns Jn'/ln'/1 Jnyns Jnye Rny 

Jn,,u Jn,,v Jn,,w Jn,,n,,, Jn,,n'/1 Jn,,n,,, 0 Rn,, 

JeU J8V Jew 0 0 0 Jee R8 

They are composed of block matrices and vectors of the same structure. Matrix 

vector multiplications are carried out on individual nonzero blocks and their results 

are summed. The final block vector is 

(JUU]RU + (JUny]Rn'/1 + (JUn,,]Rn,, 

(JVV]RV + (JVn,,,]Rn,,, + (JVn,,]Rn,, 

(JWW]RW + (JWn,,,]Rn,,, + (JWny]Rn'/1 

(Jn,,,U]RU + (Jn,,, V]RV + (Jn,,,W]RW + (Jn,,,n,,,]Rn,,, + (Jn,,,ny]Rn'/1 + (Jn,,,n,,]Rn,, + (Jn,,,eJRe 

(Jnyll]RU + (Jn'/1 V]Rv + (Jn'/1 W]RW + (Jn'/ln,,,JRn,,, + (Jn'/ln'/l]Rny + (Jn'/ln,,]Rn,, + [Jnye]Re 

(Jn,,uJRU + (Jn,, VJRV + (Jn,, WJRW + (Jn,,n,,,JRn,,, + (Jn,,ny]Rny + (Jn,,n,,]Rn,, 

(Jell]RU + (J0V]RV + (J0W]RW + (J00]R8 

As a result, a total of thirty-three block matrix vector products are performed in a 

processor to complete a global operation of matrix vector mutliplication. 
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4.6 Vector Product Computation 

The CGS and BiCGSTAB procedures require vector product operations. A sum

mary of this operation is illustrated. Given vectors v and t, their representations in 

elements A and B are 

val tal vb3 tb3 

va2 ta2 vM tM 

va3 ta3 11b5 tbs 

11114 ta4 11"6 tb6 
{IVA}= 

va7 
; {/TA}= 

ta7 
;{/VB}= 

vb9 
;{/TB}= 

tb9 

va8 ta8 11blO tblO 

11119 ta9 vbll tbll 

valO talO vbl2 tbl2 

After adding values of v and t along interface (common) boundary nodes , the new 

vectors are 

val tal vb3 + 11113 tb3+ ta3 

11112 ta2 vb4 +va4 tb4+ ta4 

11113+ vb3 ta3 + tb3 vb5 tb5 

11114 + vb4 ta4 + tb4 vb6 tb6 
{VA}= 

va7 
{TA}= 

ta7 
{VB}= 

11b9+va9 
{TB}= 

tb9+ ta9 

11118 ta8 11blO + valO tblO+tblO 

va9+ vb9 ta9+ tb9 11bll tbll 

valO+ 11blO talO+ tblO 11bl2 tbl2 

The vector product of {VA} and {IVA} in processor 1 is 

vpa = (val)(tal) + (va2)(ta2) + (va3 + vb3)(ta3) + (va4 + vb4)(ta4) + 

(va7)(ta7) + (vaS)(taS) + (va9 + vb9)(ta9) + (valO + vbIO)(taIO) (4.5) 
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The vector product of {VB} and {IVB} in processor 2 is 

vpb = (vbl)(tbl) + (vb2)(tb2) + (va3 + vb3)(tb3) + (va4 + vb4)(tb4) + 

(vb1)(tb7) + (vbS)(tbS) + (va9 + vb9)(tb9) + (valO + vblO)(tblO) (4.6) 

The global vector product is obtained by summing values of vector products in pro

cessors 1 and 2. Thus, a global gather operation is required. The CM5 provides 

library subroutines, cmmd..reduce_double(variable,operation), that will perform a re

stricted set of globlal operations for a variable across processors. The operation, 

cmmd..combiner ..dadd, is used for the summation of the inner product values among 

processors. For infinite norm calculation, the maximum value is obtained using the 

operation, cmmd..combiner ..dmax. 

4. 7 Boundary Condition Implementation 

Since the Newton algorithm is used in solving the system of equations, the vari

able, 6Q, at Dirichlet nodes is always zero. Communication among processors is not 

needed for application of boundary conditions of Dirichlet type. The entire row of 

the jacobian matrix of a Dirichlet boundary node is zeroed out except at the diagonal 

element which is set to one. The same location in the residual vector is also set to 

zero. The global matrix vector product will be the same because entries at Dirichlet 

boundary nodes are always zero. 

Application of the kinematic vorticity boundary condition requires special treat

ment for nodes on interface boundaries. Assume that the kinematic vorticity bound-
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ary condition is needed on node 4. Then in Figure 4.2, the entire row 4 of SAXY 

is zeroed out. Coefficients of the kinematic boundary equations at nodes 4 and 10 

are inserted for a! and a!0 • These values are divided by two if they are located on 

interface boundary shared by two processors. The matrix and the residual vector in 

processor 1 become 

al 1 
(12 

1 
(13 

1 a• 1 
(17 

1 a• 1 
(19 

1 
(110 

1 ral 

Cl~ Cl~ 
(13 

2 a• 2 a! Cl~ Cl~ G~O ra2 

a½ aj (13 
3 a• 3 

(17 
3 af a• 3 1110 

3 ra3 

0 0 0 (k114)/2 0 0 0 (kvlO)/2 (rk114)/2 
[SAXY] = 

aJ a} (13 ai (17 a• a9 1110 
{RA}= 

ra7 7 7 7 7 7 

al 
8 

(12 
8 

(13 
8 a• 8 

a1 
8 a• 8 a• 8 

1110 • ra8 
al 

9 
a2 9 a3 9 a• 9 

(17 
9 a• 9 a9 9 

1110 
9 ra9 

afo afo afo 1110 afo 11fo 11¥0 1110 
10 ralO 

In processor 2, the matrix and residual vector are 

b3 3 b" 3 bs 3 b& 3 b' 3 
bl0 
3 bll 3 

b12 
3 rb3 

0 (k114)/2 0 0 0 (kvlO)/2 0 0 (rk114)/2 

b3 s b' s bs s b& s b' s bl0 s bll s b12 s rb5 

b3 b" bs b& b9 bl0 bll b12 rb6 
[SEXY]= 

6 6 6 6 6 6 6 6 
{RB}= 

b3 b' bs bs b' bl0 bll b12 rb9 9 9 9 9 9 9 9 9 

bfo bfo bfo bfo bfo bl0 
10 bll 10 

b12 10 rblO 

bf1 bf1 bf1 bf1 bf1 bl0 
11 

bll 
11 

b12 
11 rbll 

bf2 bf, bf2 bf2 b?2 bl0 
12 bll 12 

b12 
12 rb12 

If the kinematic boundary condition is not along an interface, then the entire values 

of vk and rvk should be used as supposed multipled by one-half. 
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Chapter 5 

RESULTS AND DISCUSSIONS 

A series of test cases are set up to verify and benchmark aspects of the paral

lel velocity-vorticity finite element formulation for the incompressible Navier-Stokes 

equations. These test cases can be catagorized into two classes of problems: verifica

tion and benchmarking. Verification is the comparison between computational results 

and the analytical "closed form" solution. The fully developed flow in a straight rect

angular cross-section channel is the first-verification case for the developed velocity

vorticity formulation. The solution computed by the present formulation is compared 

with the analytical solution to establish the validity and accuracy of the algorithm 

boundary condition form. 

Benchmarking involves the comparison of computed results to those produced 

by an independent computational model. The second test case is a benchmark com

parison of developing flow in a square cross-section channel. A two dimensional 

benchmark problem of the step-wall difuser with separation and reattachment of the 

primary vortex is also tested. The well-known lid-driven cavity benchmark will have 

to be examined since ample details of the flow solution for a wide range of Reynolds 

numbers are documented. The last case studied is a 3-D thermal cavity. Quantita

tive computational solutions are presented to give a comprehensive view of this 3-D 
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buoyancy-driven flow problem. Furthermore, coupling of the energy equation in this 

test case truly completes the scope for the incompressible Na vier-Stokes thermal fluid 

flow problem statement in the velocity-vorticity form. 

The solutions of two dimensional test cases are computed by a serial program 

on workstations with a banded direct solver. The solutions in three dimensions are 

obtained with the CM5 parallel computer augmented with the described CG-type 

iterative sparse solvers. 

5.1 Straight Channel Flow 

5.1.1 Fully-Developed Flow 

Laminar isothermal flow in a straight channel is a simple but important verifica

tion test case for incompressible fluid flow. For two dimensional flow, Figure 5.1, the 

analytical velocity profile is parabolic, hence the vorticity profile is linear. 

For the three dimensional case, the steady state velocity and vorticity profiles 

are (White 1974) 

48 {u(Y, z, h) 
u=-----

7r3 <p 
(5.1) 

v=w=O (5.2) 

(5.3) 

(5.4) 
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Figure 5.1 : Geometry and boundary conditions for 2-D channel flow 

{u(Y, z, h) = f (-l) "21 [l _ cosh (mry/2h)l cos (mrz/2h) 
n=~,s cosh(mr/2) n3 

f,(y,z,h) = f (-l)"21 [l - cosh(mry/2h)i-(sinmrz/2h)(mr) 
n=~,s cosh(n,r /2) 2n3 

e (y, z, h) = f (-1}"21 [-(n,r) sinh (n,ry/2h)l cos (n,rz/2h) 
Y n=~.s 2 cosh( n,r /2) n3 

cp = 1 _ 192 ~N tanh(n,r/2) 
,rS nS n=, ,5 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

where h is the duct half-height and N is a large integer, e.g, N=200 is used. The 

computational geometry of the 3-D sqaure channel is shown in Figure 5.2. The 

uniform mesh discretization is M=16x16x16 consisting of 4913 nodes and 4096 trilin

ear elements. For boundary conditions, Figure 5.3, steady state analytical velocity 
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Figure 5.2 : Geometry for 3-D square channel flow 
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Figure 5.3 : Boundary condition for straight channel flow 

60 



and vorticity profiles are prescribed across the inlet, and vanishing Neumann condi

tions for velocity and vorticity are exact and imposed at the exit plane. Boundary 

conditions for the velocity at channel walls are no-slip, hence the developed kine

matic vorticity boundary conditions are imposed for components of vorticity. The 

flow inside the channel is initialized at zero. A large time step size is taken with the 

backward Euler integration scheme to drive the solution to steady state in one single 

time step. 

For a uniform mesh size of M=8x8 with 81 nodes and 64 bilinear elements, the 

computed steady-state solution for the 2-D channel is tabulated in Figure 5.4. To 7 

significant digits, the analytical parabolic velocity profile is predicted throughout the 

channel. The computed center plane solution for the 3-D square duct is tabulated 

in Figure 5.5. As in 2-D, the entrance velocity profile is propagated throughout the 

channel to 4 significant digits. These data clearly verify that the chosen velocity

vorticity formulation, with new second order vorticity kinematic boundary condition, 

is indeed mass conserving for this verification case. 

5.1.2 Developing Flow 

Developing flow in a three dimensional square channel has been extensively re

ported in the CFD literature. Han (1960) calculated analytically the velocity profiles 

and correlated the entrance length ( to fully developed flow) for rectangular channel 

flow with respect to the Reynolds number, Re, based on hydraulic diameter, Dh. The 
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........................................ ~ ...................................... 
u initial value u steady state solution -................................... ~ ...................................... 

w.,ltiplier = 10.0e -2 111Ultipller = 10.0e -2 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
43 0 0 0 0 0 0 0 0 43 43 43 43 43 43 43 43 43 
75 0 0 0 0 0 0 0 0 75 75 75 75 75 75 75 75 75 
93 0 0 0 0 0 0 0 0 93 93 93 93 93 93 93 93 93 

100 0 0 0 0 0 0 0 0 100 99 99 99 99 99 99 99 99 
93 0 0 0 0 0 0 0 0 93 93 93 93 93 93 93 93 93 
75 0 0 0 0 0 0 0 0 75 75 75 75 75 75 75 75 75 
'3 0 0 0 0 0 0 0 0 43 43 43 43 43 '3 43 43 '3 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

**************************************~ ....................................... 
11 initial value 11 steady state solution 

.................................... ~ **************************••------
,iultiplier = 10.0e -10 1111.1ltipller = 10.0e -10 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 16 2 -1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 50 4 -2 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 47 4 -1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 -47 -4 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 -50 -4 2 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 -16 -2 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

................................... ****= ....................................... 
0111ega initial value 0111ega steaqi state solution --

**************************************~ .......................... , ........... 
~ultiplier = 10.0e -2 111.1ltiplier = 10.0e -2 

200 0 0 0 0 0 0 0 0 200 200 200 200 200 200 200 200 200 
150 0 0 0 0 0 0 0 0 150 150150150 150 150 150 150 150 
100 0 0 0 0 0 0 0 0 100 99 99 99 99 99 99 99 99 
50 0 0 0 0 0 0 0 0 50 49 49 49 49 49 49 49 49 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

-50 0 0 0 0 0 0 0 0 -50 -49 -49 -49 -49 -49 -49 -49 -49 
-100 0 0 0 0 0 0 0 0 -100 -99 -99 -99 -99 -99 -99 -99 -99 
-150 0 0 0 0 0 0 0 0 -150-150-150-150-150-150-150-150-150 
-200 0 0 0 0 0 0 0 0 -200-200-200-200-200-200-200-200-200 

Figure 5.4 : Initial and steady state solutions for 2-D fully developed channel :flow 
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...... **"•······••****••···· ... ···-· ...... ···· ..... **** .. u initial solution 
--****••********"********** ..... ***II*•* ............... .._ .... ***.***•*** 
111Ultiplier = 10.0e -2 : 9: center z-plane 

0 0 0 0 0 0 
54 0 0 0 0 0 
99 0 0 0 0 0 

135 0 0 0 0 0 
163 0 0 0 0 0 
183 0 0 0 0 0 
198 0 0 0 0 0 
206 0 0 0 0 0 
209 0 0 0 0 0 
206 0 0 0 0 0 
198 0 0 0 0 0 
183 0 0 0 0 0 
163 0 0 0 0 0 
135 0 0 0 0 0 

99 0 0 0 0 0 
54 0 0 0 0 0 
0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

.................................... **** ........... **** 
---u steady state solution----

***•******•***•******lll"*********lllllUIC•lllllUIC******•*•••••**************** 
•ultiplier = 10.0e -2 : 9: center z-plane 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 
99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 
mmmmmmmmmmmmmmmmm 
wwwwwwwwwwwwwwwww 
m~mmmmmmmmmmmmmmm 
~~m~mm~~mm~~~~~~~ 
~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~ 
~m~mmmmmmm~~~~~~~ 
183 184 183 183 183 183 183 183 183 183 183 183 183 183 183 183 183 
wwwwwwwwwwwwwwwww 
mmmmmmmmmmmmmmmmm 
99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 
54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Figure 5.5 : Initial and steady state center plane solutions for 3-D fully developed 

channel flow 

63 



correlated entrance length, Lcel, expression is 

(5.10) 

(5.11) 

where a and b are transverse measures of the rectangular duct and Xel is the computed 

distance to where the centerline velocity reaches 99% of the fully-developed value. For 

a duct of square cross-section, then a = h = b and Dh = 2h. 

A detailed examination of 3-D square cross-section channel flow is reported by 

Williams (1993). The same channel geometry (h = 0.5) is used, and the slug inflow 

velocity profiles is defined as Uin = 1.065 everywhere except at the wall nodes where 

u = 0, and Vin = 0 = Win everywhere. A boundary layer is built up in the wall region 

as the flow develops until a fully developed steady state velocity profile is recovered 

beyond the entrance length. 

For a uniform mesh of M=32x32x32, on 0 5 x 5 10, the computed steady state 

axial velocity profile at select axial stations throughout the 3-D channel is shown in 

Figure 5.6. The velocity profile at the exit plane is compared with the analytical 

solution in Figure 5. 7. Again, the present result is in excellent agreement with the 

analytical solution. These results confirm that the velocity-vorticity formulation does 

indeed satisfy the continuity equation. Aregbesola & Burley (1977) used the vorticity, 

vector-scalar potential method to compute the 3-D square channel. Their calculated 

value for the correlated entrance length is Leet = 0.086 for Re = 100 on a M=32x13x13 
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a) 

Figure 5.6: Velocity profile for square channel flow a) centerline profile b) perspectives 

of axial flow distributions. 
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Table 5.1 : Entrance length for developing :flow in a square duct 

Source Correlated Mesh 

Entrance Length 

Han (1960) 0.075 Analytical 

Goldstein and Kreid (1967) 0.090 Experimental 

Aregbesola and Burley (1977) 0.086 M=32x13x13 (uniform) 

Williams (1991) 0.078 M=100x30x30 (non-uniform) 

Present results 0.082 M=32x32x32 (uniform) 

uniform mesh. The computed correlated entrance length by Williams (1993) using 

an M=100x30x30 non-uniform mesh and an inviscid entrance adjustment region is 

Lcel = 0.078. An experimental measurement done by Goldstein & Kreid (1967) gave 

a value of the corelated entrance length of Leet = 0.09. 

The results of the computed correlated entrance length for the 3-D channel are 

compared to the present result in Table 5.1. The present solution yields a correlated 

entrance length of 0.082, which is 9.3 % different from Han's analytical solution based 

upon boundary layer linearization approximations to the Navier-stokes equations. 

The present solutions, however, is 5.1 % different from Williams' computed solutions, 

which has three times more elements in the axial direction than the present results. 
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Figure 5. 7 : Velocity Profile for 3-D developing channel flow at the exit 
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Figure 5.8 : Geometry and boundary conditions for backward facing step 

5.2 Backward Facing Step 

The 2-D backward facing step is a benchmark problem to study the robustness 

of the formulation for flow separation prediction. The test problem posted for the 

Symposium for Open Boundary Conditions (Gresho 1991a) is used. The geometry 

and boundary conditions for the test problem are given in Figure 5.8. 

As the flow enters the channel, it separates at the step corner and forms a 

primary(lower) recirculation eddy, the size of which depends on Reynolds number. A 

second eddy will form on the upper wall as the Reynolds' number exceeds 400. The 

Reynolds number of the test case is 800, hence a second eddy forms on the top wall. 

An extensive study of this benchmark is published by Gartling (1990). 
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Table 5.2 : Flow characteristics of backward facing step 

Flow Characteristics Present Result Gartling(1990) 

Number of elements 64x64 = 4096 30x600 = 18000 

Type of elements Bilinear Biquadratic 

Center of lower eddy (3.17 , -0.2) (3.35 , -0.2) 

Length of lower eddy 5.7 6.10 

Separation point of upper eddy (4.8 , 0.5) (4.85, 0.5) 

Reattachment point of upper eddy (10.4 , 0.5) (10.48, 0.5) 

An axially non-uniform M=64x64 mesh containing 4225 nodes and 4096 bilinear 

elements is used for the benchmark assessment. A velocity vector plot of the com

puted solution after 120 time steps with flt = 2.0 is shown in Figure 5.9(a). The 

extremum change in 6Q between time steps is of order 10-3 • A close up view of 

the velocity profile at the entrance section of the backstep is shown in Figure 5.9(b ). 

The streamline contours thereon clearly illustrate the formation of the primary and 

secondary recirculation regions. 

The comparison of the present results to the data of Gartling (1990) is summa

rized in Table 5.2. The reattachment point, where the u-velocity changes sign, hence 

the vorticity vanishes, of the lower primary eddy is 6.6 % shorter. A finer mesh near 

the recirculation region is needed to obtain a better agreement. The separation point 

69 



0 .... 

CD 

<0 

·• 1 1 

N 

C: 

0 
0 

::, ~ 
'"C Q) 

<I) 

-~ Q) 
0 

'E £ 
<I) 

::0-'iu 
:: :l :; LI) 0 LI) 

0 0 q 

Figure 5.9 : Velocity profile for backward facing step a) entire duct, b) inlet section 
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and reattactment point of the upper eddy are within 2 % of the results computed by 

Gartling (1990). 

5.3 Lid Driven Cavity 

The lid driven cavity is a classic benchmark for laminar incompressible flow. 

The accepted comparative 2-D solution for various Reynolds numbers is documented 

by Ghia, Ghia & Shin (1982) using a multigrid streamfunction-vorticity formulation. 

Using an explicit finite element approach with mass lumping, Gresho, Chan, Lee & 

Upson (1984) also present a study of the 2-D problem. Agarwal (1981) is the first to 

report a numerical solution for the 3-D problem using a velocity-vorticity formulation 

with a finite difference scheme. With the increase of supercomputing capability in 

recent years, the 3-D lid-drivwn cavity problem has emerged as a standard benchmark 

for 3-D incompressible Navier-Stokes algorithms. A series of 3-D lid-driven cavity 

results at various Reynolds numbers are reported recently by Ku, Hirsh & Taylor 

(1987), Gatski, Grosch & Rose (1989), Napolitano & Pascazio (1991), Guevremont 

et al. (1993), Guj & Stella (1993), Fujima et al. (1994), Babu & Korpela (1994), and 

Jiang, Lin & Povinelli (1994). 

5.3.1 Lid-Driven Cavity in Two Dimensions 

The configuration and nomenclature of the 2-D lid-driven cavity flow is identified 

by Ghia et al. (1982). For Re $ 3200, the basic features of the flow solution are given 

in Figure 5.10. Geometries and properties of the primary vortex (PV), the secondary 
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Figure 5.10 : Geometry and key features of the 2-D driven cavity 

lower right corner vortex (RV), the secondary lower left corner vortex (LV), and the 

secondary top left corner vortex (TV) have been documented by Ghia. et al. (1982). 

A nonuniform cartesian M=32x32 mesh, Figure 5.11, with 1089 nodes and 1024 

bilinear elements is used for the present study, for Re = 400, Re = 1000, Re = 2000, 

and Re = 3200. Plots of velocity vector with streamlines and vorticity contours 

for Re = 400 are shown in Figure 5.12 and Figure 5.13, respectively. At this low 

Reynolds number, only the secondary RV can be clearly distinguished. The vorticity 

contours are smooth througout the entire solution domain even at the top right corner 

singularity, indicating this mesh is providing adequate resolution. 
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Figure 5.11 Finite element mesh for 2-D driven cavity 
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Figure 5.12 : Streamline contour plot of the 2-D driven cavity at Re=400 
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Figure 5.13 : Vorticity contour plot for 2-D driven cavity at Re=400 

At Re = 1000, a secondary LV now appears, Figure 5.14. In comparison to 

Re= 400, the center of the PV moves towards the center of the cavity. The vorticity 

contours, shown in Figure 5.15, are smooth and non-dispersive. 

At Re= 2000, the secondary RV and LV are clearly evident in Figure 5.16 and 

the TV is shown to be forming. A very modest dispersive error is evident in the 

vorticity contour leading into the singular corner, Figure 5.17. 

At Re= 3200, the velocity vector plot, Figure 5.18, reveals all major flow features 

for the 2-D lid-driven cavity benchmark. All secondary vortices are clearly shown and 

well established. Location of the PV center has moved to the position where changes 

will be minimal for Re > 3200. From Figure 5.19, the vorticity contours are more 

clustered along the moving surface, and dispersion error is very evident in the right 
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Figure 5.14 

Figure 5.15 

Streamline contour plot of the 2-D driven cavity at Re=lO00 
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Vorticity contour plot for 2-D driven cavity at Re=lO00 
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Figure 5.16 : Streamline contour plot of the 2-D driven cavity at Re=2000 
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Figure 5.17 : Vorticity contour plot for 2-D driven cavity at Re=2000 
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Figure 5.18 : Streamline contour plot of the 2-D driven cavity at Re=3200 
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Figure 5.19 : Vorticity contour plot for 2-D driven cavity at Re=3200 
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Table 5.3 : Location of vortices for 2-D lid-driven cavity 

source I vortices I Re= 400 I Re= 1000 I Re= 3200 

Ghia et al PV (0.555,0.606) (0.531,0.563) (0.517,0.547) 

present results PV (0.558,0.603) (0.535,0.560) (0.522,0.540) 

Ghia et al RV (0.891,0.125) (0.859,0.109) (0.813,0.086) 

present results RV (0.892,0.121) (0.870,0.111) (0.832,0.088) 

Ghia et al LV (0.051,0.047) (0.086,0.078) (0.086,0.109) 

present results LV (0.048,0.045) (0.084,0.074) (0.085,0.114) 

top hand region of the cavity. Hence, this mesh is not adequate to resolve the vorticity 

gradients in this region. 

Locations of the center of the primary and secondary vortices are summarized in 

Table 5.3. The present results are within 6 % (Re = 400, 1000) and 5 % (Re = 3200) 

of the results of Ghia (1982) in which the final grid (M=129x129) is much larger. 

A non-uniform 64x64 mesh for Re = 1000 was also tested; solution details are 

shown in Figure 5.20. The minimum u velocity along the vertical line through the 

geometric center of the cavity is 3.6 % lower than Ghia's prediction. The reattach

ment lengths for the right and left bottom eddies are within 3 % of Ghia's solution. 

Location of the PV is improved to (0.532,0.563), which is within 0.2 % of Ghia's 

solution. However, very little improvement for locations of RV, (0.867,0.111), and 

LV, (0.082,0.077), is observed for this finer mesh solution. 
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Figure 5.20 Solution details of 2-D driven cavity for Re= 1000, M=64x64. 
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5.3.2 Lid-Driven Cavity in Three Dimension 

Significant computational resources are required to resolve the complexity of the 

3-D driven cavity benchmark. There are six state variable members at each node for 

the velocity-vorticity formulation. A nonuniform cartesian M=32x32x32 mesh, shown 

in Figure 5.21, contains 32768 trilinear elements, and the Newton statement contains 

215622 equations. Solving implicitly such a huge matrix statement on a sequential 

computer would be prohibitively time consuming. Even the CM5 parallel computer 

at the University of Tennessee was utilized to its full extent to solve this problem. 

The total memory requirement is approximately 416 Mbytes. With 32 processors on 

this CM5, 13 Mbytes of local processor memory is used. 

The 3-D cavity is a unit cube, with the top wall moving parallel to the positive x

axis at unit velocity, u=l. The vorticity boundary conditions are kinematic on every 

boundary node of the cube. The initial condition is zero vorticity everywhere, since 

the top plate velocity will instantenously generate vorticity which will be propagated 

throughout the whole computational domain until the flow field reaches a steady state 

solution. In the present study, the steady state solutions for Re = 100, Re = 400, 

and Re = 1000 are computed. 

The 3-D sectional perspective views for the velocity vector field and the vorticity 

contours are shown in Figure 5.22, Figure 5.23, and Figure 5.24. The vorticity plots at 

x-mid-plane for O:i:, y-mid-plane for 0 11 , and z-mid-plane for nz confirm the carrying 

of important flow information. Contour lines of the vortices shown on each mid-plane 
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Figure 5.21 : Non-uniform finite element mesh for 3-D driven cavity, M=323 
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Figure 5.22 : Perspective 3-D summary for driven cavity solution, Re=lOO, M=323 
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Figure 5.23 Perspective 3-D summary for driven cavity solution, Re=400, M=323 
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Figure 5.24 Perspective 3-D summary for driven cavity solution, Re=lO00, M=3~ 
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on the velocity vector plots correspond to the 2-D streamtraces projected from the 

3-D velocity vector field. 

Two dimensional planar projections of the velocity vector field at Re = 100, 

Re = 400, and Re = 1000 on the three centroidal planes of the cube are shown in 

Figure 5.25. The velocity vector plot on the x-z centroidal plane resembles the 2-D 

solution. The axis of the primary vortex starts off in the upper right half region, hence 

gradually move towards the center as the Reynolds number increases. Note that the 

secondary vortices, RV, LV, and TV identified in two dimensions, Figure 5.10, do not 

occur in the 3-D problem. Instead, the flow is fully three dimensional such that these 

secondary vortices turn sidewards in the y direction and upwards in the z-direction. 

As can be seen in the velocity vector plot on the y-z centroidal plane, a pair 

of vortices appear near the centerline and move out towards the lower corners as 

Reynolds number increases. Two small recirculation cells are also emerging at the 

top corners as the Reynolds number goes through Re = 400 to Re = 1000. 

As for the x-y centroidal plane, at Re = 100 the flow is basically returning, 

symmetrically, normally along the x-y boundary. However, at Re = 400, the flow 

is now turning in the z-direction, which results in a pair of 2-D projected vortices 

from the 3-D velocity vectors. A second pair of projected vortices also appears as the 

Reynolds number reaches 1000, Figure 5.25. 

Similar pattern for the 2-D center-plane velocity vector plots for Re= 100, Re= 400, 

and Re= 1000, are reported by Guj and Stlla (1993), Fujima et al (1994), and Jiang 

el al. (1994). 
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Figure 5.25 2-D planar projections of mid-plane velocity vector field for 3-D driven 

cavity, Re 100,400, 1000, M=323 
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There are three state variable members for vorticity in the three dimensional 

velocity-vorticity formulation, f2z, !211 , and nz. Contour plots of these vorticities 

for Re = 100, Re = 400, and Re = 1000 on each mid-center plane are shown in 

Figure 5.26 ,Figure 5.27, and Figure 5.28. As Re increases, the vorticity contour lines 

become packed closer together due to the stiff boundary layer effect. The centers of 

vortices are observed to move towards the corners. For Re= 1000, the shape of the 

vorticity contour lines have changed significantly. They cluster closer to each other 

and become more complicated. 

The u-velocity component distribution on the vertical plane centerline is used 

as a measure of accuracy for the 3-D lid-driven cavity benchmark. For Re = 100, 

the u-velocity component data reported by Ku et al. {1987), Guj and stella {1993), 

Fujima et al. (1994), and Jiang et al. (1994) agree quite well with each other. For 

the present solution, the fl.ow field at Re= 100 is started from rest, and the standard 

GWS solution algorithm could produce the steady-state solution using a single large 

time step, 11t = 1000. The solution computed on the uniform mesh, shown as triangles 

in Figure 5.29, is seen to miss the well agreed accurate solution reported by Jiang 

et al. {1994). Using the same M=32x32x32 mesh, but now non-uniformly refined to 

the corners of the cube, the solution shown as circles in Figure 5.29 matches almost 

exactly with that given by Jiang et al. (1994). The maximum difference is 4.3 % at 

the peak of the u-velocity profile. 

A timing test for the testcase is conducted on the CM5 with 32 processor nodes. 

It takes an average of 7.7 seconds of elapsed wall-clock time to complete one single 
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Figure 5.29 : 3-D mid-plane centerline u-velocity plot at Re=lO0 

BiCGSTAB iteration with diagonal scaling preconditioner. An average of 125 seconds 

of elapsed time is needed to form and assemble the jacobian matrix and residual 

vectors for each Newton step. A fixed overhead of preprocessing and postprocessing 

requires approximately 4 minutes. For Re = 100, four Newton steps and a total 

of 377 BiCGSTAB iterations are required to converge the extremum Newton error, 

6Qma.:e to 6.26 x 10-3 occurring for Oy. Consequently, a total of 62 minutes is spent 

to achieve the steady state solution for Re = 100. 

For Re = 400, the size of the time step is reduced to t,.t = 1.0. After 25 

time steps, the steady state is assumed with an extremum Newton residual of 6Q = 

1.3 x 10-2 for the vorticity components, which is nominally one order of magnitude 
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Figure 5.30 : 3-D mid-plane centerline u-velocity plot at Re=400 

larger than that for the velocity components. The number of Newton iterations is 66 

with 4679 BiCGSTAB iterations. The runtime of the testcase is calculated based on 

the total elapsed time accumulated from the total number of Newton iterations, the 

total number of BiCGSTAB iteration, and the overhead. A total of approximately 

12.4 hours was required to obtain the solution for Re = 400 on the CM5. The 

centerline u-velocity prifile of the present solution is compared with those of Jiang 

et al. (1994) and Fujima et al.(1994) in Figure 5.30. The negative peak u-velocity 

predicted by Jiang is 0.2341 while 0.2189 is predicted by the present solution. 

For Re = 1000, the size of the time step is further reduced to flt = 0.4. After 37 

time steps, the steady state is assumed with an extremum 6Q = 3.3 x 10-2, requiring 
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Figure 5.31 : 3-D mid-plane centerline u-velocity plot at Re=lO00 

170 newton steps and 20249 BiCGSTAB iterations. A total of approximately 49.3 

hours was required to obtain the solution for Re = 1000 on the CMS. The present 

solution is compared with those of Jiang et al. (1994) and Fujima et al. (1994) in 

Figure 5.31. The negative peak u-velocity predicted by Jiang is -0.275. The present 

value is -0.250, which is in better agreement than the data of Fujima (1994). 

A mesh sensitivity analysis conducted by Guj and Stella (1993), summarized in 

Table 5.4, shows the same magnitude of error for their computed solution using the 

velocity-vorticity formulation with uniform mesh refinement. The minimum centerline 

u-velocity component for their M=3lx3lx32 mesh is -0.22. For the M=l0lxl01x82 

mesh, the minimum centerline u-velocity is -0.27, which is within 2% of that reported 
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Table 5.4 : Centerline minimum u-velocity by Guj and Stella (1993) at Re=lO00 

Equivalent Mesh Size centerline Umin % error 

31x31x32 -0.2203 21.9 

45x45x38 -0.2455 12.9 

67x67x54 -0.2629 6.9 

101x101x82 -0.2725 3.4 

extrapolated solution -0.2820 base solution ( error free) 

by Jiang et al. {1994) for a uniform M=50x52x50 mesh. Due to the limited memory 

resources on the CM5 at the University of Tennessee, only a 32 cube mesh lid-driven 

cavity solution could be obtained. Note that the present value of -0.25 is an improve

ment over the comparison mesh (M=31x31x32) solution of Guj and Stella {1993). 

The values of u-velocity along the vertical line through the geometric center of the 

3-D driven cavity for Re= 100, Re= 400, and Re= 1000 are given in Table 5.5. 

5.4 Thermal Cavity 

Buoyancy driven flow due to natural convention in an enclosed 3-D rectangular 

box is the direct extension of the 2-D thermal cavity benchmark. Potential temper

ature boundary conditions are one and zero on the front and back walls, along the 

x-axis, while both side walls along the y-axis and the floor and ceiling are adiabatic, 
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Table 5.5 U-velocity along the vertical centerline of the 3-D driven cavity 

z location .Re = 100 .Re = 400 .Re = 1000 

1.00 1.0 1.0 1.0 

0.9921 0.9427 0.9031 0.1529 

0.9779 0.1313 0.7319 0.6093 

0.9594 0.7076 0.5391 0.3102 

0.9375 0.5651 0.3693 0.2331 

0.9126 0.4249 0.2419 0.1667 

0.1151 0.2913 0.1775 0.1316 

0.1553 0.1912 0.1387 0.1216 

0.1232 O.lOU 0.1156 0.1070 

0.7890 0.0340 0.0911 0.0938 

0.7529 -0.0232 0.0821 0.0817 

0.7149 -0.0713 0.0659 0.0702 

0.6752 -0.1124 0.0418 0.0591 

0.6338 -0.1468 0.0297 0.0479 

0.5907 -0.17U 0.0075 0.0363 

0.5461 -0.1932 -0.0190 0.02U 

0.5 -0.2033 -0.0513 0.0106 

0.4531 -0.20U -0.0885 -0.00U 

0.4092 -0.1973 -0.1273 -0.0220 

0.3661 -0.1153 -0.1640 -0.0HO 

0.3247 -0.1702 -0.1931 -0.0723 

0.2850 -0.1535 -0.2127 -0.1015 

0.2470 -0.1364 -0.2189 -0.1512 

0.2109 -0.1195 -0.2129 -0.1950 

0.1767 -0.1031 -0.1974 -0.2301 

0.1U6 -0.0873 -0.1755 -0.2502 

0.1148 -0.0719 -0.1491 -0.2496 

0.0173 -0.0571 -0.1222 -0.2305 

0.0625 -0.0427 -0.0936 -0.1957 

0.0405 -0.0290 -0.0641 -0.1470 

0.0220 -0.0164 -0.0374 -0.0896 

0.0071 -0.0060 -0.0138 -0.0342 

1.0 o.o 0.0 o.o 
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Figure 5.32. Velocity boundary conditions are all no slip, and the kinematic vorticity 

boundary conditions are imposed at every boundary node. 

The first numerical solution of the 3-D thermal cavity problem is reported by 

Mallinson & de Yahl Davis (1977). Using the Continuity Constraint Method, Williams 

(1993) presents a solution for the so called "window cavity problem" of Mallinson and 

de Yahl Davis (1977) at Ra = 1.5 x 105• Reddy, Reddy & Akay (1992) present a 

thermal cavity solution for Ra = 104 using the penalty finite element method. A 

numerical study of 3-D natural convection for air in the cubic enclosure is reported 

by Fusegi, Hyun, Kuwahara & Farouk (1991) for Rayleigh number from 103 to 106 

using a control-volume based finite difference staggered mesh procedure together with 

the pressure correction algorithm, SIMPLE (Patankar 1980). 

The three velocity Possion equations, three momentum equations with the Boussi

nesq buoyancy term, and the energy equation, are solved simultaneously. For the 

non-uniform cartesian M=32x32x32 mesh with 35937 nodes, Figure 5.32 the total 

number of equations is 251559. In the present nondimensionalization, Gr = Re2 and 

Ra = Re2 Pr. The Rayleigh numbers tested are Ra = 1.0 x 104, Ra = 1.6 x 105, 

Ra = 1.0 x 106 , and Ra = 1.6 x 107 with a fixed Prandtl number of 1.0. Select 3-D sec

tional perspective views of the velocity vector and temperature solution distributions 

for various Rayleigh numbers are shown in Figures 5.33 - 5.36. For Ra = 1.6 x 107, 

the mesh of the computational domain is further refined to the walls to capture the 

thermal boundary layer effects, Figures 5.37. 
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Figure 5.32 : Non-uniform finite element mesh for 3-D thermal cavity, M=323 
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Figure 5.33 : Velocity vector and temperature contour at Ra = 104 for 3-D thermal 

cavity 
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Figure 5.34 : Velocity vector and temperature contour at Ra - 1.6 x 105 for 3-D 

thermal cavity 
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Figure 5.35 : Velocity vector and temperature contour at Ra = 106 for 3-D thermal 

cavity 
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Figure 5.36 : Velocity vector and temperature contour at Ra = 1.6 x 107 for 3-D 

thermal cavity, 1\1 = 323 , original mesh 
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Figure 5.37 : Velocity vector and temperature contour at Ra = l.6 x 107 for 3-D 

thermal cavity, M = 323 , refined to fixed temperature walls 
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A timing test indicates that it takes an average of 9.2 seconds of elapsed wall-clock 

time to complete one BiCGSTAB iteration and 137 seconds to form and assemble 

the jacobian matrix and residual vectors for each Newton step. For Ra = 104 , the 

computation is started with a zero initial solution field. For the large tl.t = 500, 6 

Newton steps and 464 BiCGSTAB iterations are taken to achieve a solution converged 

to extremum 8Q = 3.9 x 10-3 • Consequently, a total of 1.48 hours was used. The 

two dimensional planar projections of the velocity vector field for Ra = 104 at the 

symmetry plane reveals only one single recirculation cell, Figure 5.33. 

For Ra = 1.6 x 105, the solution for Ra = 104 is used as the initial condition. 

A single integration step at tl.t = 500 is again used, and 6 Newton steps and 581 

BiCGSTAB iterations are needed to converge to extremum 8Q = 4.2 x 10-3 • In the 

symmetry plane, two recirculation cells are now observed, Figure 5.34. 

For Ra = 106 , the previous result is used as the initial condition. The size of 

the time step is reduced to tl.t = 5. After 7 time steps, the steady state solution is 

assumed with extremum 8Q = 1.2 x 10-2 , requiring 18 Newton iterations and 1465 

BiCGSTAB iterations. The recirculation cells at the symmetry plane are moving 

towards the corners, and the isotherms are packing clsoer to the Dirichlet walls, 

Figure 5.35. 

For Ra = 1.6 x 107 , the size of the time step is further reduced to tl.t = 0.5. The 

steady-state solution is assumed after 53 time steps with the solution for Ra = 106 

as the initial condition. The extremum iterate at convergence is 8Q = 5.1 x 10-2 for 

!131 , with 157 Newton steps and 10006 BiCGSTAB iterations used. Accounting for 
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the time to obtain the initial condition, a total of approximately 39.1 wall-clock hours 

are required to attain this solution on the CM5. The effect of the thermal boundary 

layer to the flow field is obvious, Figure 5.36 and Figure 5.37. Recirculation cells and 

isotherms are further compressed towards the fixed temperature walls. 

The summary streamline plot with projected velocity on the symmetry plane for 

various Rayleigh numbers is shown in Figure 5.38. It shares close resemblance to that 

of the 2-D thermal cavity reported by Williams {1993) and Henkes & Hoogendoorm 

{1993). 

At high Rayleigh number, isotherms with sharp gradient near the walls are ob

served. The effect of the thermal boundary layer is dominating the flow field. Re

circulation cells cluster near the walls and move towards the corners. The effect of 

increasing Rayleigh number on the temperature profile, the u-velocity and the w

velocity components on the symmetry plane is shown in Figure 5.39 and Figure 5.40. 

The temperature profiles at various vertical locations (z-coordinate) on the symmetry 

plane for Ra= 106 are shown in Figure 5.41. 

A case study for air, Pr = 0.71, in the 3-D thermal cavity is also conducted 

for Ra = 105 • The temperature profile in the centerline of the symmetry plane 

is compared with the results reported by Fusegi et al. {1991), Figure 5.42. The 

agreement between the solutions is good. A maximum u-velocity of 0.1468 at z 

(vertical) location of 0.1453 in the symmetry plane was reported by Fusegi et al. 

{1991) with a non-uniform M=62x62x62 mesh. The present formulation yields a 

maximum u-velocity of 0.1415 at z=0.1453, a 3.6 % difference. 
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Figure 5.38 
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Figure 5.39 : Temperature profiles in the centerline of the symmetry plane for 

Ra= 104, Ra= 1.6 x 105 , Ra= 106 , and Ra= 1.6 x 107 
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Chapter 6 

SUMMARY AND CONCLUSIONS 

A new parallel finite element CFD algorithm in velocity-vorticity form has been 

developed to produce solutions for the unsteady, laminar incompressible Navier-Stokes 

equations in three dimensions. The incompressibility constraint is enforced through 

a new second order kinematic vorticity boundary condition imposed at nodes on no 

slip walls. Such kinematic vorticity boundary conditions are shown to be consistent 

with the mathematical well-posed system proved by Quartapelle (1993) and Duabe 

(1992). 

The fully coupled formulation, which contains six variables for an isothermal 

system, and seven variables if the energy equation is included, is solved in parallel on 

a Thinking Machines CM5 parallel computer with 32 processors. The BiCGSTAB 

sparse iterative solver is incorporated to yield an efficient parallel finite element al

gorithm. An implicit time integration scheme allows the use of a large time step to 

achieve a fast steady-state solution for Re ::5 100 or Ra :5 105 • Reducing the size 

of the time step can improve the condition number of the terminal Newton jaco

bian matrix for high Reynolds or Rayleigh number solutions, which has been used in 

conducting this research. 

As original contributions to incompressible CFD, this dissertation has presented: 
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1. a time accurate 3-D finite element incompressible Navier-Stokes solver with 

equal order interpolation functions for which pressure boundary conditions are 

not necessary, 

2. a mathematically consistent vorticity kinematic boundary condition for the no

slip wall, 

3. a viable strategy to obtain convergent and accurate solution for high Reynolds 

and Rayleigh number fluid flow problem in conjunction of the CG-type sparse 

iterative solvers, 

4. a CM5 efficient parallel finite element CFD code for non-pressure difference 

driven flow simulation, 

5. an implementation of sparse data structures with matrix-vector multiplication 

kernel highly optimized for the finite element method, 

6. a verification and benchmarking study of the velocity-vorticity formulation for 

isothermal and nonisothermal flows in three dimensions. 

Due to the limitation of the size of the CM5 at the University of Tennessee, a 

convergence analysis via progression to refined mesh was not conducted. Therefore, 

various non-uniform meshings were used to assess error control. Scalability and speed 

up analyses could also be performed if a larger machine was available. The basic 

M=32x32x32 mesh used in the 3-D benchmarking, however limited, is able to produce 

solutions of engineering-adequate accuracy for the driven cavity and thermal cavity 
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problems at high Reynolds number and Rayleigh numbers. The obvious extension of 

the formulation for the kinematic vorticity condition is to encompass flows in arbitrary 

geometries. However, the simplicity of the velocity-vorticity formulation, bearing 

with the shortfall to solve a fully coupled Newton system, is proven to provide a 

mathematically viable alternative to a primitive variables, CFO-approximate pressure 

formulation. 
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