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ABSTRACT 

Independent, Semi-Automated Classification of Petrographic Features in Volcanic 

Rocks Using FiJi and Weka 

Holly D. Pettus 

Traditional methods of collecting quantitative petrographic data from thin sections (modal 

mineralogy, size distribution, shapes, etc.) are time- and labor-intensive, and rarely have sample 

sizes adequate to statistically describe complex rocks (i.e. volcanic rocks). Although manual 

counting and measurements are now routinely supplemented by digital image analysis, the 

majority of quantitative petrographic studies still go through a manual digitization stage where 

object classes are traced before further analyses. This is a major rate-limiting step that 

reproduces the same problems of small n-values resulting from significant effort. We have 

valuated the potential and limitations of using the Trainable Weka Segmentation (TWS) plugin 

within the commonly used ImageJ / Fiji digital image analysis and processing environment. 

Specifically, we have assessed their capacity to classify, segment, and threshold user-defined 

petrographic features from a suite of images of progressively more complex volcanic rocks to 

accelerate the collection of quantitative petrographic data.        

TWS uses a fast-random-forest algorithm to classify an image based on a set of training 

pixels selected by the user - in this case different mineral phases, vesicles, etc. Training of the 

classifier is intuitive and fast. For example, three classes each with eleven training spots are 

classified in less than 1 minute for a medium to high-resolution image. Eight plane polarized 

light photomicrographs with increasing crystallinity and complexity were classified (i.e. trained) 

and automatically segmented using TWS. Samples where the assigned classes have distinct, 

homogeneous RGB values and sharp boundaries are successfully classified with TWS. However, 

samples where the classes are heterogeneous but similar, as a result of alteration for example, are 

not adequately classified. Once classified, two major efficiency gains are possible: (1) the 

classifier can be saved and applied again to any similar sample, and (2) the segmented image is 

immediately available for thresholding in ImageJ / Fiji (i.e. separating into class-specific images) 

without manual tracing or cut-and-paste. The thresholded images can then be measured using the 

image analysis tools in ImageJ / Fiji (e.g., dimensions, area, circularity, long-axis orientation, 

etc.).       
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1.0 Introduction 

The aim of this study is to apply and evaluate an open-access, machine-learning based image 

classifier (‘Weka’; Arganda–Carreras et al., 2017) to enable enhanced quantitative petrographic 

analysis of volcanic rocks in thin sections. The application of digital image analysis and 

processing techniques to petrography is still relatively new (e.g., Muir et al., 2012; Drignon et 

al., 2016; Cheng et al., 2017) and their use remains limited in both teaching and research where 

visual inspection of thin sections and manual point-counting still dominate. For example, the 

point-counting of ~1,000 sand-sized grains is a standard method for sandstone petrography and 

interpretation of provenance (Ingersoll et al., 1984). In contrast, rapid, systematic digital image 

analyses are standard in hematology, cytology, and oncology (Alkrimi et al., 2015; Reta et al., 

2015; Racaru et al., 2018; Annese et al., 2020). Mechanical and digital point-counters accelerate 

and systematize visual observations but do not attempt autonomous analyses; therefore, every 

grain must be counted and described by the petrographer. 

The advantages of autonomous or semi-autonomous digital image analysis processes are: 

(1) consistent and reproducible petrographic analyses with minimal operator input, based on 

measured, statistically significant image parameters, 

(2) enhanced through-put of samples and much faster analyses,  

(3) collection of large, statistically significant textural datasets (e.g., crystal size, crystal 

shape, etc.) for analysis and modeling of petrogenetic processes (e.g., crystal nucleation 

and growth rates), 

(4) combining these features to the quickly analyze multiple images of different thin 

sections from similar or coeval rocks.  
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There are several disadvantages of autonomous image analysis and processing in 

petrography. The disadvantages include the restriction of analyses to images captured in plane 

polarized light (PPL) which prevents the utilization of information available in cross-polarized 

light (XPL). The difficulty of analyzing images with many or varying colors due to, for example, 

pleochroism, mineral zonation, or alteration excludes XPL images from analysis. The initially 

steep learning-curve for an operator to set-up an autonomous analysis is also a disadvantage that 

could dissuade potential users. This study addresses the latter disadvantage through a 

petrography-tailored application of the Trainable Weka Segmentation plugin (Arganda-Carreras 

et al., 2017) for the open source image analysis software Fiji (Schindelin et al., 2012; Rueden et 

al., 2017).  

1.1 Why Do Quantitative Petrography on Volcanic Rocks? 

Quantitative petrography is an important tool used to understand and model many 

petrogenetic processes in igneous, volcanic, and metamorphic rocks. The textural heterogeneity 

of volcanic rocks, especially pyroclastic rocks, is extreme compared to other rocks types (Cas, 

Giordano, and Wright, 2021). The complete characterization and description of volcanic rocks 

requires describing them as both magmatic products (i.e. igneous) and clastic sediments or 

sedimentary rocks (e.g., Tamura et al., 2015). Pyroclast type, size, shape, and composition 

inform on fragmentation, eruption, transport, and depositional mechanisms. Phenocrysts in 

porphyritic volcanic rocks record a wealth of information about primitive melt compositions, 

pre-eruptive volatile contents, magma storage conditions, magma mixing, and magma ascent 

processes. Groundmass (glass or crystalline) informs on late-stage phase equilibria, volatile 

contents, and cooling history. These features are easily studied through traditional optical 

microscopy and are routinely digitized in vector graphics software (e.g., Adobe Illustrator; 
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Inkscape; Higgins, 2008) or segmented in image analysis programs like Fiji (e.g., Moss et al., 

2009; 2010).  

1.2 Applications of Image Analysis to Volcanic Rocks 

Digital image analysis has been used with volcanic rocks to investigate crystal size 

distributions in two and three dimensions (e.g., Higgins, 2000; Mock and Jerram 2005; Morgan 

and Jerram, 2006; Jerram et al., 2009; Moss et al., 2010; Berger et al., 2011), vesicle size 

distributions (e.g., Gichetti et al., 2010; Shea et al., 2010), and analysis of basic fabrics and 

textural associations (e.g., Zandomeneghi et al., 2010; Voltolini et al., 2011; Muri et al., 2012; 

Drignon et al., 2016; Germinario et al., 2016; Cheng et al., 2017) . However, in these cases 

analysis was either user-controlled (e.g., tracing crystal outlines in vector graphics software), 

used proprietary software integrated with an imaging instrument, or used a bespoke programmed 

solution in, for example, Matlab. All three approaches have significant drawbacks that hinder 

widespread adoption. Proprietary software is usually tied to a specific instrument, is often 

expensive, and the processing steps are hidden (i.e. ‘black-box’). Bespoke programmed solutions 

are often designed for very specific tasks and are only adaptable more widely if the code is 

published. Digitizing images in vector graphics software is the simplest but also the most labor-

intensive approach, and unsurprisingly is the most commonly applied. Vector graphics programs 

allow for accurate tracing and the separation of different phases by eye into different layers. 

They then routinely calculate the areas and circumferences of individual objects. Hand-tracing 

greatly restricts the total sample size that is feasible to collect such that estimated minimum n 

values for statistical significance (>1,500) are seldom reached for many samples (Howarth, 

1998).   
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1.3 Application of Autonomous Image Analysis of Volcanic Rocks 

Application of an autonomous image classifier requiring minimal operator input (e.g., 

training, validation) that could be applied to multiple similar samples without re-training would 

greatly enhance quantitative petrography. The Trainable Weka Segmentation plugin (TWS; 

Arganda – Carreras et al., 2017) within the popular, open source image analysis software Fiji 

(Schindelin et al., 2012; Rueden et al., 2017) allows for trainable, semi-automated classification 

and thresholding of digital images. TWS was developed to bridge the gap between expensive, 

proprietary image segmentation software and open-source software with poorly designed 

graphical user interfaces (GUI) to accelerate segmentation of biomedical images (Arganda – 

Carreras et al., 2017). Unlike other available image classifiers (e.g., Fiji, Ilastik) TWS does not 

limit the number of different classes available. 

TWS integrates Fiji with the Waikato Environment for Knowledge Analysis (‘Weka,’ 

initially developed for data-mining and machine learning: Witten et al., 1999; Hall et al., 2009). 

TWS uses a fast-random forest classification algorithm for data discrimination and classification 

(Breiman, 2001) and a combination of user-selected filters to classify images. Regions of interest 

(ROIs) are ‘painted’ by the user for each class (e.g., mineral phase, vesicle, etc.) and used as 

training pixels to train the model (Breiman, 2001; Pal, 2005). The filters selected influence how 

the fast-random forest decision trees classify the remaining pixels in the image (Arganda – 

Carreras et al., 2017). Random forest algorithms are widely used for image analysis in remote 

sensing (Pal, 2005; Gall et al., 2012; Belgui and Dragut, 2016; Vasuki et al., 2017). Random 

forest algorithms are popular because they are flexible about the number of classes, are less 

computationally demanding than other classifiers, and typically underfit modeled results to data 

(Breiman, 2001).  
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Lormand et al. (2018) applied TWS to analyze microlites in the groundmass of three 

different volcanic rocks imaged by scanning electron microprobe (SEM). Microlites are micron-

scale needles (e.g., plagioclase) and polyhedral (e.g., magnetite) formed during rapid quenching 

of a magma and aborted crystallization. To quantify the microlite crystal size distribution, 

Lormand et al. (2018) estimated a minimum sample size of 400 microlites per sample. They used 

back-scatter electron images (BSE) where the relative grayscale value (0 – 255) correlates with 

the density, and therefore composition, of the phase. Three different image resolutions were used 

for this study. TWS was trained to classify different phases in the BSE images, i.e. microlites 

distinguished from glass. The classified images were manually traced, edges cleaned-up, and 

segmented with Adobe Photoshop. Lormand et al. (2018) found that TWS classified 

predominately glassy (35 - 50% crystalline) samples well; however, samples with ≥85% 

crystallinity yielded inconsistent results. 

I am going to apply and adapt the methods used in this study to a spectrum of volcanic rock 

samples with varying crystal contents and PPL thin section images with varying RGB values. By 

exploring the limits of TWS’s capability, I hope to expand the range of volcanic rocks that can 

be accurately classified by TWS. Furthermore, I will segment and collect morphometric 

measurements of the classified images only using tools available within the Fiji platform as to 

keep the method entirely open source.  
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2.0 Methods  

2.1 Analytical Strategy 

My methodology only utilizes functions within Fiji, including the TWS plugin, to maintain 

an open-source image analysis process for classifying and segmenting classes from plane 

polarized light images of volcanic rocks in thin section. I will use TWS to classify all visible 

objects in images of standard-sized (27 x 46 mm and 30 μm-thick) petrographic thin sections and 

to segment each class for the purpose of quantitative petrographic analysis. Whereas Lormand et 

al., (2018) used BSE images of three volcanic rock samples to classify specifically microlites 

which were then segmented from the sample using Adobe Photoshop. Crystal size distribution 

(CSD) of the microlites were assessed using proportional measurements collected in Photoshop 

and input into CSD slice (Morgan and Jerram, 2006; Lormand et al., 2018).  

2.2 Samples and Classes 

To assess TWS’s ability to classify volcanic rocks, I evaluated eight different volcanic 

samples (Figure 1) ranging from texturally and mineralogically simple (e.g., vesiculated 

aphanitic basalt) to gradually more complex. To provide a range of different textures and crystal 

populations, six samples (1 – 6) were selected from the online digital photomicrograph collection 

of Alessandro Da Mommio (www.alexstrekeisen.it), and two (7 and 8) from the research and 

teaching collection at West Virginia University. This demonstrates the flexibility of digital image 

analysis where it can be applied to images from a range of sources, including archives and 

publications. Prior to analysis in Fiji, each sample was visually inspected and the number of 

potential classes noted (Table 1). 
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Figure 1. Samples included in this study in plane polarized light. The order was determined by 

assessing the approximate number of classes, textural complexity, ranges of color, and crystal 

content. 

The number of classes per sample were determined based on visually observed 

characteristics (i.e. color, crystal shape, crystal size) during preliminary inspection. Each distinct 

characteristic of a sample was given its own class. Characteristics considered during class 

determination included:  

• glassy groundmass,  

• crystalline groundmass,  

• flow banding,  

• crystal content,  

• mineralogy of crystal population (determined by color and crystal shape),  

• void spaces or vesicles, and  
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• inclusions.  

The primary factor in determining different classes of crystals was crystal color. Some 

samples have undergone alteration which is addressed and labeled by alteration color.  

Table 1 – Sample descriptions and number of classes 

Sample Number Sample Descriptions Classes 

Sample 1 

(basaltovescicolato(13).jpg) 

Vesiculated basalt, opaque groundmass 

with circular vesicles and acicular crystals 

(likely plagioclase) 

Groundmass 

(glass) 

Vesicles 

Crystals 

 

Sample 2 

(osssidiana(14).jpg) 

Flow banded obsidian, interconnected and 

isolated vesicles, small crystal population 

of varying compositions 

Glass 

Vesicles 

Crystals 

Sample 3 

(plagioclasipiomosi.jpg) 

Rhyolitic lava, acicular crystals with dark 

brown devitrification surrounding them, 

opaques, and elongated vesicles 

Vesicles  

Groundmass 

Opaques 

Brown + Shards 

Sample 4 

(oolivinaiddingsinata(11).jpg) 

Porphyritic basalt with abundant 

plagioclase, fractured CPX, and iddingsite 

which has replaced the olivine. The 

sample also contains tabular to squareish 

opaques 

Groundmass 

(plagioclase)  

Opaques 

CPX 

Iddingsite 

Sample 5 

(aandesite(2).jpg) 

Andesite with euhedral plagioclase and 

amphibole phenocrysts and a glassy 

groundmass 

Groundmass 

Plagioclase 

Opaques 

Amphibole 

Alteration  

Sample 6 

(grantola(70).jpg) 

Welded ignimbrite with large fiamme, 

imbricated crystals, and glassy 

groundmass with varying color. 

Fiamme 

Quartz 

Feldspars 

Opaques 

Groundmass  

Sample 7 

Masontown dike, Fayette 

County, PA 

Nearly monochromatic, heavily altered 

orangeite (type-II kimberlite) with 

serpentinized olivine-phlogopite 

Groundmass  

Opaques 

Crystals 

Void space 
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groundmass and peridotite xenoliths, and 

void spaces.  

Sample 8 

Sugar Grove dike, Pendleton 

County, WV 

‘Microclinopyroxenite’ with large 

xenolith, zoned CPX macrocrysts, and 

CPX-phlogopite groundmass.  

CPX 

Groundmass  

CPX Phenocrysts 

Phlogopite 

Xenolith 

  

2.3 Image Pre–Processing  

Prior to classification, images were enhanced within Fiji to improve the brightness and 

contrast of each sample image. Subsequently, noise reduction processing was carried out within 

Fiji by selecting ‘Noise -> Remove outliers’ and ‘Noise -> Despeckle’ from the ‘Process’ tab 

(Lormand et al., 2018). Pixels are considered ‘noise’ if the median RGB value of an individual 

pixel deviates from the surrounding median pixel values by the ‘threshold’ value set in Fiji 

(Arganda-Carreras et al., 2017). Noise reduction processing was completed on all samples except 

sample 6, where upon applying the filters a small, secondary crystal population was removed 

from the sample image. Thus, noise reduction was not applied to sample 6 to preserve the 

integrity of the secondary crystal population. The noise reduction filters sharpened the remaining 

sample images without removing any detail from the samples and were applied to all other 

sample images. 

The image scale is set prior to classification, under the ‘Analyze’ tab, by selecting ‘Set Scale’. 

This allows for quantitative measurements post classification and segmentation; modal 

proportions can be obtained without setting the scale, however, precise crystal size 

measurements require it.  
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2.4 Training and Classification  

To access the TWS plugin within Fiji, select ‘Plug-ins → Segmentation → Trainable Weka 

Segmentation,’ and the GUI will appear. Before training the classifier, the settings within the 

GUI were changed. The filters within TWS can be accessed through the GUI settings and can be 

grouped into four categories including edge detectors that enhance the edges of objects within an 

image (Gabor), texture filters which help preserve and extract textural information (Gabor), noise 

reduction filters help to homogenize grouped areas of similar pixel values and remove outliers 

based on the automatic threshold value (Gaussian blur, bilateral, Lipschitz), and membrane 

detectors that are used to identify membrane – like structures (Arganda – Carreras et al., 2017). 

The filters selected for this study within the GUI settings for all sample segmentation were: 

• Gaussian Blur – uses gaussian kernels to homogenize grouped, similar pixels 

(monochromatic crystals),  

• Lipchitz – a cone shaped filter used to homogenize backgrounds with little variance   

• Gabor – evaluates several kernels at different angles to improve edge detection 

• Bilateral – acts to preserve edges of objects (crystals) within the image by averaging the 

surrounding pixel values and slightly blurring the surrounding pixels (groundmass) 

• Neighbors – creates 8 feature images by shifting the image in 8 directions  

All other filters were deselected. The filters above were used by Lormand et al. (2018) as they 

increased classification accuracy and were chosen in this study for the sake of continuity.   

The correct number of classes are generated and named based on the number of classes per 

sample determined during preliminary visual analysis. Class names are changed within the GUI 

settings prior to ROI selection to be more representative of what each class contained (i.e. 



11 

 

‘groundmass,’ ‘phenocrysts,’ ‘glass,’ etc.). To select ROIs, the ‘freehand line’ tool is used to 

outline or mark areas of the sample. Eleven ROI traces were made for each class (Lormand et al., 

2018) and assigned using the ‘Add to Class’ button. The traces include pixels that best represent 

the entire class, including the typical range of pixel-diversity within the class.  

TWS then trains the classifier based on the user-defined ROIs using the ‘Train Classifier’ 

button after ROIs are selected. The fast-random forest algorithm trains the classifier based on the 

pixels within the selected ROIs, and from that, classifies the entire image by evaluating all the 

pixels (Gall et al., 2012, Belgui and Dragut, 2016). Each untrained pixel is passed through sets of 

decision trees that are defined by the ROIs selected for each class (Gall et al., 2012). Once the 

entire image has been evaluated, a classified overlay image is generated that can be toggled ‘on’ 

and ‘off’ to compare against the sample image. At this stage, classification accuracy is 

determined by visually inspecting the original image and classified overlay.  

TWS produces a final classified image (Figure 2A) that can be saved and exported (identical 

to classified image overlay), probability maps (Figure 2B-D), and a file containing the training 

data from ROIs. Images were saved as .tiff files, and the probability maps were saved as both an 

image stack and individual images which are used for segmentation of each class. The saved 

training data (i.e. saved classifier) can be used to classify other images against the same classes, 

for example, when examining multiple samples of the same or very similar rock (see 

Discussion).  
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 Figure 2. (A) Example of a classified image with three classes (green, red, pink) produced by 

TWS analysis of sample 1. Examples of the probability maps produced by TWS for (B) open 

vesicles, (C) crystals, and (D) glass from sample 1, where white areas indicate a high probability 

of belonging to that specific class. 

2.5 Segmentation and Thresholding 

 To segment each class from the classified image, the gray scale probability maps (Figure 

2 B-D) for each class are thresholded with Fiji’s auto-threshold tool. Each class produces a 

probability map illustrating the probability of each pixel belonging to a certain class defined by 

the threshold value in Weka. Auto-thresholding makes a binary image of the greyscale 

probability map based on splitting about 50 % of the probability value (Figure 3). Pixels within 

the binary image are grouped as either white (specific class of interest) or black (remainder of 

image). The binary image is then available to obtain any textural measurements within Fiji after 

classification and segmentation.  
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Figure 3. Gray scale probability map and binary threshold image for ‘groundmass’ in sample 3 

where white is the class of interest and black represents all other classes.  

Pixels from the specific class of interest might be incorrectly segmented during automatic 

thresholding if the pixel probability is < 50% that it belongs to the specific class of interest. It is 

during this conversion that minor thresholding error can be introduced.  

3.0 Results 

3.1 Classification  

Classifications were produced with eleven ROI traces per class initially, as in Lormand et al. 

(2018) and the number of classes allowed to vary between samples as necessary.  

3.1.1 Samples 1 - 5 

Classification was successful on samples 1 – 5 with an estimated >98% (Figure 4) of each 

sample being correctly classified (Figures 5-10). The accuracy of classification was estimated by 

visually comparing the PPL thin section image to the classified image produced by Weka (Figure 

4). By toggling on and off the classified image overlay it is possible to estimate if TWS 

accurately grouped all components in each sample to the correct class.
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Figure 4. The blue box in the bottom image is magnified in the top right corner. Both the bottom image and magnified image are Sample 

3 with the classified image overlay produced by TWS. The image in the top left is the PPL image of sample 3. Each arrow on the left is 

identifying objects within sample 3 that are classified with the same correspond ding color in the other two images.



15 

 

 

Figure 5. Sample 1 – vesicle margins were initially classified as crystals, and the center of 

larger, non-acicular crystals were initially classified as vesicles. However, this error was 

minimized during thresholding.  
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Figure 6. Sample 2 – In the initial classification and segmentation of sample 2 the glassy 

groundmass was considered as one class. This image was re-classified to separate the flow 

banding within the glassy groundmass (Figure 7). 
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Figure 7. Sample 2 – A second analysis was completed on sample 2 to segment the light and dark 

flow banding within the glassy groundmass. Thinner bands of the dark flow banding were not 

continuous when segmented.  
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Figure 8. Sample 3 – sample 3 contains a crystal that does not belong to any class (indicated by 

red circle in original sample image). The crystal was ignored when selecting ROIs and was 

classified as ‘Brown + Shards’ by TWS. This crystal could have been removed prior to 

segmentation in a software such as Photoshop if necessary.  
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Figure 9. Sample 4 – The ‘groundmass’ of sample 4 is interlocking plagioclase crystals as noted 

in Table 1. Each class within this sample has distinct RGB values. 
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Figure 10. Sample 5 – It was not necessary to classify the alteration separately from the 

plagioclase, however, I wanted to attempt it to illustrate that it is possible. It was largely 

successful, and if the alteration was misclassified, it was grouped into the ‘plagioclase’ class due 

to a similar range of RGB values.  
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3.1.2 Samples 6 – 8 

Samples 6 – 8 yielded less accurate classification results with larger portions of each sample 

inaccurately classified (Figure 11). ~ >20% of samples 6 and 7 were incorrectly classified, and > 

60% of sample 8 was incorrectly classified.  

Figure 11. PPL and classified images of samples 6 – 8, classes are noted below the images. Full 

segmentation images of samples 6 – 8 can be found in ‘Appendix I.’ 

It was possible to increase the accuracy of samples 6 – 8 by either 1) reducing the number of 

classes, 2) increase the number of ROI traces per class, or 3) a combination of both. By 

increasing the ROI traces in sample 6 to 20 traces per class, it was possible to increase the 

accuracy of classification with ~98% of the sample being correctly classified (Figure 12). Due to 

the diversity within one of the crystal groups in sample 6, eleven ROI traces did not provide 
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enough training data. However, with 20 traces per class, TWS could differentiate between the 

two similar crystal populations present (quartz and plagioclase).  

 

Figure 12. Sample 6 – ROI traces (n = 20) show improved classification results (example 

indicated by black arrow). Within the mentioned enclave, a higher proportion of the area is 

correctly classified as groundmass (blue).   

 The alteration, low variation in RGB values in sample 7, and diversity of the crystal rich 

groundmass of sample 8 significantly hindered TWS classification and segmentation abilities. 

Number of ROI traces per class were increased from 11 to 20, and 30, traces for sample 7 

(Figure 13). The classification accuracy marginally increased, however, increasing the number of 

ROI traces beyond 20 traces per class is laborious and time intensive. Increasing the traces to 30 

ROI traces per class only yielded marginal improvement in the opaques class (Figure 13). This 

sample would likely have to be manually segmented to obtain meaningful textural 

measurements. 
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Figure 13. Sample 7 with progressively increased ROI traces. Black circles in bottom two 

images indicated a region of increased opaque classification, the only significant change 

between 20 and 30 ROI traces.  

 Increasing ROI traces to 50 traces per class in sample 8 resulted in > 20% of the sample 

being misclassified (Figure 14).To improve the classification results enough where manual 

cleaning of the data would be possible, a binary class approach had to used. To accomplish this, 

a focus class was chosen from the sample, ‘phlogopites’ for example, and the second class 

became ‘everything else’ in the sample. More than 50 ROI traces per class were needed to 

produce classification that could potentially undergo manual cleaning (Figure 14). This was an 

iterative process as classification had to occur until every class was segmented from the sample. 
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This process is time intensive, yields inaccurate classification, and the sample would still require manual cleaning post classification.  

  

Figure 14. Sample 8 classification with 11, 50, and 50 (in a binary classification scheme) ROIs. The ‘focus class’ for the binary 

segmentation is phlogopites in RED, the green represents everything else in the sample.
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4.0 Discussion  

4.1 Assessment of Classification 

The Trainable Weka Segmentation plugin within Fiji is a powerful tool that can be used 

for semi-automatic classification of volcanic rocks. However, the success of classification varies 

depending on sample characteristics.  

Classification was successful on samples 1 – 6, though sample 6 required more ROI 

traces (n = 20) to produce an accurate classification opposed to n = 11 for samples 1 – 5. 

Characteristics shared among these samples include homogenous groundmass with no or small 

aphanitic crystal populations, distinctive crystal boundaries, and high variation in RGB value 

(Figure 15). 

Increasing the number of ROI traces beyond 20 per class in sample 6 significantly 

increased the time it took to manually trace ROIs and the time it took TWS to classify the image. 

Additional traces beyond n=20 (n = 30, n = 40) did not improve the classification. Combining 

feldspar and quartz in to one ‘crystal’ class would potentially improve classification results based 

on the similar range of RGB values (Figure 15). Samples 7 and 8 could not be classified using 

TWS. Increasing ROI traces beyond n=20 in an iterative binary classification method 

transformed semi-automatic classification into completely manual classification that was still 

hugely unsuccessful. Two or more classes within samples 7 and 8 had similar average RGB 

values (Figure 15) which hindered TWS’s ability to classify the image with small training data 

sets. The high degree of alteration in sample 7 also likely contributed to failed classification as 

the sample was lacking well defined crystal boundaries. The textural complexity of sample 8 – 

aphanitic heterogenous crystalline groundmass, three distinct crystal size populations, and 

xenolith inclusions – also impacted TWS’s classification accuracy.
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Figure 15. Average RGB values per class per sample (Black = 0, White = 225). High variation 

in RGB values is present in samples 2 – 5. In sample 6 – 8, one or more class has a similar range 

of RGB values. Sample 1 has two classes with similar RGB values, but these classes also have 

distinctive shapes unlike the classes in samples 6 – 8. 

4.2 Case Study: Crystal-Poor and Crystal-Rich Rhyolite Ignimbrites  

Five thin sections of rhyolitic Sierra Madre Occidental ignimbrites were selected to test 

TWS against existing point-counting data (Figure 16). The five samples are part of a suite of 

over one hundred point-counted in 2019 (Andrews et al., in revision): SMO13_03, SMO15_44, 

SMO15_23, SMO13_27, and SMO15_43 (Figure 16). SMO13_03, SMO13_27, and SMO15_23 

are crystal-poor (<15 %), and SMO15_43 and SMO15_44 are comparatively crystal-rich (>38 

%).  
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Samples SMO13_03 and SMO15_44 both have dark, near-isotropic groundmass of 

hydrated glass (Figure 16). The other samples have very heterogeneous, light- to medium-

colored groundmass of strongly devitrified glass with visible opaque microlites (Figure 16). 

 

Figure 16. All five samples are rhyolite lavas from the SMO and were chosen out of a larger 

sample set. Binary segmentation images can be found in ‘Appendix II.’ 

The five samples were classified in TWS as both binary (groundmass and non-groundmass) 

and ternary (groundmass – crystals – other objects (lithic clasts, vesicles, etc.)) to allow for 

comparison with the existing petrographic data that included specific mineral phases. The binary 

comparisons (Figure 17) are excellent for four samples (difference <5 %) and good for 

SMO13_03 where crystals were over-estimated by 20 % relative to the point-counted analysis. 

The successful replication of the point-counted data is likely due to homogenous groundmass 

(glassy opposed to aphanitic crystal population: Figure 16), high variation in RGB values 

between segmented classes, and homogenous crystal populations.  
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Figure 17. Binary modal proportions of SMO samples where the cyan (bottom portion) 

represents ‘% Crystals’ and the purple (top portion) represents ‘% Other (groundmass, lithics, 

opaques, fiamme).’  

The difficulty of distinguishing the exact nature of different objects when the RGB values 

are very low, very high, or are strongly bimodal prevents the reasonable identification of voids, 

opaque minerals, and lithic clasts in samples SMO13_03 and SMO15_44. They can probably be 

separated better by shape, but this has not been attempted here. In the remaining samples there is 

sufficient variation in the RGB values to further subdivide the non-groundmass into distinct 

crystals and ‘other objects’ (vesicles, opaques, lithic clasts, and fiamme). The resulting ternary 

classification is shown in Figure 18 where there is excellent or very good agreement between the 

original point-counted data and the TWS data. 
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Figure 18. Ternary diagram with point counted and TWS data from samples SMO13_27, 

SMO15_23, and SMO15_43. SMO13_03 and SMO15_44 were not included due to the inability 

to distinguish ‘Other’ from the remaining classes – this is likely due to low variation in RGB 

values.  

 This case study illustrates TWS ability to accurately segment volcanic rocks when 

compared to previously point counted data. It also serves to illuminate some of the limitations 

within this method of classifying and segmenting volcanic rocks. TWS can be used as an 

alternative to traditional point counting for volcanic rocks with specific visual characteristics of 

which the most important are high variation in RGB values between classes and a homogenous 

groundmass.  
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4.3 User Recommendations 

While learning the capability and limitations of the TWS plugin, I developed a ‘sixth 

sense’ for which samples could be accurately classified and which ones would produce 

unsatisfactory results. I also discovered ways to improve classification in more complex samples 

which are listed below.  

• If a sample contains two or more classes with similar RGB values (i.e. color of 

classes is not visually different or distinct), classification with 11 ROIs per class will 

likely be unsuccessful 

• Highly altered samples, a serpentinized kimberlite for example, will likely produce 

unsuccessful classification – the monochromatic nature of alteration greatly hinders 

TWS 

• If two classes within a sample are visually similar in color, increasing ROI traces to 

20/class will likely improve classification  

• In more complex samples, reducing the number of classes can improve classification. 

For example, reduce ‘feldspars’ and ‘quartz’ to one ‘crystals’ class
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5.0 Conclusion 

TWS is a no cost, semi-automatic classification tool that can be used on PPL images of 

volcanic rocks. Classification works well on a range of samples with the following 

characteristics:  high RGB value variation, glassy groundmass, well defined crystal shapes, and 

homogenous aphanitic crystal populations. Highly altered samples, samples with heterogenous 

aphanitic crystal populations or groundmasses, and limited range of RGB values per class, hinder 

TWS’ ability to accurately classify samples. Percentage of total crystal population (>85%) is not 

the main limiting factor as previously suggested by Lormand et al. (2018). In fact, the most 

significant limitation to TWS is limited range of RGB values across classes. 

TWS yields great results for modal proportions when compared to previously obtained 

traditional point counting data. The time saved by using the TWS plugin and basic functions 

within FiJi as a point counting tool allows for much larger sample sets to be analyzed. The 

method is also open–source and not hidden behind proprietary software. All crystal 

measurements (size, shape, area of each crystal) obtained through the ‘Analyze Particles’ 

function in FiJi can then be used for further textural analysis such as crystal size distribution 

which avoids the lengthy process of manually tracing individual crystals. 

Investigating the effects of different training filters across samples with varying 

characteristics would be a beneficial future venture. Using more training filters focused on 

texture could, perhaps, increase classification accuracy in samples with similar RGB values 

across classes. Quantifying classification error should also be done potentially by using ‘ground 

reference points’ similar to aerial imagery and geo referencing.  
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It is of the upmost importance during this time (COVID-19 restrictions, limited access to 

fieldwork and analytical equipment) that we find innovative and accessible ways to still conduct 

quality research. With limited trainings and access to analytical equipment like scanning electron 

microscopes (SEM), few people likely have the ability to obtain BSE images at their discretion. 

However, many labs likely have easy access to petrographic microscopes, so it is important to 

evaluate the usefulness of TWS with PPL sample images. PPL images are free and easy to obtain 

– cell phone cameras take high resolution photos that match the quality of high dollar DLSR 

cameras.  
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Appendix I: Segmentation images of samples 6 – 8 

 

Figure I - 1. Segmentation images of Sample 6. ROI traces n=20. 
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Figure I - 2. Segmentation images of Sample 7. ROI traces n=11. 
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Figure I – 3. Sample 8 segmentation with ROI n = 11and the maximum number of classes 

attempted.  
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Appendix II: Segmentation images of SMO samples  

 

Figure II – 1. SMO13_03 was classified by selecting ROIs to train the TWS classifier. The 

classifier model and RGB data were then saved and reapplied to sample SMO15_44.
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Figure II - 2. SMO15_44 (A) was classified by manually tracing ROI’s. (B) was classified by re-applying the saved SMO13_03 

classification model. The blue circle in every image indicates a region of notable difference in the classification and segmentation 

product. 
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Figure II – 3. SMO13_27 binary classification. The large voids within this sample were distinct 

enough (RGB = 225) to be distinguished from the crystal population. Crystal rims are still 

present around the void edges.



46 

 

 

Figure II – 4. SMO15_23 binary segmentation.  
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Figure II – 5. SMO15_43 binary segmentation.  
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