WestVirginiaUniversity
THE RESEARCH REPOSITORY @ WVU

Graduate Theses, Dissertations, and Problem Reports

2021

Multivariate Time Series Classification of Sensor Data from an
Industrial Drying Hopper: A Deep Learning Approach

Md Mushfiqur Rahman
mr0143@mix.wvu.edu

Follow this and additional works at: https://researchrepository.wvu.edu/etd

0 Part of the Industrial Engineering Commons

Recommended Citation

Rahman, Md Mushfiqur, "Multivariate Time Series Classification of Sensor Data from an Industrial Drying
Hopper: A Deep Learning Approach" (2021). Graduate Theses, Dissertations, and Problem Reports. 8309.
https://researchrepository.wvu.edu/etd/8309

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F8309&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=researchrepository.wvu.edu%2Fetd%2F8309&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/8309?utm_source=researchrepository.wvu.edu%2Fetd%2F8309&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

WestVirginiaUniversity
THE RESEARCH REPOSITORY @ WVU

Graduate Theses, Dissertations, and Problem Reports

2021

Multivariate Time Series Classification of Sensor Data from an
Industrial Drying Hopper: A Deep Learning Approach

Md Mushfiqur Rahman

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Cf Part of the Industrial Engineering Commons

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=researchrepository.wvu.edu%2Fetd%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages

Multivariate Time Series Classification of Sensor Data from an Industrial Drying
Hopper: A Deep Learning Approach

Md Mushfiqur Rahman

Thesis submitted to the Benjamin M. Statler College of Engineering and Mineral Resources at
West Virginia University
in partial fulfillment of the requirements for the degree of

Master of Science
in
Industrial Engineering

Thorsten Wuest, PhD, Committee Chair
Kenneth Currie, PhD
Behrooz Kamali, PhD

Department of Industrial and Management Systems Engineering
Morgantown, West Virginia

2021

Keywords: Predictive Maintenance, Multivariate Time Series, Classification, Data labeling,
Imbalanced Data, Deep Learning

Copyright 2021 Md Mushfiqur Rahman

Abstract

Multivariate Time Series Classification of Sensor Data from an Industrial Drying
Hopper: A Deep Learning Approach

Md Mushfigur Rahman

In recent years, the advancement of industry 4.0 and smart manufacturing has made a large
number of industrial process data attainable with the use of sensors installed in the machineries.
This thesis proposes an experimental predictive maintenance framework for an industrial
drying hopper so that it can detect any unusual event in the hopper which reduces the risk of
erroneous fault diagnosis in the manufacturing shop floor. The experimental framework uses
Deep Learning (DL) algorithms in order to classify Multivariate Time Series (MTS) data into
two categories- failure or unusual events and regular events, thus formulating the problem as
binary classification.

As classification is a supervised learning technique, any DL algorithm needs labeled data for
classification. Moreover, raw data extracted from the sensors contain missing values.
Therefore, necessary preprocessing is performed to make it usable for DL algorithms and the
dataset is self-labeled after defining two categories precisely. To tackle the imbalanced data
issue, data balancing techniques like Ensemble Learning with undersampling and Synthetic
Minority Oversampling Technique (SMOTE) are used. Moreover, along with DL algorithms
like Convolutional Neural Network (CNN) and Long Short Term Memory (LSTM), Machine
Learning (ML) algorithms like Support Vector Machine (SVM), K Nearest Neighbor (KNN),
etc. have also been used to perform a comparative analysis on the result obtained from these
algorithms. The result shows that CNN is arguably the best algorithm for classifying this
dataset into two categories and outperforms other traditional approaches as well as deep
learning algorithms.

Acknowledgements

I would like to express my unbound respect and thankfulness to my research supervisor Dr.
Thorsten Wuest for his proper guidance and support during the span of this research. It was
him who motivated me to incite my own aptitude for knowing the unknown, encouraged me to
the utmost and gave rise to the confidence in me for completing this thesis.

| am also grateful to the committee members Dr. Kenneth Currie and Dr. Behrooz Kamali for
their valuable insights and feedback over the course of this thesis.

| wish to thank my parents, without whose prayers and constant support, | could never reach
this stage of my life.

il

Table of Contents

Table of Contents

S o) T U= PSSR vi
LISE OF TADIES ... ettt bt viii
R [1 oo [0 Tox 1 o] TSRS P PSP PR PPRPRO 1
1.1 General INtrOQUCTIONcc.oieiiieiieie et nreas 1
1.2 BACKGIOUNG ...ttt 3
1.3 ODJECHIVES ANA SCOPES......ceiuiiiieieieite ittt 4
1.4 Outline of MEtOOIOYeoiviiiiiieiie e 4
1.5 Organization Of the THESIScciiiiiieiiee e 5

2 LITErature REVIEW......oiiieiiiiiiciisie ettt sttt 6
2.1 Traditional AlQOrithMS.......cooiiiiiiiice e 6
2.2 Deep Learning APPrOACHEScoiviiieiieireieseeseeste st ste e sreeste e ste e sreesreeaesreas 8
2.3 Data LAhEIING ..o 11

3 MENOTOIOGY ... e 12
3.1 Data Exploration and PreproCeSSINGcoverververiererisiesieeeeienie et 12
3.1.1 Handling MisSiNg ValUES...........cooouiiiiiiiiiie s 14
3.1.2 Datalabelingc.coveiiiieiec s 15
3.1.3 Characteristics of the labelled dataset............ccccoovririiiiieieie e 23

3.2 SOIULION APPIOGCN......ccviiiiiicie et 31
3.2.1 Artificial Neural NEtWOIKcccooiiiiiiiieie st 31
3.2.2 Convolutional Neural network (CNN)........cccoiiiiiiiiiiec e 35
3.2.3 Recurrent Neural NetWOrK.........ccooviieiieiiiieseee e 38
3.24 Combination of CNN and LSTMcccooiiiiiiiiieie e 42
3.2.5 Machine Learning AlgOrithms ..o 43
3.2.6 K-Nearest neighbor (KNIN).......coovoiiiieii e 46
3.2.7 Performance MEASUIEcc.eiieieiieiie ittt sttt nne e 47
3.2.8 System SPECITICALIONccviiiieiie e 48

4 Experimental Results and DISCUSSIONcciuieiieiiieiie it 50
4.1 EXPErimental SELUD ...ccvio ittt 50
4.2 Hyperparameter TUNING «..o.ooeoeiiieiiee et 52
B (- 11 | | SR TPRSRSSN 54
4.3.1 Ensemble Learning (CNN) ..ot e 54
4.3.2 Ensemble Method (LSTIM)coiiiiiiiiiiiie e 56
4.3.3 Ensemble Learning (CNN-LSTM)coiiiiiiiiiiiiiieiic e 58
B34 SMOTE ..ottt bbbttt st st b reen et es 60

Table of Contents

4.3.5 Machine learning algorithmscoooiiiiiiii 62
4.3.6 SUMIMAIY ..ottt bbbt b e n e b e n e nne s 62

O I 1ol ¥ 1] o] SRRSO 64
4.4.1 Event definition and subsequence extraction............cccccevveveiveresiesieese e 64
4.4.2 Data imDalanCe ISSU........cceiiiiiiiiiieieie e 65
4.4.3 ReSUIt INTErPretation........cccvcoiiiieieeie e 67

5 Conclusion and FULUIE WOTKooiiiiiiiiiiiceeee e 69
R (=] =] 0TSRRI 70
N 0] 61<] Lo [PP P RSP P TP TP PV VPP PRPPOPIR 78

List of Figures

List of Figures

Figure 1.1: Temperature ProfileS ..o 3
Figure 2.1: Two methods of calculating DTW distance[37]ccccovevviviiiieiicie e, 6
Figure 2.2: Deep learning overview for time series classification[20].........cccccccevvvevieiicieennnnn, 9
Figure 2.3: MDDNN model architeCture[61]ccvovveiieiiiieieeiece e 10
Figure 3.1: Raw dataset in CSV fOrMaL..........cccciveiiiiieiiee e 12
Figure 3.2: Temprature profile obtained from primarily preprocessed data.............c.cccceevnee. 13
Figure 3.3: Missing values in the primarily processed datasetcccooerenerienennnineieienn. 13
Figure 3.4: Missing values in the temperature profile ..., 14
Figure 3.5: Missing value IMPUEALIONoiiiiiiiice e 14
Figure 3.6: Startup ProCeAUIE[36].........oieiiriiiiiieieierie et 15
Figure 3.7:Cleaning CYCIE[30]......cueoueiueriiiieiieieee e 15
Figure 3.8: CONVEYING ISSUBL30].....cveveiiriiiiiiiieiieieere e 16
FIQUIE 3.0: EVENT ...ttt bbbt 17
Figure 3.10: Variation Of 8N BVENTcoiiiiiiiiee e 17
Figure 3.11: Definition Of @GN BVENT..........ccociiiiiiiiiec e 19
Figure 3.12: Labelled Datacccoovueiiiiiieiccic et 21
Figure 3.13: Example of an event and @ NON-VENtcceiieiiiie i 21
Figure 3.14: Dataset StatiStICS.......c.cieivieiieiiiieieee et esre e enes 23
Figure 3.15: A simple visualization of nullity by columncccccoiveiiiiiicc e, 23
Figure 3.16: NUHLY MALFIX ..ouviiriiieiieiee et enre e anes 24
Figure 3.17: Statistical summary of Hopper 1 hopper outlet temperature.............ccccceevennnne. 24
Figure 3.18: Quantile and descriptive statistics of HLIHOTc..cccoooveiiiiiiiecece e 24
Figure 3.19: Common values and Extreme values of Minimum and Maximum of HIHOT ..25
Figure 3.20: Binary classification [abelingcccooveiiiiiiiiiec e 25
Figure 3.21: Change of distribution after data normalization..............c.ccccoeeiveiiiieic e, 27
Figure 3.22: Data NOrmMaliZationcccvoiiiiiiiice et 28
Figure 3.23: Undersampling and oversampling[72]ccccoviiiiniiiiiiie e 29
FIQUIE 3.24: SMOTE[76]....cueeeeieieieieeete ittt 30
Figure 3.25: Ensemble MethOd[77].......cooiiiiiiiieee e 31
Figure 3.26: Basic Structure of a Neural Network [79].........ccooviiiiiiiiece 32
Figure 3.27: Activation FUNCLION [80]coviiiiiiiiiieiese e 33
Figure 3.28: MLP with one hidden 1ayer[82] ... 35
Figure 3.29: Multi channel Deep CNN application on time series [32]cccccovvvvrviiniieinennn. 36
Figure 3.30: CNN for time series classification[83]cccovvriiiiriiiiiieie e 36
Figure 3.31: Different types of RNN architeCture[84]...........ccocviiiiiiiiii i 38
Figure 3.32: Computational Graph of RNN [85]......ccoiiiiiiiiiiiiiieeee e 39
Figure 3.33: Back propagation through time[87]cccoviiiieiiiii e 39
Figure 3.34: Vanishing and Exploding Gradient [89]cccccvviiiiiii i 40
Figure 3.35: LSTM structure[31], [89]cvveiueeiiieiie ettt 41
Figure 3.36: CNN LSTM architeCture[91]covveiieiieeie st 42
Figure 3.37: Support Vector Maching [94].......covoiiiiiiiie e 44
Figure 3.38: Optimizing hyperplanes [95]........coviiiiiiie e 44
Figure 3.39: DecCiSIioN TrEE[7]....uvi it 45
Figure 3.40: RaNdOmM FOreSt]98]........coiiiiiiiiie et 46
FIigure 3.421: KNIN [L00] .. ueiieeeieieiesiesie sttt ettt et snaene e e ee e 47

List of Figures

Figure 3.42: ConfuSION MAatliXccveiieiiieieiie et e e enes 48
Figure 4.1: Confusion matrix and classification report of imabalanced dataset (CNN).......... 50
Figure 4.2: Hyperparameter tUNINGccvoiueiieieee e ste et e e ae e sre e anes 53
Figure 4.3: accuracy Vvs. epoch and 0SS VS. €POCN..........c.coiiieiieiiiie e 53
Figure 4.4: CNN framEWOIKccviiiiieiice ettt e e enes 54
Figure 4.5: Result summary of CNN (Ensemble Learning)cccccovvvevviieieeneeie e 55
Figure 4.6: Confusion matrix and classification report of approach 3, run 1cccceoennne. 55
Figure 4.7: best undersamples in each experimental runc.ccoceoeiiiennnnsceeee 55
Figure 4.8: best [earning CUrves (CNIN)oiiiiiii e e 56
Figure 4.9: LSTM framework and SUMMAIYcccoirieriienininiee e 57
Figure 4.10: Result sSummary OF LSTMcoiiiiiiiiie e 57
Figure 4.11: Confusion matrix and classification report of approach 1, run 7..........cccccoenenee. 57
Figure 4.12: Best undersamples in each experimental run (LSTM)cccooceiiiiiiiiiinniicien, 57
Figure 4.13: Best 1earning CUrves (LSTIM)coiiiiiiieieiese s 58
Figure 4.14: CNN-LSTM framework and SUMMAIYccocriririiieieieie e 58
Figure 4.15: Result summary of CNN-LSTM ..o 59
Figure 4.16: Confusion matrix and classification report of appr. 1, run 4 and appr. 2, run 1.59
Figure 4.17: Best undersamples in each experimental run (CNN- LSTM)ccooviiiivenenne. 59
Figure 4.18: Best learning curves (CNN-LSTM)ccccooiiiiiiiieieic e 60
Figure 4.19: Result summary of SMOTEccooiiiii e 61
Figure 4.20: Confusion Matrix and Classification report (CNN, run 3).........cccccoevviiveirenenn. 61
Figure 4.21: Learning CUrves (SMOTE)coiiiiee e 61
Figure 4.22: Result summary of ML algorithms ..o 62
Figure 4.23: Learning curves with high fluctation during convergence.........ccccccoeevvvevveneane. 66

vii

List of Tables

List of Tables

Table 3.1 EVENT AUIALIONSeiiieiiiieie et e b et 19
Table 3.2: Sliding Window AIGOFtNMoooiiieece e 22
Table 3.3: Histograms of the tempPerature ZONEScocoveveeieerieiieese e 26
Table 3.4: PYIhoN HDraries.........coviieiice et 49
Table 4.1: Training and TeSt EXAMPIESccvoiiiiiiieeie e 50
Table 4.2: List Of NYPErParametersocviiiiiiiieeee e 52
Table 4.3: values considered for Nyperparameterscovvvriiieieierese e, 52
Table 4.4: Initial values for Nyperparameters ..., 52
Table 4.5: Result summary (average result in ten runNs)ccoovieiinie e 62
Table 4.6: Result summary (Best result in teN FUNS).......ccviirriiiriiieieeie e 63

viii

Introduction

1 Introduction

1.1 General Introduction

In recent years, the advancement of smart manufacturing — the merger of information
technology and operational technology, has made the collection and processing of large number
of data industrial process data attainable. These collection of data which is referred as big data
is often an interchangeable term with artificial intelligence (Al) as big data uses various type
of analytics method of Al, machine learning and deep learning. Al refers to when computer,
robot, or other machines exhibit human-like intelligence. By implementing Al, the computer
or machine can mimic the capabilities of the human mind by learning from examples and
experience. Al is used to recognize objects, understand and respond to commands, make
decisions and solve various kinds of problems. Big data are being used to train different Al
models. As a result, machines can process large amount data faster than before and we can ask
machines to vacuum our floors, finish our sentences while typing and even recommendations
what to watch next on TV [1].

Large numbers of sensors installed in various industrial equipment and machine tools on the
shop floor have accelerated this development and increased the amount of available data even
more. These sensors record the activity of a machine over time. These data sets are referred as
time series data, and their analysis has gained popularity over the last few years. The installed
sensors in the industrial equipment and machinery assemble various time series information
[2] which can be analyzed to obtain meaningful events in smart manufacturing systems. In
addition to manufacturing [3], time series data can be found in various other domains such as
healthcare [4], climate [5], robotics [6], stock markets [7], energy system [8], and many more.
Among these diverse set of domains, the manufacturing domain is in the focus of this paper as
the case study is set in the plastic processing industry.

Sensors are one of the key driving forces in the revolution of intelligent and smart
manufacturing. In an industrial machine tool, sensors may collect data for different key
variables over time which is called Multivariate Time Series (MTS) data. If there is only one
variable measured over time, these data are called univariate time series. So we can say, a MTS
consists of several univariate time series. This is why MTS analysis is considered more
complex than the analysis of univariate time series. One of the main reasons behind this
difference is the correlation between the different variables. In this paper, our analysis of time
series will be limited to one of the most common machine learning problems, classification. In
a nutshell, the goal is to i) identify several key events over the time series and ii) enable the
model to identify the class of any key event from those classified and identified events within
the dataset.

Classification problems mainly deal with categorical variable where each variable belongs to
a specific category and the goal of the classification model is to identify the category of a
specific event. For MTS classification, the whole time series is divided into specific segments,
each of those segments belong to a category with distinguished patterns.

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -1-

Introduction

A number of algorithms have been developed to analyze MTS. Some common approaches used
before the evolution of smart manufacturing are simple exponential smoothing [9], dynamic
time warping [10], [11], autoregressive integrated moving average [12]. In addition to those
traditional approaches several machine learning algorithms like K nearest neighbor [13],
decision trees [14], and Support Vector Machine (SVM) [15] were used on multiple occasions.
Some authors used combination of k nearest neighbor algorithm with some distance approaches
like DTW [16], [17] or Euclidean distance measure [18]. It has been shown that no single
traditional approach can outperform the result obtained from the K nearest neighbor algorithm
coupled with some distance measures [19]. However, ensemble methods of different
discriminant classifiers such as SVM and nearest neighbor with some distance approaches and
other machine learning classifiers such as decision tree and random forest can provide better
result than nearest neighbor combined with dynamic time warping method (NN-DTW) [10].
Two of the common issues with the traditional methods are that they often fail to locate
important features within the time series on their own and cannot identify the correlation
between the variables which result in false identification of any categorical event [3]. From this
point of view it is evident that for a univariate time series they may provide reasonably good
result, but for MTS their efficiency may not be good enough. In addition to that, handling of
the massive volume of data is another issue for traditional approaches along with simple
machine learning algorithm. This is why deep learning has come into the picture with the
capability of handling large amount of data by using a deep neural network in multiple layers
to extract meaningful features.

For the last few years deep learning techniques, a variety of neural network algorithms, have
been used extensively to deal with time series problems. For MTS, deep learning approaches
are of special interest as deep neural networks can learn the pattern of the dataset by
understanding the correlation between the variables of interest. It was shown in the literature
that deep neural networks can significantly outperform any traditional methods such as NN-
DTW [20] for both multivariate and univariate time series. For a small number of variables,
for example, in signal processing where two nodes are available and values obtained for those
two nodes over time build a MTS with two variables, NN-DTW may provide good result as
the distance method needs to deal with only two curves. However, when the number of
variables increases, it becomes more complex for NN-DTW. This is why deep neural networks
are of special interest for the case study of this paper where twelve distinct temperature zones
which means twelve variables are present in the dataset.

The most common two neural networks used over the last few years are Convolutional Neural
Network (CNN) and Recurrent Neural Network (RNN) and there has been a lot of variations
developed to tackle with a variety of problems. CNNs gain much popularity for their
contribution to computer vision problems [21]. This is why CNNs have been used extensively
in image recognition tasks [22], natural language processing [23]-[25], and speech recognition
[26]. The speech recognition and natural language processing both can be seen as some sort of
sequential learning problems. This is why although initially developed for computer vision
problems, CNN has been one of the most popular deep neural networks for dealing with time
series problems especially MTS problems [3], [20], [27]-[33]. Another popular neural network

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -2-

Introduction

used recently is RNN which is mainly developed for sequential learning and it performs well
for univariate time series, but its use for the classification of MTS is limited [34]. For the time
series dataset with missing values it provides reasonably good result [35].
This paper aims to answer the following research questions relevant for the case study
presented in the next chapter:
e RQ1: Can a deep learning approach provide better result than the traditional
approaches for this case study?
o RQ11.1: Which deep neural network is the most suitable one for this case?
o RQL.2: Should we use a combination of several neural networks like CNN
and RNN or a single one can provide the best result?
e RQ2: How we can deal with the unlabeled data issues?

1.2 Background

In the polymer processing industry dryers are one of the fundamental components for
“supplying dry-heated air that is blown upward through the to-be-dried material for several
hours, while new undried, cold/moist material is continuously loaded on top of the dryer
module, steadily moving downward through the dryer” [36] [37]. The drying hopper has two
distinct components, one of which is drying hopper monitor and another one is the regen wheel.
Both of these have distinct impact on the overall polymer processing. The drying hopper
monitor has eight temperature zones, the regen has three temperature zones and dew point
temperature is also measured for delivery air; all these temperatures are measured by
temperature sensors. These twelve temperatures are measured using sensors over the period of
one year (12 months) for this case study. The final data available is preprocessed with ignoring
missing values and outliers or extraneous cases. Overall these data have temperature readings
for twelve temperature zones collected over a year with a sampling interval of one minute.
Figure 1.1 shows the temperature profiles obtained from the sensors.

oo = anﬁ, A W]

K~ 7,

Temperature
)
1)

2 S 10 14 18 22 26 30 249 28 42 46 S0 54 58 2 & 10 14 18 22 26 30 249 38 42 46 50 S54

Figure 1.1: Temperature Profiles

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -3-

file:///C:/Users/User/AppData/Roaming/Microsoft/Word/MS%20Thesis%20(Md%20Mushfiqur%20Rahman).docx
file:///C:/Users/User/AppData/Roaming/Microsoft/Word/MS%20Thesis%20(Md%20Mushfiqur%20Rahman).docx

Introduction

As there is a large amount of data available for six main temperature zones in the dryer/ hopper
system and six additional temperature zones in the regen and dryer regions like the hopper 1
delivery air temperature etc., it is possible to extract meaningful features from the real time
analysis of these data. If real time scenario of the drying hopper can be extracted from the
analysis of data, the production planner can determine the type of maintenance necessary.

The main goal of identifying any key event is a part of predictive maintenance so that the
operator of the machine can identify any potential hazard in the process. A massive amount of
data collected from sensors has made this possible in recent years. These large data sets can be
analyzed to identify hundreds of features which can be used to provide meaningful information
about the state and condition of the machines. Predictive maintenance can be defined as “the
maintenance strategy that employs advanced analytics to predict machine failures is known as
Predictive Maintenance” [8].

For this purpose, deep learning algorithm needs to be employed so that using a classifier,
machine can automatically detect whether any specific instance belongs to any disruption
events, based on which proper initiatives can be taken for the smooth flow of production. A
detailed description of the overall process and some distinct events can be found in [36].

1.3 Obijectives and Scopes

There are several objectives and scopes of this thesis. First, versatility of MTS analysis needs
to be studied. Drying hoppers mechanism and patterns of temperature profile understanding is
another important objective of this thesis. Afterwards, understanding various parameters
related to MTS and applying this understanding to analyze the current material drying process
and various events associated with industrial drying hopper is another crucial objective of this
thesis. In addition to that, identifying various ways to deal with data labeling and imbalance
data issue bring a lot of potential scopes for this specific drying hopper case. Understanding
various parameters related to machine learning and deep learning algorithms and employing
those algorithms to classify the MTS data is the primary goal of this thesis so that a comparative
analysis on the employed algorithms can be performed.

1.4 Outline of methodology
In order to carry out the experiment, several steps have been incorporated which are:

Study of the state of art of MTS classification with traditional approaches like
machine learning algorithms and deep learnin algorithms

Study of the literature regarding data labeling and imbalanced data
issue

Perform necessary preprocessing of the data for using in ML and
DL algorithms

Model buildup for this particular case study and
implementation in python

Select the best method in terms of different performance
measures and provide recommendation

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -4 -

Introduction

1.5 Organization of the Thesis

This thesis is organized into five chapters along with references and appendix at the end. The
first chapter provides the general introduction with background of the study. Moreover,
objectives of the thesis and outline of methodology are also described in this chapter.

The second chapter provides the current state of the art of the MTS classification. The first two
sections describe the traditional approach and deep learning approaches whereas the last
section describes the current state of the art for handling unlabeled data issue.

The third chapter highlights the characteristics of the dataset and necessary preprocessing. This
chapter also provides various technique to deal with data imbalance issues. Afterwards,
solution approach from the view point of various algorithms are described. Moreover, various
performance measure and system specification were showcased in this chapter as well.

The fourth chapter describes the results obtained through using different algorithms and
provides a summary of the result. This chapter also identifies the best method to use for this
specific data case. Afterwards, a detail discussion is performed on the overall issues and results
of the thesis

The fifth and final chapter provides the conclusion and potential scopes for future work for this
specific case study.

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -5-

Literature Review

2 Literature Review

A variety of algorithms have been applied to solve MTS classification. MTS data have
increased in various domains like anomaly detection, clinical diagnosis, weather prediction,
stock price, human motion detection, fault detection in manufacturing process and so on.
Among these variety of fields, MTS data have become very common in manufacturing industry
due to the use of variety of sensors installed at the machineries in the shop floor of a
manufacturing plant. This is why MTS analysis like classification has gained extreme
popularity among researchers in the manufacturing domain. With the increasing importance in
temporal data mining, researchers have continuously been developing variety of algorithms to
tackle a variety of problems in this field. Among temporal data mining problems, multivariate
analysis provides high complexities with increasing number of variables which might be highly
correlated or not. Overall the spatial structure in temporal data, time dependency, correlation
among variables etc. need to be carefully handled when dealing with any MTS analysis. In this
section, current state of the art of MTS classification will be presented from two point of views;
one of them is the traditional approach and the other is the Al approach like deep learning.

2.1 Traditional Algorithms

A benchmark algorithm used for classifying MTS is K- nearest neighbor with dynamic time
warping. Two approaches can be taken for MTS data according to the authors in [37]. One of
them is summing up the univariate time series DTW distances for the dimension of MTS
whereas in the other one, distance between two time steps is calculated through summing up
distance between each MTS which as shown in Figure 2.1.

(8) DTW,(Q.C)=DTW(1Q,Q,1.1C.C, 1) =32

(b) DTW,(Q.0) = DTW(Q,.C,) + DTW(Q,.C,) = 2.4

Figure 2.1: Two methods of calculating DTW distance[37]

The author claims that traditional belief which is two methods are equivalent to each other in
terms of classification of MTS for a specific case is not really true and these two methods vary
from problem to problem. One method might work better in one specific use case whereas the
other one might not work well. They tested these ideas on a very extensive set of MTS datasets
and justified the reasoning behind using two different DTW approaches.

Using nearest neighbor classifier is very common in MTS datasets. In [38], the authors used
large margin nearest neighbor (LMNN) and DTW. Mahalanobis distance based DTW is used
to calculate the relations among variables through Mahalanobis matrix and LMNN is used to
learn the matrix though minimizing a renewed, non-differentiable cost function by co-ordinate
descent method. This method is compared with other similarity measure technique of MTS and
the authors claimed the superiority of their proposed method over other techniques. This

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -6 -

Literature Review

technique is also used by the authors in [39]. DTW multivariate prototyping is used in
evaluating scoring and assessment methods for virtual reality training simulators. It classifies
the VR data as novice, intermediate or expert where 1-NN DTW performed reasonably well,
the only better algorithm for this case was RESNET; an advanced version of CNN [40].
Overall, using DTW as a dissimilarity measure among features of time series and adapting the
nearest neighbor classifier in temporal data mining was very popular before the evolution of
deep learning [41].

A parametric derivative DTW is another variant of the DTW used in temporal data mining.
This technique combines two distances which are DTW distance between MTS and the DTW
distance between derivatives of MTS. This new distance is used afterwards for classification
with nearest neighbor rules [42]. Using a template selection approach based on DTW so that
the complex feature selection approach and domain knowledge can be avoided is another
approach taken for classifying MTS in [43]. Another variant of DTW is using DTW distance
measure with integral transformation. Integral DTW is calculated as the value of DTW on the
integrated time series. This technique combines the DTW and integral DTW with the 1-nearest
neighbor classifier which shows no overfitting issue [44].

DTW has also been used with hesitant fuzzy sets where time instance segments get more
attention than treating M TS data as a whole object or time instance one by one. In this method,
alignment between time instance segments is optimized as claimed by the authors in [45]. Their
research also showed that this method can be reduced to original DTW by setting scale
parameters. Furthermore, this method can balance the time consumption and accuracy of the
MTS classification.

Data normalization is a commonly used technique in any temporal data mining problem as
different variable have values which might be highly different from one variable to another.
But sometimes, normalization might destroy the information existing in the raw data which is
why combination of both raw data and normalized data might preserve meaningful information
about the data. The authors in [46] used this approach on nearest neighbor with DTW and
obtained better classification accuracy. Longest common subsequence method is sometimes
incorporated with DTW to provide better classification accuracy [47].

Symbolic representation of MTS is another traditional technique used for MTS classification
which considered all elements of the time series simultaneously and symbols are learned
through using a supervised learning algorithm. A tree based ensemble is used to detect the
interactions between each univariate time series represented as columns with time index. A
second ensemble is used to handle high dimensional input through implicit feature selection.
These tree learners can efficiently handle nominal and missing values [48]. MrSEQL is another
technique based on symbolic representation which is used by research that transform time
series data in time domain known as symbolic aggregate approximation (SAX) [49] and
frequency domain known as symbolic fourier approximation (SFA) [50]. Discriminative
subsequences are extracted from this symbolic data and these are used as features for training
a classification model [51][52]. Word extraction for time series classification plus multivariate
unsupervised symbols and derivatives abbreviated as WEASEL+MUSE also uses SFA
transformation to create sequence of words. A feature selection method determines promising
features and these features are extracted from all dimensions. Feature selection is performed
using a chi-squared model and then logistic regression is used to learn the features [53].

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -7 -

Literature Review

In dealing MTS classification, two major components need to be considered which are
approximating sequential dynamics and learning relationship among different variables. In
[54], authors used distance based method for approximating sequential dynamics, whereas
granger causality is used to learn the relationship among different variables. Sparsity of the
learnt time series is constrained to find the focal series.

One of the most extensive research on traditional methods for both MTS and UTS can be found
in [10] which highlights almost all of the above mentioned traditional approaches in different
categories like whole series similarity, phase dependent intervals, phase independent shapelets,
dictionary based classifiers, and combinations of transformations. This paper is a great resource
for any time series classification enthusiast to get an overview of all the traditional methods.
Another review paper which shows a brief overview of different classification approaches for
MTS can be found in [52].

Machine learning algorithms, both nonlinear techniques and ensemble learning techniques
have also been applied for time series classification over the year. Traditional classifiers like
Naive bayes, Decision Tree and SVM are the most popular ones. Before using these algorithms
MTS data needs to be converted into feature vector format. This is why the authors in [55]
segmented the time series for obtaining a qualitative description of each series and determined
the frequent patterns. Afterwards the patterns which are highly discriminative between the
classes are selected and transformed the data into vector format where the features are the
discriminative patterns.

2.2 Deep Learning Approaches

With the evolution of deep leaning CNN has been used mostly over the years in temporal data
mining especially for classification. Moreover, RNN like Long short time memory has also
been the example of recent algorithmic advance in time series classification problem.
Furthermore, combination of both of these two algorithms which are although developed for
different purposes showed extremely good result for time series classification problem. Over
the year, a lot of different versions of these algorithms have been proposed by the researchers
and those are performing well in different case studies. In this section, several papers which
have used these algorithms and their variants will be discussed briefly.

CNN has been adapted to time series classification with 1D filter in the convolutional layer.
The reason of its popularity is it can discover and extract suitable internal structure to generate
the deep features of the input time series automatically through convolution and pooling
operation [56]. This is not really the case in traditional feature extraction method where features
need to be extracted manually through feature engineering.

“Deep learning for time series classification: A review” [20] and “The great MTS classification
bake off: a review and experimental evaluation of recent algorithmic advances” [57] are the
two papers which provided the summary and basics of the recent algorithmic advance in the
use of deep learning for MTS classification. Natural language processing (NLP) and Speech
recognition (SR) are two fields where RNN and LSTM has been highly successful over the
year and recently CNN has also showed high performance in terms of accuracy. NLP and SR
both have sequential aspects which is similar to time series analysis. An overview of the deep
learning approaches for times series classification taken from [20] is shown in Figure 2.2.

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -8-

Literature Review

Deep
Leaming
for TSC
Generative Discriminative
Models Models
v
Echo
Auto Feature
State Enaineerin End-to-End
Encoders Networks g g
1 31 F 4 l—Ll I
SDAE||CNN| [DBN [|RNN | | oo ,::m; Pl . ggg;?;; MLP| |cnn| [Hyorid

Figure 2.2: Deep learning overview for time series classification[20]

The authors in [27] used a tensor scheme with multivariate CNN for time series classification
where the model considers multivariate aspect and lag feature characteristics simultaneously.
Four stages were used in CNN architecture which are input tensor transformations stage,
univariate convolution stage, multivariate convolution stage and fully connected stage. In this
method they have used an image like tensor scheme to encode the MTS data. This approach is
taken because of the highly successful nature of CNN in compute vision for image
classification.

In addition to using convolution operation, deconvolution has also been applied to time series
data mining. In [58], the authors used deconvolutional network along with SAX discretization
to learn the representation of MTS. In this way, the authors were able to capture the correlation
with deconvolution that forced the pooling operation for dimension reduction along each
position of each variable. SAX discretization extracted bag of features and this representation
and bag of features improved classification accuracy. Dilated CNN is another version of the
CNN applied to time series where MTS is transformed into image, stacks of dilated and strided
convolutions are applied for feature extraction across the variables [29]. Among other
approaches with CNN, multi- channel deep CNN is another highly used one, where the model
learn features from individual time series and combines all channels after the convolution and
pooling stage. The combined and learnt features are then fed to a multilayer perceptron (MLP)
for final classification [32].

The dataset used in this thesis comes from manufacturing domain where fault detection in an
industrial machine has been very common now a days with the installed sensors and high
technological advance because of industry 4.0 and artificial intelligence. CNN has been
extensively applied in manufacturing time series data obtained from sensors. This predictive
maintenance helps detecting fault in a machine before reaching a critical condition. In majority
of cases, combination of time series images and CNN have been applied for fault detection in
manufacturing. The imaging is used for two reasons; one of them is the highly successful nature
of CNN in image processing, the second one is getting an overview of the fault pattern from

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -9-

Literature Review

the image and identifying the image of time series as production threatening or not. In [59], the
authors performed a principal component analysis for feature extraction and reducing the
number of MTS variables to two so that they can identify the most useful two components in
the machine. The time series are encoded into image using Gramian angular field (GAF) and
used the images as input for the CNN. Another similar research can be found in [33] where
three techniques of converting MTS data into images have been used and tested which are
GAF, Gramian angular difference field (GADF), and Markov Transition field (MTF). It has
been found that different approaches of converting MTS into images do not affect the
classification performance and a simple CNN can outperform other approaches. In
semiconductor manufacturing it has been tested that MTS- CNN can successfully detect the
fault wafers with high accuracy, recall and precision [3].

Combining CNN, LSTM and DNN has been another highly used approach over the year. In
[60], the authors proposed a combined architecture abbreviated as CLDNN and applied on
large vocabulary tasks which outperformed three individual algorithms. Another similar
approach named as MDDNN has been used to predict the class of a subsequence in terms of
earliness and accuracy. Attention mechanism is incorporated with the deep learning framework
in order to identify critical segments related to model performance [61]. The proposed
framework as shown in Figure 2.3 used both time domain and frequency domain through fast
fourier transformation and merged them together for prediction. Another similar research
focused on early classification can be found at [28].

"\
Time Domain

~ -
e ~ -
Time Series Aofe
Frequency Domain
Fast Fo.ur_ler /
-m-ml

Figure 2.3: MDDNN model architecture[61]

Apart from LSTM, other recurrent network variants like bidirectional RNN (BiRNN),
bidirectional Long Short Term Memory (BIiLSTM), Gated Recurrent Unit (GRU),
Bidirectional Gated Recurrent Unit (BiGRU) have been adapted to use in MTS classification.
In [62], the authors used MLSTM- FCN which is the combination of LSTM, squeeze and
excitation (SE) block and fully CNN where the SE block is integrated within FCN to leverage
its high performance for the MTS classification. The similar approach of using excitation block
has also been used in [30].

Multi scale entropy and inceptions structure ideas has been used with LSTM-FCNN model for
MTS classification. Subsequences of each variable have been convolved through 1D
convolutional kernel with different filter size to extract high level multi-scale spatial features.
Afterwards, LSTM has been applied to further process and capture temporal information. Both
of these spatial and temporal features are used as input to the fully connected layer [31]. Apart
from CNN, Evidence feed forward hidden markov model (EFF-HMM) has been combined
with LSTM to classify MTS. According to [63], learning of EFF-HMM is performed based on

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -10-

Literature Review

the mistakes of the LSTM which outperformed other state of the art in human activity
recognition.

2.3 Data Labeling

Classification is a supervised learning technique which needs labelled data. But the dataset
used in this thesis is not labelled which is why data labeling was the primary concern before
using any supervised learning algorithm. In literature, very few works on time series data
labeling can be found. The technique researchers often used is known as semi supervised and
active learning for univariate time series. In [64], the authors focused on active learning with
positive unlabeled data. Their framework proposed a sample selection strategy to find the most
informative samples for manual labeling. They introduced two active learning approaches
which obtained high confident training dataset for classification.

Another paper addresses the labeling issue and the relevance of self-labeling techniques and
semi supervised learning technique for time series classification. An empirical study was
performed to compare self-labeled methods and various learning schemes and dissimilarity
measure. The authors experimented with 35 different datasets with different percentage of
labelled data in order to measure the transductive and inductive classification capabilities of
the self labelled data [65].

Semi supervised learning approach has been extensively used in text classification, but in time
series domain it has not been used much. In [66], the authors made special consideration to
adapt the well-known semi supervised approach into time series domain. Their approach was
tested on diverse data sources like electrocardiograms, handwritten documents, manufacturing
and video datasets. The results of the experiment showed that only a small amount of labelled
data is needed for using the semi supervised approach.

In this chapter, a brief overview of the current state of the art of MTS have been presented. In
the next chapter, methodology of this thesis with data exploration as well as necessary
preprocessing and various algorithms tested on this dataset will be discussed.

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -11-

Methodology

3 Methodology

3.1 Data Exploration and Preprocessing

As mentioned in the background section, there are twelve distinct temperature zones. The
temperature zones are:

e Delivery Air Dewpoint (DAD)

e Regen Temperature Active Setpoint (RTAS)

e Regen Temperature Wheel Inlet (RTWI)

e Regen Temperature Wheel Outlet (RTWO)

e Hopper 1 Delivery Air Temperature (HLDAT)

e Hopper 1 Hopper Outlet Temperature (HLHOT)

e Hopper 1 Drying Monitor 1 Temperature (Bottom) (HLIDML1T)
e Hopper 1 Drying Monitor 2 Temperature (HLDM2T)
e Hopper 1 Drying Monitor 3 Temperature (HLDM3T)
e Hopper 1 Drying Monitor 4 Temperature (HLDMA4T)
e Hopper 1 Drying Monitor 5 Temperature (HLDM5T)
e Hopper 1 Drying Monitor 6 Temperature (HLDM6T)

The raw data obtained from the machine is preprocessed to obtain the final data file ignoring
missing values and outliers almost in all cases. These twelve temperatures are measured using
sensors over the period of one year (12 months) for this case study although the obtained data
file contains sensor reading of six months. The final dataset is prepared using a sampling
interval of one minute. A chunk of the dataset is shown Figure 3.1 and Figure 3.2.

Hopper 1
Regen Regen Hopper1l Hopperl Hopperl Hopperl Hopperl
Delivery g Regen 8 Hopper1l Hopperl Drying pp. pp.l pp. p;? p;:.l
£ Temp Temp : ? Drying Drying Drying Drying Drying
.)) Air . Temp Delivery Hopper Monitor
Unix Time Actual Time . Active Wwheel . Monitor Monitor Monitor MMonitor Monitor
Dewpoin S Wheel AjrTemp Outlet 1Temp
Setpoint Outlet 2Temp 3Temp 4Temp STemp 6Temp
t(F) Inlet (F) (F) Temp (F) (Bottom)
(F) (F) ® (F) (F) (F) (F) (Top) (F)
1525150860000.00 5/1/2018 5:01:00 &AM -38.08 195.93 196.33 154.08 200 165 203.21 201.939 203.09 202.4 198.97 159.85
1525150920000.00 5/1/2018 5:02:00 &AM -38.01 195.93 195.9 150.81 200 165 203.21 201.99 203.09 202.4 198.91 159.98
1525150980000.00 5/1/2018 5:03:00 &AM =37.99 195.93 195.93 151.38 200 165 203.21 201.939 203.09 202.4 198.95 159.95
1525151040000.00 5/1/2018 5:04:00 &AM -38.13 195.93 196.03 149.61 200 165 203.21 201.99 203.09 202.4 198.93 160.07
1525151100000.00 5/1/2018 5:05:00 &AM -38.26 195.93 195.86 155.1 200 165 203.21 201.93 203.03 202.39 198.92 159.77
1525151160000.00 5/1/2018 5:06:00 &AM -38.36 195.93 195.84 155.03 200 165 203.21 201.99 203.09 202.39 198.97 159.4
1525151220000.00 5/1/2018 5:07:00 AN -38.38 195.93 195.97 152.37 200 165 203.21 201.99 203.09 202.39 198.96 159.29
1525151280000.00 5/1/2018 5:08:00 &AM -38.4 195.93 195.82 150.79 200 165 203.21 201.99 203.09 202.39 198.96 159.25
1525151340000.00 5/1/2018 5:09:00 &AM -38.49 195.93 196.22 151.05 200 165 203.21 201.939 203.09 202.39 193 159.11
1525151400000.00 5/1/2018 5:10:00 &AM -38.67 195.93 196.06 155.21 200 165 203.21 201.99 203.09 202.39 198.93 159.25
1525151460000.00 5/1/2018 5:11:00 &AM -38.75 195.93 196 154.6 200 165 203.21 201.939 203.09 202.39 198.93 159.18
1525151520000.00 5/1/2018 5:12:00 &AM -38.73 195.93 196.07 152.19 200 165 203.21 201.99 203.09 202.39 198.95 159.3
1525151580000.00 5/1/2018 5:13:00 AM -38.67 195.93 195.68 152.85 200 165 203.21 201.99 203.09 202.39 198.99 159.5
1525151640000.00 5/1/2018 5:14:00 &AM -38.74 195.93 195.97 149.43 200 165.5 203.21 201.99 203.09 202.39 198.97 159.59
1525151700000.00 5/1/2018 5:15:00 &AM -38.88 195.93 196.24 153.56 200 165 203.21 201.99 203.09 202.39 198.9 159.4
1525151760000.00 5/1/2018 5:16:00 &AM -38.97 195.93 195.97 155.07 200 165 203.21 201.99 203.09 202.39 198.95 159.37
1525151820000.00 5/1/2018 5:17:00 &AM -38.9 195.93 195.83 151.84 200 165.5 203.21 201.939 203.09 202.39 198.94 159.4

Figure 3.1: Raw dataset in CSV format

As the temperature values for all twelve variables are measured over the period of time, this
dataset is a MTS. As mentioned before, MTS mainly consists of several univariate time series.
A univariate time series has only one variable measured over a certain period of time with a
specific time interval. It can be denoted as T={ t1, to, t3, , tn} Where tj is the measured value
at the i entry of the time series A MTS X = (X1, X2... ..., Xm) Where Xn is the m™ univariate
time series which can be denoted as before where each univariate time series has n dimension
[40]. The dataset can be viewed as an n*m matrices where m refers to the no. of univariate time
series and n refers to the length of each time series.

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -12 -

Methodology

Dalivery Air Dewpoint (F)

R e A Sy R e S v e

Tempersture

Figure 3.2: Temprature profile obtained from primarily preprocessed data

In Figure 3.1, the first column of the dataset is the time step converted to UNIX time in
milliseconds. UNIX time which is also known as Epoch time is a method for describing a point
in time. It is the number of seconds that has elapsed since the Unix epoch minus leap seconds;
the Unix epoch is 00:00:00 UTC on 1 January 1970 (an arbitrary date); leap seconds are
ignored, with a leap second having the same Unix time as the second before it, and every day
is treated as if it contains exactly 86, 400 seconds [67].

The first time step in the data file is 1525150860000 which can be converted to the real date
and time as May 1, 2018 5:01:00 AM. So, the temperature reading starts from May 1, 2018
5:01:00 AM and ends at November 1, 2018 5:00:00 AM. As the sampling interval is one
minute, no. of entries in the time series can be calculated in the following way:

No. of entries in the time series dataset:

19 (May 1) + 30*24 (May 2 — May 31) + 30*24 (June) + 31*24 (July) + 31*24 (August) +
30*24 (September) + 31*24 (October) + 5 (November) = 4416 hours = 4416 * 60 = 264, 960
minutes.

But the data file contains 263, 476 entries which indicates 264, 960 — 26 3, 476 = 1, 484 minutes
of data are missing. A detail investigation of the temperature profiles reveal those missing
values in the dataset. One of those examples are shown in Figure 3.3 and Figure 3.4.

1525415520000.00 5/4/2018 £:32:00 AM -25.14 375 37583 20941 200 143 2036 20225 2033 20259 19891 14611
1525415580000.00 5/4/2018 £:33:00 &AM -25.3 375 37537 20861 200 148 2036 20225 2033 202,59 198.8 14492
1525415640000.00 5/4/2018 6:34:00 M -25.06 375 37503 209.17 200 152 203,58 202.25 2033 20259 19866 14523
1525415700000.00 5/4/2018 6:35:00 AM 24,74 375 37439 206.03 200 155 203,57 20225 2033 20259 19856 145.86
1525415760000.00 5/4/2018 6:36:00 AM -24.71 375 37464 19069 200 156 203,57 20225 203.3 20259 198,54 14638
1525434120000.00 5/4/2018 11:42:00 AM -29.03 375 37511 220,59 200 153 203.53 20234 20342 20268 19913 15793
1525434180000.00 5/4/2018 11:43:00 AM -28.91 375 37488 19445 200 148 203,52 20234 203,41 20268 199.07 153.5
1525434360000.00 5/4/2018 11:46:00 AM -29.35 375 37496 211.06 200 1585 20351 20234 203,41 20268 19893 15276
1525434420000.00 5/4/2018 11:47.00 AM -29.47 375 37577 218,38 200 160 203,51 202,34 20341 20268 19893 153.83
1525434430000.00 5/4/2018 11:48:00 AM -29.26 375 37455 21317 200 1615 20351 20234 203,41 20268 198.84 155.01

1525434540000.00 5/4/2018 11:49:00 AM -29.11 375 37416 19755 200 162 203,51 20234 203,41 20268 19881 156,38

1525434600000.00 5/4/2018 11:50:00 8M -29.32 375 375.5 209.8 200 163 203,51 20234 20341 20268 19885 15766

Figure 3.3: Missing values in the primarily processed dataset

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -13-

https://en.wikipedia.org/wiki/Leap_second
https://en.wikipedia.org/wiki/Coordinated_Universal_Time

Methodology

; A
A " / A A
; J“\ AA “\/{i)\/«‘\ M\,A AmAAAAA~AAMA /"\ o /"'\/Al./"\ MAAAA AL~ AA s o NAAA A "}\M\
- w.y v v v | 4 R oy K b | v

v

Figure 3.4: Missing values in the temperature profile

3.1.1 Handling Missing Values

Missing values have been a common issue in any time series analysis especially in
manufacturing domain. The sensors data might be missing for numerous reasons like power
outage at the sensor’s node, random occurrences of local interference [68] or data might be
missing during data preprocessing steps.

As shown in Figure 3.4, the windows from 6 am to 12 am where a large portion of the dataset
is missing which is from 6:37 am to 11:41 am. Although this is an extreme case in this dataset,
other missing value instances are not that severe. In most of the cases, 1 or 2 minutes of data
are missing. But there are some extreme cases as well as the case in Figure 3.4. Two approaches
were taken to tackle the missing value problem which are provided below.

e If the missing values are at those time steps where no event is happening previously or
afterwards within the time steps which has the same length of the missing time steps, the
missing values will be filled using a moving average. For example, data is missing from
101" time step to 109" time step, then the first missing value (time step 101) will be filled
using the average of the observations from the previous 60 time steps (time step 41 to time
step 100, the second missing value (time step 102) will be filled using the average of the
observations from time step 42 to time step 101.

\
-\~

Figure 3.5: Missing value imputation

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -14 -

Methodology

e If time steps are missing within an event, then the missing values will be imputed using
the moving average of the sixty observations which are in the event (either happening
before or afterwards of the missing time steps). Figure 3.5 shows such an example, where
an event has started at around 10:37 am and data are missing from 10:40 am to 12:24 pm.
It cannot be imputed with rolling average of previous observation as an event has already

started.

3.1.2 Data labeling

Classification is a supervised learning technique which requires labeled data to learn the
intrinsic behavior of events. Supervised learning is then used to predict the class of any event
which is essential for example in fault diagnostics applications. For this case study, three major
events were identified that occur regularly and have an impact on operations: startup procedure,
cleaning cycle, and conveying issues [36] which are shown in Figure 3.6, Figure 3.7 and Figure

3.8.

400

300

200

100

= Regeneration Temp Active Setpoint °F
— Delivery Air Dewpoint °F
=== Drying Monitor 6 Temp Top °F
= Drying Monitor 5 Temp °F
Drying Monitor 4 Temp °F
=== Drying Monitor 3 Temp °F
Drying Monitor 2 Temp °F
=== Drying Monitor 1 Temp Bottom °F
= Regeneration Temp Wheel Outlet °F

Temperature in Degrees Fahrenheit

o
00 £ AR o £ I (O

Time in Minutes

-100 T I T [T] T I T I T I T | T I T I T I T] T I T I T I T |
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Figure 3.6: Startup Procedure[36]

Regeneration Temp Active Setpoint °F
Delivery Air Dewpoint °F
= Drying

Drying
Drying
Drying
Drying
Drying

Regeneration Temp Wheel Outlet °F

Monitor 6 Temp Top °F
Monitor 5 Temp °F
Monitor 4 Temp °F
Monitor 3 Temp °F
Monitor 2 Temp °F
Monitor 1 Temp Bottom °F

Temperature in Degrees Fahrenhett
|

)
P gl g

—100 S I P e o (o ER) N S B S B P e S e s |
O 10 20 30 40 50 60 70 80 90
Time in Minutes

Figure 3.7:Cleaning Cycle[36]

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -15-

Methodology

400 —

300

— Regeneration Temp Active Setpoint °F
— Delivery Air Dewpoint °F
== Drying Monitor 6 Temp Top “F
— Drying Monitor 5 Temp °F
Drying Monitor 4 Temp °F
= Drying Monitor 3 Temp °F
Drying Monitor 2 Temp °F
= Drying Monitar 1 Temp Bottom °F
— Regeneration Temp Wheel Outlet °F

Y
o
o

-
(o]
o

o

I 0 0 TR 2 M W

Temperature in Degrees Fahrenheit

=100 e L LI L L N
O 10 20 30 40 50 60 70 80 90
Time in Minutes

Figure 3.8: Conveying Issue[36]

Although three distinct events are identified, they are hard to define due to a lot of variation of
these events. Therefore, the initial target of this thesis is to identify a specific category; either
failure (any event which is unusual) or regular rather than building the ability to detect the type
of any unusual event other than the usual behavior (steady state) and detect its class. For this
purpose, any event which is unusual from the regular case is identified, selected, and labeled
as one class and the rest of the events which can be defined as steady state will be a separate
class. Assuming this approach is successful for this case study, the subsequent goal will be to
identify the class of any unusual labeled event (not steady state). This will enable a variety of
value adding applications, including contextualizing the operation for the process planers and
operators, predict necessary maintenance steps, and provide input for customized designs of
next generation systems.

3.1.2.1 Data labeling issues

Selecting a specific event for the initial analysis highlights another challenge associated with
the data set. For example the cleaning cycle is a specific type of events, but there are many
variations of this event that can be observed over the time series. The challenge is to define the
event precisely and still be able to take some variations of the definition into account for the
classification. For the analysis, among several events observed in the data set, one event which
is shown in the image below is considered for the specific event.

In Figure 3.9, several temperature reading shows deviation from the usual behavior which are
described below:

e Regen temperature wheel inlet drop sharply from around 300° F to around 150° F, then
with a slight increase within 5 minutes, it starts decreasing again to around 100° F and
becomes steady.

e Hopper 1 drying monitor temperature 2 and 5 show almost similar behavior, drop from
around 175° F to around 160° F.

e Regen temperature wheel outlet drops from around 175° F after a continuous oscillating
behavior to around 100° F within 20 to 30 minutes.

e Hopper 1 drying monitor temperature 1 drops from 175° F to around 125° F.

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -16 -

Methodology

Figure 3.9: Event

e Hopper 1 delivery air temperature sharply drops from 175° F to 125° F, then becomes
steady for around 15 minutes, then drops slowly to around 100° F.

e Hopper 1 outlet temperature drops from around 150° F to 100° F within 10 minutes.

e Return air temperature dry inlet shows a small drop 100° F from 115° F, then becomes
steady again.

e Delivery air dew point increases from around 10° F to around 40° F. This change can be
seen around 25-30 minutes after the other temperature drops occur.

Among 12 temperatures, certain amount of deviations can be observed in the above mentioned
8 temperatures. The deviation for hopper 1 drying monitor temperature 2 and 5 as well as return
air temperature dry inlet are minor compared to other 5 temperatures where a significant
amount of temperature drop can be observed. When defining the event, the variations of this
event need to be considered while the overall scenario might be same with a little variation in
temperature drop. Another such event is shown in Figure 3.10.

Figure 3.10: Variation of an event

The major variations are the regen temperature active set point dropping sharply to 300° F from
around 375° F which was steady in the event shown before. Hopper 1 drying monitor

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -17 -

Methodology

temperature 1 drops slightly by roughly 5° F from an approximately 175° F initial temperature,
which was not the case before and hopper 1 drying monitor temperature 2 remains constant.

It is evident that although the two events are almost similar in fashion, there are some major
changes which can be observed in the temperature behavior. So, the event must be defined in
such a way that any minor changes from the specified event can also be detected through the
classification algorithm. This can be either setting a range for each temperature; for example,
the regen temperature drops from 300° F to 100° F, without setting it specifically, there can be
a defined limit which can be dropping down from anywhere between 310° F and 290° F to
anywhere between 100° F to 120° F or specifying a slope for each temperature zone can be
another strategy.

3.1.2.2 Data labeling approaches

In order to label the data considering only one main event or all those major events, two
approaches can be taken. One of them is manual labeling and the other one is semi supervised
learning approach.

Manual labeling is always costly with respect to time needed to go through the data with an
expert, especially in cases where the data set spans a long time period as is the case here. It
needs significant effort from the expert who has deep understanding of the overall process. So,
manual labeling may result in accurate labeling of the data which will assist the classifier to
learn the behavior of the data and will be trained accordingly to identify the category.

The second method that aligns with the time restrictions of experts to label data in case of large
data set is the semi supervised learning. Due to the large volume, manual labeling technique is
not a feasible choice although it may provide the best labeling of the dataset. The semi
supervised approach [13], [65] needs a very small amount of labeled dataset. Then this labeled
dataset is trained to predict the classes of the rest of the dataset. In this way, the whole dataset
is labeled which can be trained again to learn the pattern of the complete dataset to identify the
classes of the test set or any future dataset.

For this case study, manual labeling is performed to obtain the finalized labelled dataset. As
mentioned earlier, the labelling will be performed in such a way so that the dataset can be
converted to a binary classification dataset. In this fashion, all those steady state events or
regular events will be treated as one class and the rest of the dataset where any unusual pattern
or behavior can be observed are treated as the other class.

3.1.2.3 Event identification

Before labelling, one more thing needs to be clarified which is the definition of an event for
this dataset. There can be various ways to define an event, define the length of an event with a
start time and end time. For example, the event shown in Figure 3.11, starts exactly from
5:04:00 AM, but for simplicity the start time of this event is considered as 5:01:00 AM, so that
the hour from 5:01:00 AM to 6:00:00 AM can be considered as an event. In other words, it can
be said that a major event (unusual) occurs in this hour. The definition of an event as an hour
is considered for the ease of labeling and simplicity in visualizing an event.

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -18 -

Methodology

Figure 3.11: Definition of an event

In order to label the dataset, first all those significant events (unusual) are identified and listed
in Table 3.1.

Table 3.1: Event durations

Start Time End Time Time Start Time (unix) End Time (unix)
difference(hour)
5/5/2018 5/5/2018 5.00 1525496460000.00 1525514400000.00
5:00:00 AM 10:00:00 AM
5/9/2018 5/10/2018 6.00 1525892460000.00 1525914000000.00
7:00:00 PM 1:00:00 AM
5/10/2018 5/10/2018 2.00 1525950060000.00 1525957200000.00
11:00:00 AM 1:00:00 PM
5/12/2018 5/12/2018 1.00 1526094060000.00 1526097600000.00
3:00:00 AM 4:00:00 AM
5/13/2018 5/14/2018 25.00 1526180460000.00 1526270400000.00
3:00:00 AM 4:00:00 AM
5/19/2018 5/21/2018 50.00 1526695260000.00 1526875200000.00
2:00:00 AM 4:00:00 AM
5/26/2018 5/29/2018 73.00 1527300060000.00 1527562800000.00
2:00:00 AM 3:00:00 AM
6/2/2018 6/4/2018 51.00 1527904860000.00 1528088400000.00
2:00:00 AM 5:00:00 AM
6/9/2018 6/11/2018 53.00 1528509660000.00 1528700400000.00
2:00:00 AM 7:00:00 AM
6/23/2018 6/25/2018 52.00 1529715660000.00 1529902800000.00
1:00:00 AM 5:00:00 AM
7/1/2018 7/2/2018 17.00 1530446460000.00 1530507600000.00
12:00:00 PM 5:00:00 AM
714/2018 7/9/2018 122.00 1530669660000.00 1531108800000.00
2:00:00 AM 4:00:00 AM
7/15/2018 7/16/2018 23.00 1531620060000.00 1531702800000.00
2:00:00 AM 1:00:00 AM
7/21/2018 7/23/2018 50.00 1532138460000.00 1532318400000.00
2:00:00 AM 4:00:00 AM
7/28/2018 7/30/2018 48.00 1532743260000.00 1532916000000.00
2:00:00 AM 2:00:00 AM
8/4/2018 8/6/2018 48.00 1533351660000.00 1533524400000.00
3:00:00 AM 3:00:00 AM
Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -19 -

8/7/2018
5:00:00 PM
8/8/2018
10:00:00 PM
8/9/2018
7:00:00 PM
8/11/2018
2:00:00 AM
8/22/2018
2:00:00 PM
8/24/2018
7:00:00 PM
8/25/2018
7:00:00 AM
8/25/2018
7:00:00 PM
8/27/2018
12:00:00 PM
8/28/2018
10:00:00 PM
9/3/2018
2:00:00 AM
9/5/2018
6:00:00 PM
9/20/2018
10:00:00 AM
9/21/2018
2:00:00 AM
9/21/2018
8:00:00 PM
10/23/2018
6:00:00 PM
10/23/2018
11:00:00 PM
10/24/2018
4:00:00 AM
10/27/2018
1:00:00 AM
10/28/2018
9:00:00 PM
10/29/2018
12:00:00 PM

3.1.2.4 LabelingeachrowasOor 1l

8/7/2018
7:00:00 PM
8/9/2018
2:00:00 AM
8/9/2018
9:00:00 PM
8/13/2018
5:00:00 AM
8/22/2018
4:00:00 PM
8/25/2018
6:00:00 AM
8/25/2018
2:00:00 PM
8/27/2018
2:00:00 AM
8/27/2018
2:00:00 PM
8/29/2018
12:00:00 PM
9/4/2018
2:00:00 AM
9/5/2018
8:00:00 PM
9/20/2018
12:00:00 PM
9/21/2018
11:00:00 AM
9/21/2018
10:00:00 PM
10/23/2018
8:00:00 PM
10/24/2018
2:00:00 AM
10/24/2018
6:00:00 AM
10/28/2018
1:00:00 AM
10/29/2018
10:00:00 AM
10/29/2018
6:00:00 PM

2.00

4.00

2.00

51.00

2.00

11.00

7.00

31.00

2.00

14.00

24.00

2.00

2.00

9.00

2.00

2.00

3.00

2.00

24.00

13.00

6.00

Total hours
=841.00

1533661260000.00

1533765660000.00

1533841260000.00

1533952860000.00

1534946460000.00

1535137260000.00

1535180460000.00

1535223660000.00

1535371260000.00

1535493660000.00

1535940060000.00

1536170460000.00

1537437660000.00

1537495260000.00

1537560060000.00

1540317660000.00

1540335660000.00

1540353660000.00

1540602060000.00

1540760460000.00

1540814460000.00

Methodology

1533668400000.00
1533780000000.00
1533848400000.00
1534136400000.00
1534953600000.00
1535176800000.00
1535205600000.00
1535335200000.00
1535378400000.00
1535544000000.00
1536026400000.00
1536177600000.00
1537444800000.00
1537527600000.00
1537567200000.00
1540324800000.00
1540346400000.00
1540360800000.00
1540688400000.00
1540807200000.00

1540836000000.00

After listing the start time and end time of all events, both the original time series data file
where the first column is the time step in UNIX time and the event duration data file shown in
Table 3.1 are needed to label the time series data. A sample rate of 60,000 is used as UNIX
time in the original data file is in millisecond and the sampling used to generate the dataset was
1 minute or 60,000 milliseconds. The time durations from the event duration dataset are used
to turn it into a column of milliseconds where each entry is 60,000 milliseconds apart from
each other. Afterwards an iterable variable is created which contains the time column of the

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU

-20 -

Methodology

original time series data. Afterwards, this variable and the broken down event markings data
are used to create a column of 1s and Os that exactly match the rows of the original dataframe.
In short the steps are:

e Prepare a list of events with the start time and finish time.

e Break the start and finish times of the events into a column of milliseconds where each
entry is 60, 000 milliseconds or 1 minute apart from each other.

e Convert this list into a column of 1s and 0s.

e Add this column to the original time series data file.

More details of this procedure can be found in [69]. A portion of the final dataset with the
labelled column is shown in Figure 3.12.

pElivery Regen HEEER Regen HEPPERT | HEPPREL H;f;p‘i;l HDpp.xErl Hopy:.verl Hop;:.verl HDpF.lerl Hop;:.verl

Temp Temp Drying Drying Drying Drying Drying

labels Time alr . Active Temp wheel D_EI'Very Hopper: | Monitor | . hitor [‘Monitor |‘Monitor [‘monitor |‘moniter

Dewpoin wheel AirTemp Outlet 1 Temp

t () setpoint | o ") Outlet " Temp (F) | (Bottom) 2Temp 3Temp 4Temp STemp 6&Temp

F) F) F) F) (] F) (] (Top) (F)
0 1525150860000.00 -38.08 135.93 196.33 154.08 200 165 203.21 201.93 203.09 202.4 138.97 159.85
0 1525150920000.00 -38.01 195.93 195.9 1s50.81 200 165 203.21 201.99 203.09 202.4 198.91 159.98
I 0 1525150580000.00 -37.99 195.93 195.93 151.38 200 165 203.21 201.99 203.09 202.4 198.95 159.95
0 1525151040000.00 -38.13 135.93 196.03 143.61 200 165 203.21 201.393 203.09 202.4 1398.393 160.07
0 1525151100000.00 -38.26 195.93 195.86 155.1 200 165 203.21 201.99 203.09 202.39 198.92 159.77
0 1525151160000.00 -38.36 195.93 195.84 155.03 200 165 203.21 201.99 203.038 202.39 198.97 159.4
0 1525151220000.00 -38.38 135.93 195.97 152.37 200 165 203.21 201.93 203.09 202.33 138.96 159.23
0 1525151280000.00 -38.4 195.93 195.82 150.79 200 165 203.21 201.99 203.09 202.39 198.96 159.25
0 1525151340000.00 -38.49 195.93 196.22 151.0S5 200 165 203.21 201.99 203.09 202.39 309: 159.11
0 1525151400000.00 -38.67 195.93 196.06 155.21 200 165 203.21 201.93 203.03 202.33 198.393 159.25
0 1525151460000.00 -38.75 135.93 196 154.6 200 165 203.21 201.93 203.09 202.339 138.93 159.18
0 1525151520000.00 -38.73 195.93 196.07 152.19 200 165 203.21 201.99 203.039 202.39 198.95 159.3
0 1525151580000.00 -38.67 195.93 195.68 152.85 200 165 203.21 201.99 203.08 202.39 198.99 1539.5
0 1525151640000.00 -38.74 135.93 1395.97 143.43 200 185.5 203.21 201.93 203.09 202.33 138.37 159.53
0 1525151700000.00 -38.88 195.93 196.24 153.56 200 165 203.21 201.99 203.09 202.39 198.9 1539.4
0 1525151760000.00 -38.97 195.93 195.97 155.07 200 165 203.21 201.99 203.09 202.39 198.95 159.37
0 1525151820000.00 -38.9 135.93 135.83 151.84 200 165.5 203.21 201.93 203.09 202.33 138.94 153.4

Figure 3.12: Labelled Data

3.1.2.5 Labeling subsequences

In Figure 3.12, it can be noticed that for each row or each minute a label is assigned. But a
minute of data cannot really define an event. As mentioned earlier, hours of MTS information
will be extracted from the data and each hour will be defined as either event or non-event. Two
examples of event and non- event are shown in Figure 3.13.

NNon-event{labelled as 0)

Event(labelled as 1)

A A
\AANANA~ A~~~ \\/"X,
v

Figure 3.13: Example of an event and a non-event

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -21-

Methodology

So, instead of labeling a minute of MTS data or one row as one example (either event or non-
event), sixty minutes or one hour of MTS data or sixty rows simultaneously will be considered
as an example. Each sixty rows or 1 hour of MTS data will be considered as one subsequence.
A subsequence is a piece extracted from a long sequence with a specific length; in this case the
length of each subsequence is sixty minutes.

3.1.2.5.1 Sliding Window

Sliding window algorithm is a well-known technique to extract subsequences from a long time
series. Two parameters need to be defined before using a sliding window which are window
length and sliding step. As each example has a length of sixty minutes, window length will be
taken as sixty. Sliding step will also be taken as sixty as after picking sixty minutes of data, if
we want to move to next example, we have to move sixty minutes forward. Then another
subsequence with a length of sixty minutes will be extracted from the long time series and will
be labelled.

As mentioned earlier, the events are defined as an hour. When the dataset was labelled by each
row or each minute, each minute was assigned a label. Now the goal is to assign a label for
each sixty minutes. So, using sliding window algorithm all the subsequences will be extracted
and a label will be assigned. As mentioned earlier, the example of events and non-events are
defined as an hour. So, in primary labeling, all sixty rows or minutes of each hour are assigned
same label. After subsequence extraction, the label of each hour will be assigned according to
the labels given to the all sixty rows or minutes of that particular hour.

IfaMTS, T has a length of n, window size is L and the sliding step is p, the number of extracted
subsequences, m can be obtained by using the following formula [32]:

n—L+1
14

n—L

]Orm=7+1

m= |
In our case, the length of the time series, n = 264,960, window length, L = 60, and sliding step,
p = 60. So, m = (264,960-60)/60+1 = 4,416.

So, using a window length of sixty and sliding step of sixty, 4,416 subsequences can be
extracted from this time series. The pseudocode for the extraction of subsequences and the
labelling of the extracted subsequences are shown in Table 3.2.

Table 3.2: Sliding Window Algorithm

Pseudocode of Sliding Window (subsequence extraction and labeling):
1. START the procedure

The set of extracted subsequences, X (n, L, p) : =0, labels, Y: =0

i: =0, m: =0 where m is the no. of extracted subsequences

While (end of a subsequence, j = p*i+ L) <ndo

X[m] : =T (p*i,..., j) and Y[m] : = L (j)

I:=i+1l, m: =m+l

End While

End the procedure

N ORAWN

After labeling each subsequence, the dataset can be viewed as a three dimensional dataset with
dimension N*L*M where N represents N'" example or subsequence, L represents the window
length, M represents number of sensors or input variables of the MTS. Each subsequence has

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -22 -

Methodology

a dimension of L*M. In this case, L = 60 and M = 12, so, each subsequence has 60*12 = 720
features of the MTS.

3.1.3 Characteristics of the labelled dataset
A detailed characteristics of the labelled dataset can be obtained by using pandas profiling tool
in python. A basic summary of the labelled dataset is provided in Figure 3.14.

Dataset statistics
Number of variables
Number of observations
Missing cells
Missing cells (%)
Duplicate rows
Duplicate rows (%)

Total size in memory

Average record size in memory

Variable types
13 Numeric 12
2643960 Categorical 1
0
0.0%
1372
0.5%
26.3 MiB
10408

Figure 3.14: Dataset Statistics

3.1.3.1 Data visualization of each variable

In the labelled dataset, there are 13 variables, twelve variables measuring the temperature of
twelve zones in the drying hopper are the input variables, X and the other column which is the
output variable valued either 1 or 0. In order to classify the data, an efficient algorithm is needed
to learn the mapping function from the input to output. In this way the goal is to learn the
mapping function as approximately as possible so that when new input data are provided to the
algorithm, it can predict the output of the input data.

As the issue of missing values is already taken care of in the previous section, it can be seen
from Figure 3.14 that no missing values exist in the labelled dataset, instead there are some
duplicate rows which is only 0.5% of the dataset. Existence of no missing values is also evident
in Figure 3.15 and Figure 3.16.

o

(o]

»

N

1.0 264960
0. 211968
0. 158976
0. 105984
0. 52992
0.0 0

0

Figure 3.15: A simple visualization of nullity by column

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -23-

Methodology

A
< 2, Q 9
0 @ q:\&\ 0 @‘” &o @v o“ o“ o@

264960 IIIIIIIIIIIII

Figure 3.16: Nullity matrix

A detail inspection of all twelve input variables can also be done using pandas profiling. For
example, the detailed statistics of the hopper 1 hopper outlet temperature (HLIHOT) is shown
in Figure 3.17, Figure 3.18 and Figure 3.19. Figure 3.17 shows the distinct value counts and
missing value counts with mean, minimum and maximum value of the variable.

Distinct 2710 Minimum 71

Distinct (%) 1.0% Maximum 171

Missing 0 Zeros]

Missing (%) 0.0% Zeros (%) 0.0%

Infinite 0 Negative 0 aud ||||"|||I.......m||||||||]|||
Infinite (%) 0.0% Negative (%) 0.0% e @
Mean 141.5217486 Memory size 2.0 MiB

Figure 3.17: Statistical summary of Hopper 1 hopper outlet temperature

Quantile statistics Descriptive statistics

Minimum 1 Standard deviation 2576919757
5-th percentile 90 Coefficient of variation (CV) 0.1820864838
Q1 129.33 Kurtosis -0.373207799
median 151 Mean 141.5217486
Q3 162 Median Absolute Deviation (MAD) 13

95-th percentile 167 Skewness -0.9693607566
Maximum 171 Sum 37487602.5
Range 100 Variance 664.0515435
Interquartile range (IQR) 32.67 Monotonicity Not monotanic

Figure 3.18: Quantile and descriptive statistics of HIHOT

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -24 -

Methodology

Yalue Count Frequency (%) Yalue Count Frequency (%) Value Count Frequency (%)

165 10165 | 3.8% 71 40 171 378

166 9433 | 36% 71.33 1 <0.1% 170.97 1| <0.1%

164 soss | 3.4% 71.67 1 <0.1% 170.88 | <0.1%

167 7574 | 2.9% 71.83 t | <0.1% 170.87 2. | <0.1%

163 7410 | 2.8% 72 31 < 170.84 15 | <0.1%

0.1%

168 6660 | 2.5% 170.77 T | <0.1%
725 1 | <0.1%

162 5941 | 2.2% 170.65 1| <0.1%
72.67 | <0.1%

161 4453 | 1.7% 170.59 T | <0.1%
73 10 B <01%

169 3736 | 1.4% 170.57 1| <0.1%
73.33 2t | <0.1%

98 3574 | 170.5 3 | <0.1%
74 67

Other values (2700) 197026 . .

Commanaluas Minimum Extreme “Values Maxim L XtremE T dbes

Figure 3.19: Common values and Extreme values of Minimum and Maximum of HIHOT

Figure 3.18 represents the Quantile statistics like percentile, minimum, maximum, median,
range as well as interquartile range and descriptive statistics like variance, standard deviation,
mean absolute deviation (MAD), skewness, monotonicity and so on. Figure 3.19 represents the
common values as well as the minimum and maximum extreme values of hopper 1 hopper
outlet temperature. Detailed characteristics of the other eleven variables can be inspected in
similar fashion. The frequency distribution of all twelve variables can be obtained from the
histogram which are shown in Table 3.3.

3.1.3.2 Distribution of the input and output variables

It is clearly evident from the histograms that either there is a skewness or the histogram is
bimodal in shape which indicates a clear division in the temperature values of all twelve
temperatures zones. For example, HIDM1, H1IDM2, H1DM3, H1IDM4, H1IDM5, H1DAT,
RTWI, DAD, and RTAS, all these temperature zones are clearly divided in two regions which
indicate the events and non-events. This is also reflected in other histograms like RTWO,
H1HOT, and H1IDM®6 which are more like a bimodal shape. When a failure event occurs, the
temperature drops all on a sudden from the steady state values. This phenomenon is clearly
reflected in almost all temperature zones. This is why, the approach to treat this problem as a
binary classification problem is highly justified. The labeling was done in this fashion that the
non-events which are very high in number are labelled as class 0 and the events which are very
low in number are labelled as class 1.

Value Count Frequency (%)

o 214s00 erov
1 50460 12.0% ([

1.0,
(214500)

Figure 3.20: Binary classification labeling

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -25-

Methodology

The detail of the categorical variable, labels is shown in Figure 3.20. From the pi-chart and
histogram it can be seen that only 19.1% of the data belong to the class 1 (events), where 80.9%
of the data belong to the class 0 (non-events). This phenomenon further justifies the distribution
shown in the histograms of the temperature zones. The value count for class 0 shown in Figure
3.20 is 214,500, as each complete example or subsequence of an event or non-event was
defined as an hour previously, the number of subsequences belong to class 0 is 214,500/60 =
3,575. On the other hand, the value count for class 1 is 50,460, so the number of examples or
subsequences belong to class 1 is 50,460/60 = 841. The total number of subsequences or
examples (both events and non-events) are 3,575+841 = 4,416 which matches with the previous
result of number of subsequences obtained by using sliding window algorithm.

Table 3.3: Histograms of the temperature zones

e
aaaaa
.
g g
= 30000 g 6000
:
DAD acon - RTAS
-
lnin... .
5 » » g > [4
& & & & &
e]
—
100000
-
80000
g g 15000
§_ 60000 g,
RTWI = * oo RTWO
D000
IL JII |
o -ula " ulnl 0 IJ IL
& & & P & $ £ PP P
Histogra h fixed Histogram with fixed size bins (oir
200000 20000
150000 15000
= ol
H1DAT i 10000 & H1HOT
50000 5000 ||I
i a ,.J|||“I|I.......||III
—
S I
Histogram with fix,
Histogram with fixed size bins (
200000
175000
175000
150000
150000
i .
s g’ 125000
§ 100000 H
& § 100000
HIDM1 | & o H1DM2
50000 50000
25000 25000
— o -]
& & o & 3 & ® & ® K3 & &
Histogram with fixed size bins (Lir Histog ith fixed e bil
Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 26 -

Methodology

200000

200000
175000

175000
150000
150000
»
€ 125000
H1DM3 | ™ g H1DM4
g z
£ £ 100000
I
75000

50000

25000

e ® P S & &

Histogram with fixed size bins (cins=5

I||||||||h o
| .;..|||I‘|||I|IIII||!|||||| M I

Histogram with fixed size bins (bins=50 Histogram with fixed size bins (bins=50)

100000
80000

9
g 60000

H1DMS :

S S O S S
§ KRR & K

3.1.3.3 Data transformation (Min-max scaler)

As mentioned in section 3.1.3.2, the dataset is skewed which is why transforming the data using
scaler transformation technique like normalization of the input variables is highly
recommended for any machine learning and deep learning algorithm which use a weighted sum
of input variables and use distance measures between examples like SVM and k nearest
neighbor. For example, delivery air temperature is comparatively lower than the other
temperatures in drying hopper. So during learning the model might learn very large weight
values or very small values. Both of these case is highly sensitive and can result in poor
performance of the model during learning. According to the authors in [70], “in practice, it is
nearly always advantageous to apply pre-processing transformations to the input data before it
is presented to a network. Similarly, the outputs of the network are often post-processed to give
the required output values”. Data normalization changes the distribution of the input variables
as shown in Figure 3.21.

Data after min-max scaling

L ; ‘L,

Full data Zoom-in

Number of households
Number of households

M
Color mapping for values of y

Figure 3.21: Change of distribution after data normalization

The main advantage of scaling is it makes the algorithm’s learning process easier especially
deep learning algorithms. Lack of scaling or standardization sometimes result in high error
gradient values which changes the updated weight values in an uncontrollable way. The most
common method of scaling is data normalization. In this way, data are normalized in a range

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 27 -

Methodology

from 0 to 1. In order to normalize the data, the maximum and minimum value of each variables
needs to be identified. Afterwards a value is normalized as follows: Normalized X = (X- min)/
(max-min). In python, this task is done by using MinMaxScaler for a scikit learn object. In this
case, after using data normalization, the dataset looks like as shown in Figure 3.22. It can be
noticed that the output variable is not used for data normalization as it is a categorical variable.

DAD RTAS RTwWA RTWO H1DAT H1HOT HIDMA1T H1DM2T H1DM3T H1DMAT H1DMST H1DM6T labels

0.327778 0.211111 0.395861 0.402019 0.892857 0.94 0979083 0.980388 0.979835 0.982147 0.984107 0.897415 u}
0.328367 0.211111 0.394530 0.384913 0.892857 0.94 0.979083 0.980388 0.979835 0.982147 0.983659 0.898738
0.328535 0.211111 0.394630 0.387895 0.892857 0.94 0979083 0.980388 0.979835 0.982147 0.983958 0.898433
0.327357 0.211111 0.394963 0.378636 0.892857 0.94 08979083 0.9803889 0979835 0.982147 0.8983808 0.899654

[=1 = R = =

0.326263 0.211111 0.394397 0.407355 0.892857 0.894 0979083 0.980388 0.979835 0.982072 0.983734 0.896601

PR W N Ao

264955 0.323906 0.422997 0.554498 0.478709 0.892857 0.83 0.979865 0.980550 0.979371 0.9818489 0.979108 0.847344
264956 0.323064 0422997 0555164 0494350 0.892857 0.93 0.979865 0.980550 0.979371 0981849 0979705 0.851008
264957 0.323653 0.422997 0554598 0.462021 0.892857 0.93 0979865 0.980550 0.979371 0.981848 09280152 0.855893
264958 0.324411 0.422997 0553733 0.458621 0.892857 0.893 0979778 0.980550 0.979371 0.9818489 0.980675 0.858742

=} G =T =1 = (=

264959 0.323653 0.422997 0.555297 0.453756 0.892857 0.93 0.879691 0.980550 0.879448 0.9818489 0.880675 0.861480

Figure 3.22: Data normalization

3.1.3.4 Imbalanced Dataset Issue

The division of two class clearly introduces a new issue for this dataset which is the imbalanced
classification problem. In real world, imbalanced dataset is not really a surprising issue as
perfectly balanced dataset are very rare. Moreover, in manufacturing detecting a failure event
will always result in an imbalanced data as the failure event happens very rarely with a
reasonably good setup of machineries and maintenances. But the issue is deep learning
algorithm is highly ineffective to class imbalance as there is an underlying assumption of
balanced data in deep neural network algorithms.

In order to tackle the class imbalance issue, this thesis will go through four major techniques
which are Undersampling, Oversampling, Synthetic Minority Oversampling Technique
(SMOTE) and Ensemble learning with Undersampling. These techniques are described in the
next couple of sections.

3.1.3.4.1 Undersampling

This technique is probably the simplest one, where a portion of the data belonged to the
majority class will be dropped to make the dataset a balanced one with respect to both classes
for binary classification. In this case, the number of examples belonged to the minority class is
845 and the number of examples in the majority class is 3571. For training purpose, the dataset
will be divided in two segments: training examples and test examples. This will be done by
using the first 80% of the dataset starting from May 1, 2018 5:01:00 AM to September 9, 2018
10:00:00 AM as training set and the rest of the dataset as test set. After train test split, the
number of training examples from minority class will be 791 and the number of training
examples from the majority class will be 2742. From 2742 examples of the majority class, 791
examples will be randomly chosen and these 791+791 = 1582 examples will be used for
training the dataset with an efficient classification algorithm. Number of test examples after
the train test split will be 883. These 883 examples will be used for the evaluation of
classification algorithm.

Although the imbalanced data issue can be solved in this fashion, but a large portion of the data
will be lost. This undersampling approach is called random undersampling which is very

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -28 -

Methodology

simple and effective, but the issue is examples are removed without any concern for how useful
or important they might be in determining the decision boundary between the classes. This
means it is possible, or even likely, that useful information will be deleted [71]. There are other
undersampling techniques which are out of the scope of this thesis.

3.1.3.4.2 Oversampling

The simplest oversampling techniques is duplicating the minority class randomly over and over
until the minority class is equal to the majority class and make the dataset balanced. In this
case, 791 training examples from the minority class will be duplicated randomly to create 2742
examples of minority class and will be added to training dataset. Figure 3.23 shows the visuals
of both undersampling and oversampling.

Undersampling Oversampling

Copies of the
minority class

t class S
Samples of
majority class

Original dataset Original dataset

Figure 3.23: Undersampling and oversampling[72]

In this fashion, the number of training examples will be increased from 3533 to 2747+2742 =
5484 examples. This technique is highly prone to overfitting and the added examples do not
really add any meaning to the dataset. Random oversampling is also a naive method like
random undersampling as it assumes nothing about the data and no heuristics are used [73].
Therefore, instead of duplicating examples randomly, new data can be synthesized from
existing examples. This is a data augmentation technique known as Synthetic Minority
Oversampling Technique (SMOTE) described in section 3.1.3.4.2.1.

3.1.3.4.2.1 Synthetic Minority Oversampling Technique (SMOTE)

As the name implied, SMOTE synthesizes new examples from the minority class. The
technique was first introduced and described in [74]. The underlying theme of the method is
selecting examples that are nearest to the feature space. It draws a line between the nearest
examples and draws a new sample along that line. According to [75], SMOTE randomly selects
a minority class example and determines its k nearest neighbors. Afterwards, a synthetic
example is formed by randomly selecting a neighbor from the neighbors determined
previously. A line in the feature space is then used to connect the minority class example and
the randomly selected neighbor. The synthetic examples are mainly formed as a convex
combination of the randomly chosen minority example and the nearest neighbors. A visual of
the steps of SMOTE is shown in Figure 3.24.

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -29 -

Methodology

Synthetic Minority Oversampling Technique
L Sman L s 1L LRl
[| e, Bm m S, Be Be
ne [] ne [] ne []
R 1 L LL L en e 1L L S on Sgmuas
oRR AR ERE YRR ARERR oT Lmannan
e Nhag, Aeete N Rn, ® e
e * %> Yeeyt on et Ve
* % :O O--»---...._.a,.;:c Y S
Original Dataset Generating Samples Resampled Dataset

Figure 3.24: SMOTE[76]

The main advantage of this technique is it can produce as many synthetic examples as needed
for creating a balanced dataset. There are many ways to use SMOTE. One common technique
is to use undersampling first to reduce the number of examples in the majority class and use
SMOTE afterwards for oversampling the minority class. The other approach is using the
SMOTE only to oversample the minority class to balance the class distribution which will be
used in this thesis.

The main reason for which SMOTE works better than random oversampling is the synthetic
examples generated by SMOTE which are very reasonable compared to the duplicated
examples created by random oversampling as these synthetic examples are very close to the
minority examples in the feature space. But there are some drawbacks as well like SMOTE
does not really care about the majority class, so it might create some ambiguous examples
which cannot really be considered as representatives of the dataset.

3.1.3.4.3 Ensemble Learning

Ensemble learning is a highly useful machine learning technique where multiple learning
techniques are used to solve the same problem and then combine the results from all of these
techniques using a majority voting technique. The main advantage is it combines the result of
several techniques and tries to improve the result obtained from each technique. To deal with
the imbalanced data issue, undersampling will be performed by dividing the majority class in
certain segments, and each segment of the majority class will be combined with the minority
class to train the dataset. A simple example of the ensemble learning with undersampling is
shown in Figure 3.25 where out of 4000 training examples, 3000 examples belong to the
majority class and the rest 1000 examples belong to the minority class. 3000 majority class
examples are divided in three segments where in each segment 1000 examples are selected
randomly. Afterwards each 1000 examples from the majority class and all 1000 examples from
the minority class are combined and shuffled properly. These three sets of data are used to build
a three classifiers each of which will train the dataset and then test on the test dataset to predict
a class for the test examples.

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -30 -

Methodology

Figure 3.25: Ensemble method[77]

For example, classifier 1 predicts the class of one example as 1, classifier 2 predicts it as class
1 and classifier predicts it as class 0. As the majority of the vote belongs to the class 1, the
ensemble learning will identify this example as class 1. For our case, three different approaches
were taken for ensemble learning which will be presented in the result section.

3.2 Solution Approach

As mentioned before among several traditional approaches to classify MTS, K nearest neighbor
combined with dynamic time warping is one of the best methods so far. On the contrary deep
learning has gained popularity in recent years. Among several deep learning algorithms CNN
has been the state of art now with several variations. Traditional multi-layer perceptron (MLP)
of neural network has an issue in long time series as the length slows down the computational
speed. Deep learning like CNN and RNN like long short term memory have the ability to learn
the features during training and then MLP is used for classification. A nonlinear function like
RelU or Tanh or sigmoid function is used over many layers of neural networks. Each layer
takes the output from its previous layer and at the end the probability distribution of each class
is obtained which is used to identify the class of that example. A short overview of these
algorithms and solution approaches taken for this case study will be presented in the next
couple of subsections.

3.2.1 Artificial Neural Network

Artificial neural network has gained immense popularity over the last few years with the advent
of artificial intelligence through deep learning. As mentioned earlier, deep learning is a subfield
of machine learning. The first machine learning model reference is found in 1957 by
psychologist Frank Rosenblatt [78]. At that time it has limited power to capture the insight of a
process through the use of a perceptron. But over the year, researchers improved it with many
hidden layers and could not get the result they were looking for. The gradient back propagation
algorithm has made the multi-layer deep neural network popular and now it has become one of
the most advanced tools in data science. Several type of neural networks have been proposed so
far like CNN (CNN), RNN (RNN), Generative Adversarial Network (GAN) and so on. The
basic architecture of a neural network is shown in Figure 3.26.

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -31-

Methodology

Inputs
(" training example)

A0 = x

Input layer

m training examples, L layers

Layer [1]

KM wnits

Laver [2]

2 [21y....
~ D
AV D
al
agy

K21 yunits

Layer [L-1]

-1
D
ID

e talt]

KU1 ynits

L-1 hidden layers

Layer [L]

Output layer

\

Forward Propagation — I'" layer Symbol Narne Shape [/ Commernt
Z = wilali-11 4 il X input / features (2 = K191, 127)
g = Al = fm (ZI”) wiil weights (k["], k[’_”)
pin bias (k11, 112)
| | | z linear outpiit (%1, 322)
Al — | iy i@ q110m }1 Al activation (k' 122)
| | . | | L f["] activation function piece — wise
m training example
1 wiiT
| 32, F1117 B \ | |
ZI — 1D 12) g wll = ws 85 = e v (2) x 70
=, ; : . =
! EEEm—lm A |
r’.‘
m training exarple mt training example
KUY ynits

1 features

Figure 3.26: Basic Structure of a Neural Network [79]

An artificial neural network consists of several layers with input layer, some hidden layers and
output layer. Each hidden layer has a specific number of nodes which build the connection
from one layer to another layer. The nodes also known as neurons are modeled by weights
which can be of any value. So, all inputs are updated by the weights and summed and this
function is modeled from one layer to another layer. The modeling is mainly performed by the
linear combination of the weights with the inputs and bias is added to the linear combination.
The overall idea is more like a linear regression, but it can be of millions of input nodes or
thousands of nodes in the hidden layer. An activation function is used to control the output like
tanh, sigmoid or relu.

3.2.1.1 Forward Propagation

A typical neural network starts with m examples, each of the examples has n input features.
Each layer, L has k M units/ neurons. The first layer has k [= n units. So, the input matrix is
of shape (n, m). In each layer, two major operations occur in the forward pass which is known
as the forward propagation. Those are the linear transformation using the weights associated
with each neuron and the bias and the nonlinear transformation with the use of the activation
function, A [, The forward propagation step is shown below:

701 — yltlgl-1 4 pll 1)

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -32 -

Methodology

g = ALl = fltl(zILh @)

3.2.1.2 Activation Function and cost function

The activation functions are mainly used for nonlinear mapping of the input data stream. The
no linearity is needed to create a nonlinear decision boundary through the nonlinear
combination of the weights and the inputs. Typically used activation functions are shown in
Figure 3.27.

Logistic (sigmoid) Logistic
M) = : ' — regression,
e Multi-layer NN

Hyperbolic tangent et —e™t Multi-layer
P2) = ——
e+ et Neural
Networks
Rectifier, ReLU Multi-layer /
(Rectified Linear o(z) = max(0, 2) Neural >
Unit) Networks

Figure 3.27: Activation Function [80]

The forward propagation step is followed by a cost or loss calculation. Mainly, the idea is the
weights are initialized randomly at the very beginning and then the forward propagations is
performed. Afterward a log loss cost function is calculated in terms of the actual output value
and the predicted value from the forward propagation. The typically used log loss functions are
binary cross entropy or categorical cross entropy which are mainly used for classification. For
regression problems, MSE is the commonly used measure. A typical log loss cost function is
shown below:

J = —— %M (i log(at!®) + (1 — y;)log(1 — alt®)) (3)

3.2.1.3 Backward Propagation

In backward propagation the derivative of the loss or cost function is calculated with respect to
the neural network parameters W and b. These gradients are then used to update weights and
biases. There are several optimization algorithms available for the calculation of the optimum
weights and biases. Among them gradient descent is perhaps the most popular one. There are
various versions of the gradient descent used commonly in numerous applications like
RMSprop, ADAM optimization algorithm, gradient descent with momentum. Among them,
gradient descent with momentum uses past steps to determine the direction of the gradient
descent. ADAM is one of the best optimizers in noisy dataset and has been very popular in
recent years over stochastic gradient descent in many cases. There are some regularization
techniques to reduce over fitting like L2 regularization where the cost function is penalized to
avoid the risk of highly over fitted model and the dropout techniques. Another useful technique
to reduce overfitting is dropout. In dropout technique, nodes in a hidden layer are randomly
shut down to use random different subsets of the neurons. The main goal is to learn more robust
features of the dataset. The basic equations of the backward propagation is shown below:

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -33-

Methodology

Az = qAlL) « gltV 7101y

(4)
] 1

L] = 2 — = gzILlglL-1lT

aw Wi de A)
gl = Y _ li 47110
bl m (6)
=1
aJ

[L-1] — = WILIT g7IL]

dA i = WTdz @
After obtaining the derivatives parameter updates are performed in the following way:
wll = wll_oc gt
(8)
pltl = plLl_o gplL]

(9)

Where o = learning rate which is one of the most important hyper parameters to choose during
training.

After training the training examples over multiple iterations and when the cost is reduced
significantly, it indicates the neural network is learning the parameters effectively. Afterwards,
the learned parameters are used on a test set to check the performance of the model. There are
several performance measures like accuracy for classification or RMSE for the regression
problems.

Neural networks are prone to over fitting and under fitting. There are several techniques to
prevent over fitting like L2 regularization or dropout as mentioned before. In order to reduce
under fitting several measures like using a bigger network with many hidden layers with many
neurons or training a longer period of time.

Two very important hyper parameters in neural network are batch size and no. of epochs. Batch
size is the no. of training examples the learning algorithm will use to update the parameters. If
batch size is 1, it is called stochastic gradient descent, if it is m (no. of training examples), this
is called batch gradient descent and if it is between 1 and n, this is called mini batch gradient
descent which is extremely useful in most type of problems. The typical values for the batch
size 32, 64, 128 etc. The number of epochs is a hyperparameter that defines the number of
times the learning algorithm will work through the entire training dataset. One epoch means
that each sample in the training dataset can update the internal model parameters. An epoch is
comprised of one or more batches. It can be viewed as a for-loop over the number of epochs
where each loop proceeds over the training dataset. Within this for-loop is another nested for-
loop that iterates over each batch of samples, where one batch has the specified “batch size”
number of samples [81].

In this thesis, a very basic artificial neural network like multilayer perceptron will be used along
with other approaches in search of the best algorithm for this specific drying hopper case. The
traditional MLP has a similar kind of structure as shown in Figure 3.26. The input layer has a

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -34 -

Methodology

shape of (n*m) where n is the number of features in each example and m is the number of
examples which are 720 and 3533 respectively in this case. A typical one MLP with one hidden
layer is shown in Figure 3.28.

hidden layer of size 4

output layer
(sigmoid)

probability prediction
b 0.24 (6]

Figure 3.28: MLP with one hidden layer[82]

input layer

©
&

Here, one important thing needs to be remembered is the training dataset was actually a three
dimensional dataset with shape of (3533, 60, 12). For traditional MLP, this dataset is
transformed to two dimensional dataset to align with the requirement of the input layer of a
MLP. Therefore, the dataset is reshaped from (3533, 60, 12) to (3533, 720). The no. of hidden
layers and no. of nodes in a hidden layer, both of these hyperparameters will be finalized during
the training period through trial and error. Too many neurons in the hidden layer can cause
overfitting and it takes to much time for the processing unit during training period. With the
aid of loss vs. epoch and accuracy vs. epoch graph, different set of neuron in the hidden layer
can be used for trial and error. Systematic grid search or random search of the hyperparameters
can take care of this issue. Before training period, these hyperparameters are tuned with the
model to have an overview of the performance of the model in terms of different combination
of hyperparameters.

The last layer of the MLP will have only one neuron embedded with sigmoid activation
function. The class of a particular example will be obtained in the following way.

v _ { 1, > 0.5
predicted class — | (. otherwise (10)
3.2.2 Convolutional Neural network (CNN)
The most common two neural networks used over the last few years are CNN and RNN and
there has been a lot of variations developed to tackle with a variety of problems. CNN gain
much popularity for their contribution to computer vision problems. This is why CNN have
been used extensively in image recognition tasks, natural language processing, and speech
recognition. The speech recognition and natural language processing both can be seen as some
sort of sequential learning problems. This is why although initially developed for computer
vision problems, CNN has been one of the most popular deep neural networks for dealing with
time series problems especially MTS problems. A typical example of the CNN application on
time series data is shown in Figure 3.29 and Figure 3.30.

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -35-

Methodology

Filter layer & Activation layer Pooling layer Filter layer & Activation layer Pooling layer

o B LG MRS > o e e AN G MR, T oo e R i e A g
252

" feature maps
12

Channel 1 featulrzeznnaps feature maps

2Be"

bsamplin subsamplin,
convosl N subsampling tion s zp Iy

teature maps featuremaps

teaturemaps feature maps | s

subsampling
2

e ST e Flattening
Channel 3 — featulrzezmaps feature maps

input - 61
286 — el
- e A n_—n n_
I W B
convohigio shbsampling LAV
s SSAZR subsampling
2

| Multivariate subsequences

Figure 3.29: Multi channel Deep CNN application on time series [32]

Convolutional . . Fully-Connected Fully-Connected
Layer Pooling Layer Flattening Layer 1 Layer 2
A A 1 & | & 1 &
r LI § r 1 r ar 1

P —

]

H

8 H=> —> % —=> % >) Output
=3

a

= —

Figure 3.30: CNN for time series classification[83]

Originally, CNN was developed for image processing where the filter matrices are used for the
dimensionality reduction of the large 2D image with pixel values. For time series, the filters
used are 1D which are used on the subsequences of a long time series. For a MTS, various
approaches can be taken for using CNN. As shown in Figure 3.29, each variable can be
processed separately using CNN through convolutional or filter layer and pooling layer. In this
case, the input subsequence has a length of sixty. For a deep CNN these convolutional layer
and filter layers can be used multiple times until the shape of the input subsequence reduced to
a desired value without losing any meaningful feature. Generally a convolutional layer is
always followed by a pooling layer. The reason is the pooling layer can provide a quick
summary of the features which are present in a region of the feature map generated by the
convolutional layer. After a certain amount of dimensionality reduction of the input
subsequences, all those subsequences with reduced length are flattened and joined together to
commence a fully connected layer. From this layer, the network will work like a traditional
MLP as discussed in section 3.2.1.

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 36 -

Methodology

Another approach is rather than processing each variable separately, twelve variables with a
subsequence length of sixty will be processed simultaneously and flattened after extracting
meaningful features through convolutional layer and pooling layer.

3.2.2.1 Convolutional Layer

A CNN mainly consists of three layers which are the convolutional layer, pooling layer and
fully connected layer. In convolutional layer the input feature matrix will be used to perform a
convolution with a fixed filter. The filter is initially defined randomly which are trained over
the training process to obtain the desired values of the filter with the help of a cost function.
There are actually two filter parameters, one of them is the no. of filters and the other one is
filter size or kernel size. Typical values of kernel size for 1D convolution operation in time
series application are 3,5,7 and so on which depends on the length of the input subsequence.

Stride and padding are two most important parameters to be decided during convolution
operation. Stride is mainly used to define how many units the filter will shift during convolution
operation over the input feature vector. A common scenario in the convolution operation is the
input feature vector size will go down continuously over many layers of convolution. The
problem is when the size of the input matrix will be reduced, there is a possibility that many
important features might be lost. To overcome this, padding operation is performed so that
even with a smaller filter than the input vector, the size of it will be the same. It will help the
convolution operation to go slowly over the layers of the neural network. So, two types of valid
operations exist, one of them is called valid, where padding is performed and it is not very
common in time series analysis and the other one is same, where no padding operations is
performed, so the input feature vector shape decreases with the convolution operation. A
typical example of the convolution operation which is more like a sum product operation is
shown below.

For example, the input subsequence is [5, 4, 9, 2, 7, 6] and the filter we are using has a kernel
size of 3 whichis (2, 3, 1)

So the output subsequence will be [56*2+4*3+9*1, 4*2+9*3+2*1, 9*2+2*3+7*1,
2*2+7*3+6*1) or [31, 37, 31, 31].

Each term of the output subsequence is obtained by using the following formula

(L-1] _ fIL]
n
A

(11)
3.2.2.2 Pooling layer

In the pooling layer with the help of a sliding window the dimension reduction of the input
feature matrix is performed through the use of max pooling or average pooling. Padding and
stride also need to be specified in this layer which are hyper parameters in pooling operation.
The previous example can be shown to obtain the output subsequence after the pooling
operation by using the same formula. The choice of max pooling or average pooling is also a
hyperparameter.

For example, kernel size is 2 for the pooling operation. The possible output subsequences for
the pooling layer is given below.

Max pooling: [37, 37, 31] and Average pooling: [34, 34, 31].

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -37 -

Methodology

3.2.2.3 Fully Connected Layer

The fully connected layer is mainly used to use the result of previous two layers to learn the
nonlinear features. This step is more like the typical MLP described in the previous section.
The remaining steps like forward propagation, backward propagation, and weight updating
using gradient descent are the same as a typical neural network.

3.2.3 Recurrent Neural Network

CNN has gained immense popularity in computer vision which is because of the strong
capturing power of the CNN in terms of spatial feature. In time series classification, the same
intuition is also applied where a convolutional and a pooling layer tries to extract the spatial
features of a subsequence or the abstract concept of a subsequence. But one shortcoming of
CNN is it ignores the temporal information or dependency of one time step on the previous
values in a time series. Therefore, for sequence modeling, RNN has been developed and has
gained widespread success in many sequence modeling applications like machine translation,
natural language processing, time series forecasting or classification and so on.

A traditional neural starts with a fixed size input, so when it comes to a situation when the input
can be of variable lengths, traditional neural network does not work. RNN is developed in such
a way it can process variable length inputs. There are several type of RNN architectures as
shown in Figure 3.31.

one to one one to many many to one many to many many to many
1 i B3 t ot J

HH OO OO0 OH
i

|

i & t j (A gl | o

1 B EEE REN

E—

Figure 3.31: Different types of RNN architecture[84]

e The first architecture as shown in Figure 3.31 is the traditional feed forward neural
network which is known as one to one architecture with fixed size input and output length.

e The second architecture is one to many where the output can be of variable length. The
common example of this architecture is image identification where the input is an image
and the output is a text describing the image.

e The third architecture referred to as many to one which is used for sentiment classification
or time series analysis like forecasting and classification. In this case, many to one
architecture will be used where the input is a subsequence and the output will be the class
of that subsequence.

e The last two architectures known as many to many which is commonly used for language
translation like Google Translator where the input and output both can be of variable
lengths. For time series analysis, this architecture can also be used to forecast time series
like forecasting the stock price of next seven days at a time.

A general computational graph of RNN is shown in Figure 3.32.

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -38 -

Methodology

Output layer -1 [§®©] [1) J
| ¥
Wh y MIA\' W) 1y
Hidden layer Whn, AGS)) }—W”" h(® },W!!!L(R(t+D) l
Win Win Win
Input layer x(t-1)] x(® L (E+1)

5o |

—_—

{ wm

\ -
3

Figure 3.32: Computational Graph of RNN [85]

As shown in Figure 3.32, between input layer and output layer there is a hidden state which is
the output of the input state. These hidden states take the information from the previous hidden
state as well as the new input and then transmit it to the next hidden state. In this way, a
recursive structure with time dependence is generated where each hidden state depends on the
previous state. There are three weight matrices used in this architecture which are Wyn, Whn and
Why and the bias terms b and by which are shared temporally. A cell state or hidden state h(t)
is a function with weights of the input x® and the previous hidden state h®? [86]. This function
and the set of parameters are same at every time step and with every time step, hidden state h®
is updated as shown in Figure 3.32. The basic set of equations of a RNN are shown below.

h® = £, (x®, Rt~y
h® = g, (WyhEY + Wypx® + by)

9O = g,(Wypyh® + by)

(12)
(13)

(14)

Back propagation in RNN is different from the traditional feed forward neural network which
is known as Back Propagation through Time (BPT). A computational graph of BPT is shown

in Figure 3.33 obtained from [87].

e

Lo Ly L, Ly

t] t] t] t]

Ve Yo ¥ ¥2 . Ve
Fﬂ W"’I l W"’I l “""I l Wio:

Lmw = = = =

Wen Wnt tht Wen

Xe Xp Xy X2 === Xe

Figure 3.33: Back propagation through time[87]

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU

-39-

Methodology

Back propagation through time is performed at every single time step T, the basic equation for
BPT is shown below [88]. More details on the BPT can be found at [84] where each step of
gradient calculation and weight updating can be found.

LD &= gLD

- 15
ow + OW (o) (15)

t=

When computing the gradient with respect to ho involves many factors of Whn and consequently
there is a long term dependency when handling the repeated gradient computation back in time.
The two common problems faced by RNN are vanishing and exploding gradient.

e When gradient becomes too small, updating of the parameters do not add any
significant information to the process as it becomes insignificant with not really a major
update of the weights. So with respect to the number of layers with long sequence, RNN
suffers from long term dependency. This situation of insignificant weight update due to
very small values of gradient is known as vanishing gradient.

e The second problem known as exploding gradient happens when gradient becomes too
large with exponential growing, the resulting weight after the update becomes too large.

Truncated Choosing the right
Backpropagation Activation Function
Identity Gradient Weight Long Short-Term
Initiatization Clipping initialization Memory Networks
(LSTMs)
Exploding Gradient Vanishing Gradient

Figure 3.34: Vanishing and Exploding Gradient [89]

The common techniques to overcome these errors are shown in Figure 3.34. In this thesis, the
most popular version of RNN, LSTM will be used to get rid of the vanishing gradient problem
associated with RNN especially in long time series which is similar to the dataset presented in
this thesis. A short description of LSTM will be provided in section 3.2.3.1.

3.2.3.1 Long Short Term Memory

Long Short Term Memory (LSTM) is a special kind of RNN which uses a complex recurrent
unit with gates so that the gates can control what information will pass through the next step.
RNN does not bother whether a particular information is important or not. LSTM relies on a
gated cell in order to track information throughout many steps[87]. The gated memory unit
controls the information flow and thus carry on with the selective long term information and
forgets short term information which the model finds unnecessary. This is how LSTM solves
the RNN’s problem of exploding gradient and vanishing gradient. LSTM uses repeating chain
like structure where each unit is repeated over the architecture, but layers are present in each
unit which interact with each other. Figure 3.35 shows how a single unit of LSTM works.

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -40 -

Methodology

< tanh > ' I a i
ft] GO R G
y, |] Lo | I O] Do) G D]

N ——#¥ il

Figure 3.35: LSTM structure[31], [89]

As shown in Figure 3.35, there are three different gates in a LSTM which are forget gate, input
gate and output gate.

Forget Gate: This gate controls the information flow from the previous timestamp. The basic
equation at this gate is provided below.

fe = o(Wisxe + bip + Wyrhe_q + bpy) (16)

Where x; = input timestamp at time t, wir = weight matrix for the input, hi1 = hidden state at
time t-1, wnt = weight matrix for the hidden state; bir and bxr are the bias terms associated with
input and hidden state respectively. Sigmoid function as shown in Figure 3.27 is used after the
linear combination of weights and biases which will convert the value of f; between 0 and 1. If
fi = 0, the network will forget the information and if fi = 1, the network will remember the
information for further processing.

Input gate and New Information Processing: The input gate is used to quantify the
information obtained from the newest input [90]. The basic equation is provided below.

it = o(Wyx; + by + wyihe_q + bp;) (17)

Where wii= weight matrix for the input, whi = weight matrix for the hidden state; bii and bni are
the bias terms associated with input and hidden state respectively for the input gate. A sigmoid
function is used in this gate as well to convert the input timestamp between 0 and 1.

Afterwards, the new information which will be passed to the cell state needs to be processed.
The basic equation is shown below.

ge = tanh(wigx, + big + wpghe_q + bpg) (18)

Ct = feCr-1 + 19t (19)

Where wig= weight matrix for the input, wng = weight matrix for the hidden state; big and bng
are the bias terms associated with input and hidden state respectively for the update of new

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -41 -

Methodology

information, c.1 = cell state at timestamp t-1. Here tanh activation function as shown in Figure
3.27 is used. The reason is the tanh activation function converts the value of g between -1 and
1. If the value of g is negative, the new information will be subtracted from the previous cell
state and if it is positive, it will be added to the new information.

Output gate: The basic equations for the output gate is shown below.

Ot = tanh(wth + blO + WhOht—l + bhO) (20)
h: = o, * tanh(c;) (21)

The output value used a sigmoid function like the previous gates and turn the output into a
value between 0 and 1. Afterwards, the current hidden state will be calculated using the output
and the cell state at time t with a tanh activation function which indicates the hidden state is
function of the long term memory ct and the current output.

In this thesis, LSTM will be used to capture the time dependency of the events occurred in the
drying hopper. For a large sequence, LSTM will figure out which information might be
necessary for this case and use that information to maintain the time dependency. In addition
to that, as an improvement over RNN, LSTM has the high capturing power in terms of temporal
information. But it does not really care about the internal features like spatial feature which is
mainly handled by CNN. So, in the next section combination of both LSTM and CNN will be
explored.

3.2.4 Combination of CNN and LSTM

Combination of CNN and LSTM which is commonly known as CNN LSTM is mainly used
for capturing internal features of input like time series or sequence of images through CNN
layer and LSTM layer for sequential learning simultaneously. The architecture also includes a
deep neural network like MLP at after the CNN and LSTM layer. The architecture of CNN
LSTM is shown in Figure 3.36 [91].

] ' I’]
: i i —_—
1
| i : 1
i ' . :
l 1 1 1
| : ! '
! ' : ' ‘I/—\
]
: : 1 1 ‘.\._,-/‘
: L '
1
| A '
1 1
I 1 1
)) (Sequental) 1
lsequences | : : LSTM ¢ Output
I 1 ! layver 1 layer
] I I o _ 1
l Convolutional Convolution ayer : : - Fu“:‘tt-d
: layer with 64 layer with 128 | i “:3'"’3'-' :
| filters filters] ' myer 1
LY 1

Figure 3.36: CNN LSTM architecture[91]

CNN LSTM has been used for sequence analysis problems in various ways in the literature. In
[92], the authors trained three models CNN, LSTM and deep neural network like MLP
separately and combined the outputs from these three networks using a combination layer
which is similar to ensemble learning.

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -42 -

Methodology

CNN LSTM works well on dataset which have 2D structure or pixels in an image or 1D
structure like words in sentence. In addition to that, the input or output or both has a temporal
structure. In this case, drying hopper temperature profile has both spatial and temporal features.
The spatial features are for example, the peak temperature value of an event or the specific
pattern observed in an event. Moreover, as the drying hopper temperature values are recorded
over the period, any event or non-event has temporal dependency. For example, this dataset is
processed in such a way that each event or non-event is of one hour length. Each time step in
an event is temporally dependent on the previous time step. So, theoretically it makes more
sense to use the CNN LSTM model. So in simple block diagrams, the architecture looks like
as follows.

A CNN LSTM model uses the input subsequences as blocks, extract features from each block
and then uses LSTM to use the flattened extracted features and identify its own features before
a final mapping on each class is made [93]. In this case, the input subsequence of length 60
will be divided into four subsequences each of which will have a length of 15 minutes.

3.2.5 Machine Learning Algorithms

In this thesis, several machine learning algorithms will be used along with the deep learning
techniques to perform a comprehensive evaluation of these algorithms on drying hopper use
case dataset. Both non-linear algorithms like k-nearest neighbors, classification and regression
tree, SVM and naive bayes as well as ensemble algorithms like bagged decision trees, random
forest, extra trees and gradient boosting will be used to evaluate the performances of these
algorithms compared to the deep learning algorithms and traditional methods like dynamic time
warping with k nearest neighbor. In the next two subsection, a brief background of SVM and
random forest will be provided to have an overview of both non-linear method and ensemble
method.

3.2.5.1 Support Vector Machine (SVM)

SVM is anon-linear machine learning algorithm used for supervised learning like classification
or regression problem mostly for classification problems. The main idea is each data points of
all classes are plotted in an n-dimensional space with n number of features. The final goal is to
obtain the hyper plane that separates the classes. A simple example of SVM is shown in Figure
3.37 where three hyperplanes are shown among which optimum hyperplane will be chosen
which separates the two classes better.

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -43 -

Methodology

L

Support vector Optimal Hyperplane

e

A B B . B
-3 / ; /
. s p ” // A y // A
e / x * £/ / * * oS W
x N / / / * _
* Py (W B * *® oSS e * i £ o
*x * o ”.”“ x * /o L J * * /,;/ ‘@ 0 ©®
ol Wl o %’ ? oa® NN
' I N ‘S fe e @ = e .
g RS / s Y
/
/// / // / /
Casel: S Case 2 x Case 3
Ve y
y ,/
ol = / * *
* * /-‘ *x x| x X * Kk x X
*x X 5 ... ® * x * /\\ ol
* . X J
7 e i * ®000 » 0009 4
// * * * * * K 4
74
7
o LR Case 6

Figure 3.38: Optimizing hyperplanes [95]

In this thesis, the drying hopper temperature values recorded are divided into a number of
subsequences, each of which is treated as one example (train or test). Each example has 60*12
=720 features or 60 features at each time stamp for all twelve temperature zones. In order to
use SVM, the input must be a two dimensional array. This is why the input array of shape (no.
of examples, window length, number of sensors or variables) is reshaped into a shape of (no.
of examples, no. of features in one example). Figure 3.37 shows how SVM optimizes
hyperplanes in variety of cases.

The general thumb rule is choosing the hyperplane that separates the classes well as in case 1
of Figure 3.38. In case 2, SVM tries to minimize the distance between nearest data points which
is known as margin. It gives more priority on separating classes than minimizing margin as
shown in case 3. SVM ignores outliers and with a defined feature and tries to optimize the
margin (case 4). If the dataset is linearly inseparable, SVM uses non-linear hyperplane by using
radial basis function (RBF) kernel or polynomial kernel. Normally in high dimensional space,
dataset are more linearly separable [95]. More details on SVM can be found at [96].

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -44 -

Methodology

3.2.5.2 Random Forest

Random forest is an ensemble machine learning algorithm used in variety of cases. The main
idea behind random forest is building multiple decision trees and combining them together to
provide a better prediction. As mentioned, random forest is an ensemble technique which uses
bagging technique where the core idea is the combination of learning models increase the
accuracy of the prediction. In section 3.1.3.4.3, ensemble learning though undersampling
technique was mentioned which is used in this thesis in order to overcome the issue, imbalanced
dataset. The ensemble method was used to improve the classification accuracy of the neural
network combining multiple undersampling neural network model and random forest works in
similar fashion.

Decision tree is another machine learning algorithm based on which random forest works.
Decision tree splits the dataset repetitively using the decision node unless the leaf nodes or
terminal nodes are obtained where the best split is found through maximizing the entropy gain.
As decision tree is highly sensitive to the training data which might result in high variance with
generalizing error. Random forest is developed to overcome this issue through a random
collection of trees which is less sensitive to training data.

ROOT MNode

B ranchflSub—Tree
Splitting/ ST Iy

| Decision Node

[Terminal Node] [Decision Node] [Terminal Node] [Terminal Node

":\LLEEEEEEEEEEEEEEEEEEEE¢EEEEEEEEE;

| Terminal Node } Terminal Node

MNote:- A is parent node of B and C.

Figure 3.39: Decision Tree[97]

Random forest starts with random sampling with replacement multiple times. For example, our
training data has 720 features in each example and there are m training examples. So out of
those m training example, it will randomly sample the dataset with replacement, which
indicates any row or example can be appeared more than once in the new dataset. This process
is known as bootstrapping. Afterwards each bootstrapped dataset will be trained using a
decision tree where each dataset will use a subset of features, 720 in this case. For the test set,
each example will be passed through the each of the newly developed trees and prediction will
be made on each trees for the new example. A majority voting system will be used to define
the final class of that example. This ensemble technique is known as aggregation.
Bootstrapping and aggregation in together is known as bagging.

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -45 -

Methodology

Random Forest Simplified

Instance
i J e

Random Forest

Class-A Class-B Class-B

I Majority-Voting | I

|Final-Class

Figure 3.40: Random Forest[98]

The process is called random forest as two operations performed in the algorithm;
bootstrapping and random feature selection, both are random process. Bootstrapping ensures
that same data are not used in every tree, thus it prevents the sensitivity to original training data
problem of decision tree.

Random feature selection helps to reduce the correlation between trees as when all the features
are used in bootstrapped data, the trees developed from those data will be similar in nature with
same decision nodes. This might increase the variance and will reduce the efficacy of the
random forest. The number of features used in each bootstrapped data is normally the log or
square root of the total number of features. More details on the theory of the random forest can
be found in [99].

3.2.6 K-Nearest neighbor (KNN)

K nearest neighbor is another nonlinear machine learning algorithm and is probably the most
intuitive algorithm in machine learning. The main intuition behind K- nearest neighbor is the
examples which have same labels or similar features should be close enough from each other
in an n dimensional space. K nearest neighbor uses a distance approach to calculate the distance
between two time series or two MTS. The most commonly used distance method is Euclidean
distance method, but it has a disadvantage. When two time series have unequal length
Euclidean distance method cannot be used. This is why another distance approach which is
highly popular in time series application, dynamic time warping (DTW) is often incorporated
with K nearest neighbor to classify time series. Figure 3.41 shows the basic of K nearest
neighbor algorithm. The main steps of using a KNN are:

e Calculating the distance between each pair of training examples using distance measures
like Euclidean (equal length time series) or DTW (unequal length time series)

e Selecting k nearest examples based on the distance calculated in the previous step.

e Assigning the most common label among k nearest examples to the new example.

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 46 -

Methodology

Initial Data Calculate Distance
Nf::l,::;';s'e Class A Class A
* A , Class B ol Class B
e * A K| S * A X
= =)
* Al . AA *-’!E_i;‘__A AA
: A N . ‘\\ A A
N F A A A
2 X-Axis

X-Axis

Finding Neighbors & Voting for Labels
T Class A
* R g * Class B
* kv~
ek ;{A; AA
“\K=3 ‘A‘ ‘;1’ A A
~._A_ 5 A

~

Y-Axis

X-Axis

Figure 3.41: KNN [100]

For this thesis, KNN with Euclidean distance approach will be used as the extracted
subsequences are of same length. More details about KNN with distance approach can be found
in [32], [101].

3.2.7 Performance Measure

In this thesis, accuracy, precision, recall and f1 scores will be used as performance measure. In
order to calculate these measures, four terms need to be introduced which are true positive
(TP), true negative (TN), false positive (FP) and false negative (FN). For the rest of this thesis,
non-events will be identified as positive class whereas events will be identified as negative
class. These performance measures are described below.

Accuracy:

Accuracy is defined as the ratio between correctly classified examples and total number of
examples. It can be misleading especially in case of imbalance dataset. It can be used if
percentage of examples belonged to the majority class is known before, so that the lower bound
of accuracy can be determined.

TP + TN
TP+ TN + FP + FN (22)

Accuracy =

Precision:

Although accuracy is a performance measure for the overall datasets, precision is a
performance measure for individual class. Precision is a performance measure which is related
to the prediction. It can be defined as the ratio between correctly predicted positive class
example and all predicted positive class examples or the definition can be provided in terms of
negative class as well. It is a well-known measure to identify percentage of examples from a
class which are correctly identified in terms of predicted labels.

TP

Precision = W (23)

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 47 -

Methodology

Recall:

Another highly useful performance measure is recall also known as sensitivity which is related
to the truth instead of prediction. It can be identified as the ratio between the examples which
are actually positive and the examples which are predicted as negative, but actually positive.
This definition can be extended to the negative class perspective as well. It is also a well-known
measure to identify the percentage of examples from a class which are correctly identified in
terms of the actual labels.

TP

Recall = 75——=§ (24)

F1 score:

Probably the best performance measure is the f1 score which considers the data imbalance
issue. It is a more structured performance measure using precision and recall.

F 2 x precision * recall
1 =

precision + recall (25)

Another useful graphical technique to visualize the model’s performance is confusion matrix.
A confusion matrix is a matrix with number of dimension equals to the number of classes. A
typical confusion matrix for two classes is shown in Figure 3.42.

P TP FN
=
=
N FP TN
P N
Predicted

Figure 3.42: Confusion Matrix

3.2.8 System specification

In this thesis, python programming language will be used for data preprocessing, model
development, experimental runs and evaluation. A variety of python frameworks like pandas
and numpy for data preprocessing and neural network framework like tensorflow and keras
will be used for model development and experimentation. The experiment will be run on
windows 10, Intel® core ™ i5-3337U CPU @ 1.8 GHz. The following table shows the python
libraries used for the experimentation.

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 48 -

Methodology

Table 3.4: Python libraries

Name Purpose of use
Pandas Data preprocessing
Numpy Data preprocessing
Scikit learn ML model build up and data preprocessing
like min-max scaling
imblearn Data balancing
Matplotlib Plotting graph
keras Deep learning model build up
Tensorflow Backend for keras
Seaborn Confusion matrix

In the next chapter, the detail of the experimentation on the models described in this chapter,
result and evaluation will be highlighted. Afterwards, the discussion regarding the result and
limitation of the thesis will be presented.

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -49 -

Experimental Results and Discussion

4 Experimental Results and Discussion

The first goal of the previous chapter was to highlight the characteristics of the dataset and
various preprocessing steps with data labeling and imbalanced data issue. Furthermore, the
next goal was to highlight the solution approaches that will be implemented on this specific
drying hopper case study. In this chapter, a detail of the experimental setup and results will be
showed. Furthermore, a comparative analysis will be performed on the deep learning
algorithms and traditional techniques dedicated to time series.

4.1 Experimental setup

One of the common issues regarding the dataset was imbalanced dataset as discussed in the
previous chapter. In order to remedy this issue, four techniques were presented which are
random undersampling, random oversampling, SMOTE, and ensemble learning using random
undersampling. In this section, experimental setup for SMOTE and ensemble learning will be
highlighted. Undersampling technique will not be explicitly showed as a separate experiment
as it will be used extensively in ensemble learning. Moreover, data balancing techniques will
be used only for deep learning algorithms as in predictive modeling, most of the deep learning
algorithms are designed with the assumption of equal number of samples in each class. For
other traditional approaches, the regular preprocessed dataset will be used.

As discussed in the previous chapter, in order to use ensemble learning with majority voting,
the training dataset will be divided into certain segments. In Table 4.1, it can be seen that only
22.39% examples belong to class 1 in the training set which makes the dataset highly
imbalanced. When no special consideration was taken for the data imbalance issue, with any
one of the deep learning models; CNN, LSTM, MLP, the final test accuracy was found as
94.34%.

Table 4.1: Training and Test Examples

Examples Test Examples Training Examples
Class Events (classl) Non-events Events Non-events
(class 0) (class 1) (class 0)
examples 50 833 791 2742
percentage 5.66% 94.34% 22.39% 77.61%

- 800
- 700
- 833 Tt
. - 600 precision recall fi-score support
_ s00 8.9 a.94 1.88 8.97 833
1.9 @.89 9.89 @.89 58
E=}

5 400 accuracy 8.94 883
macro avg 8.47 8.58 @.49 883
-300 weighted avg 8.89 8.94 8.92 883

L - 200

- 100

" -0
0 1

Predicted

Figure 4.1: Confusion matrix and classification report of imabalanced dataset (CNN)

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 50 -

Experimental Results and Discussion

Figure 4.1 shows a very high accuracy of the model and can fool anyone who is not aware of
the distribution of the two classes in the test set. As shown in Table 4.1, 93.43% test examples
belong to class 0. This is why the deep learning model showed an accuracy of 93.43% as it
cannot identify any events of class 1. All the events of class 1 were identified as 0 which
resulted in the test accuracy of 93.43%. The performance of this model using CNN can be more
clearly understood from confusion matrix and classification report with precision, recall and f1
score as shown in Figure 4.1.

As a remedy to this issue, ensemble learning, oversampling and SMOTE have been used. For
ensemble learning, three approaches have been taken to evaluate the effectiveness in terms of
precision and recall.

Approach 1: 2,742 training examples of class 0 are divided into five groups. As 2,742 is not
divisible by 5 (2,742/5 = 548.4), the first three groups have 548 examples each, other two
groups have 549 examples each, combining together five groups have total 548*3+549*2 =
2742 examples of class 0. Afterwards, 548 or 549 examples from class 1 were chosen
randomly. These 548 examples from class 1 and 548 examples from class 0 are combined and
shuffled to obtain one group of dataset for training. In this way, five group of training sets have
been generated and each of them is trained using a separate model and majority voting is used
at the end in the following way.

5
ny = Z W (26)
i=1
~ {1,n1 > 2
~ |0, otherwise (27)

Here, ny is the sum of the outputs of any particular test example from five undersampling
models which can be maximum of five if all models determined that example as 1 and
minimum of O if all models determined that example as 0. n1 can also be defined as number of
models which determined the class of that particular example as 1.

Approach 2: 2,742 training examples of class 0 are divided into three groups. First two groups
have 791 examples each and the last group has 2,742-791*2 = 1,160 examples. Afterwards,
791 examples of class 1 will be combined with each group to build three group of datasets.
Each group will be shuffled properly before training. In this way, three group of training sets
have been generated and each of them is trained under a separate model. Majority voting is

used in the following way.
3
ny = Z 2 (28)

4

~ {1,n1 >1
0, otherwise (29)

Approach 3: This approach is similar to the previous one. The only difference is 2,742
examples are divided into three equal segments where each of the group has 914 examples.
Afterwards, 791 examples are combined and shuffled with each of the three groups. In this

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -51-

Experimental Results and Discussion

way, each training dataset has 914 (class 0) +791 (class 1) = 1,705 training examples. The
majority voting is used similarly as shown in approach 2.

4.2 Hyperparameter Tuning

In order to use deep learning algorithms, hyperparameter tuning is a very important step. A lot
of hyperparameters exist in a deep learning algorithm from which the ideal combination needs
to be selected for optimal performance. Table 4.2 shows a list of parameters and
hyperparameters associated with CNN, LSTM and MLP.

Table 4.2: List of hyperparameters

Neural Network / Fully connected | CNN and Long Short
layer of CNN Term Memory
Parameters Weights, WL, biases, bl Filters, f!
Hyperparameters |e # hidden layers, L e Filter size, f
e # hidden units in each hidden o #filters
layer, K] e stride, s
e Choice of activation function e Choice of pooling
(Sigmoid, Tanh, ReLU, Leaky strategy (max or
ReLU) average)
e Optimizer (SGD, Adam, e Pooling or subsampling
RMSprop) size
e Batch size e #LSTM units
e #epochs

As mentioned in the previous chapter, Keras deep learning framework in python is used for the
experimentation which runs on top of tensorflow. Apart from the hyperparameters shown in
Table 4.2, there are other hyperparameters as well. One of the most important hyperparameters
in any deep learning algorithm is the learning rate, o. The default value of o in keras is 0.01
with no momentum. The default value of a was used for the initial test run. First group of
samples mentioned in approach 2 was taken for the hyperparameter tuning of CNN and LSTM.
The following tables show the summary of the hyperparameters for the initial experiment on
hyperparameter tuning.

Table 4.3: values considered for hyperparameters

Hyperparameter Values considered
filters 8, 16
Filter size 3,57
Batch size 32, 64,128
Table 4.4: Initial values for hyperparameters
Hyperparameter Initial value
Learning rate 0.01
Activation function in convolutional layers and RelLu
dense layers
Activation function in the output layer sigmoid
Probability rate in dropout layer 0.5
Subsampling size (pooling size) 2

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -52 -

Experimental Results and Discussion

hidden layer in fully connected layer (FCL) 1
neurons in FCL 200
epochs 100

Different values for number of filters, filter size and batch size have been used as shown in
Table 4.3 and other hyperparameters were kept constant as shown in Table 4.4. 10 experimental
runs were performed to figure out the best set of hyperparameters. As neural network is highly
stochastic in nature due to random weight initialization, each run obtains different test
accuracy. This is why test accuracy average and variability has taken into consideration for
choosing a hyperparameter. Figure 4.2 shows the box plots for number of filters, filter size and
batch size in terms of test accuracy.

100 100 100

a7

93

e

T

T

:

T
I —

) 9

98
%8

a7
a7

%

®

93

92

N

’:L‘
f i
DT

5

ﬁ
T

8

#filters

2 =] 128
batchsize

filter size

Figure 4.2: Hyperparameter tuning

It can be seen from Figure 4.2, average test accuracy for all three filter sizes show almost
similar average test accuracy, but filter size 5 shows less variability in terms of accuracy.
Number of filters is chosen as 16 as it has the higher average accuracy and batch size is chosen
as 64 for higher average and less variability.

Now a final test run will be performed using the finalized value of filter size, number of filters
and batch size as well as other hyperparameters as shown in Table 4.4. In this regard, a
validation split of 10% will be used which indicates 10% of the training data will not be used
in training, they will be used to validate the model. The following figure shows the graph of
accuracy and loss with respect to number of epochs.

1000
04975
0950
= 0.925
L=
c
o 0.900
]
0875
0.850

0825

model accuracy

—— frain

validation

L s TP uE T & - Eieh T i S L

20

epoch

loss

0.40

035

030

025

020

0.10

0.05

model loss

—— frain

validation

\

w

o

20 40 &0 80 100

epoch

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU

Figure 4.3: accuracy vs. epoch and loss vs. epoch

-53-

Experimental Results and Discussion

From Figure 4.3, it is evident that the model is converging to the optimal solution. So these
hyperparameters will be used in the final experiment except no. of epochs. Although the
accuracy is good, but it is also evident that the model suffers from overfitting which can be
seen in Figure 4.3 that the learning curve is fluctuating continuously. This indicates the model
has learned too much and is suffering from generalization error [102]. From the figure, it can
be seen that within 10 epochs the model reaches almost zero loss and very high accuracy. This
is why number of epochs will be used as 10 in the final experiment.

4.3 Result

After performing the hyperparameter search, final experimental runs were performed. The
following section provides a summary of the results for all of the considered algorithms and
corresponding data balancing techniques.

4.3.1 Ensemble Learning (CNN)

In the final experiment, 10 experimental runs were performed for each of the deep learning and
machine learning algorithms. For this specific drying hopper case, the main goal is to capture
the events automatically so that a predictive maintenance approach can be taken as a remedy.
As the number of non-events are very high, it is natural that if the model can determine the
non-events correctly, accuracy will be automatically higher regardless of whether the model is
able to identify the events or not as they are very low in numbers. This is why instead of
accuracy, precision of class 0 and recall of class lare more important in this case as these two
depend on how many of events are wrongly identified also known as false positive. For this
case study, it is desirable to have precision of class 0 and recall of class 1 as high as possible
or number of false positive as low as possible. Figure 4.4 shows the CNN framework used in
this thesis.

Model: "seguential”

Layer (type) Output Shape Param #

16)

convld (ConvlD) (Nene, 56, 16) 976

2,52, 16)

. 416)

2. 416)

200)

dropeout (Dropout) (Nene, 56, 16) =]

(

convld_1 (ConviD) (Nene, 52, 16) 1296

ontput: | [(2, 60, 12)]

mput: | (2, 56, 16)
output: | (7, 56, 16)

input: [
output: | (2,

output: | (7, 52, 16)
oufput: | (7, 52,

mput: | (

nput: | (2,26, 16)

output:

dropout_1 (Dropout) (None, 52, 16)]

max_poolingld (MaxPoolinglD) (None, 26, 16)]

flatten (Flatten) (None, 416)]

dense 3: Dense

o
4
g
a
p
o
3z

dense (Dense) (None, 28@) 8340@

convld_2: ConvlD |
dropout_2: Dropout
convld_3: ConvlD
dropout_3: Dropont
flatten_1: Flatten

dense_1 (Dense) (None, 1) 201

convld_2_input: InpufLayer

Total params: 85,873
Trainable params: 85,872
Non-trainable params: @

max_poolingld_L: MaxPoolingl D

Figure 4.4: CNN framework

Summary of the ten experimental runs using CNN is shown in Figure 4.5 and Figure 4.6. In
terms of average accuracy, approach 3 clearly shows best result with 99.30% average accuracy.
False positive (events identified as non-events) values vary between 1 and 2 whereas false
negative values (non-events identified as events) vary between 0 and 7 in ten experimental runs
with two outliers (11 and 19). First experimental run obtained the best result for approach 3 as
only 1 example was misclassified as non-event which was actually an event. The following
figures show the best result achieved from these three approaches in ten experimental runs.

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -54 -

Experimental Results and Discussion

tal Runs (Convolutional neural Network)

Ensemble

Learning Average accuracy

5 fi 7

49
Approach 1 1
16

820 833 830 827 833 820 812 831 829 820

48 49 48 49 49 49 49 49

Approach 2 0.9900

3 6 0 13 21 2 4 13

333 826 831 833 822 829 832 828 832 814

0.9930

Approach 3

Figure 4.5: Result summary of CNN (Ensemble Learning)

- 500 precision recall fl-score support

L <00 a.a 1.0 1.00 1.00 833
a 1.a8@ 8.98 @8.2%2 5@

400 accuracy 1.00 B8B83
macro avg 1.a@ 2.92 @.3% B53

-300 weighted avg 1.8@ 1.88 1.88 B8B83

Predicted

Figure 4.6: Confusion matrix and classification report of approach 3, run 1

As mentioned in the experimental setup, undersampling approaches were combined for
ensemble learning and majority voting is used for predicting the class of test examples. Each
undersample of all three approaches provided different predictions for the test examples and
these are combined later which improved the overall accuracy. The best undersamples of the
ensemble learning in each run are shown in Figure 4.7.

Experimental Runs (Convolutional neural Network)
3 4 5 i 7
833 831 833 833 833
49

1

Figure 4.7: best undersamples in each experimental run

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 55 -

Experimental Results and Discussion

Segment 2 of approach 3 where 914 training examples of class 0 (915 to 1828) and 791 training
examples of class 1 were combined, obtained best result in four experimental runs. This
evidence clearly indicates these 914 training examples of class 0 provide significant
information for training a CNN model. If undersampling is used without any ensemble
learning, there is an uncertainty about the significance of that specific segment of the data used
for training. Figure 4.8 shows the best learning curves obtained from the best undersampling
strategies.

model accuracy model loss
100 — frain — ftrain
validation ___—— e~ — 035 walidation
098
0.30
096
0.25
g 0.94
I 1 0.20
E 092 =
015
0.90
0.10
088
0.05
086
o 2 4 6 8 o 2 4 3 8
epoch epoch
Run 4 {appraoch 2, segment 3]
model accuracy model loss
—— ftrain — e — — ftrain
0.975 validation 040 validation
0.950 0.35
0.925 0.30
.
& 0900 P
= =}
o = 020
® 0875
015
0.850
0.10
0825
0.05 \/‘_d
0800
o 2 4 & a8 o 2 4 & 8
epoch Rumn 10 {approach 1, segment 2) epoch

Figure 4.8: best learning curves (CNN)

So, using CNN and ensemble learning no. of false positives can be reduced to 1 and false
negatives to 0. The best accuracy obtained using CNN and ensemble learning was 99.30%
(approach 3) where one example was wrongly classified in maximum runs.

4.3.2 Ensemble Method (LSTM)

For LSTM, hyperparameters setup is exactly the same as in CNN in the common portion like
in the fully connected layer. The experiment starts with 200 LSTM units in the LSTM layer
after the input layer and obtained significant result. Figure 4.9 shows the LSTM framework
used in this thesis. Figure 4.10 provides a summary of the ten experimental runs using Long
Short Term Memory network.

In case of LSTM, approach 3 showed the best result as shown in Figure 4.10. It has one outlier
in run 3 when it results is 24 false positives which is a highly extraneous case. The result is
quite similar as compared to CNN and the three approach produced almost similar result with
small variation and approach 3 provides the best average accuracy again. The following figures
show the best results obtained in ten experimental runs for LSTM.

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 56 -

Experimental Results and Discussion

—
==
=N E=]
— | -
R 2' é‘ == =R 2| Model: "sequential”
== S| = [o e
= et fa L B Layer (type) Qutput Shape Param #
s o
| E - £|E
2| = B 2| & o= o || 1stmocsTH) (None, 18@) 15200
g\ = = | = | = = | = =z | =2
= == == = =
é % = =] g = %‘ dropout (Dropout) (MNone, 1ea) a
5 =13 =
ﬁ? = @ © dense (Dense) (Mone, 28@) 28208
= — =] %
= : = = z dense_1 (Dense None, 1 281
=S E S 2 a2 _1() ()
i — - i - Total params: 65,681
= - = z z Trainable params: 65,681
§ é ..‘i 5 5 Non-trainable params: @
| b 5 = =
ol =
£
=

Figure 4.9: LSTM framework and summary

Ensemble Learning 1 > E”;n 2 Runs (Lt;ng Shore ﬁTerm Me;nory) 3) 0 Average accuracy
811 810 830 811 832 830 833 833 832 832
48 a7 47 48 43 46 48 a7 43 48
Approach 1 2 3 3 2 7 4 2 3 7 2 0.3874

3 22 3

833 832 802 830 832 833 828 814 806 831
47| 48 43 47 48 36 42 47 43 48

Approach 2

832 833 833 831 814 831 832 831 830 831
44 45 26 48 48 48 46 48 47 48

Approach 3

Figure 4.10: Result summary of LSTM

- 800
- 700
= - 833
€00
precision recall fl-score support
500 a.a 1.20 1.e2 1.e0 833
- 1.@ 1.e0 2.96 @.28 sa@
= 400 accuracy 1.8 883
macro avg 1.e@ ©.98 @.92 583
300 weighted avg 1.@@ 1.00 1.00 883
- 200
100
o
o 1

Predicted

Figure 4.11: Confusion matrix and classification report of approach 1, run 7

The best undersamples of the ensemble learning in each run are shown in Figure 4.12.

Experimental Runs (Long short term memory)
8 4 5 1 7
832 833 827 833

Metrics

Figure 4.12: Best undersamples in each experimental run (LSTM)

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -57 -

Experimental Results and Discussion

Segment 3 of approach 2 where 1160 training examples of class 0 (1583 to 2742) and 791
training examples of class 1 were combined, obtained best result in four experimental runs.
This evidence clearly indicates these 1160 training examples of class 0 provide significant
information for training a LSTM model. Figure 4.13 shows the best learning curves obtained
from the best undersampling strategies of ensemble learning with LSTM.

model accuracy model loss
05
— frain e — —— train
098 wlidation ———— validation
096 o4
(vR=T3
o o3
2 naz "
et 0
g k=]
2 090
oz
088
0.86 o1
084 ~—~————————
o 2 4 6 8 o 2 4 3 8
och epoch
=P run 2 (approach 1, segment 3)
model accuracy model loss
o5
100 — train — train
validation _/‘_‘—'_'_'d—_h“"'—-— validation
095 04
03
& 090
w
2 E
b oz
0.85
01
080
00
o 2 4 =) 8 o 2 4 (5] 8
epoch run & (approach 1, segment 2) epoch

Figure 4.13: Best learning curves (LSTM)

So, using CNN and ensemble learning, no. of false positives can be reduced to 2 and false
negatives to 0. The best accuracy obtained using CNN and ensemble learning was 99.05%
(approach 3) where two examples were wrongly classified in maximum runs.

4.3.3 Ensemble Learning (CNN-LSTM)
Same hyperparameters setup as in CNN and LSTM is used for CNN-LSTM model. Figure 4.14
shows the CNN-LSTM framework.

gle " . "
. R . R = Model: “"seguential_11
zle |z Gle z|e & =T
= = Zl= Z= et o] e EG Layer (type) Output Shape Param #
== had e el A =1 |
ele [5 = S HE e time_distributed_56 (TimeDis (MNone, Nome, 11, 16) 976
== == E=E =4 g% <
HE HE H 5 5 A time_distributed_57 (TimeDis (None, None, 11, 16))
=8 =2 =5 [~12]] T|E
3 < = | 2 — time_distributed_38 (TimeDis (Mone, None, 7, 16) 1296
= = &
g 2 - time_distributed_59 (TimeDis (Mone, None, 7, 16) @
2 E: time_distributed_ge (TimeDis (MNone, None, 3, 16)]
2 - - o > & = & [—* =
= E £ g g time_distributed 61 (TimeDis (Hone, Nons, 48))
H = e g ! = = = =
=1 = @ & '.‘,‘ 2 g “ & 5 Istm_11 (LSTM) (None, 18@) 59600
2 o o o = = 2 =) b4 & ~
3 S H z H El £ S i g
z Bl = E g E] £ E hd hd dropout_25 (Dropout) (None, 1ee)]
E g H H El H s =
E 3 b3 3 3 2
k] \ g,] u T dense_22 (Dense) (None, 208) 20200
o 3 3 z] 2 E
H H 2 £ E kS 2
bl z 2 £ -} = Z dense_23 (Dense) (None, 1) 281
z i E 2 T 3 -
i E -,) EH 2
| d z
2 2! H H 2 2 Total params: 82,273
hd = = 3 Trainable params: 82,273
H Non-trainable params: ©

Figure 4.14: CNN-LSTM framework and summary

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 58 -

Experimental Results and Discussion

Figure 4.15 provides a summary of the ten experimental runs using CNN-LSTM.

Experimental Runs (CNN-LSTM)

Ensemble Learning | Metrics Average accuracy

1 2 & 4 5 [7 8 2 10
832 827 832 833 831 827 832 806 811 831
48 48 47! 48 40 45 48 46 39 49
Approach 1 2 2 3 2 10 5 2 4 11 1[0.9875

0 2 6

833 827 832 808 804 807 830 831 802 828
48 47 47 48 48 47 47 46 48 48
Approach 2 2 3 3 2 2 3 3 4 2 2| 0.9826

833 825 805 810 820 812 825 816 809 827
47 48 48 48 48 48 47 48 48 48
Approach 3 3 2 2 2 2 2 3 2 2 2| 0.9807

Figure 4.15: Result summary of CNN-LSTM

Although, approach 3 works best for CNN and LSTM model, for CNN-LSTM approach 1
works well with 98.75% average accuracy across ten runs. Figure 4.16 shows the best results
obtained in ten experimental runs for LSTM.

- 800
- 700
° B3 600 precision recall fl-score support
500 8.9 1.8@ 1.8 1.88 233
1.8 1.ee 8.96 @.98 5a
=}
= 400 accuracy 1.00 283
macro avg 1.88 G.98 @.99 883
300 weighted avg 1.e8 1.08 1.e8 883
- 200
100
0
o 1

Predicted

Figure 4.16: Confusion matrix and classification report of appr. 1, run 4 and appr. 2, run 1

The best undersamples of the ensemble learning in each run are shown in Figure 4.17.
Approach 3, segment 2 appears twice in the list along with approach 1, segment 5 and approach
2, segment 2 and approach 2, segment 3.

B Experimental Runs (CNN_LSTM)
Matrics 1 z 3 4 5 6 7 8 9 10
833 832 832 833 833 832 832 832 833 831
49 48 48 48 438 a7 48 46 46 49
1 2 2 2 2 3 2 4 4 1
1] I 1 i) i) 1 1 1 i) 2

Figure 4.17: Best undersamples in each experimental run (CNN- LSTM)

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 59 -

Experimental Results and Discussion

Figure 4.18 shows the best learning curves obtained from the best undersampling strategies of
ensemble learning with CNN-LSTM.

model accuracy model loss

100
—— frain - —— ftrain

0.95 validation 05 validation

accuracy
loss
[=]
(")

0z

01
070

3 6 B 0 2 4 B B

0 2
epoch epoch
run 1 (approach 2, segment 2)
model accuracy model loss
10
—— frain —_— — frain
validation 0.6 alidatien
0.9
05
08
L:; 0.4
wn
] ki
807 03
02
0.6
01 \.--r""“___,.—-——-______
05
] 2 4 6 8 0 2 4 6 8
epoch run 3 (approach 1, segment 5) epoch

Figure 4.18: Best learning curves (CNN-LSTM)

The result is similar with LSTM as the combination of CNN and LSTM can reduce the number
of false positive to as low as 2 and false negatives to 0 as well. Although approach 1 works
best in terms of average accuracy, it has some outliers across ten runs which is not the case for
approach 2 and 3.

434 SMOTE

In the training set, 2,742 examples belong to class 0 and 791 examples belong to class 0. Using
SMOTE, 1,951 more samples were generated from the minority class, so that class 1 has 2,742
examples as well. These 2,742+2,742 = 5,484 examples were combined and shuffled properly
for training the dataset using CNN, LSTM and CNN-LSTM. The following figure shows the
summary of the ten experimental runs.

CNN again performs best when using SMOTE for data augmentation with 99.42% average
accuracy with no outlier in the false positive values across ten runs. The best result obtained
using SMOTE is shown in Figure 4.20.

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 60 -

Experimental Results and Discussion

Experimental Runs (SMOTE)

Ensemble Learning | Metrics Average accuracy

1 2 3 4 S 6 7 8 9 10
831 832 833 827 833 832 832 829 832 81s
49 47 49 49 48 47 48 48 48 S0
CNN & 3 1 1 2 3 2 2 2 0 0.9942

832 828 828 832 813 833 812 825 832 831
49 48 48 49 49 41 49 48 48 47
CNN-LSTM ¥ 2 2 x bE 9 x 2 2 3 0.9500

Figure 4.19: Result summary of SMOTE

- 800
- 100
- B33 s 2
- 600 precizion recall fl-zcore support
500 @.0 1.80 1.08 1.00 833
1.a 1.28 2.98 a.5% 5@
400 accuracy 1.e@ 883
macro avg 1.8@ 8.99 8.99 B8B83
30 weighted avg 1.0 1.8 1.88 883
~ - 200
100
"]
o 1

Tuth

Predicted

Figure 4.20: Confusion Matrix and Classification report (CNN, run 3)

So using SMOTE, CNN performs best where number of false positive can be reduced as low
as 1 and false negative as low as zero. CNN also shows less variability in terms of false
positive and false negative with only one outlier in false negative values. The best learning
curves are shown in Figure 4.21.

model accuracy model loss
—— train — 0.225 91 |—— train
cos walidation 0.200 walidation
0175
098 0.150
=
B @ 0125
[=]
S 094 =
w 0.100
092 0075
0050
oo 0025
o 2 4 & 8 o 2 4 6 8
epoch U 1 (SRR LSTRAY epoch
model accuracy model loss
100 =
—— train P ————— train
D98 validation o025 walidation
096 020
-
&= 094
= g oi1s
= poz -
010
090
0.05
0.88
o 2 4 6 8
o 2 4 3 8
rum 2 (ChIN
epoch v 1 epoch

Figure 4.21: Learning curves (SMOTE)

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -61 -

Experimental Results and Discussion

4.3.5 Machine learning algorithms

In order to compare the performance of deep learning with other existing approaches, some
machine learning algorithms have been used like k-nearest neighbor, support vector machine,
naive Bayes, random forest and gradient boosting. The following figures summarize the results
obtained from machine learning model using the actual dataset and SMOTE dataset.

ML algorithms
Metrics K-nearest Suppor Naive Decision | Random | Gradient Best
neighbor Fedtor bayes Trees Forest |Boosting
MMachine
833 522 817 813 520 522
38 49 43 S0 49 49
Actual Dataset (Best 12 1 2 1] 1 1 SV and
result in 10 runs) 1] 11 16 20 13 11 GB
3 i 4 = 2 3
09742 | 09789 | n9692 | 09621 | 09735 | nsssa -
833 818 317 315 315 320
SMOTE(Best Resuli
< GB
in 10 runs)

Figure 4.22: Result summary of ML algorithms

4.3.6 Summary

The final results from all algorithms using different approaches showed in the previous section
can be summarized from two perspectives. One of them is the best result (accuracy, FP and
FN) obtained for an algorithm either using ensemble learning, SMOTE or the actual dataset in
ten experimental runs. The second one is the average result obtained (accuracy) for an
algorithm in ten experimental runs. Table 4.5 and Table 4.6 summarize the result using these
two measures.

Table 4.5: Result summary (average result in ten runs)

0.9866 0.9874 0.9875 0.9900 0.9855 0.9826 0.9930 0.9905 0.9807

0.9942 0.9830 0.9900 0.9813 0.9766 0.9703 0.9643 0.9601 0.9732

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -62 -

Experimental Results and Discussion

Table 4.6: Result summary (Best result in ten runs)

832 49 1 1 0.9977
833 48 2 0 0.9977
833 48 2 0 0.9977
833 48 2 0 0.9977
832 48 2 1 0.9966
833 48 2 0 0.9977
833 49 1 0 0.9989
831 48 2 2 0.9955
833 47 3 0 0.9966
833 49 1 0 0.9989
832 49 1 1 0.9977
832 49 1 1 0.9977
833 38 12 0 0.9864
822 49 1 11 0.9864
817 48 2 16 0.9796
813 50 0 20 0.9773
820 49 1 13 0.9841
822 49 1 11 0.9864
833 44 6 0 0.9932
818 50 0 15 0.9830
Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 63 -

Experimental Results and Discussion

817 48 2 16 0.9796

815 49 1 18 0.9785

815 49 1 18 0.9785

820 49 1 13 0.9841

It is evident from the above shown summary, CNN method works best both in terms of average
result and best result in ten experimental runs. For ensemble learning, approach 3 shows the
best accuracy with CNN and for SMOTE CNN works best among all algorithms.

4.4 Discussion
In this section, major limitations of this thesis as well as understanding of the result and how
it can be interpreted from manufacturing perspective are highlighted.

4.4.1 Event definition and subsequence extraction

The purpose of this thesis was to automatically detect any unusual event occurring on the
industrial drying hopper installed in the manufacturing shop floor of a polymer manufacturing
industry. As the raw dataset obtained from the machine interface was not in ideal structure for
using in a ML or DL algorithms, it needed certain preprocessing from the expert. Even after
primary preprocessing done by an expert in this field, the dataset still had missing values and
no labeling. The major hindrance in using the dataset for event detection was no accurate
definition of unusual event through which temperature profile can be visually divided in
various classes. This is why, the events needed to be defined at the very beginning of the
experiment considering all variations in the unusual events. Several assumptions had to be
made in order to maintain consistency in the definition of an event. For example, if there is a
certain small peak in any temperature value for three or four minutes, those are not defined as
events. There were two limitations in defining an event. First, no physics based model or
mechanics of the drying hopper was available from which the events and their structure like
temperature profiles can be understood. Second, in all possible scenarios which can be
identified as events, there are too many variations of them which can be potential candidates
of the events. For example, hopper 1 hopper outlet temperature varies around 150° F. In some
time steps, this temperature value goes below 100° F whereas all other sensors reading are
normal. Now the question is, whether this should be identified as events or non-events. This
type of confusion was universal in almost all cases where temperature is dropping down or
rising all on a sudden. So, events were defined based on the visualization of the temperature
profile. Whenever something unusual and lasting phenomenon was notified in the temperature
profile which is significantly different from the steady state condition were listed as events.

As mentioned in 3.1.2, the previous study on this particular drying hopper case [36] predicts
three different type of unusual events; dryer undersize, conveying issue and cleaning cycle. But
in the temperature profile, defining this individual event was not straightforward due to the
variation of these events. This is why, the goal of this thesis was to identify any unusual event
rather than identifying the type of the event. Another assumption had to made for defining an
event which is the start and end time of an event for simplification. The temperature profiles

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -64 -

Experimental Results and Discussion

were segmented in an hourly basis and each hour there are 60 entries or time steps. So, if
something unusual has started happening in an hour, regardless of the actual start time, that
particular hour is defined as an example of an event for labeling simplicity.

The window approach used in data preprocessing step for extracting subsequences and labeling
each subsequence from the labels of each row is also based on some assumptions. For the ease
of labeling a window length of sixty minutes and sliding step of 60 minutes were considered
for which 4416 examples or subsequences were obtained. As at the beginning each row was
assigned a label and events or non-events were defined hourly which indicates in each hour all
sixty minutes or rows have same labels. If the start time end time were defined more precisely
like the actual start and time instead of hourly basis, then other window approach like different
sliding step other than sixty or multiples of sixty can be used. For example, an event starts at
1:26 pm, so the hour from 1:01 pm to 2:00 pm was defined as an event and each row was
assigned the same label, 1. But it could have been done otherwise like from 1:01 pm to 1:25
pm, these 25 rows as label 0, remaining 35 rows; 1:26 pm to 2:00 pm as label 1 as the event
started from 1:26 pm. In this way, apart from 60 or its multiple, any other values could be used
for sliding step. But labeling each subsequence would become more complex from the labelled
rows. The reason is not all rows have same labels if this approach is used. For example, if
window length is sixty minutes, but sliding step is 1, first subsequence will start from 5:01 am,
May 2018, end at 6:00 am, May 1, 2018. But the second subsequence will start from 5:02 am
and will end at 6:01 am which was not the same for sliding step of sixty minutes. For sixty
minutes sliding step, second event starts at 6:01 am and ends at 7:00 am. Now, when moving
the sliding window using sliding step of 1 minute, at one point it will extract a subsequence
which starts from 12:39 pm and ends at 1:38 pm. As mentioned above, events started from 1:26
pm precisely, so the rows from 1:26 pm to 1:38 pm are labelled as 1, but rows from 12:39 pm
to 1:25 pm are labelled as 0. So, this subsequence has rows with both labels which makes it
difficult to define as an event or non-event. If events are defined as any 1 hour where at least
one row or minute was labelled as 1, this might lead to a problem. If in an hour at least 30 %
rows are labelled as 1, that hour can be defined as event as something unusual is happening in
that hour. But if only one row has label 1, rest of the rows have label 0, defining that hour as
an event is misleading. The issue is to determine the minimum percentage of rows which has
to be labelled as 1 to define that hour as an event. If this problem can be taken care of number
of examples would be much higher than the current number. For example, with sliding step of
1 and window length of 60, number of extracted subsequences would be, m = (264960-60)/1+1
= 264,901 according to the formula in 3.1.2.5.1, which is 463.88 % more than the current
number of examples. As this thesis is dependent on data driven modeling completely with not
much input about the physics of the events and non-events with no clear definition, the simplest
way to define and visualize the events was chosen for classification.

4.4.2 Data imbalance issue

As shown before, training set had 2742 examples from class 0 (77.61%) and 791 examples
from class 1 (22.39%) which indicates that the dataset is not balanced. During first
experimental trial using simple neural network, all test examples were identified as class 0 as
shown in Figure 4.1. From the literature review of the scientific journals and exploration of
various data analytics blogs like “towardsdatascience” [103], “analyticsvidhya” [104] and so
on, the issue was figured out as imbalance classification issue. Afterwards, CNN, LSTM and
CNN-LSTM were applied to the same imbalanced dataset, but resulted same as the simple

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 65 -

Experimental Results and Discussion

neural network. But machine learning algorithms like SVM, KNN and others were working
fine with the imbalanced dataset. This is why data imbalance issue handling techniques like
ensemble learning with undersampling and SMOTE as an oversampling technique was used
for deep learning algorithms and the result turned out very reasonable. For machine learning
algorithms, apart from regular dataset, SMOTE was also used as a data augmentation technique
in order to check the performance of ML algorithms. Undersampling was used to combine all
undersampling models as an ensemble learner. Without combination of all undersamples, the
performance of an algorithm cannot be determined properly using a single undersampling
approach. For example, if only one undersample from approach 3 was used for training the
algorithm and no ensemble learner was used, there is no certainty that the algorithm will
converge to the optimum without overfitting during training with this dataset and will perform
well on validation set and test set as shown in Figure 4.23. Even if one undersample performs
well on new data, there is still uncertainty regarding the stochastic nature of deep learning
algorithm. This particular undersample might work well in one run, but there is no guarantee
that it will work well in all experimental runs. This is why ensemble learning with
undersampling provides very powerful result as it combines the output from undersamples with
majority voting. Through majority voting, even if one undersample out of three undersamples
works badly on the new dataset, ensemble learning will take care of this issue by using the
prediction from the majority voting. The problem appears when majority of the undersamples
perform bad as the voting favors the wrong prediction.

model accuracy model loss

0.35 { —— frain
walidation

- ftrain
validation

0.30 4

0.25 4

0.20 4

loss

p1s{

0.10 4

0.05 4

epoch epoch
Figure 4.23: Learning curves with high fluctation during convergence

Random oversampling technique was not used as it does not add any value or new information
to the dataset. As simple copying of the minority examples oftentimes lead to overfitting and
overfitting controlling techniques like L2 regularization and dropout also fails to prevent it.
This is why, more structured oversampling approach like SMOTE was used to as data
imbalance handling technique.

Apart from these techniques, other data imbalance handling techniques like using class weights
to two classes was also tried with this dataset. In this technique, the minority class is assigned
higher weight during training so that the convergence is not always inclined to majority class.
But this weighting technique did not work at all with this dataset. Even with different weights
provided to the minority class, the algorithms were classifying all test examples as majority
class. This is why, this thesis explored only ensemble learning with undersampling and
SMOTE as oversampling technique.

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 66 -

Experimental Results and Discussion

4.4.3 Result interpretation

Section 4.3 provides the summary of the final result obtained from various algorithms used for
classification of the drying hopper MTS dataset. In ensemble learning, the best result for each
approach in each run was summarized for all three deep learning algorithms used; CNN,
LSTM, CNN-LSTM. In addition to that, best undersampling result for each run was highlighted
as well. For SMOTE, average result for three deep learning algorithms and the six ML
algorithms were showed and the best results found in ten runs were also highlighted.

The performance measure used in this thesis are precision, recall, f1 score and accuracy.
Among them precision, recall and accuracy depends on TP, TN, FP and FN values whereas f1
score is measured from precision and recall. In a manufacturing industry, fault detection is
highly important in order to take predictive or preventive maintenance. Now the question is
which measure is more important in context of manufacturing. The main goal is to accurately
identify events, but if any event is wrongly classified as event that leads to machine failure or
other related issue. If this issues is missed by the operator, it might create serious issue
depending on the type of failure. This is why, the primary goal is to reduce the FP values
(events wrongly identified as non-events) or increase the TN values (events accurately
identified as events). The secondary goal is to reduce the FN values (non-events wrongly
identified as events) or increase the TP values (non-events accurately identified as non-events).
For example, the algorithm identifies a non-event as an event. The operator will check that
instance manually and will identify that it is actually a non-event, nothing bad is happening in
the machine. If this instance is high in number, it will be waste of time for the operator to check
those misleading predictions. But if the algorithm identifies an event as non-event, the operator
will not check that prediction as it is predicting non-event. This can lead to serious issue as the
operator has no idea that something is happening in the machine. If any event is identified, the
operator of the machine has two and a half hours to fix it. The length of each example is one
hour, so after training the dataset, any future example of 1 hour length directly extracted from
the sensors with primary preprocessing can be used by the algorithm to predict its class and
take initiatives accordingly. With industry 4.0 and Al revolution, this type of automation is
highly important in any manufacturing plant.

This is why reducing FP values is the primary goal in context of manufacturing. It is also
desirable in this experimental setup that across all ten runs number of FP values remain
consistent with less outlier for an algorithm with ensemble learning or SMOTE. In each run,
the goal is to capture the best model with high accuracy and less FP values. So the best model
is selected in the following way: First the model with highest accuracy will be picked as the
best model, afterwards second highest accuracy will be picked. If the first one has less number
of FP values, this is arguable the best model. This is the general case in almost all experimental
runs where the model with best accuracy has least number of FP values as well. But also there
are some exceptions. In some cases, the model identified all non-events but missed some events
and wrongly classified. But due to the large number of correctly identified non-events the
accuracy goes higher. For example, in Figure 4.22, the best result in terms of accuracy and
average accuracy across 10 runs, obtained using SMOTE for ML algorithms is K nearest
neighbor with best accuracy of 99.32% in run 6 and average accuracy of 98.13% across ten
runs. Now the question is whether it is really the best one among ML algorithms when using
SMOTE. It is evident it has 6 FP values and 0 FN values whereas the second best, gradient
boosting has 98.41% accuracy in run 6 with only 1 FP values, but 13 FN values and 97.32%

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 67 -

Experimental Results and Discussion

average accuracy across 10 runs. This is why the best method among ML algorithms while
using SMOTE is chosen as gradient boosting, not k nearest neighbor as it identifies more events
wrongly.

Table 4.5 summarizes the best result in terms of average accuracy of 10 runs. The best average
accuracy was found for CNN in SMOTE with 99. 42 % average accuracy. The FP and FN
values are also consistent in ten experimental runs while using CNN with only one outlier
where 18 non-events were classified as events (FN). Apart from this instance, number of FP
values varies between 0 and 3 whereas number of FN values varies between 0 and 6. The
second best model was also found using CNN in ensemble learning approach 3 with 99.30 %
average accuracy. The FP values are highly consistent across 10 runs and the number varies
between 1 and 2. But it has two outliers in the FN values with 11 and 19. The number of FN
varies between 0 and 7 which is also higher than the CNN using SMOTE.

Table 4.6 summarizes the best result obtained in 10 runs in terms of accuracy. Again, the best
result found in CNN with ensemble learning approach 3 and CNN with SMOTE. Both of these
two showed 99.89% accuracy with only one FP value and no FN value. So certainly, CNN is
the best algorithm to classify this dataset into two categories with both ensemble learning and
SMOTE.

Performance of LSTM and CNN-LSTM is also good enough which is not much lesser than the
CNN. But CNN shows not only high accuracy, but also consistence in less number of FP and
FN values across ten runs. ML algorithms performance is relatively worse than the deep
learning approaches. The maximum average found is 98.13% with KNN in terms of average
accuracy across 10 runs when no imbalance data handling technique is used. The second best
was SVM with 97.89% average accuracy. In terms of best accuracy among ten runs, KNN
provides 99.32 % accuracy (no data imbalance technique), but it wrongly classified 6 events.
The second best is KNN, SVM and GB (SMOTE) with 98.64% accuracy. KNN again suffers
from the high FP values, it has wrongly classified 12 events whereas both SVM and GB
wrongly classified only 1 event and 11 non-events. So among ML algorithms, SVM is selected
as the best one.

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 68 -

Conclusion and Future Work

5 Conclusion and Future Work

The recent evolution in Industry 4.0, artificial intelligence and internet of things (10T) have
increased the data availability in various domains. This is why data analytics has become highly
popular over the year with newer algorithms and techniques being developed regularly for
continuous improvement. Among variety of data, time series dataset has become highly
available in various domain and various analyses on time series are being performed by
researchers frequently. This thesis exploits deep learning algorithms in order to classify MTS
data obtained from the sensors installed at the drying hopper in a polymer manufacturing
industry. Perfect dataset never really exists in real life scenario which is also the case for the
dataset used in this thesis. This is why necessary preprocessing was performed in the dataset
to make it usable by deep learning and machine learning algorithms. As classification is a
supervised learning approach, any DL or ML algorithms need labelled data. So, the data was
also labelled after defining the two categories precisely. To tackle the imbalance data issue,
ensemble learning with undersampling and SMOTE as an oversampling technique was
explored on different deep learning approaches. The result showed that CNN is arguably the
best algorithm for classifying this dataset as events and non-events.

Previously two more research have been performed on this dataset. One of them focused on
understanding of the process of an industrial drying hopper [36] and the other one focused on
pattern recognition as unsupervised learning [105]. Both of those research made significant
contribution towards automatic event detection in the drying hopper. This thesis takes the work
from the previous two research to the next step through classifying the dataset into two
categories as events and non-events. But there are still other potential future works possible for
this specific case which are described below.

e The events need to be defined more precisely with the help of an expert who has the solid
understanding of all equipment and sensors of the industrial drying hopper. Afterwards, the
events need to be categorized in three different types as mentioned in [36] which might be
the hardest part due to too many variations of those events. The next goal should be instead
of binary class classification, multi class classification techniques need to be applied if the
events can be labelled as various types.

e The sliding window technique used in this thesis used the subsequences extracted as an
hour with hourly sliding step. This approach can be further changed into variable
windowing approach with different sliding steps to figure out the best window and sliding
step size.

e The deep learning approaches used in this thesis are the simplest version of CNN, LSTM
and CNN-LSTM. Now a days, lot of variation of these networks have been proposed and
those are performing very well in large datasets. For example, residual network which is a
variant of CNN has been extremely popular in recent years. Moreover, multi-channel deep
CNN, dilated CNN are among other variants of CNN which are used extensively in MTS
classification. Similarly, RNN variants like gated recurrent unit (GRU) has also been used
for some MTS datasets. Moreover CNN-LSTM has also some established variants like
CONV-LSTM which is used oftentimes. For multiclass classification, simple CNN or
LSTM model may not work well. So more complex deep learning approaches might be
needed to classify the dataset.

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 69 -

References

References

[1] “What is Artificial Intelligence? How Does Al Work? | Built In.”
https://builtin.com/artificial-intelligence (accessed May 27, 2021).

[2] E.Oztemel and S. Gursev, “Literature review of Industry 4.0 and related technologies,”
J. Intell. Manuf., vol. 31, no. 1, pp. 127-182, 2020, doi: 10.1007/s10845-018-1433-8.

[3] C.Y.Hsuand W. C. Liu, “Multiple time-series convolutional neural network for fault

detection and diagnosis and empirical study in semiconductor manufacturing,” J. Intell.
Manuf., vol. 32, no. 3, pp. 823-836, 2021, doi: 10.1007/s10845-020-01591-0.

[4] S.S.Jones et al., “A multivariate time series approach to modeling and forecasting
demand in the emergency department,” J. Biomed. Inform., vol. 42, no. 1, pp. 123-139,
Feb. 2009, doi: 10.1016/j.jbi.2008.05.003.

[5] Z.Du, W.R. Lawrence, W. Zhang, D. Zhang, S. Yu, and Y. Hao, “Interactions between
climate factors and air pollution on daily HFMD cases: A time series study in
Guangdong, China,” Sci. Total Environ., vol. 656, pp. 1358-1364, Mar. 2019, doi:
10.1016/j.scitotenv.2018.11.391.

[6] C.Pérez-D’Arpino and J. A. Shah, “Fast target prediction of human reaching motion for
cooperative human-robot manipulation tasks using time series classification,” in 2015
IEEE International Conference on Robotics and Automation (ICRA), 2015, pp. 6175—
6182, doi: 10.1109/ICRA.2015.7140066.

[71 N. Maknickiené, A. V. Rutkauskas, and A. Maknickas, “Investigation of financial
market prediction by recurrent neural network,” Innov. Technol. Sci. Bus. Educ., vol. 2,
no. 11, pp. 3-8, 2011.

[8] L.Martin, L. F. Zarzalejo, J. Polo, A. Navarro, R. Marchante, and M. Cony, “Prediction
of global solar irradiance based on time series analysis: Application to solar thermal
power plants energy production planning,” Sol. Energy, vol. 84, no. 10, pp. 1772-1781,
Oct. 2010, doi: 10.1016/j.solener.2010.07.002.

[9] J. F. Muth, “Optimal Properties of Exponentially Weighted Forecasts,” J. Am. Stat.
Assoc., vol. 55, no. 290, pp. 299-306, 1960, doi: 10.1080/01621459.1960.10482064.

[10] A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh, “The great time series
classification bake off: a review and experimental evaluation of recent algorithmic
advances,” Data Min. Knowl. Discov., vol. 31, no. 3, pp. 606-660, 2017, doi:
10.1007/s10618-016-0483-9.

[11] D. J. Berndt and J. Clifford, “Using dynamic time warping to find patterns in time
series.,” in KDD workshop, 1994, vol. 10, no. 16, pp. 359-370.

[12] G. E. P. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time series analysis:
forecasting and control. John Wiley & Sons, 2015.

[13] G. He, Y. Li, and W. Zhao, “An uncertainty and density based active semi-supervised
learning scheme for positive unlabeled multivariate time series classification,”
Knowledge-Based Syst., vol. 124, pp. 80-92, 2017, doi: 10.1016/j.knosys.2017.03.004.

[14] M. L. Tuballa and M. L. Abundo, “A review of the development of Smart Grid
technologies,” Renewable and Sustainable Energy Reviews, vol. 59. Elsevier Ltd, pp.
710-725, Jun. 01, 2016, doi: 10.1016/j.rser.2016.01.011.

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -70 -

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]

[28]

References

L. Batal, L. Sacchi, R. Bellazzi, and M. Hauskrecht, “Multivariate time series
classification with temporal abstractions,” in Proceedings of the 22nd International
Florida Artificial Intelligence Research Society Conference, FLAIRS-22, 2009, pp. 344—
349.

K. Yang and C. Shahabi, “An efficient k nearest neighbor search for multivariate time
series,” Inf. Comput.,, vol. 205, no. 1, pp. 6598, Jan. 2007, doi:
10.1016/j.ic.2006.08.004.

J. Hills, J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall, “Classification of time series
by shapelet transformation,” Data Min. Knowl. Discov., vol. 28, no. 4, pp. 851-881,
2014, doi: 10.1007/s10618-013-0322-1.

Y. Chang et al., “A Multi-Task Imputation and Classification Neural Architecture for
Early Prediction of Sepsis from Multivariate Clinical Time Series,” 2019 Comput.
Cardiol. Conf., vol. 45, no. 1, pp. 2-5, 2019, doi: 10.22489/cinc.2019.110.

J. Lines and A. Bagnall, “Time series classification with ensembles of elastic distance
measures,” Data Min. Knowl. Discov., vol. 29, no. 3, pp. 565-592, 2015, doi:
10.1007/s10618-014-0361-2.

H. Ismail Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P. A. Muller, “Deep learning
for time series classification: a review,” Data Min. Knowl. Discov., vol. 33, no. 4, pp.
917-963, 2019, doi: 10.1007/s10618-019-00619-1.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” Adv. Neural Inf. Process. Syst., vol. 25, pp. 1097-1105,
2012.

C. Szegedy et al., “Going Deeper with Convolutions,” 2015.

D. Bahdanau, K. H. Cho, and Y. Bengio, “Neural machine translation by jointly learning
to align and translate,” Sep. 2015, Accessed: May 28, 2021. [Online]. Available:
https://arxiv.org/abs/1409.0473v7.

I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural
networks,” in Advances in Neural Information Processing Systems, Sep. 2014, vol. 4,
no. January, pp. 3104-3112, Accessed: May 28, 2021. [Online]. Available:
https://arxiv.org/abs/1409.3215v3.

A. M. Alayba, V. Palade, M. England, and R. Igbal, “A combined CNN and LSTM
model for Arabic sentiment analysis,” in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
Aug. 2018, vol. 11015 LNCS, pp. 179-191, doi: 10.1007/978-3-319-99740-7_12.

T. N. Sainath et al., “Improvements to deep convolutional neural networks for LVCSR,”
in 2013 IEEE Workshop on Automatic Speech Recognition and Understanding, ASRU
2013 - Proceedings, 2013, pp. 315-320, doi: 10.1109/ASRU.2013.6707749.

C. L. Liu, W. H. Hsaio, and Y. C. Tu, “Time Series Classification with Multivariate
Convolutional Neural Network,” IEEE Trans. Ind. Electron., vol. 66, no. 6, pp. 4788—
4797, 2019, doi: 10.1109/TIE.2018.2864702.

H. S. Huang, C. L. Liu, and V. S. Tseng, “Multivariate time series early classification
using multi-domain deep neural network,” Proc. - 2018 IEEE 5th Int. Conf. Data Sci.

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -71-

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

References

Adv. Anal. DSAA 2018, pp. 90-98, 2019, doi: 10.1109/DSAA.2018.00019.

O. Yazdanbakhsh and S. Dick, “Multivariate Time Series Classification using Dilated
Convolutional Neural Network,” 2019, [Online]. Available:
http://arxiv.org/abs/1905.01697.

F. Karim, S. Majumdar, H. Darabi, and S. Harford, “Multivariate LSTM-FCNSs for time
series classification,” Neural Networks, vol. 116, pp. 237-245, 2019.

Z. Guo, P. Liu, J. Yang, and Y. Hu, “Multivariate Time Series Classification Based on
MCNN-LSTMs Network,” ACM Int. Conf. Proceeding Ser., pp. 510-517, 2020, doi:
10.1145/3383972.3384013.

Y. Zheng, Q. Liu, E. Chen, Y. Ge, and J. L. Zhao, “Exploiting multi-channels deep
convolutional neural networks for multivariate time series classification,” Front.
Comput. Sci., vol. 10, no. 1, pp. 96-112, 2016, doi: 10.1007/s11704-015-4478-2.

T. C. Images, “Sensor Classification Using Convolutional Neural,” Sensors
(Switzerland), no. 1, 2020.

K. C. Lei and X. D. Zhang, “An approach on discretizing time series using recurrent
neural network,” Proc. - 2018 IEEE Int. Conf. Bioinforma. Biomed. BIBM 2018, pp.
2522-2526, 2019, doi: 10.1109/BIBM.2018.8621092.

Z. Che, S. Purushotham, K. Cho, D. Sontag, and Y. Liu, “Recurrent Neural Networks
for Multivariate Time Series with Missing Values,” Sci. Rep., vol. 8, no. 1, pp. 1-14,
2018, doi: 10.1038/s41598-018-24271-9.

J. Lenz, S. Swerdlow, A. Landers, R. Shaffer, A. Geller, and T. Wuest, “Smart services
for polymer processing auxiliary equipment: An industrial case study,” Smart Sustain.
Manuf. Syst., vol. 4, no. 1, pp. 103-120, 2020, doi: 10.1520/SSMS20200032.

M. Shokoohi-Yekta, J. Wang, and E. Keogh, “On the non-trivial generalization of
Dynamic Time Warping to the multi-dimensional case,” in SIAM International
Conference on Data Mining 2015, SDM 2015, 2015, pp. 289-297, doi:
10.1137/1.9781611974010.33.

J. Shen, W. Huang, D. Zhu, and J. Liang, “A Novel Similarity Measure Model for
Multivariate Time Series Based on LMNN and DTW,” Neural Process. Lett., vol. 45,
no. 3, pp. 925-937, Jun. 2017, doi: 10.1007/s11063-016-9555-5.

J. Mei, M. Liu, Y. F. Wang, and H. Gao, “Learning a Mahalanobis Distance-Based
Dynamic Time Warping Measure for Multivariate Time Series Classification,” IEEE
Trans. Cybern., vol. 46, no. 6, pp. 1363-1374, Jun. 2016, doi:
10.1109/TCYB.2015.2426723.

N. Vaughan and B. Gabrys, “Scoring and assessment in medical VR training simulators
with dynamic time series classification,” Eng. Appl. Artif. Intell., vol. 94, p. 103760,
Sep. 2020, doi: 10.1016/j.engappai.2020.103760.

J. Ircio, A. Lojo, U. Mori, and J. A. Lozano, “Mutual information based feature subset
selection in multivariate time series classification,” Pattern Recognit., vol. 108, p.
107525, Dec. 2020, doi: 10.1016/j.patcog.2020.107525.

T. Gorecki and M. Luczak, “Multivariate time series classification with parametric
derivative dynamic time warping,” Expert Syst. Appl., vol. 42, no. 5, pp. 2305-2312,

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -72 -

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

References

Apr. 2015, doi: 10.1016/j.eswa.2014.11.007.

S. Seto, W. Zhang, and Y. Zhou, “Multivariate time series classification using dynamic
time warping template selection for human activity recognition,” in Proceedings - 2015
IEEE Symposium Series on Computational Intelligence, SSCI 2015, 2015, pp. 1399-
1406, doi: 10.1109/SSC1.2015.199.

M. Luczak, “Univariate and multivariate time series classification with parametric
integral dynamic time warping,” J. Intell. Fuzzy Syst., vol. 33, no. 4, pp. 2403-2413,
Jan. 2017, doi: 10.3233/JIFS-17523.

S. Liu and C. Liu, “Scale-varying dynamic time warping based on hesitant fuzzy sets
for multivariate time series classification,” Meas. J. Int. Meas. Confed., vol. 130, pp.
290-297, Dec. 2018, doi: 10.1016/j.measurement.2018.07.094.

M. Luczak, “Combining raw and normalized data in multivariate time series
classification with dynamic time warping,” J. Intell. Fuzzy Syst., vol. 34, no. 1, pp. 373—
380, Jan. 2018, doi: 10.3233/JIFS-171393.

T. Gorecki, “Classification of time series using combination of DTW and LCSS
dissimilarity measures,” Commun. Stat. Simul. Comput., vol. 47, no. 1, pp. 263-276,
Jan. 2018, doi: 10.1080/03610918.2017.1280829.

M. G. Baydogan and G. Runger, “Learning a symbolic representation for multivariate
time series classification,” Data Min. Knowl. Discov., vol. 29, no. 2, pp. 400-422, Mar.
2015, doi: 10.1007/s10618-014-0349-y.

J. Lin, E. Keogh, L. Wei, and S. Lonardi, “Experiencing SAX: A novel symbolic
representation of time series,” Data Min. Knowl. Discov., vol. 15, no. 2, pp. 107-144,
Oct. 2007, doi: 10.1007/s10618-007-0064-z.

P. Schifer and M. Hogqvist, “SFA: A symbolic fourier approximation and index for
similarity search in high dimensional datasets,” in ACM International Conference
Proceeding Series, 2012, pp. 516-527, doi: 10.1145/2247596.2247656.

T. Le Nguyen, S. Gsponer, L. Ilie, M. O’Reilly, and G. Ifrim, “Interpretable time series
classification using linear models and multi-resolution multi-domain symbolic
representations,” Data Min. Knowl. Discov., vol. 33, no. 4, pp. 1183-1222, Jul. 2019,
doi: 10.1007/s10618-019-00633-3.

B. Dhariyal, T. Le Nguyen, S. Gsponer, and G. Ifrim, “An Examination of the State-of-
the-Art for Multivariate Time Series Classification Machine Learning Methods for Text
Classification View project Text and Web Mining View project An Examination of the
State-of-the-Art for Multivariate Time Series Classification,” doi:
10.1109/ICDMW51313.2020.00042.

P. Schifer and U. Leser, ‘“Multivariate Time Series Classification with
WEASEL+MUSE,” vol. 11, Nov. 2017, Accessed: Jun. 22, 2021. [Online]. Available:
http://arxiv.org/abs/1711.11343.

D. Yang, H. Chen, Y. Song, and Z. Gong, “Granger Causality for Multivariate Time
Series Classification,” Proc. - 2017 IEEE Int. Conf. Big Knowledge, ICBK 2017, pp.
103-110, 2017, doi: 10.1109/1CBK.2017.36.

L. Batal, L. Sacchi, R. Bellazzi, and M. Hauskrecht, “Multivariate time series

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -73-

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

References

classification with temporal abstractions,” Proc. 22nd Int. Florida Artif. Intell. Res. Soc.
Conf. FLAIRS-22, pp. 344-349, 20009.

B. Zhao, H. Lu, S. Chen, J. Liu, and D. Wu, “Convolutional neural networks for time
series classification,” J. Syst. Eng. Electron., vol. 28, no. 1, pp. 162-169, 2017, doi:
10.21629/JSEE.2017.01.18.

A. P. Ruiz, M. Flynn, J. Large, M. Middlehurst, and A. Bagnall, “The great multivariate
time series classification bake off: a review and experimental evaluation of recent
algorithmic advances,” Data Min. Knowl. Discov., vol. 35, no. 2, pp. 401-449, Mar.
2021, doi: 10.1007/s10618-020-00727-3.

W. Song, L. Liu, M. Liu, W. Wang, X. Wang, and Y. Song, “Representation Learning
with Deconvolution for Multivariate Time Series Classification and Visualization,”
Commun. Comput. Inf. Sci., vol. 1257 CCIS, pp. 310-326, 2020, doi: 10.1007/978-981-
15-7981-3 22.

K. S. Kiangala and Z. Wang, “An Effective Predictive Maintenance Framework for
Conveyor Motors Using Dual Time-Series Imaging and Convolutional Neural Network
in an Industry 4.0 Environment,” IEEE Access, vol. 8, pp. 121033-121049, 2020, doi:
10.1109/ACCESS.2020.3006788.

T. N. Sainath, O. Vinyals, A. Senior, and H. Sak, “Convolutional, Long Short-Term
Memory, fully connected Deep Neural Networks,” ICASSP, IEEE Int. Conf. Acoust.
Speech Signal Process. - Proc., vol. 2015-Augus, pp. 4580-4584, 2015, doi:
10.1109/ICASSP.2015.7178838.

E. Y. Hsu, C. L. Liu, and V. S. Tseng, “Multivariate time series early classification with
interpretability using deep learning and attention mechanism,” in Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), Apr. 2019, vol. 11441 LNAI, pp. 541-553, doi:
10.1007/978-3-030-16142-2_42.

M. Khan, H. Wang, A. Ngueilbaye, and A. Elfatyany, “End-to-end multivariate time
series classification via hybrid deep learning architectures,” Pers. Ubiquitous Comput.,
2020, doi: 10.1007/s00779-020-01447-7.

A. M. Tripathi, “Enhancing Multivariate Time Series Classification Using LSTM and
Evidence Feed Forward HMM,” Proc. Int. Jt. Conf. Neural Networks, 2020, doi:
10.1109/1JCNN48605.2020.9207636.

G. He, Y. Duan, Y. Li, T. Qian, J. He, and X. Jia, “Active learning for multivariate time
series classification with positive unlabeled data,” Proc. - Int. Conf. Tools with Artif.
Intell. ICTAI, vol. 2016-Janua, pp. 178-185, 2016, doi: 10.1109/ICTAI.2015.38.

M. Gonzalez, C. Bergmeir, I. Triguero, Y. Rodriguez, and J. M. Benitez, “Self-labeling
techniques for semi-supervised time series classification: an empirical study,” Knowl.
Inf. Syst., vol. 55, no. 2, pp. 493-528, 2018, doi: 10.1007/s10115-017-1090-9.

L. Wei and E. Keogh, “Semi-supervised time series classification,” in Proceedings of
the 12th ACM SIGKDD international conference on Knowledge discovery and data
mining, 2006, pp. 748-753.

“Unix time - Wikipedia.” https://en.wikipedia.org/wiki/Unix_time (accessed Jun. 10,
2021).

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -74 -

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

References

L. Gruenwald, H. Chok, and M. Aboukhamis, “Using data mining to estimate missing
sensor data,” in Proceedings - IEEE International Conference on Data Mining, ICDM,
2007, pp. 207-212, doi: 10.1109/ICDMW.2007.103.

“Labelling Time Series Data in Python | by Lucy Rothwell | Towards Data Science.”
https://towardsdatascience.com/labelling-time-series-data-in-python-af62325e8f60
(accessed Jun. 11, 2021).

J. Chris Bishop, C. Bishop, G. Hinton, and P. Bishop, “Neural networks for pattern
recognition. Advanced texts in econometrics.” Oxford: Clarendon Press, 1995.

“Undersampling Algorithms for Imbalanced Classification.”
https://machinelearningmastery.com/undersampling-algorithms-for-imbalanced-
classification/ (accessed Jun. 12, 2021).

“The 5 Most Useful Techniques to Handle Imbalanced Datasets - KDnuggets.”
https://www.kdnuggets.com/2020/01/5-most-useful-techniques-handle-imbalanced-
datasets.html (accessed Jun. 12, 2021).

“Random Oversampling and Undersampling for Imbalanced Classification.”
https://machinelearningmastery.com/random-oversampling-and-undersampling-for-
imbalanced-classification/ (accessed Jun. 12, 2021).

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: Synthetic
Minority Over-sampling Technique,” J. Artif. Intell. Res., vol. 16, pp. 321-357, Jun.
2011, doi: 10.1613/jair.953.

“Imbalanced Learning: Foundations, Algorithms, and Applications - Google Books.”
https://books.google.com/books?hl=en&Ir=&id=CVHXx-
Gp9jzUC&o0i=fnd&pg=PT9&dg=Imbalanced+Learning:+Foundations,+Algorithms,+a
nd+Applications+1st+Edition&ots=2iMkJjGobj&sig=ydvxXpVL79Za66NLKwKCctoE
wyJlw#v=onepage&g&f=false (accessed Jun. 12, 2021).

“Bank Data: SMOTE. This will be a short post before we... | by Zaki Jefferson |
Analytics Vidhya | Medium.” https://medium.com/analytics-vidhya/bank-data-smote-
b5cb0la5e0a2 (accessed Jun. 12, 2021).

“(34) Handling imbalanced dataset in machine learning | Deep Learning Tutorial 21
(Tensorflow2.0 & Python) - YouTube.”
https://www.youtube.com/watch?v=JnIM4yLFNuo&t=1914s (accessed Jun. 12, 2021).

“Perceptron - Wikipedia.” https://en.wikipedia.org/wiki/Perceptron (accessed May 28,
2021).

“[Memo Sheet] Deep Neural Network. Have you ever dreamed of a place where... | by
Harry Pommier | Zenika.” https://medium.zenika.com/memo-sheet-deep-neural-
network-dedcda759d9c (accessed May 28, 2021).

“Activation Functions for Artificial Neural = Networks - mlxtend.”
http://rasbt.github.io/mlxtend/user_guide/general_concepts/activation-functions/
(accessed May 28, 2021).

“Difference Between a Batch and an Epoch in a Neural Network.”
https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/
(accessed May 28, 2021).

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -75-

[82]

[83]

[84]

[85]

[86]

[87]
[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

References

“GitHub - Kulbear/deep-learning-coursera: Deep Learning Specialization by Andrew
Ng on Coursera.” https://github.com/Kulbear/deep-learning-coursera (accessed Jun. 15,
2021).

“Convolutional neural networks for time series forecasting - Python for Finance
Cookbook.”
https://subscription.packtpub.com/book/data/9781789618518/10/ch10lvl1sec63/convol
utional-neural-networks-for-time-series-forecasting (accessed Jun. 15, 2021).

“Vanilla Recurrent Neural Network - Machine Learning Notebook.”
https://calvinfeng.gitbook.io/machine-learning-notebook/supervised-
learning/recurrent-neural-network/recurrent_neural_networks (accessed Jun. 17, 2021).

“Chapter 4 Recurrent neural networks and their applications in NLP | Modern
Approaches in Natural Language Processing.” https://compstat-
Imu.github.io/seminar_nlp_ss20/recurrent-neural-networks-and-their-applications-in-
nlp.html (accessed Jun. 17, 2021).

A. Graves, “Generating Sequences With Recurrent Neural Networks,” Aug. 2013,
Accessed: Jun. 18, 2021. [Online]. Available: http://arxiv.org/abs/1308.0850.

“MIT Deep Learning 6.S191.” http://introtodeeplearning.com/ (accessed Jun. 18, 2021).

“CS 230 - Recurrent Neural Networks Cheatsheet.”
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
(accessed Jun. 18, 2021).

“Recurrent Neural Network (RNN) Tutorial for Beginners.”
https://www.simplilearn.com/tutorials/deep-learning-tutorial/rnn (accessed Jun. 18,
2021).

“LSTM | Introduction to LSTM | Long Short Term Memor.”
https://www.analyticsvidhya.com/blog/2021/03/introduction-to-long-short-term-
memory-Istm/ (accessed Jun. 18, 2021).

I. E. Livieris, E. Pintelas, and P. Pintelas, “A CNN-LSTM model for gold price time-
series forecasting,” Neural Comput. Appl., vol. 32, no. 23, pp. 17351-17360, Dec. 2020,
doi: 10.1007/s00521-020-04867-x.

L. Deng and J. C. Platt, “Ensemble deep learning for speech recognition,” 2014.

D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “Human activity
recognition on smartphones using a multiclass hardware-friendly support vector
machine,” in Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 2012, vol. 7657 LNCS, pp.
216-223, doi: 10.1007/978-3-642-35395-6_30.

“SVM | What is SVM | Support Vector Machine | SVM in Python.”
https://www.analyticsvidhya.com/blog/2021/04/insight-into-svm-support-vector-
machine-along-with-code/ (accessed Jun. 19, 2021).

“SVM | Support Vector Machine Algorithm in Machine Learning.”
https://www.analyticsvidhya.com/blog/2017/09/understaing-support-vector-machine-
example-code/ (accessed Jun. 19, 2021).

V. Jakkula, “Tutorial on Support Vector Machine (SVM),” Sch. EECS, Washingt. State

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 76 -

[97]

[98]

[99]

[100]

[101]

[102]

[103]
[104]

[105]

References

Univ., pp. 1-13, 2011, [Online]. Available:
http://www.ccs.neu.edu/course/cs5100f11/resources/jakkula.pdf.

“Decision Tree Algorithm, Explained - KDnuggets.”
https://www.kdnuggets.com/2020/01/decision-tree-algorithm-explained.html (accessed
Jun. 20, 2021).

“Random Forest Simple Explanation. Understanding the Random Forest with an... | by
Will Koehrsen | Medium.” https://williamkoehrsen.medium.com/random-forest-simple-
explanation-377895a60d2d (accessed Jun. 20, 2021).

M. Reza, S. Miri, and R. Javidan, “A Hybrid Data Mining Approach for Intrusion
Detection on Imbalanced NSL-KDD Dataset,” Int. J. Adv. Comput. Sci. Appl., vol. 7,
no. 6, pp. 1-33, 2016, doi: 10.14569/ijacsa.2016.070603.

“KNN Classification using Scikit-learn - DataCamp.”
https://www.datacamp.com/community/tutorials/k-nearest-neighbor-classification-
scikit-learn (accessed Jun. 27, 2021).

“Dynamic Time Warping k-Nearest Neighbors Classifier (KNNClassifier) — sequentia
0.12.0 documentation.”
https://sequentia.readthedocs.io/en/latest/sections/classifiers/knn.ntml (accessed Jun.
27, 2021).

“How to use Learning Curves to Diagnose Machine Learning Model Performance.”
https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-
learning-model-performance/ (accessed Jun. 25, 2021).

“Towards Data Science.” https://towardsdatascience.com/ (accessed Jun. 29, 2021).

“Analytics Vidhya - Learn Machine learning, artificial intelligence, business analytics,
data science, big data, data visualizations tools and techniques. | Analytics Vidhya.”
https://www.analyticsvidhya.com/ (accessed Jun. 29, 2021).

V. Kapp, M. C. May, G. Lanza, and T. Wuest, “Pattern recognition in multivariate time
series: Towards an automated event detection method for smart manufacturing
systems,” J. Manuf. Mater. Process., vol. 4, no. 3, 2020, doi: 10.3390/JMMP4030088.

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 77 -

Appendix

Appendix
N.B. Implementation in python is inspired from YouTube Channel “Codebasics” and
website “https://machinelearningmastery.com/”.

Ensemble Learning (CNN, LSTM, CNN-LSTM):

import numpy as np

import pandas as pd

from numpy import array

labelled_data_file_name = 'Hopper_labelled_data.csv'
dataset = pd.read_csv(labelled data_file_name, skiprows=0)

dataset[' Delivery Air Dewpoint (F)']= pd.to_numeric(dataset[' Delivery Air Dewpoint (F)1,
errors = 'coerce’)

dataset['Regen Temp Wheel Inlet (F)']= pd.to_numeric(dataset['Regen Temp Wheel Inlet
(F)17, errors = "coerce’)

dataset['Hopper 1 Hopper Outlet Temp (F)']= pd.to_numeric(dataset['Hopper 1 Hopper Outlet
Temp (F)], errors = ‘coerce’)

dataset['Hopper 1 Drying Monitor 2 Temp (F)']= pd.to_numeric(dataset['Hopper 1 Drying
Monitor 2 Temp (F)], errors = 'coerce’)

dataset['Hopper 1 Drying Monitor 4 Temp (F)']= pd.to_numeric(dataset['Hopper 1 Drying
Monitor 4 Temp (F)'], errors = 'coerce’)

dataset['Hopper 1 Drying Monitor 6 Temp (Top) (F)']= pd.to_numeric(dataset['Hopper 1
Drying Monitor 6 Temp (Top) (F)'], errors = ‘coerce’)

dataset['labels’]= pd.to_numeric(dataset['labels’], errors = 'coerce’)

dataset.columns = ['DAD’, 'RTAS', 'RTWI', 'RTWO', 'H1DAT', 'HIHOT', 'H1IDM1T",
'HIDM2T''H1DMS3T', 'H1IDMAT', 'HIDM5T', 'H1IDMG6T", 'labels']

dataset[DAD'].fillna(method="pad’, inplace=True)
dataset[RTWI'].fillna(method="pad’, inplace=True)
dataset['H1IHOT].fillna(method="pad', inplace=True)
dataset['H1DM2T].fillna(method="pad’, inplace=True)
dataset['H1DMA4T"].fillna(method="pad’, inplace=True)
dataset['H1DM®6T].fillna(method="pad’, inplace=True)

columns_scaling = [DAD', 'RTAS', ' RTWI','RTWO', 'H1IDAT', 'H1IHOT", 'HIDM1T",
'HIDM2T''H1DM3T', 'H1IDMA4T', 'H1IDMS5T', 'HIDM6T']

from sklearn.preprocessing import MinMaxScaler

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -78 -

Appendix

scaler = MinMaxScaler()
dataset[columns_scaling] = scaler.fit_transform(dataset[columns_scaling])
rows, columns = dataset.shape
count_test = int((rows/60)*0.2)*60
count_train = rows - count_test
dataset_train = dataset[:count_train]
dataset_test = dataset[count_train:]
dataset_train = np.array(dataset_train)
dataset_test = np.array(dataset_test)
split a multivariate sequence into samples
def split_sequences(sequences, n_steps):
X,y = list(), list()
for i in range(len(sequences)):
find the end of this pattern
end_ix = 60*i + n_steps
check if we are beyond the dataset
if end_ix > len(sequences):
break
gather input and output parts of the pattern
seq_X, seq_y = sequences[60*i:end_ix, :-1], sequences[end_ix-1, -1]
X.append(seq_x)
y-append(seq_y)
return array(X), array(y)
choose a number of time steps
n_steps = 60
convert into input/output
trainX_pre, trainy_pre = split_sequences(dataset_train, n_steps)
trainy_pre = trainy_pre.reshape(trainy_pre.shape[0],1)
trainX_pre = np.asarray(trainX_pre).astype(np.float32)

testX, testy = split_sequences(dataset_test, n_steps)

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -79 -

Appendix

testy = testy.reshape(testy.shape[0],1)
testX = np.asarray(testX).astype(np.float32)
print(trainX_pre.shape, trainy_pre.shape, testX.shape, testy.shape)
dim1 =trainX_pre.shape[0]
dim2 =trainX_pre.shape[1]
dim3 =trainX_pre.shape[2]
trainX_pre = trainX_pre.reshape(dim1, dim2*dim3)
trainX_pre = pd.DataFrame(trainX_pre)
trainy_pre = pd.DataFrame(trainy_pre)
trainy_pre.columns = ['labels’]
dataframe = pd.concat([trainX_pre, trainy_pre], axis =1)
count_train0, count_trainl = dataframe.labels.value_counts()
dataframe_train0O = dataframe[dataframe['labels’]==0]
dataframe_trainl = dataframe[dataframe['labels]==1]
dataframe_train0.shape, dataframe_trainl.shape
def train_set(df_majority, df_minority, start, end):

df_train = pd.concat([df _majority[start:end], df _minority], axis =0)

df_train = df_train.sample(frac=1)

trainX = df_train.drop(['labels’], axis =1)

trainy = df_train['labels']

trainX = np.array(trainX)

trainy = np.array(trainy)

new_dim = trainX.shape[0]

trainX = trainX.reshape(new_dim, dim2, dim3)

trainy = trainy.reshape(trainy.shape[0],1)

return trainX, trainy

from numpy import mean
from numpy import std

from tensorflow import keras

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -80 -

Appendix

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Flatten

from keras.layers import Dropout

from keras.layers import LSTM

from keras.layers import TimeDistributed

from keras.layers.convolutional import Conv1D

from keras.layers.convolutional import MaxPooling1D
from keras.utils import to_categorical

from sklearn.metrics import confusion_matrix, classification_report
import matplotlib.pyplot as plt

import tensorflow as tf

import seaborn as sn

def CNN(trainX, trainy, testX, testy, 10ss):
n_timesteps, n_features, n_outputs = trainX.shape[1], trainX.shape[2], trainy.shape[1]
model = Sequential()

model.add(Conv1D(filters=16, kernel_size=5, activation="relu’,
input_shape=(n_timesteps,n_features)))

model.add(Conv1D(filters=16, kernel_size=5, activation="relu’))
model.add(Dropout(0.5))
model.add(MaxPooling1D(pool_size=2))

model.add(Flatten())

model.add(Dense(200, activation="relu"))
model.add(Dense(n_outputs, activation="sigmoid))
model.compile(loss=loss, optimizer="'adam’, metrics=['accuracy'])
history = model.fit(trainX, trainy, validation_split = 0.1, epochs=100, batch_size=64)
print(history.history.keys())

summarize history for accuracy
plt.plot(history.history['accuracy'])

plt.plot(history.history['val_accuracy'])

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -81-

Appendix

plt.title("'model accuracy’)
plt.ylabel(‘accuracy’)
plt.xlabel('epoch’)
plt.legend(['train’, ‘validation], loc="upper left’)
plt.show()
summarize history for loss
plt.plot(history.history['loss’)
plt.plot(history.history['val_loss'])
plt.title('model loss")
plt.ylabel('loss")
plt.xlabel('epoch’)
plt.legend(['train’, 'validation'], loc="upper left)
plt.show()
print(model.evaluate(testX, testy, batch_size=64))
yp = model.predict(testX)
y_pred =[]
for element in yp:

if element>0.5:

y_pred.append(1)
else:
y_pred.append(0)

print(classification_report(testy, y_pred))
cm = tf.math.confusion_matrix(labels = testy, predictions =y_pred)
plt.figure(figsize =(10,6))
sn.heatmap(cm, annot=True, fmt="d")
plt.xlabel('Predicted’)
plt.ylabel("Truth’)

returny_pred

trainX11, trainyll = train_set(dataframe_train0, dataframe_trainl.sample(548), 0, 548)

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -82 -

Appendix

print(trainX11.shape, trainyll.shape, testX.shape, testy.shape)

trainX21, trainy21 = train_set(dataframe_train0, dataframe_traini, 0, 791)
print(trainX21.shape, trainy21.shape, testX.shape, testy.shape)

trainX31, trainy31 = train_set(dataframe_train0, dataframe_trainl, 0, 914)
print(trainX31.shape, trainy31.shape, testX.shape, testy.shape)

y_pred1l CNN = CNN(trainX11, trainyll, testX, testy, 'binary_crossentropy’)
y_pred21 CNN = CNN(trainX21, trainy21, testX, testy, 'binary_crossentropy")
y_pred31 CNN = CNN(trainX31, trainy31, testX, testy, 'binary_crossentropy’)
trainX12, trainy12 = train_set(dataframe_train0, dataframe_trainl.sample(548), 548, 1096)
print(trainX12.shape, trainy12.shape, testX.shape, testy.shape)

trainX22, trainy22 = train_set(dataframe_train0O, dataframe_trainl, 791, 1582)
print(trainX22.shape, trainy22.shape, testX.shape, testy.shape)

trainX32, trainy32 = train_set(dataframe_train0, dataframe_trainl, 914, 1828)
print(trainX32.shape, trainy32.shape, testX.shape, testy.shape)

y_pred12 CNN = CNN(trainX12, trainy12, testX, testy, 'binary_crossentropy')
y_pred22_CNN = CNN(trainX22, trainy22, testX, testy, 'binary_crossentropy')
y_pred32_CNN = CNN(trainX32, trainy32, testX, testy, 'binary_crossentropy’)
trainX13, trainy13 = train_set(dataframe_train0, dataframe_trainl.sample(548), 1096, 1644)
print(trainX13.shape, trainyl3.shape, testX.shape, testy.shape)

trainX23, trainy23 = train_set(dataframe_train0, dataframe_trainl, 1582, 2742)
print(trainX23.shape, trainy23.shape, testX.shape, testy.shape)

trainX33, trainy33 = train_set(dataframe_train0, dataframe_trainl, 1828, 2742)
print(trainX33.shape, trainy33.shape, testX.shape, testy.shape)
y_pred13_CNN = CNN(trainX13, trainy13, testX, testy, 'binary_crossentropy')
y_pred23_CNN = CNN(trainX23, trainy23, testX, testy, 'binary_crossentropy")
y_pred33_CNN = CNN(trainX33, trainy33, testX, testy, 'binary_crossentropy')

trainX14, trainyl4 = train_set(dataframe_train0, dataframe_trainl.sample(549), 1644, 2193)
print(trainX14.shape, trainyl4.shape, testX.shape, testy.shape)
y_pred14 CNN = CNN(trainX14, trainyl14, testX, testy, 'binary_crossentropy")

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -83-

Appendix

trainX15, trainy15 = train_set(dataframe_train0, dataframe_trainl.sample(549), 2193, 2742)
print(trainX15.shape, trainyl5.shape, testX.shape, testy.shape)
y_pred15 CNN = CNN(trainX15, trainyl15, testX, testy, 'binary_crossentropy’)
def final_result23(y_predl, y pred2, y pred3):
y_pred_final =y _predl.copy()
for i in range(len(y_predl)):
n_ones =y pred1[i]+y_pred2[i]+y_pred3[i]
if n_ones>1:
y_pred_final[i]=1
else:
y_pred_final[i]=0
return y_pred_final
y_pred_final2_CNN = final_result23(y_pred21 CNN, y pred22 CNN, y pred23 CNN)
y_pred_final3_CNN = final_result23(y_pred31_CNN, y pred32_CNN, y pred33 CNN)

print(classification_report(testy, y_pred_final2_CNN), classification_report(testy,
y_pred_final3_CNN))

cm2_CNN = tf.math.confusion_matrix(labels = testy, predictions =y_pred_final2_CNN)
plt.figure(figsize =(10,6))

sn.heatmap(cm2_CNN, annot=True, fmt="d")

plt.xlabel('Predicted’)

plt.ylabel('Truth")

cm3_CNN = tf.math.confusion_matrix(labels = testy, predictions =y _pred_final3_CNN)
plt.figure(figsize =(10,6))
sn.heatmap(cm3_CNN, annot=True, fmt="d")
plt.xlabel('Predicted’)
plt.ylabel("Truth’)
def final_resultl(y _predl, y pred2,y pred3, y pred4,y pred5):

y_pred_final =y _predl.copy()

for i in range(len(y_predl)):

n_ones =y predl[i]+y_pred2[i]+y_pred3[i]+y_pred4[i]+y_pred5][i]

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -84 -

Appendix

if n_ones>2:
y_pred_final[i]=1
else:
y_pred_final[i]=0
return y_pred_final

y_pred_finall CNN = final_resultl(y_pred1l CNN,y pred12 CNN,y pred13_CNN,
y_pred14 CNN,y predl5 CNN)

print(classification_report(testy, y_pred_finall_CNN))

cml_CNN = tf.math.confusion_matrix(labels = testy, predictions =y_pred_finall_CNN)
plt.figure(figsize =(10,6))

sn.heatmap(cm1_CNN, annot=True, fmt="d")

plt.xlabel('Predicted’)

plt.ylabel('Truth")

LSTM model cell:

n_timesteps, n_features, n_outputs = trainX21.shape[1], trainX21.shape[2], trainy21.shape[1]
model = Sequential()

model.add(LSTM(100, input_shape=(n_timesteps,n_features)))
model.add(Dropout(0.5))

model.add(Dense(200, activation="relu"))

model.add(Dense(n_outputs, activation="sigmoid’))

model.summary()

model.compile(loss='binary_crossentropy', optimizer="adam’, metrics=['accuracy'])
history = model.fit(trainX21, trainy21, validation_split = 0.1, epochs=10, batch_size=64)
print(history.history.keys())

summarize history for accuracy

plt.plot(history.history['accuracy'])

plt.plot(history.history['val_accuracy'])

plt.title('model accuracy’)

plt.ylabel(‘accuracy')

plt.xlabel('epoch’)

plt.legend(['train’, 'validation'], loc="upper left’)

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -85 -

Appendix

plt.show()
summarize history for loss
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss’)
plt.ylabel('loss’)
plt.xlabel('epoch’)
plt.legend(['train’, 'validation'], loc="upper left’)
plt.show()
print(model.evaluate(testX, testy, batch_size=64))
yp = model.predict(testX)
y_pred21 =[]
for element in yp:
if element>0.5:
y_pred21.append(1)
else:

y_pred21.append(0)
print(classification_report(testy, y_pred21))
cm = tf.math.confusion_matrix(labels = testy, predictions =y_pred21)
plt.figure(figsize =(10,6))
sn.heatmap(cm, annot=True, fmt="d")
plt.xlabel('Predicted")
plt.ylabel("Truth")
CNN-LSTM cell:
n_timesteps, n_features, n_outputs = trainX11.shape[1], trainX11.shape[2], trainyl1.shape[1]
n_steps, n_length = 4, 15
trainX11 = trainX11.reshape((trainX11.shape[0], n_steps, n_length, n_features))
testX = testX.reshape((testX.shape[0], n_steps, n_length, n_features))
model = Sequential()

model.add(TimeDistributed(Conv1D(filters=16, kernel_size=5, activation="relu’),
input_shape=(None,n_length,n_features)))

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 86 -

Appendix

model.add(TimeDistributed(Dropout(0.5)))
model.add(TimeDistributed(Conv1D(filters=16, kernel_size=5, activation="relu’)))
model.add(TimeDistributed(Dropout(0.5)))
model.add(TimeDistributed(MaxPooling1D(pool_size=2)))
model.add(TimeDistributed(Flatten()))

model.add(LSTM(100))

model.add(Dropout(0.5))

model.add(Dense(200, activation="relu"))

model.add(Dense(n_outputs, activation='sigmoid"))

model.summary()

model.compile(loss='binary_crossentropy', optimizer="adam’, metrics=['accuracy'])
history = model.fit(trainX11, trainy11, validation_split = 0.1, epochs=10, batch_size=64)
print(history.history.keys())

summarize history for accuracy

plt.plot(history.history['accuracy'])

plt.plot(history.history['val_accuracy'])

plt.title('model accuracy")

plt.ylabel(‘accuracy’)

plt.xlabel('epoch’)

plt.legend(['train’, 'validation], loc="upper left’)

plt.show()

summarize history for loss

plt.plot(history.history['loss'])

plt.plot(history.history['val_loss')

plt.title('model loss’)

plt.ylabel(’'loss’)

plt.xlabel('epoch’)

plt.legend(['train’, 'validation], loc="upper left")

plt.show()

print(model.evaluate(testX, testy, batch_size=64))

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 87 -

yp = model.predict(testX)
y_predll =[]
for element in yp:
if element>0.5:
y_pred1l.append(1)
else:

y_pred1l.append(0)
print(classification_report(testy, y_pred11))
cm = tf.math.confusion_matrix(labels = testy, predictions =y _pred11)
plt.figure(figsize =(10,6))
sn.heatmap(cm, annot=True, fmt="d")
plt.xlabel('Predicted’)
plt.ylabel('Truth’)
SMOTE (CNN, LSTM, CNN-LSTM, ML algorithms) cells:
dim1 =trainX_pre.shape[0]
dim2 =trainX_pre.shape[1]
dim3 =trainX_pre.shape[2]
diml, dim2, dim3
trainX_pre = trainX_pre.reshape(dim1, dim2*dim3)
trainX_pre.shape
from imblearn.over_sampling import SMOTE
smote = SMOTE(sampling_strategy = 'minority’)
trainX_sm, trainy_sm = smote.fit_resample(trainX_pre, trainy_pre)
trainX_sm = pd.DataFrame(trainX_sm)
trainy_sm = pd.DataFrame(trainy_sm)
trainy_sm.columns = ['labels']
dataframe = pd.concat([trainX_sm, trainy_sm], axis =1)
dataframe = dataframe.sample(frac=1)
dataframe.labels.value_counts()

trainX = dataframe.drop(['labels'], axis =1)

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU

Appendix

-88 -

trainy = dataframe['labels’]

trainX = np.array(trainX)

trainy = np.array(trainy)

new_dim = trainX.shape[0]

trainX = trainX.reshape(new_dim, dim2, dim3)

trainy = trainy.reshape(trainy.shape[0],1)

trainX.shape, trainy.shape

print(trainX.shape, trainy.shape, testX.shape, testy.shape)

ML algorithms application cells:

from sklearn.metrics import accuracy_score

from sklearn.neighbors import KNeighborsClassifier

from sklearn.tree import DecisionTreeClassifier

from sklearn.svm import SVC

from sklearn.naive_bayes import GaussianNB

from sklearn.ensemble import BaggingClassifier

from sklearn.ensemble import RandomForestClassifier

from sklearn.ensemble import ExtraTreesClassifier

from sklearn.ensemble import GradientBoostingClassifier

from sklearn.metrics import confusion_matrix, classification_report

import matplotlib.pyplot as plt

import tensorflow as tf

import seaborn as sn

def define_models(models=dict()):
models['’knn'] = KNeighborsClassifier(n_neighbors=7)
models['cart’] = DecisionTreeClassifier()
models['svm'] = SVC(kernel = "poly’)
models['bayes’] = GaussianNB()
models['bag'] = BaggingClassifier(n_estimators=50)
models['rf'] = RandomForestClassifier(n_estimators=50)

models['et'] = ExtraTreesClassifier(n_estimators=100)

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU

Appendix

-89 -

Appendix

models['gbm'] = GradientBoostingClassifier(n_estimators=100)
print('Defined %d models' % len(models))
return models
def evaluate_model(trainX, trainy, testX, testy, model)
model.fit(trainX, trainy)
yhat = model.predict(testX)
cm = tf.math.confusion_matrix(labels = testy, predictions =yhat)
plt.figure(figsize =(10,6))
sn.heatmap(cm, annot=True, fmt="d")
plt.xlabel('Predicted’)
plt.ylabel('Truth’)
accuracy = accuracy_score(testy, yhat)
print(classification_report(testy, yhat))
return accuracy * 100.0
def evaluate_models(trainX, trainy, testX, testy, models):
results = dict()
for name, model in models.items():
evaluate the model
results[name] = evaluate_model(trainX, trainy, testX, testy, model)
show process
print(">%s: %.3f' % (name, results[name]))
return results
def summarize_results(results, maximize=True):
create a list of (name, mean(scores)) tuples
mean_scores = [(Kk,v) for k,v in results.items()]
sort tuples by mean score
mean_scores = sorted(mean_scores, key=lambda x: x[1])
reverse for descending order (e.g. for accuracy)
if maximize:

mean_scores = list(reversed(mean_scores))

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -90 -

Appendix

print()
for name, score in mean_scores:
print('Name=%s, Score=%.3f' % (name, score))
models = define_models()
results = evaluate_models(trainX, trainy, testX, testy, models)

summarize_results(results)

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU -91-

	Multivariate Time Series Classification of Sensor Data from an Industrial Drying Hopper: A Deep Learning Approach
	Recommended Citation

	Multivariate Time Series Classification of Sensor Data from an Industrial Drying Hopper: A Deep Learning Approach
	tmp.1626985381.pdf.p5Nxn

