
Graduate Theses, Dissertations, and Problem Reports

2021

Multivariate Time Series Classification of Sensor Data from an Multivariate Time Series Classification of Sensor Data from an

Industrial Drying Hopper: A Deep Learning Approach Industrial Drying Hopper: A Deep Learning Approach

Md Mushfiqur Rahman
mr0143@mix.wvu.edu

Follow this and additional works at: https://researchrepository.wvu.edu/etd

 Part of the Industrial Engineering Commons

Recommended Citation Recommended Citation
Rahman, Md Mushfiqur, "Multivariate Time Series Classification of Sensor Data from an Industrial Drying
Hopper: A Deep Learning Approach" (2021). Graduate Theses, Dissertations, and Problem Reports. 8309.
https://researchrepository.wvu.edu/etd/8309

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F8309&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=researchrepository.wvu.edu%2Fetd%2F8309&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/8309?utm_source=researchrepository.wvu.edu%2Fetd%2F8309&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

Graduate Theses, Dissertations, and Problem Reports

2021

Multivariate Time Series Classification of Sensor Data from an Multivariate Time Series Classification of Sensor Data from an

Industrial Drying Hopper: A Deep Learning Approach Industrial Drying Hopper: A Deep Learning Approach

Md Mushfiqur Rahman

Follow this and additional works at: https://researchrepository.wvu.edu/etd

 Part of the Industrial Engineering Commons

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=researchrepository.wvu.edu%2Fetd%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages

Multivariate Time Series Classification of Sensor Data from an Industrial Drying

Hopper: A Deep Learning Approach

Md Mushfiqur Rahman

Thesis submitted to the Benjamin M. Statler College of Engineering and Mineral Resources at

West Virginia University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Industrial Engineering

 Thorsten Wuest, PhD, Committee Chair

Kenneth Currie, PhD

Behrooz Kamali, PhD

Department of Industrial and Management Systems Engineering

Morgantown, West Virginia

2021

Keywords: Predictive Maintenance, Multivariate Time Series, Classification, Data labeling,

Imbalanced Data, Deep Learning

Copyright 2021 Md Mushfiqur Rahman

Abstract

Multivariate Time Series Classification of Sensor Data from an Industrial Drying

Hopper: A Deep Learning Approach

Md Mushfiqur Rahman

In recent years, the advancement of industry 4.0 and smart manufacturing has made a large

number of industrial process data attainable with the use of sensors installed in the machineries.

This thesis proposes an experimental predictive maintenance framework for an industrial

drying hopper so that it can detect any unusual event in the hopper which reduces the risk of

erroneous fault diagnosis in the manufacturing shop floor. The experimental framework uses

Deep Learning (DL) algorithms in order to classify Multivariate Time Series (MTS) data into

two categories- failure or unusual events and regular events, thus formulating the problem as

binary classification.

As classification is a supervised learning technique, any DL algorithm needs labeled data for

classification. Moreover, raw data extracted from the sensors contain missing values.

Therefore, necessary preprocessing is performed to make it usable for DL algorithms and the

dataset is self-labeled after defining two categories precisely. To tackle the imbalanced data

issue, data balancing techniques like Ensemble Learning with undersampling and Synthetic

Minority Oversampling Technique (SMOTE) are used. Moreover, along with DL algorithms

like Convolutional Neural Network (CNN) and Long Short Term Memory (LSTM), Machine

Learning (ML) algorithms like Support Vector Machine (SVM), K Nearest Neighbor (KNN),

etc. have also been used to perform a comparative analysis on the result obtained from these

algorithms. The result shows that CNN is arguably the best algorithm for classifying this

dataset into two categories and outperforms other traditional approaches as well as deep

learning algorithms.

Acknowledgements

I would like to express my unbound respect and thankfulness to my research supervisor Dr.

Thorsten Wuest for his proper guidance and support during the span of this research. It was

him who motivated me to incite my own aptitude for knowing the unknown, encouraged me to

the utmost and gave rise to the confidence in me for completing this thesis.

I am also grateful to the committee members Dr. Kenneth Currie and Dr. Behrooz Kamali for

their valuable insights and feedback over the course of this thesis.

I wish to thank my parents, without whose prayers and constant support, I could never reach

this stage of my life.

iii

Table of Contents

iv

Table of Contents
List of Figures ... vi

List of Tables ... viii

1 Introduction .. 1

1.1 General Introduction ... 1

1.2 Background ... 3

1.3 Objectives and Scopes ... 4

1.4 Outline of methodology .. 4

1.5 Organization of the Thesis .. 5

2 Literature Review... 6

2.1 Traditional Algorithms .. 6

2.2 Deep Learning Approaches ... 8

2.3 Data Labeling .. 11

3 Methodology .. 12

3.1 Data Exploration and Preprocessing ... 12

3.1.1 Handling Missing Values ... 14

3.1.2 Data labeling .. 15

3.1.3 Characteristics of the labelled dataset .. 23

3.2 Solution Approach... 31

3.2.1 Artificial Neural Network .. 31

3.2.2 Convolutional Neural network (CNN)... 35

3.2.3 Recurrent Neural Network ... 38

3.2.4 Combination of CNN and LSTM .. 42

3.2.5 Machine Learning Algorithms ... 43

3.2.6 K-Nearest neighbor (KNN).. 46

3.2.7 Performance Measure .. 47

3.2.8 System specification .. 48

4 Experimental Results and Discussion .. 50

4.1 Experimental setup .. 50

4.2 Hyperparameter Tuning .. 52

4.3 Result ... 54

4.3.1 Ensemble Learning (CNN) .. 54

4.3.2 Ensemble Method (LSTM) .. 56

4.3.3 Ensemble Learning (CNN-LSTM) .. 58

4.3.4 SMOTE .. 60

Table of Contents

v

4.3.5 Machine learning algorithms ... 62

4.3.6 Summary .. 62

4.4 Discussion ... 64

4.4.1 Event definition and subsequence extraction ... 64

4.4.2 Data imbalance issue.. 65

4.4.3 Result interpretation ... 67

5 Conclusion and Future Work ... 69

References .. 70

Appendix .. 78

List of Figures

vi

List of Figures
Figure 1.1: Temperature Profiles ... 3

Figure 2.1: Two methods of calculating DTW distance[37] ... 6

Figure 2.2: Deep learning overview for time series classification[20] 9

Figure 2.3: MDDNN model architecture[61] .. 10

Figure 3.1: Raw dataset in CSV format ... 12

Figure 3.2: Temprature profile obtained from primarily preprocessed data 13

Figure 3.3: Missing values in the primarily processed dataset .. 13

Figure 3.4: Missing values in the temperature profile ... 14

Figure 3.5: Missing value imputation .. 14

Figure 3.6: Startup Procedure[36] .. 15

Figure 3.7:Cleaning Cycle[36]... 15

Figure 3.8: Conveying Issue[36].. 16

Figure 3.9: Event .. 17

Figure 3.10: Variation of an event ... 17

Figure 3.11: Definition of an event .. 19

Figure 3.12: Labelled Data .. 21

Figure 3.13: Example of an event and a non-event ... 21

Figure 3.14: Dataset Statistics.. 23

Figure 3.15: A simple visualization of nullity by column ... 23

Figure 3.16: Nullity matrix .. 24

Figure 3.17: Statistical summary of Hopper 1 hopper outlet temperature 24

Figure 3.18: Quantile and descriptive statistics of H1HOT ... 24

Figure 3.19: Common values and Extreme values of Minimum and Maximum of H1HOT .. 25

Figure 3.20: Binary classification labeling .. 25

Figure 3.21: Change of distribution after data normalization .. 27

Figure 3.22: Data normalization .. 28

Figure 3.23: Undersampling and oversampling[72] .. 29

Figure 3.24: SMOTE[76] ... 30

Figure 3.25: Ensemble method[77].. 31

Figure 3.26: Basic Structure of a Neural Network [79] ... 32

Figure 3.27: Activation Function [80] ... 33

Figure 3.28: MLP with one hidden layer[82] .. 35

Figure 3.29: Multi channel Deep CNN application on time series [32] 36

Figure 3.30: CNN for time series classification[83] .. 36

Figure 3.31: Different types of RNN architecture[84] ... 38

Figure 3.32: Computational Graph of RNN [85] ... 39

Figure 3.33: Back propagation through time[87] .. 39

Figure 3.34: Vanishing and Exploding Gradient [89] ... 40

Figure 3.35: LSTM structure[31], [89] .. 41

Figure 3.36: CNN LSTM architecture[91] .. 42

Figure 3.37: Support Vector Machine [94] .. 44

Figure 3.38: Optimizing hyperplanes [95] ... 44

Figure 3.39: Decision Tree[97] .. 45

Figure 3.40: Random Forest[98] .. 46

Figure 3.41: KNN [100] ... 47

List of Figures

vii

Figure 3.42: Confusion Matrix .. 48

Figure 4.1: Confusion matrix and classification report of imabalanced dataset (CNN) 50

Figure 4.2: Hyperparameter tuning .. 53

Figure 4.3: accuracy vs. epoch and loss vs. epoch... 53

Figure 4.4: CNN framework .. 54

Figure 4.5: Result summary of CNN (Ensemble Learning) .. 55

Figure 4.6: Confusion matrix and classification report of approach 3, run 1 55

Figure 4.7: best undersamples in each experimental run ... 55

Figure 4.8: best learning curves (CNN) ... 56

Figure 4.9: LSTM framework and summary ... 57

Figure 4.10: Result summary of LSTM ... 57

Figure 4.11: Confusion matrix and classification report of approach 1, run 7 57

Figure 4.12: Best undersamples in each experimental run (LSTM) .. 57

Figure 4.13: Best learning curves (LSTM) .. 58

Figure 4.14: CNN-LSTM framework and summary ... 58

Figure 4.15: Result summary of CNN-LSTM ... 59

Figure 4.16: Confusion matrix and classification report of appr. 1, run 4 and appr. 2, run 1 . 59

Figure 4.17: Best undersamples in each experimental run (CNN- LSTM) 59

Figure 4.18: Best learning curves (CNN-LSTM) .. 60

Figure 4.19: Result summary of SMOTE .. 61

Figure 4.20: Confusion Matrix and Classification report (CNN, run 3) 61

Figure 4.21: Learning curves (SMOTE) .. 61

Figure 4.22: Result summary of ML algorithms ... 62

Figure 4.23: Learning curves with high fluctation during convergence 66

List of Tables

viii

List of Tables
Table 3.1: Event durations ... 19

Table 3.2: Sliding Window Algorithm .. 22

Table 3.3: Histograms of the temperature zones ... 26

Table 3.4: Python libraries ... 49

Table 4.1: Training and Test Examples ... 50

Table 4.2: List of hyperparameters .. 52

Table 4.3: values considered for hyperparameters .. 52

Table 4.4: Initial values for hyperparameters .. 52

Table 4.5: Result summary (average result in ten runs) .. 62

Table 4.6: Result summary (Best result in ten runs) .. 63

Introduction

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 1 -

1 Introduction

1.1 General Introduction

In recent years, the advancement of smart manufacturing – the merger of information

technology and operational technology, has made the collection and processing of large number

of data industrial process data attainable. These collection of data which is referred as big data

is often an interchangeable term with artificial intelligence (AI) as big data uses various type

of analytics method of AI, machine learning and deep learning. AI refers to when computer,

robot, or other machines exhibit human-like intelligence. By implementing AI, the computer

or machine can mimic the capabilities of the human mind by learning from examples and

experience. AI is used to recognize objects, understand and respond to commands, make

decisions and solve various kinds of problems. Big data are being used to train different AI

models. As a result, machines can process large amount data faster than before and we can ask

machines to vacuum our floors, finish our sentences while typing and even recommendations

what to watch next on TV [1].

Large numbers of sensors installed in various industrial equipment and machine tools on the

shop floor have accelerated this development and increased the amount of available data even

more. These sensors record the activity of a machine over time. These data sets are referred as

time series data, and their analysis has gained popularity over the last few years. The installed

sensors in the industrial equipment and machinery assemble various time series information

[2] which can be analyzed to obtain meaningful events in smart manufacturing systems. In

addition to manufacturing [3], time series data can be found in various other domains such as

healthcare [4], climate [5], robotics [6], stock markets [7], energy system [8], and many more.

Among these diverse set of domains, the manufacturing domain is in the focus of this paper as

the case study is set in the plastic processing industry.

Sensors are one of the key driving forces in the revolution of intelligent and smart

manufacturing. In an industrial machine tool, sensors may collect data for different key

variables over time which is called Multivariate Time Series (MTS) data. If there is only one

variable measured over time, these data are called univariate time series. So we can say, a MTS

consists of several univariate time series. This is why MTS analysis is considered more

complex than the analysis of univariate time series. One of the main reasons behind this

difference is the correlation between the different variables. In this paper, our analysis of time

series will be limited to one of the most common machine learning problems, classification. In

a nutshell, the goal is to i) identify several key events over the time series and ii) enable the

model to identify the class of any key event from those classified and identified events within

the dataset.

Classification problems mainly deal with categorical variable where each variable belongs to

a specific category and the goal of the classification model is to identify the category of a

specific event. For MTS classification, the whole time series is divided into specific segments,

each of those segments belong to a category with distinguished patterns.

Introduction

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 2 -

A number of algorithms have been developed to analyze MTS. Some common approaches used

before the evolution of smart manufacturing are simple exponential smoothing [9], dynamic

time warping [10], [11], autoregressive integrated moving average [12]. In addition to those

traditional approaches several machine learning algorithms like K nearest neighbor [13],

decision trees [14], and Support Vector Machine (SVM) [15] were used on multiple occasions.

Some authors used combination of k nearest neighbor algorithm with some distance approaches

like DTW [16], [17] or Euclidean distance measure [18]. It has been shown that no single

traditional approach can outperform the result obtained from the K nearest neighbor algorithm

coupled with some distance measures [19]. However, ensemble methods of different

discriminant classifiers such as SVM and nearest neighbor with some distance approaches and

other machine learning classifiers such as decision tree and random forest can provide better

result than nearest neighbor combined with dynamic time warping method (NN-DTW) [10].

Two of the common issues with the traditional methods are that they often fail to locate

important features within the time series on their own and cannot identify the correlation

between the variables which result in false identification of any categorical event [3]. From this

point of view it is evident that for a univariate time series they may provide reasonably good

result, but for MTS their efficiency may not be good enough. In addition to that, handling of

the massive volume of data is another issue for traditional approaches along with simple

machine learning algorithm. This is why deep learning has come into the picture with the

capability of handling large amount of data by using a deep neural network in multiple layers

to extract meaningful features.

For the last few years deep learning techniques, a variety of neural network algorithms, have

been used extensively to deal with time series problems. For MTS, deep learning approaches

are of special interest as deep neural networks can learn the pattern of the dataset by

understanding the correlation between the variables of interest. It was shown in the literature

that deep neural networks can significantly outperform any traditional methods such as NN-

DTW [20] for both multivariate and univariate time series. For a small number of variables,

for example, in signal processing where two nodes are available and values obtained for those

two nodes over time build a MTS with two variables, NN-DTW may provide good result as

the distance method needs to deal with only two curves. However, when the number of

variables increases, it becomes more complex for NN-DTW. This is why deep neural networks

are of special interest for the case study of this paper where twelve distinct temperature zones

which means twelve variables are present in the dataset.

The most common two neural networks used over the last few years are Convolutional Neural

Network (CNN) and Recurrent Neural Network (RNN) and there has been a lot of variations

developed to tackle with a variety of problems. CNNs gain much popularity for their

contribution to computer vision problems [21]. This is why CNNs have been used extensively

in image recognition tasks [22], natural language processing [23]–[25], and speech recognition

[26]. The speech recognition and natural language processing both can be seen as some sort of

sequential learning problems. This is why although initially developed for computer vision

problems, CNN has been one of the most popular deep neural networks for dealing with time

series problems especially MTS problems [3], [20], [27]–[33]. Another popular neural network

Introduction

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 3 -

used recently is RNN which is mainly developed for sequential learning and it performs well

for univariate time series, but its use for the classification of MTS is limited [34]. For the time

series dataset with missing values it provides reasonably good result [35].

This paper aims to answer the following research questions relevant for the case study

presented in the next chapter:

 RQ1: Can a deep learning approach provide better result than the traditional

approaches for this case study?

o RQ1.1: Which deep neural network is the most suitable one for this case?

o RQ1.2: Should we use a combination of several neural networks like CNN

and RNN or a single one can provide the best result?

 RQ2: How we can deal with the unlabeled data issues?

1.2 Background

In the polymer processing industry dryers are one of the fundamental components for

“supplying dry-heated air that is blown upward through the to-be-dried material for several

hours, while new undried, cold/moist material is continuously loaded on top of the dryer

module, steadily moving downward through the dryer” [36] [37]. The drying hopper has two

distinct components, one of which is drying hopper monitor and another one is the regen wheel.

Both of these have distinct impact on the overall polymer processing. The drying hopper

monitor has eight temperature zones, the regen has three temperature zones and dew point

temperature is also measured for delivery air; all these temperatures are measured by

temperature sensors. These twelve temperatures are measured using sensors over the period of

one year (12 months) for this case study. The final data available is preprocessed with ignoring

missing values and outliers or extraneous cases. Overall these data have temperature readings

for twelve temperature zones collected over a year with a sampling interval of one minute.

Figure 1.1 shows the temperature profiles obtained from the sensors.

Figure 1.1: Temperature Profiles

file:///C:/Users/User/AppData/Roaming/Microsoft/Word/MS%20Thesis%20(Md%20Mushfiqur%20Rahman).docx
file:///C:/Users/User/AppData/Roaming/Microsoft/Word/MS%20Thesis%20(Md%20Mushfiqur%20Rahman).docx

Introduction

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 4 -

As there is a large amount of data available for six main temperature zones in the dryer/ hopper

system and six additional temperature zones in the regen and dryer regions like the hopper 1

delivery air temperature etc., it is possible to extract meaningful features from the real time

analysis of these data. If real time scenario of the drying hopper can be extracted from the

analysis of data, the production planner can determine the type of maintenance necessary.

The main goal of identifying any key event is a part of predictive maintenance so that the

operator of the machine can identify any potential hazard in the process. A massive amount of

data collected from sensors has made this possible in recent years. These large data sets can be

analyzed to identify hundreds of features which can be used to provide meaningful information

about the state and condition of the machines. Predictive maintenance can be defined as “the

maintenance strategy that employs advanced analytics to predict machine failures is known as

Predictive Maintenance” [8].

For this purpose, deep learning algorithm needs to be employed so that using a classifier,

machine can automatically detect whether any specific instance belongs to any disruption

events, based on which proper initiatives can be taken for the smooth flow of production. A

detailed description of the overall process and some distinct events can be found in [36].

1.3 Objectives and Scopes

There are several objectives and scopes of this thesis. First, versatility of MTS analysis needs

to be studied. Drying hoppers mechanism and patterns of temperature profile understanding is

another important objective of this thesis. Afterwards, understanding various parameters

related to MTS and applying this understanding to analyze the current material drying process

and various events associated with industrial drying hopper is another crucial objective of this

thesis. In addition to that, identifying various ways to deal with data labeling and imbalance

data issue bring a lot of potential scopes for this specific drying hopper case. Understanding

various parameters related to machine learning and deep learning algorithms and employing

those algorithms to classify the MTS data is the primary goal of this thesis so that a comparative

analysis on the employed algorithms can be performed.

1.4 Outline of methodology

In order to carry out the experiment, several steps have been incorporated which are:

Study of the state of art of MTS classification with traditional approaches like
machine learning algorithms and deep learnin algorithms

Study of the literature regarding data labeling and imbalanced data
issue

Perform necessary preprocessing of the data for using in ML and
DL algorithms

Model buildup for this particular case study and
implementation in python

Select the best method in terms of different performance
measures and provide recommendation

Introduction

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 5 -

1.5 Organization of the Thesis

This thesis is organized into five chapters along with references and appendix at the end. The

first chapter provides the general introduction with background of the study. Moreover,

objectives of the thesis and outline of methodology are also described in this chapter.

The second chapter provides the current state of the art of the MTS classification. The first two

sections describe the traditional approach and deep learning approaches whereas the last

section describes the current state of the art for handling unlabeled data issue.

The third chapter highlights the characteristics of the dataset and necessary preprocessing. This

chapter also provides various technique to deal with data imbalance issues. Afterwards,

solution approach from the view point of various algorithms are described. Moreover, various

performance measure and system specification were showcased in this chapter as well.

The fourth chapter describes the results obtained through using different algorithms and

provides a summary of the result. This chapter also identifies the best method to use for this

specific data case. Afterwards, a detail discussion is performed on the overall issues and results

of the thesis

The fifth and final chapter provides the conclusion and potential scopes for future work for this

specific case study.

Literature Review

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 6 -

2 Literature Review
A variety of algorithms have been applied to solve MTS classification. MTS data have

increased in various domains like anomaly detection, clinical diagnosis, weather prediction,

stock price, human motion detection, fault detection in manufacturing process and so on.

Among these variety of fields, MTS data have become very common in manufacturing industry

due to the use of variety of sensors installed at the machineries in the shop floor of a

manufacturing plant. This is why MTS analysis like classification has gained extreme

popularity among researchers in the manufacturing domain. With the increasing importance in

temporal data mining, researchers have continuously been developing variety of algorithms to

tackle a variety of problems in this field. Among temporal data mining problems, multivariate

analysis provides high complexities with increasing number of variables which might be highly

correlated or not. Overall the spatial structure in temporal data, time dependency, correlation

among variables etc. need to be carefully handled when dealing with any MTS analysis. In this

section, current state of the art of MTS classification will be presented from two point of views;

one of them is the traditional approach and the other is the AI approach like deep learning.

2.1 Traditional Algorithms

A benchmark algorithm used for classifying MTS is K- nearest neighbor with dynamic time

warping. Two approaches can be taken for MTS data according to the authors in [37]. One of

them is summing up the univariate time series DTW distances for the dimension of MTS

whereas in the other one, distance between two time steps is calculated through summing up

distance between each MTS which as shown in Figure 2.1.

Figure 2.1: Two methods of calculating DTW distance[37]

The author claims that traditional belief which is two methods are equivalent to each other in

terms of classification of MTS for a specific case is not really true and these two methods vary

from problem to problem. One method might work better in one specific use case whereas the

other one might not work well. They tested these ideas on a very extensive set of MTS datasets

and justified the reasoning behind using two different DTW approaches.

Using nearest neighbor classifier is very common in MTS datasets. In [38], the authors used

large margin nearest neighbor (LMNN) and DTW. Mahalanobis distance based DTW is used

to calculate the relations among variables through Mahalanobis matrix and LMNN is used to

learn the matrix though minimizing a renewed, non-differentiable cost function by co-ordinate

descent method. This method is compared with other similarity measure technique of MTS and

the authors claimed the superiority of their proposed method over other techniques. This

Literature Review

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 7 -

technique is also used by the authors in [39]. DTW multivariate prototyping is used in

evaluating scoring and assessment methods for virtual reality training simulators. It classifies

the VR data as novice, intermediate or expert where 1-NN DTW performed reasonably well,

the only better algorithm for this case was RESNET; an advanced version of CNN [40].

Overall, using DTW as a dissimilarity measure among features of time series and adapting the

nearest neighbor classifier in temporal data mining was very popular before the evolution of

deep learning [41].

A parametric derivative DTW is another variant of the DTW used in temporal data mining.

This technique combines two distances which are DTW distance between MTS and the DTW

distance between derivatives of MTS. This new distance is used afterwards for classification

with nearest neighbor rules [42]. Using a template selection approach based on DTW so that

the complex feature selection approach and domain knowledge can be avoided is another

approach taken for classifying MTS in [43]. Another variant of DTW is using DTW distance

measure with integral transformation. Integral DTW is calculated as the value of DTW on the

integrated time series. This technique combines the DTW and integral DTW with the 1-nearest

neighbor classifier which shows no overfitting issue [44].

DTW has also been used with hesitant fuzzy sets where time instance segments get more

attention than treating MTS data as a whole object or time instance one by one. In this method,

alignment between time instance segments is optimized as claimed by the authors in [45]. Their

research also showed that this method can be reduced to original DTW by setting scale

parameters. Furthermore, this method can balance the time consumption and accuracy of the

MTS classification.

Data normalization is a commonly used technique in any temporal data mining problem as

different variable have values which might be highly different from one variable to another.

But sometimes, normalization might destroy the information existing in the raw data which is

why combination of both raw data and normalized data might preserve meaningful information

about the data. The authors in [46] used this approach on nearest neighbor with DTW and

obtained better classification accuracy. Longest common subsequence method is sometimes

incorporated with DTW to provide better classification accuracy [47].

Symbolic representation of MTS is another traditional technique used for MTS classification

which considered all elements of the time series simultaneously and symbols are learned

through using a supervised learning algorithm. A tree based ensemble is used to detect the

interactions between each univariate time series represented as columns with time index. A

second ensemble is used to handle high dimensional input through implicit feature selection.

These tree learners can efficiently handle nominal and missing values [48]. MrSEQL is another

technique based on symbolic representation which is used by research that transform time

series data in time domain known as symbolic aggregate approximation (SAX) [49] and

frequency domain known as symbolic fourier approximation (SFA) [50]. Discriminative

subsequences are extracted from this symbolic data and these are used as features for training

a classification model [51][52]. Word extraction for time series classification plus multivariate

unsupervised symbols and derivatives abbreviated as WEASEL+MUSE also uses SFA

transformation to create sequence of words. A feature selection method determines promising

features and these features are extracted from all dimensions. Feature selection is performed

using a chi-squared model and then logistic regression is used to learn the features [53].

Literature Review

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 8 -

In dealing MTS classification, two major components need to be considered which are

approximating sequential dynamics and learning relationship among different variables. In

[54], authors used distance based method for approximating sequential dynamics, whereas

granger causality is used to learn the relationship among different variables. Sparsity of the

learnt time series is constrained to find the focal series.

One of the most extensive research on traditional methods for both MTS and UTS can be found

in [10] which highlights almost all of the above mentioned traditional approaches in different

categories like whole series similarity, phase dependent intervals, phase independent shapelets,

dictionary based classifiers, and combinations of transformations. This paper is a great resource

for any time series classification enthusiast to get an overview of all the traditional methods.

Another review paper which shows a brief overview of different classification approaches for

MTS can be found in [52].

Machine learning algorithms, both nonlinear techniques and ensemble learning techniques

have also been applied for time series classification over the year. Traditional classifiers like

Naïve bayes, Decision Tree and SVM are the most popular ones. Before using these algorithms

MTS data needs to be converted into feature vector format. This is why the authors in [55]

segmented the time series for obtaining a qualitative description of each series and determined

the frequent patterns. Afterwards the patterns which are highly discriminative between the

classes are selected and transformed the data into vector format where the features are the

discriminative patterns.

2.2 Deep Learning Approaches

With the evolution of deep leaning CNN has been used mostly over the years in temporal data

mining especially for classification. Moreover, RNN like Long short time memory has also

been the example of recent algorithmic advance in time series classification problem.

Furthermore, combination of both of these two algorithms which are although developed for

different purposes showed extremely good result for time series classification problem. Over

the year, a lot of different versions of these algorithms have been proposed by the researchers

and those are performing well in different case studies. In this section, several papers which

have used these algorithms and their variants will be discussed briefly.

CNN has been adapted to time series classification with 1D filter in the convolutional layer.

The reason of its popularity is it can discover and extract suitable internal structure to generate

the deep features of the input time series automatically through convolution and pooling

operation [56]. This is not really the case in traditional feature extraction method where features

need to be extracted manually through feature engineering.

“Deep learning for time series classification: A review” [20] and “The great MTS classification

bake off: a review and experimental evaluation of recent algorithmic advances” [57] are the

two papers which provided the summary and basics of the recent algorithmic advance in the

use of deep learning for MTS classification. Natural language processing (NLP) and Speech

recognition (SR) are two fields where RNN and LSTM has been highly successful over the

year and recently CNN has also showed high performance in terms of accuracy. NLP and SR

both have sequential aspects which is similar to time series analysis. An overview of the deep

learning approaches for times series classification taken from [20] is shown in Figure 2.2.

Literature Review

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 9 -

Figure 2.2: Deep learning overview for time series classification[20]

The authors in [27] used a tensor scheme with multivariate CNN for time series classification

where the model considers multivariate aspect and lag feature characteristics simultaneously.

Four stages were used in CNN architecture which are input tensor transformations stage,

univariate convolution stage, multivariate convolution stage and fully connected stage. In this

method they have used an image like tensor scheme to encode the MTS data. This approach is

taken because of the highly successful nature of CNN in compute vision for image

classification.

In addition to using convolution operation, deconvolution has also been applied to time series

data mining. In [58], the authors used deconvolutional network along with SAX discretization

to learn the representation of MTS. In this way, the authors were able to capture the correlation

with deconvolution that forced the pooling operation for dimension reduction along each

position of each variable. SAX discretization extracted bag of features and this representation

and bag of features improved classification accuracy. Dilated CNN is another version of the

CNN applied to time series where MTS is transformed into image, stacks of dilated and strided

convolutions are applied for feature extraction across the variables [29]. Among other

approaches with CNN, multi- channel deep CNN is another highly used one, where the model

learn features from individual time series and combines all channels after the convolution and

pooling stage. The combined and learnt features are then fed to a multilayer perceptron (MLP)

for final classification [32].

The dataset used in this thesis comes from manufacturing domain where fault detection in an

industrial machine has been very common now a days with the installed sensors and high

technological advance because of industry 4.0 and artificial intelligence. CNN has been

extensively applied in manufacturing time series data obtained from sensors. This predictive

maintenance helps detecting fault in a machine before reaching a critical condition. In majority

of cases, combination of time series images and CNN have been applied for fault detection in

manufacturing. The imaging is used for two reasons; one of them is the highly successful nature

of CNN in image processing, the second one is getting an overview of the fault pattern from

Literature Review

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 10 -

the image and identifying the image of time series as production threatening or not. In [59], the

authors performed a principal component analysis for feature extraction and reducing the

number of MTS variables to two so that they can identify the most useful two components in

the machine. The time series are encoded into image using Gramian angular field (GAF) and

used the images as input for the CNN. Another similar research can be found in [33] where

three techniques of converting MTS data into images have been used and tested which are

GAF, Gramian angular difference field (GADF), and Markov Transition field (MTF). It has

been found that different approaches of converting MTS into images do not affect the

classification performance and a simple CNN can outperform other approaches. In

semiconductor manufacturing it has been tested that MTS- CNN can successfully detect the

fault wafers with high accuracy, recall and precision [3].

Combining CNN, LSTM and DNN has been another highly used approach over the year. In

[60], the authors proposed a combined architecture abbreviated as CLDNN and applied on

large vocabulary tasks which outperformed three individual algorithms. Another similar

approach named as MDDNN has been used to predict the class of a subsequence in terms of

earliness and accuracy. Attention mechanism is incorporated with the deep learning framework

in order to identify critical segments related to model performance [61]. The proposed

framework as shown in Figure 2.3 used both time domain and frequency domain through fast

fourier transformation and merged them together for prediction. Another similar research

focused on early classification can be found at [28].

Figure 2.3: MDDNN model architecture[61]

Apart from LSTM, other recurrent network variants like bidirectional RNN (BiRNN),

bidirectional Long Short Term Memory (BiLSTM), Gated Recurrent Unit (GRU),

Bidirectional Gated Recurrent Unit (BiGRU) have been adapted to use in MTS classification.

In [62], the authors used MLSTM- FCN which is the combination of LSTM, squeeze and

excitation (SE) block and fully CNN where the SE block is integrated within FCN to leverage

its high performance for the MTS classification. The similar approach of using excitation block

has also been used in [30].

Multi scale entropy and inceptions structure ideas has been used with LSTM-FCNN model for

MTS classification. Subsequences of each variable have been convolved through 1D

convolutional kernel with different filter size to extract high level multi-scale spatial features.

Afterwards, LSTM has been applied to further process and capture temporal information. Both

of these spatial and temporal features are used as input to the fully connected layer [31]. Apart

from CNN, Evidence feed forward hidden markov model (EFF-HMM) has been combined

with LSTM to classify MTS. According to [63], learning of EFF-HMM is performed based on

Literature Review

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 11 -

the mistakes of the LSTM which outperformed other state of the art in human activity

recognition.

2.3 Data Labeling

Classification is a supervised learning technique which needs labelled data. But the dataset

used in this thesis is not labelled which is why data labeling was the primary concern before

using any supervised learning algorithm. In literature, very few works on time series data

labeling can be found. The technique researchers often used is known as semi supervised and

active learning for univariate time series. In [64], the authors focused on active learning with

positive unlabeled data. Their framework proposed a sample selection strategy to find the most

informative samples for manual labeling. They introduced two active learning approaches

which obtained high confident training dataset for classification.

Another paper addresses the labeling issue and the relevance of self-labeling techniques and

semi supervised learning technique for time series classification. An empirical study was

performed to compare self-labeled methods and various learning schemes and dissimilarity

measure. The authors experimented with 35 different datasets with different percentage of

labelled data in order to measure the transductive and inductive classification capabilities of

the self labelled data [65].

Semi supervised learning approach has been extensively used in text classification, but in time

series domain it has not been used much. In [66], the authors made special consideration to

adapt the well-known semi supervised approach into time series domain. Their approach was

tested on diverse data sources like electrocardiograms, handwritten documents, manufacturing

and video datasets. The results of the experiment showed that only a small amount of labelled

data is needed for using the semi supervised approach.

In this chapter, a brief overview of the current state of the art of MTS have been presented. In

the next chapter, methodology of this thesis with data exploration as well as necessary

preprocessing and various algorithms tested on this dataset will be discussed.

Methodology

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 12 -

3 Methodology

3.1 Data Exploration and Preprocessing

As mentioned in the background section, there are twelve distinct temperature zones. The

temperature zones are:

 Delivery Air Dewpoint (DAD)

 Regen Temperature Active Setpoint (RTAS)

 Regen Temperature Wheel Inlet (RTWI)

 Regen Temperature Wheel Outlet (RTWO)

 Hopper 1 Delivery Air Temperature (H1DAT)

 Hopper 1 Hopper Outlet Temperature (H1HOT)

 Hopper 1 Drying Monitor 1 Temperature (Bottom) (H1DM1T)

 Hopper 1 Drying Monitor 2 Temperature (H1DM2T)

 Hopper 1 Drying Monitor 3 Temperature (H1DM3T)

 Hopper 1 Drying Monitor 4 Temperature (H1DM4T)

 Hopper 1 Drying Monitor 5 Temperature (H1DM5T)

 Hopper 1 Drying Monitor 6 Temperature (H1DM6T)

The raw data obtained from the machine is preprocessed to obtain the final data file ignoring

missing values and outliers almost in all cases. These twelve temperatures are measured using

sensors over the period of one year (12 months) for this case study although the obtained data

file contains sensor reading of six months. The final dataset is prepared using a sampling

interval of one minute. A chunk of the dataset is shown Figure 3.1 and Figure 3.2.

Figure 3.1: Raw dataset in CSV format

As the temperature values for all twelve variables are measured over the period of time, this

dataset is a MTS. As mentioned before, MTS mainly consists of several univariate time series.

A univariate time series has only one variable measured over a certain period of time with a

specific time interval. It can be denoted as T= { t1, t2, t3,……, tn} where ti is the measured value

at the ith entry of the time series A MTS X = (X1, X2,.. …, Xm) where Xm is the mth univariate

time series which can be denoted as before where each univariate time series has n dimension

[40]. The dataset can be viewed as an n*m matrices where m refers to the no. of univariate time

series and n refers to the length of each time series.

Methodology

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 13 -

Figure 3.2: Temprature profile obtained from primarily preprocessed data

In Figure 3.1, the first column of the dataset is the time step converted to UNIX time in

milliseconds. UNIX time which is also known as Epoch time is a method for describing a point

in time. It is the number of seconds that has elapsed since the Unix epoch minus leap seconds;

the Unix epoch is 00:00:00 UTC on 1 January 1970 (an arbitrary date); leap seconds are

ignored, with a leap second having the same Unix time as the second before it, and every day

is treated as if it contains exactly 86, 400 seconds [67].

The first time step in the data file is 1525150860000 which can be converted to the real date

and time as May 1, 2018 5:01:00 AM. So, the temperature reading starts from May 1, 2018

5:01:00 AM and ends at November 1, 2018 5:00:00 AM. As the sampling interval is one

minute, no. of entries in the time series can be calculated in the following way:

No. of entries in the time series dataset:

19 (May 1) + 30*24 (May 2 – May 31) + 30*24 (June) + 31*24 (July) + 31*24 (August) +

30*24 (September) + 31*24 (October) + 5 (November) = 4416 hours = 4416 * 60 = 264, 960

minutes.

But the data file contains 263, 476 entries which indicates 264, 960 – 26 3, 476 = 1, 484 minutes

of data are missing. A detail investigation of the temperature profiles reveal those missing

values in the dataset. One of those examples are shown in Figure 3.3 and Figure 3.4.

Figure 3.3: Missing values in the primarily processed dataset

https://en.wikipedia.org/wiki/Leap_second
https://en.wikipedia.org/wiki/Coordinated_Universal_Time

Methodology

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 14 -

Figure 3.4: Missing values in the temperature profile

3.1.1 Handling Missing Values

Missing values have been a common issue in any time series analysis especially in

manufacturing domain. The sensors data might be missing for numerous reasons like power

outage at the sensor’s node, random occurrences of local interference [68] or data might be

missing during data preprocessing steps.

As shown in Figure 3.4, the windows from 6 am to 12 am where a large portion of the dataset

is missing which is from 6:37 am to 11:41 am. Although this is an extreme case in this dataset,

other missing value instances are not that severe. In most of the cases, 1 or 2 minutes of data

are missing. But there are some extreme cases as well as the case in Figure 3.4. Two approaches

were taken to tackle the missing value problem which are provided below.

 If the missing values are at those time steps where no event is happening previously or

afterwards within the time steps which has the same length of the missing time steps, the

missing values will be filled using a moving average. For example, data is missing from

101th time step to 109th time step, then the first missing value (time step 101) will be filled

using the average of the observations from the previous 60 time steps (time step 41 to time

step 100, the second missing value (time step 102) will be filled using the average of the

observations from time step 42 to time step 101.

Figure 3.5: Missing value imputation

Methodology

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 15 -

 If time steps are missing within an event, then the missing values will be imputed using

the moving average of the sixty observations which are in the event (either happening

before or afterwards of the missing time steps). Figure 3.5 shows such an example, where

an event has started at around 10:37 am and data are missing from 10:40 am to 12:24 pm.

It cannot be imputed with rolling average of previous observation as an event has already

started.

3.1.2 Data labeling

Classification is a supervised learning technique which requires labeled data to learn the

intrinsic behavior of events. Supervised learning is then used to predict the class of any event

which is essential for example in fault diagnostics applications. For this case study, three major

events were identified that occur regularly and have an impact on operations: startup procedure,

cleaning cycle, and conveying issues [36] which are shown in Figure 3.6, Figure 3.7 and Figure

3.8.

Figure 3.6: Startup Procedure[36]

Figure 3.7:Cleaning Cycle[36]

Methodology

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 16 -

Figure 3.8: Conveying Issue[36]

Although three distinct events are identified, they are hard to define due to a lot of variation of

these events. Therefore, the initial target of this thesis is to identify a specific category; either

failure (any event which is unusual) or regular rather than building the ability to detect the type

of any unusual event other than the usual behavior (steady state) and detect its class. For this

purpose, any event which is unusual from the regular case is identified, selected, and labeled

as one class and the rest of the events which can be defined as steady state will be a separate

class. Assuming this approach is successful for this case study, the subsequent goal will be to

identify the class of any unusual labeled event (not steady state). This will enable a variety of

value adding applications, including contextualizing the operation for the process planers and

operators, predict necessary maintenance steps, and provide input for customized designs of

next generation systems.

3.1.2.1 Data labeling issues

Selecting a specific event for the initial analysis highlights another challenge associated with

the data set. For example the cleaning cycle is a specific type of events, but there are many

variations of this event that can be observed over the time series. The challenge is to define the

event precisely and still be able to take some variations of the definition into account for the

classification. For the analysis, among several events observed in the data set, one event which

is shown in the image below is considered for the specific event.

In Figure 3.9, several temperature reading shows deviation from the usual behavior which are

described below:

 Regen temperature wheel inlet drop sharply from around 300° F to around 150° F, then

with a slight increase within 5 minutes, it starts decreasing again to around 100° F and

becomes steady.

 Hopper 1 drying monitor temperature 2 and 5 show almost similar behavior, drop from

around 175° F to around 160° F.

 Regen temperature wheel outlet drops from around 175° F after a continuous oscillating

behavior to around 100° F within 20 to 30 minutes.

 Hopper 1 drying monitor temperature 1 drops from 175° F to around 125° F.

Methodology

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 17 -

Figure 3.9: Event

 Hopper 1 delivery air temperature sharply drops from 175° F to 125° F, then becomes

steady for around 15 minutes, then drops slowly to around 100° F.

 Hopper 1 outlet temperature drops from around 150° F to 100° F within 10 minutes.

 Return air temperature dry inlet shows a small drop 100° F from 115° F, then becomes

steady again.

 Delivery air dew point increases from around 10° F to around 40° F. This change can be

seen around 25-30 minutes after the other temperature drops occur.

Among 12 temperatures, certain amount of deviations can be observed in the above mentioned

8 temperatures. The deviation for hopper 1 drying monitor temperature 2 and 5 as well as return

air temperature dry inlet are minor compared to other 5 temperatures where a significant

amount of temperature drop can be observed. When defining the event, the variations of this

event need to be considered while the overall scenario might be same with a little variation in

temperature drop. Another such event is shown in Figure 3.10.

Figure 3.10: Variation of an event

The major variations are the regen temperature active set point dropping sharply to 300° F from

around 375° F which was steady in the event shown before. Hopper 1 drying monitor

Methodology

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 18 -

temperature 1 drops slightly by roughly 5° F from an approximately 175° F initial temperature,

which was not the case before and hopper 1 drying monitor temperature 2 remains constant.

It is evident that although the two events are almost similar in fashion, there are some major

changes which can be observed in the temperature behavior. So, the event must be defined in

such a way that any minor changes from the specified event can also be detected through the

classification algorithm. This can be either setting a range for each temperature; for example,

the regen temperature drops from 300° F to 100° F, without setting it specifically, there can be

a defined limit which can be dropping down from anywhere between 310° F and 290° F to

anywhere between 100° F to 120° F or specifying a slope for each temperature zone can be

another strategy.

3.1.2.2 Data labeling approaches

In order to label the data considering only one main event or all those major events, two

approaches can be taken. One of them is manual labeling and the other one is semi supervised

learning approach.

Manual labeling is always costly with respect to time needed to go through the data with an

expert, especially in cases where the data set spans a long time period as is the case here. It

needs significant effort from the expert who has deep understanding of the overall process. So,

manual labeling may result in accurate labeling of the data which will assist the classifier to

learn the behavior of the data and will be trained accordingly to identify the category.

The second method that aligns with the time restrictions of experts to label data in case of large

data set is the semi supervised learning. Due to the large volume, manual labeling technique is

not a feasible choice although it may provide the best labeling of the dataset. The semi

supervised approach [13], [65] needs a very small amount of labeled dataset. Then this labeled

dataset is trained to predict the classes of the rest of the dataset. In this way, the whole dataset

is labeled which can be trained again to learn the pattern of the complete dataset to identify the

classes of the test set or any future dataset.

For this case study, manual labeling is performed to obtain the finalized labelled dataset. As

mentioned earlier, the labelling will be performed in such a way so that the dataset can be

converted to a binary classification dataset. In this fashion, all those steady state events or

regular events will be treated as one class and the rest of the dataset where any unusual pattern

or behavior can be observed are treated as the other class.

3.1.2.3 Event identification

Before labelling, one more thing needs to be clarified which is the definition of an event for

this dataset. There can be various ways to define an event, define the length of an event with a

start time and end time. For example, the event shown in Figure 3.11, starts exactly from

5:04:00 AM, but for simplicity the start time of this event is considered as 5:01:00 AM, so that

the hour from 5:01:00 AM to 6:00:00 AM can be considered as an event. In other words, it can

be said that a major event (unusual) occurs in this hour. The definition of an event as an hour

is considered for the ease of labeling and simplicity in visualizing an event.

Methodology

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 19 -

Figure 3.11: Definition of an event

In order to label the dataset, first all those significant events (unusual) are identified and listed

in Table 3.1.

Table 3.1: Event durations

Start Time End Time Time

difference(hour)

Start Time (unix) End Time (unix)

5/5/2018

5:00:00 AM

5/5/2018

10:00:00 AM

5.00 1525496460000.00 1525514400000.00

5/9/2018

7:00:00 PM

5/10/2018

1:00:00 AM

6.00 1525892460000.00 1525914000000.00

5/10/2018

11:00:00 AM

5/10/2018

1:00:00 PM

2.00 1525950060000.00 1525957200000.00

5/12/2018

3:00:00 AM

5/12/2018

4:00:00 AM

1.00 1526094060000.00 1526097600000.00

5/13/2018

3:00:00 AM

5/14/2018

4:00:00 AM

25.00 1526180460000.00 1526270400000.00

5/19/2018

2:00:00 AM

5/21/2018

4:00:00 AM

50.00 1526695260000.00 1526875200000.00

5/26/2018

2:00:00 AM

5/29/2018

3:00:00 AM

73.00 1527300060000.00 1527562800000.00

6/2/2018

2:00:00 AM

6/4/2018

5:00:00 AM

51.00 1527904860000.00 1528088400000.00

6/9/2018

2:00:00 AM

6/11/2018

7:00:00 AM

53.00 1528509660000.00 1528700400000.00

6/23/2018

1:00:00 AM

6/25/2018

5:00:00 AM

52.00 1529715660000.00 1529902800000.00

7/1/2018

12:00:00 PM

7/2/2018

5:00:00 AM

17.00 1530446460000.00 1530507600000.00

7/4/2018

2:00:00 AM

7/9/2018

4:00:00 AM

122.00 1530669660000.00 1531108800000.00

7/15/2018

2:00:00 AM

7/16/2018

1:00:00 AM

23.00 1531620060000.00 1531702800000.00

7/21/2018

2:00:00 AM

7/23/2018

4:00:00 AM

50.00 1532138460000.00 1532318400000.00

7/28/2018

2:00:00 AM

7/30/2018

2:00:00 AM

48.00 1532743260000.00 1532916000000.00

8/4/2018

3:00:00 AM

8/6/2018

3:00:00 AM

48.00 1533351660000.00 1533524400000.00

Methodology

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 20 -

8/7/2018

5:00:00 PM

8/7/2018

7:00:00 PM

2.00 1533661260000.00 1533668400000.00

8/8/2018

10:00:00 PM

8/9/2018

2:00:00 AM

4.00 1533765660000.00 1533780000000.00

8/9/2018

7:00:00 PM

8/9/2018

9:00:00 PM

2.00 1533841260000.00 1533848400000.00

8/11/2018

2:00:00 AM

8/13/2018

5:00:00 AM

51.00 1533952860000.00 1534136400000.00

8/22/2018

2:00:00 PM

8/22/2018

4:00:00 PM

2.00 1534946460000.00 1534953600000.00

8/24/2018

7:00:00 PM

8/25/2018

6:00:00 AM

11.00 1535137260000.00 1535176800000.00

8/25/2018

7:00:00 AM

8/25/2018

2:00:00 PM

7.00 1535180460000.00 1535205600000.00

8/25/2018

7:00:00 PM

8/27/2018

2:00:00 AM

31.00 1535223660000.00 1535335200000.00

8/27/2018

12:00:00 PM

8/27/2018

2:00:00 PM

2.00 1535371260000.00 1535378400000.00

8/28/2018

10:00:00 PM

8/29/2018

12:00:00 PM

14.00 1535493660000.00 1535544000000.00

9/3/2018

2:00:00 AM

9/4/2018

2:00:00 AM

24.00 1535940060000.00 1536026400000.00

9/5/2018

6:00:00 PM

9/5/2018

8:00:00 PM

2.00 1536170460000.00 1536177600000.00

9/20/2018

10:00:00 AM

9/20/2018

12:00:00 PM

2.00 1537437660000.00 1537444800000.00

9/21/2018

2:00:00 AM

9/21/2018

11:00:00 AM

9.00 1537495260000.00 1537527600000.00

9/21/2018

8:00:00 PM

9/21/2018

10:00:00 PM

2.00 1537560060000.00 1537567200000.00

10/23/2018

6:00:00 PM

10/23/2018

8:00:00 PM

2.00 1540317660000.00 1540324800000.00

10/23/2018

11:00:00 PM

10/24/2018

2:00:00 AM

3.00 1540335660000.00 1540346400000.00

10/24/2018

4:00:00 AM

10/24/2018

6:00:00 AM

2.00 1540353660000.00 1540360800000.00

10/27/2018

1:00:00 AM

10/28/2018

1:00:00 AM

24.00 1540602060000.00 1540688400000.00

10/28/2018

9:00:00 PM

10/29/2018

10:00:00 AM

13.00 1540760460000.00 1540807200000.00

10/29/2018

12:00:00 PM

10/29/2018

6:00:00 PM

6.00 1540814460000.00 1540836000000.00

 Total hours

=841.00

3.1.2.4 Labeling each row as 0 or 1

After listing the start time and end time of all events, both the original time series data file

where the first column is the time step in UNIX time and the event duration data file shown in

Table 3.1 are needed to label the time series data. A sample rate of 60,000 is used as UNIX

time in the original data file is in millisecond and the sampling used to generate the dataset was

1 minute or 60,000 milliseconds. The time durations from the event duration dataset are used

to turn it into a column of milliseconds where each entry is 60,000 milliseconds apart from

each other. Afterwards an iterable variable is created which contains the time column of the

Methodology

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 21 -

original time series data. Afterwards, this variable and the broken down event markings data

are used to create a column of 1s and 0s that exactly match the rows of the original dataframe.

In short the steps are:

 Prepare a list of events with the start time and finish time.

 Break the start and finish times of the events into a column of milliseconds where each

entry is 60, 000 milliseconds or 1 minute apart from each other.

 Convert this list into a column of 1s and 0s.

 Add this column to the original time series data file.

More details of this procedure can be found in [69]. A portion of the final dataset with the

labelled column is shown in Figure 3.12.

Figure 3.12: Labelled Data

3.1.2.5 Labeling subsequences

In Figure 3.12, it can be noticed that for each row or each minute a label is assigned. But a

minute of data cannot really define an event. As mentioned earlier, hours of MTS information

will be extracted from the data and each hour will be defined as either event or non-event. Two

examples of event and non- event are shown in Figure 3.13.

Figure 3.13: Example of an event and a non-event

Methodology

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 22 -

So, instead of labeling a minute of MTS data or one row as one example (either event or non-

event), sixty minutes or one hour of MTS data or sixty rows simultaneously will be considered

as an example. Each sixty rows or 1 hour of MTS data will be considered as one subsequence.

A subsequence is a piece extracted from a long sequence with a specific length; in this case the

length of each subsequence is sixty minutes.

3.1.2.5.1 Sliding Window

Sliding window algorithm is a well-known technique to extract subsequences from a long time

series. Two parameters need to be defined before using a sliding window which are window

length and sliding step. As each example has a length of sixty minutes, window length will be

taken as sixty. Sliding step will also be taken as sixty as after picking sixty minutes of data, if

we want to move to next example, we have to move sixty minutes forward. Then another

subsequence with a length of sixty minutes will be extracted from the long time series and will

be labelled.

As mentioned earlier, the events are defined as an hour. When the dataset was labelled by each

row or each minute, each minute was assigned a label. Now the goal is to assign a label for

each sixty minutes. So, using sliding window algorithm all the subsequences will be extracted

and a label will be assigned. As mentioned earlier, the example of events and non-events are

defined as an hour. So, in primary labeling, all sixty rows or minutes of each hour are assigned

same label. After subsequence extraction, the label of each hour will be assigned according to

the labels given to the all sixty rows or minutes of that particular hour.

If a MTS, T has a length of n, window size is L and the sliding step is p, the number of extracted

subsequences, m can be obtained by using the following formula [32]:

𝑚 = ⌈
𝑛−𝐿+1

𝑝
⌉ Or 𝑚 =

𝑛−𝐿

𝑝
+ 1

In our case, the length of the time series, n = 264,960, window length, L = 60, and sliding step,

p = 60. So, m = (264,960-60)/60+1 = 4,416.

So, using a window length of sixty and sliding step of sixty, 4,416 subsequences can be

extracted from this time series. The pseudocode for the extraction of subsequences and the

labelling of the extracted subsequences are shown in Table 3.2.

Table 3.2: Sliding Window Algorithm

Pseudocode of Sliding Window (subsequence extraction and labeling):

1. START the procedure

2. The set of extracted subsequences, X (n, L, p) : = 0, labels, Y: =0

3. i: = 0, m: = 0 where m is the no. of extracted subsequences

4. While (end of a subsequence, j = p*i + L) < n do

5. X[m] : = T (p*i,…, j) and Y[m] : = L (j)

6. i: = i+1, m: = m+1

7. End While

8. End the procedure

After labeling each subsequence, the dataset can be viewed as a three dimensional dataset with

dimension N*L*M where N represents Nth example or subsequence, L represents the window

length, M represents number of sensors or input variables of the MTS. Each subsequence has

Methodology

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 23 -

a dimension of L*M. In this case, L = 60 and M = 12, so, each subsequence has 60*12 = 720

features of the MTS.

3.1.3 Characteristics of the labelled dataset

A detailed characteristics of the labelled dataset can be obtained by using pandas profiling tool

in python. A basic summary of the labelled dataset is provided in Figure 3.14.

Figure 3.14: Dataset Statistics

3.1.3.1 Data visualization of each variable

In the labelled dataset, there are 13 variables, twelve variables measuring the temperature of

twelve zones in the drying hopper are the input variables, X and the other column which is the

output variable valued either 1 or 0. In order to classify the data, an efficient algorithm is needed

to learn the mapping function from the input to output. In this way the goal is to learn the

mapping function as approximately as possible so that when new input data are provided to the

algorithm, it can predict the output of the input data.

As the issue of missing values is already taken care of in the previous section, it can be seen

from Figure 3.14 that no missing values exist in the labelled dataset, instead there are some

duplicate rows which is only 0.5% of the dataset. Existence of no missing values is also evident

in Figure 3.15 and Figure 3.16.

Figure 3.15: A simple visualization of nullity by column

Methodology

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 24 -

Figure 3.16: Nullity matrix

A detail inspection of all twelve input variables can also be done using pandas profiling. For

example, the detailed statistics of the hopper 1 hopper outlet temperature (H1HOT) is shown

in Figure 3.17, Figure 3.18 and Figure 3.19. Figure 3.17 shows the distinct value counts and

missing value counts with mean, minimum and maximum value of the variable.

Figure 3.17: Statistical summary of Hopper 1 hopper outlet temperature

Figure 3.18: Quantile and descriptive statistics of H1HOT

Methodology

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 25 -

Figure 3.19: Common values and Extreme values of Minimum and Maximum of H1HOT

Figure 3.18 represents the Quantile statistics like percentile, minimum, maximum, median,

range as well as interquartile range and descriptive statistics like variance, standard deviation,

mean absolute deviation (MAD), skewness, monotonicity and so on. Figure 3.19 represents the

common values as well as the minimum and maximum extreme values of hopper 1 hopper

outlet temperature. Detailed characteristics of the other eleven variables can be inspected in

similar fashion. The frequency distribution of all twelve variables can be obtained from the

histogram which are shown in Table 3.3.

3.1.3.2 Distribution of the input and output variables

It is clearly evident from the histograms that either there is a skewness or the histogram is

bimodal in shape which indicates a clear division in the temperature values of all twelve

temperatures zones. For example, H1DM1, H1DM2, H1DM3, H1DM4, H1DM5, H1DAT,

RTWI, DAD, and RTAS, all these temperature zones are clearly divided in two regions which

indicate the events and non-events. This is also reflected in other histograms like RTWO,

H1HOT, and H1DM6 which are more like a bimodal shape. When a failure event occurs, the

temperature drops all on a sudden from the steady state values. This phenomenon is clearly

reflected in almost all temperature zones. This is why, the approach to treat this problem as a

binary classification problem is highly justified. The labeling was done in this fashion that the

non-events which are very high in number are labelled as class 0 and the events which are very

low in number are labelled as class 1.

Figure 3.20: Binary classification labeling

Methodology

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 26 -

The detail of the categorical variable, labels is shown in Figure 3.20. From the pi-chart and

histogram it can be seen that only 19.1% of the data belong to the class 1 (events), where 80.9%

of the data belong to the class 0 (non-events). This phenomenon further justifies the distribution

shown in the histograms of the temperature zones. The value count for class 0 shown in Figure

3.20 is 214,500, as each complete example or subsequence of an event or non-event was

defined as an hour previously, the number of subsequences belong to class 0 is 214,500/60 =

3,575. On the other hand, the value count for class 1 is 50,460, so the number of examples or

subsequences belong to class 1 is 50,460/60 = 841. The total number of subsequences or

examples (both events and non-events) are 3,575+841 = 4,416 which matches with the previous

result of number of subsequences obtained by using sliding window algorithm.

Table 3.3: Histograms of the temperature zones

Temp.

Zone

Histogram Histogram Temp.

Zone

DAD

RTAS

RTWI

RTWO

H1DAT

H1HOT

H1DM1

H1DM2

Methodology

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 27 -

H1DM3

H1DM4

H1DM5

H1DM6

3.1.3.3 Data transformation (Min-max scaler)

As mentioned in section 3.1.3.2, the dataset is skewed which is why transforming the data using

scaler transformation technique like normalization of the input variables is highly

recommended for any machine learning and deep learning algorithm which use a weighted sum

of input variables and use distance measures between examples like SVM and k nearest

neighbor. For example, delivery air temperature is comparatively lower than the other

temperatures in drying hopper. So during learning the model might learn very large weight

values or very small values. Both of these case is highly sensitive and can result in poor

performance of the model during learning. According to the authors in [70], “in practice, it is

nearly always advantageous to apply pre-processing transformations to the input data before it

is presented to a network. Similarly, the outputs of the network are often post-processed to give

the required output values”. Data normalization changes the distribution of the input variables

as shown in Figure 3.21.

Figure 3.21: Change of distribution after data normalization

The main advantage of scaling is it makes the algorithm’s learning process easier especially

deep learning algorithms. Lack of scaling or standardization sometimes result in high error

gradient values which changes the updated weight values in an uncontrollable way. The most

common method of scaling is data normalization. In this way, data are normalized in a range

Methodology

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 28 -

from 0 to 1. In order to normalize the data, the maximum and minimum value of each variables

needs to be identified. Afterwards a value is normalized as follows: Normalized X = (X- min)/

(max-min). In python, this task is done by using MinMaxScaler for a scikit learn object. In this

case, after using data normalization, the dataset looks like as shown in Figure 3.22. It can be

noticed that the output variable is not used for data normalization as it is a categorical variable.

Figure 3.22: Data normalization

3.1.3.4 Imbalanced Dataset Issue

The division of two class clearly introduces a new issue for this dataset which is the imbalanced

classification problem. In real world, imbalanced dataset is not really a surprising issue as

perfectly balanced dataset are very rare. Moreover, in manufacturing detecting a failure event

will always result in an imbalanced data as the failure event happens very rarely with a

reasonably good setup of machineries and maintenances. But the issue is deep learning

algorithm is highly ineffective to class imbalance as there is an underlying assumption of

balanced data in deep neural network algorithms.

In order to tackle the class imbalance issue, this thesis will go through four major techniques

which are Undersampling, Oversampling, Synthetic Minority Oversampling Technique

(SMOTE) and Ensemble learning with Undersampling. These techniques are described in the

next couple of sections.

3.1.3.4.1 Undersampling

This technique is probably the simplest one, where a portion of the data belonged to the

majority class will be dropped to make the dataset a balanced one with respect to both classes

for binary classification. In this case, the number of examples belonged to the minority class is

845 and the number of examples in the majority class is 3571. For training purpose, the dataset

will be divided in two segments: training examples and test examples. This will be done by

using the first 80% of the dataset starting from May 1, 2018 5:01:00 AM to September 9, 2018

10:00:00 AM as training set and the rest of the dataset as test set. After train test split, the

number of training examples from minority class will be 791 and the number of training

examples from the majority class will be 2742. From 2742 examples of the majority class, 791

examples will be randomly chosen and these 791+791 = 1582 examples will be used for

training the dataset with an efficient classification algorithm. Number of test examples after

the train test split will be 883. These 883 examples will be used for the evaluation of

classification algorithm.

Although the imbalanced data issue can be solved in this fashion, but a large portion of the data

will be lost. This undersampling approach is called random undersampling which is very

Methodology

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 29 -

simple and effective, but the issue is examples are removed without any concern for how useful

or important they might be in determining the decision boundary between the classes. This

means it is possible, or even likely, that useful information will be deleted [71]. There are other

undersampling techniques which are out of the scope of this thesis.

3.1.3.4.2 Oversampling

The simplest oversampling techniques is duplicating the minority class randomly over and over

until the minority class is equal to the majority class and make the dataset balanced. In this

case, 791 training examples from the minority class will be duplicated randomly to create 2742

examples of minority class and will be added to training dataset. Figure 3.23 shows the visuals

of both undersampling and oversampling.

Figure 3.23: Undersampling and oversampling[72]

In this fashion, the number of training examples will be increased from 3533 to 2747+2742 =

5484 examples. This technique is highly prone to overfitting and the added examples do not

really add any meaning to the dataset. Random oversampling is also a naïve method like

random undersampling as it assumes nothing about the data and no heuristics are used [73].

Therefore, instead of duplicating examples randomly, new data can be synthesized from

existing examples. This is a data augmentation technique known as Synthetic Minority

Oversampling Technique (SMOTE) described in section 3.1.3.4.2.1.

3.1.3.4.2.1 Synthetic Minority Oversampling Technique (SMOTE)

As the name implied, SMOTE synthesizes new examples from the minority class. The

technique was first introduced and described in [74]. The underlying theme of the method is

selecting examples that are nearest to the feature space. It draws a line between the nearest

examples and draws a new sample along that line. According to [75], SMOTE randomly selects

a minority class example and determines its k nearest neighbors. Afterwards, a synthetic

example is formed by randomly selecting a neighbor from the neighbors determined

previously. A line in the feature space is then used to connect the minority class example and

the randomly selected neighbor. The synthetic examples are mainly formed as a convex

combination of the randomly chosen minority example and the nearest neighbors. A visual of

the steps of SMOTE is shown in Figure 3.24.

Methodology

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 30 -

Figure 3.24: SMOTE[76]

The main advantage of this technique is it can produce as many synthetic examples as needed

for creating a balanced dataset. There are many ways to use SMOTE. One common technique

is to use undersampling first to reduce the number of examples in the majority class and use

SMOTE afterwards for oversampling the minority class. The other approach is using the

SMOTE only to oversample the minority class to balance the class distribution which will be

used in this thesis.

The main reason for which SMOTE works better than random oversampling is the synthetic

examples generated by SMOTE which are very reasonable compared to the duplicated

examples created by random oversampling as these synthetic examples are very close to the

minority examples in the feature space. But there are some drawbacks as well like SMOTE

does not really care about the majority class, so it might create some ambiguous examples

which cannot really be considered as representatives of the dataset.

3.1.3.4.3 Ensemble Learning

Ensemble learning is a highly useful machine learning technique where multiple learning

techniques are used to solve the same problem and then combine the results from all of these

techniques using a majority voting technique. The main advantage is it combines the result of

several techniques and tries to improve the result obtained from each technique. To deal with

the imbalanced data issue, undersampling will be performed by dividing the majority class in

certain segments, and each segment of the majority class will be combined with the minority

class to train the dataset. A simple example of the ensemble learning with undersampling is

shown in Figure 3.25 where out of 4000 training examples, 3000 examples belong to the

majority class and the rest 1000 examples belong to the minority class. 3000 majority class

examples are divided in three segments where in each segment 1000 examples are selected

randomly. Afterwards each 1000 examples from the majority class and all 1000 examples from

the minority class are combined and shuffled properly. These three sets of data are used to build

a three classifiers each of which will train the dataset and then test on the test dataset to predict

a class for the test examples.

Methodology

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 31 -

Figure 3.25: Ensemble method[77]

For example, classifier 1 predicts the class of one example as 1, classifier 2 predicts it as class

1 and classifier predicts it as class 0. As the majority of the vote belongs to the class 1, the

ensemble learning will identify this example as class 1. For our case, three different approaches

were taken for ensemble learning which will be presented in the result section.

3.2 Solution Approach

As mentioned before among several traditional approaches to classify MTS, K nearest neighbor

combined with dynamic time warping is one of the best methods so far. On the contrary deep

learning has gained popularity in recent years. Among several deep learning algorithms CNN

has been the state of art now with several variations. Traditional multi-layer perceptron (MLP)

of neural network has an issue in long time series as the length slows down the computational

speed. Deep learning like CNN and RNN like long short term memory have the ability to learn

the features during training and then MLP is used for classification. A nonlinear function like

RelU or Tanh or sigmoid function is used over many layers of neural networks. Each layer

takes the output from its previous layer and at the end the probability distribution of each class

is obtained which is used to identify the class of that example. A short overview of these

algorithms and solution approaches taken for this case study will be presented in the next

couple of subsections.

3.2.1 Artificial Neural Network

Artificial neural network has gained immense popularity over the last few years with the advent

of artificial intelligence through deep learning. As mentioned earlier, deep learning is a subfield

of machine learning. The first machine learning model reference is found in 1957 by

psychologist Frank Rosenblatt [78]. At that time it has limited power to capture the insight of a

process through the use of a perceptron. But over the year, researchers improved it with many

hidden layers and could not get the result they were looking for. The gradient back propagation

algorithm has made the multi-layer deep neural network popular and now it has become one of

the most advanced tools in data science. Several type of neural networks have been proposed so

far like CNN (CNN), RNN (RNN), Generative Adversarial Network (GAN) and so on. The

basic architecture of a neural network is shown in Figure 3.26.

Methodology

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 32 -

Figure 3.26: Basic Structure of a Neural Network [79]

An artificial neural network consists of several layers with input layer, some hidden layers and

output layer. Each hidden layer has a specific number of nodes which build the connection

from one layer to another layer. The nodes also known as neurons are modeled by weights

which can be of any value. So, all inputs are updated by the weights and summed and this

function is modeled from one layer to another layer. The modeling is mainly performed by the

linear combination of the weights with the inputs and bias is added to the linear combination.

The overall idea is more like a linear regression, but it can be of millions of input nodes or

thousands of nodes in the hidden layer. An activation function is used to control the output like

tanh, sigmoid or relu.

3.2.1.1 Forward Propagation

A typical neural network starts with m examples, each of the examples has n input features.

Each layer, L has k [L] units/ neurons. The first layer has k [0] = n units. So, the input matrix is

of shape (n, m). In each layer, two major operations occur in the forward pass which is known

as the forward propagation. Those are the linear transformation using the weights associated

with each neuron and the bias and the nonlinear transformation with the use of the activation

function, A [L]. The forward propagation step is shown below:

 𝑍[𝐿] = 𝑊[𝐿]𝐴[𝐿−1] + 𝑏[𝐿] (1)

Methodology

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 33 -

 ŷ = 𝑨[𝑳] = 𝒇[𝑳](𝒁[𝑳]) (2)

3.2.1.2 Activation Function and cost function

The activation functions are mainly used for nonlinear mapping of the input data stream. The

no linearity is needed to create a nonlinear decision boundary through the nonlinear

combination of the weights and the inputs. Typically used activation functions are shown in

Figure 3.27.

Figure 3.27: Activation Function [80]

The forward propagation step is followed by a cost or loss calculation. Mainly, the idea is the

weights are initialized randomly at the very beginning and then the forward propagations is

performed. Afterward a log loss cost function is calculated in terms of the actual output value

and the predicted value from the forward propagation. The typically used log loss functions are

binary cross entropy or categorical cross entropy which are mainly used for classification. For

regression problems, MSE is the commonly used measure. A typical log loss cost function is

shown below:

 𝐽 = −
1

𝑚
∑ (𝑦𝑖 log(𝑎[𝐿](𝑖)) + (1 −𝑚

𝑖=1 𝑦𝑖)log(1 − 𝑎[𝐿](𝑖))) (3)

3.2.1.3 Backward Propagation

In backward propagation the derivative of the loss or cost function is calculated with respect to

the neural network parameters W and b. These gradients are then used to update weights and

biases. There are several optimization algorithms available for the calculation of the optimum

weights and biases. Among them gradient descent is perhaps the most popular one. There are

various versions of the gradient descent used commonly in numerous applications like

RMSprop, ADAM optimization algorithm, gradient descent with momentum. Among them,

gradient descent with momentum uses past steps to determine the direction of the gradient

descent. ADAM is one of the best optimizers in noisy dataset and has been very popular in

recent years over stochastic gradient descent in many cases. There are some regularization

techniques to reduce over fitting like L2 regularization where the cost function is penalized to

avoid the risk of highly over fitted model and the dropout techniques. Another useful technique

to reduce overfitting is dropout. In dropout technique, nodes in a hidden layer are randomly

shut down to use random different subsets of the neurons. The main goal is to learn more robust

features of the dataset. The basic equations of the backward propagation is shown below:

Methodology

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 34 -

 𝑑𝑍[𝐿] = 𝑑𝐴[𝐿] ∗ 𝑔[𝐿]′
(𝑍[𝐿])

(4)

𝑑𝑊[𝐿] =

𝜕𝐽

𝜕𝑊[𝐿]
=

1

𝑚
𝑑𝑍[𝐿]𝐴[𝐿−1]𝑇

(5)

𝑑𝑏[𝐿] =

𝜕𝐽

𝜕𝑏[𝐿]
=

1

𝑚
∑ 𝑑𝑍[𝐿](𝑖)

𝑚

𝑖=1

(6)

𝑑𝐴[𝐿−1] =

𝜕𝐽

𝜕𝐴[𝐿−1]
= 𝑊[𝐿]𝑇𝑑𝑍[𝐿]

(7)

After obtaining the derivatives parameter updates are performed in the following way:

 𝑊[𝐿] = 𝑊[𝐿]−∝ 𝑑𝑊[𝐿]

(8)

 𝑏[𝐿] = 𝑏[𝐿]−∝ 𝑑𝑏[𝐿]

(9)

Where α = learning rate which is one of the most important hyper parameters to choose during

training.

After training the training examples over multiple iterations and when the cost is reduced

significantly, it indicates the neural network is learning the parameters effectively. Afterwards,

the learned parameters are used on a test set to check the performance of the model. There are

several performance measures like accuracy for classification or RMSE for the regression

problems.

Neural networks are prone to over fitting and under fitting. There are several techniques to

prevent over fitting like L2 regularization or dropout as mentioned before. In order to reduce

under fitting several measures like using a bigger network with many hidden layers with many

neurons or training a longer period of time.

Two very important hyper parameters in neural network are batch size and no. of epochs. Batch

size is the no. of training examples the learning algorithm will use to update the parameters. If

batch size is 1, it is called stochastic gradient descent, if it is m (no. of training examples), this

is called batch gradient descent and if it is between 1 and n, this is called mini batch gradient

descent which is extremely useful in most type of problems. The typical values for the batch

size 32, 64, 128 etc. The number of epochs is a hyperparameter that defines the number of

times the learning algorithm will work through the entire training dataset. One epoch means

that each sample in the training dataset can update the internal model parameters. An epoch is

comprised of one or more batches. It can be viewed as a for-loop over the number of epochs

where each loop proceeds over the training dataset. Within this for-loop is another nested for-

loop that iterates over each batch of samples, where one batch has the specified “batch size”

number of samples [81].

In this thesis, a very basic artificial neural network like multilayer perceptron will be used along

with other approaches in search of the best algorithm for this specific drying hopper case. The

traditional MLP has a similar kind of structure as shown in Figure 3.26. The input layer has a

Methodology

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 35 -

shape of (n*m) where n is the number of features in each example and m is the number of

examples which are 720 and 3533 respectively in this case. A typical one MLP with one hidden

layer is shown in Figure 3.28.

Figure 3.28: MLP with one hidden layer[82]

Here, one important thing needs to be remembered is the training dataset was actually a three

dimensional dataset with shape of (3533, 60, 12). For traditional MLP, this dataset is

transformed to two dimensional dataset to align with the requirement of the input layer of a

MLP. Therefore, the dataset is reshaped from (3533, 60, 12) to (3533, 720). The no. of hidden

layers and no. of nodes in a hidden layer, both of these hyperparameters will be finalized during

the training period through trial and error. Too many neurons in the hidden layer can cause

overfitting and it takes to much time for the processing unit during training period. With the

aid of loss vs. epoch and accuracy vs. epoch graph, different set of neuron in the hidden layer

can be used for trial and error. Systematic grid search or random search of the hyperparameters

can take care of this issue. Before training period, these hyperparameters are tuned with the

model to have an overview of the performance of the model in terms of different combination

of hyperparameters.

The last layer of the MLP will have only one neuron embedded with sigmoid activation

function. The class of a particular example will be obtained in the following way.

𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑙𝑎𝑠𝑠 = {

1; �̂� > 0.5
0; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(10)

3.2.2 Convolutional Neural network (CNN)

The most common two neural networks used over the last few years are CNN and RNN and

there has been a lot of variations developed to tackle with a variety of problems. CNN gain

much popularity for their contribution to computer vision problems. This is why CNN have

been used extensively in image recognition tasks, natural language processing, and speech

recognition. The speech recognition and natural language processing both can be seen as some

sort of sequential learning problems. This is why although initially developed for computer

vision problems, CNN has been one of the most popular deep neural networks for dealing with

time series problems especially MTS problems. A typical example of the CNN application on

time series data is shown in Figure 3.29 and Figure 3.30.

Methodology

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 36 -

Figure 3.29: Multi channel Deep CNN application on time series [32]

Figure 3.30: CNN for time series classification[83]

Originally, CNN was developed for image processing where the filter matrices are used for the

dimensionality reduction of the large 2D image with pixel values. For time series, the filters

used are 1D which are used on the subsequences of a long time series. For a MTS, various

approaches can be taken for using CNN. As shown in Figure 3.29, each variable can be

processed separately using CNN through convolutional or filter layer and pooling layer. In this

case, the input subsequence has a length of sixty. For a deep CNN these convolutional layer

and filter layers can be used multiple times until the shape of the input subsequence reduced to

a desired value without losing any meaningful feature. Generally a convolutional layer is

always followed by a pooling layer. The reason is the pooling layer can provide a quick

summary of the features which are present in a region of the feature map generated by the

convolutional layer. After a certain amount of dimensionality reduction of the input

subsequences, all those subsequences with reduced length are flattened and joined together to

commence a fully connected layer. From this layer, the network will work like a traditional

MLP as discussed in section 3.2.1.

Methodology

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 37 -

Another approach is rather than processing each variable separately, twelve variables with a

subsequence length of sixty will be processed simultaneously and flattened after extracting

meaningful features through convolutional layer and pooling layer.

3.2.2.1 Convolutional Layer

A CNN mainly consists of three layers which are the convolutional layer, pooling layer and

fully connected layer. In convolutional layer the input feature matrix will be used to perform a

convolution with a fixed filter. The filter is initially defined randomly which are trained over

the training process to obtain the desired values of the filter with the help of a cost function.

There are actually two filter parameters, one of them is the no. of filters and the other one is

filter size or kernel size. Typical values of kernel size for 1D convolution operation in time

series application are 3,5,7 and so on which depends on the length of the input subsequence.

Stride and padding are two most important parameters to be decided during convolution

operation. Stride is mainly used to define how many units the filter will shift during convolution

operation over the input feature vector. A common scenario in the convolution operation is the

input feature vector size will go down continuously over many layers of convolution. The

problem is when the size of the input matrix will be reduced, there is a possibility that many

important features might be lost. To overcome this, padding operation is performed so that

even with a smaller filter than the input vector, the size of it will be the same. It will help the

convolution operation to go slowly over the layers of the neural network. So, two types of valid

operations exist, one of them is called valid, where padding is performed and it is not very

common in time series analysis and the other one is same, where no padding operations is

performed, so the input feature vector shape decreases with the convolution operation. A

typical example of the convolution operation which is more like a sum product operation is

shown below.

For example, the input subsequence is [5, 4, 9, 2, 7, 6] and the filter we are using has a kernel

size of 3 which is (2, 3, 1)

So the output subsequence will be [5*2+4*3+9*1, 4*2+9*3+2*1, 9*2+2*3+7*1,

2*2+7*3+6*1) or [31, 37, 31, 31].

Each term of the output subsequence is obtained by using the following formula

𝑛[𝐿] = ⌊

𝑛[𝐿−1] − 𝑓[𝐿]

𝑠[𝑙]
+ 1⌋

(11)

3.2.2.2 Pooling layer

In the pooling layer with the help of a sliding window the dimension reduction of the input

feature matrix is performed through the use of max pooling or average pooling. Padding and

stride also need to be specified in this layer which are hyper parameters in pooling operation.

The previous example can be shown to obtain the output subsequence after the pooling

operation by using the same formula. The choice of max pooling or average pooling is also a

hyperparameter.

For example, kernel size is 2 for the pooling operation. The possible output subsequences for

the pooling layer is given below.

Max pooling: [37, 37, 31] and Average pooling: [34, 34, 31].

Methodology

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 38 -

3.2.2.3 Fully Connected Layer

The fully connected layer is mainly used to use the result of previous two layers to learn the

nonlinear features. This step is more like the typical MLP described in the previous section.

The remaining steps like forward propagation, backward propagation, and weight updating

using gradient descent are the same as a typical neural network.

3.2.3 Recurrent Neural Network

CNN has gained immense popularity in computer vision which is because of the strong

capturing power of the CNN in terms of spatial feature. In time series classification, the same

intuition is also applied where a convolutional and a pooling layer tries to extract the spatial

features of a subsequence or the abstract concept of a subsequence. But one shortcoming of

CNN is it ignores the temporal information or dependency of one time step on the previous

values in a time series. Therefore, for sequence modeling, RNN has been developed and has

gained widespread success in many sequence modeling applications like machine translation,

natural language processing, time series forecasting or classification and so on.

A traditional neural starts with a fixed size input, so when it comes to a situation when the input

can be of variable lengths, traditional neural network does not work. RNN is developed in such

a way it can process variable length inputs. There are several type of RNN architectures as

shown in Figure 3.31.

Figure 3.31: Different types of RNN architecture[84]

 The first architecture as shown in Figure 3.31 is the traditional feed forward neural

network which is known as one to one architecture with fixed size input and output length.

 The second architecture is one to many where the output can be of variable length. The

common example of this architecture is image identification where the input is an image

and the output is a text describing the image.

 The third architecture referred to as many to one which is used for sentiment classification

or time series analysis like forecasting and classification. In this case, many to one

architecture will be used where the input is a subsequence and the output will be the class

of that subsequence.

 The last two architectures known as many to many which is commonly used for language

translation like Google Translator where the input and output both can be of variable

lengths. For time series analysis, this architecture can also be used to forecast time series

like forecasting the stock price of next seven days at a time.

A general computational graph of RNN is shown in Figure 3.32.

Methodology

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 39 -

Figure 3.32: Computational Graph of RNN [85]

As shown in Figure 3.32, between input layer and output layer there is a hidden state which is

the output of the input state. These hidden states take the information from the previous hidden

state as well as the new input and then transmit it to the next hidden state. In this way, a

recursive structure with time dependence is generated where each hidden state depends on the

previous state. There are three weight matrices used in this architecture which are Wxh, Whh and

Why and the bias terms bh and by which are shared temporally. A cell state or hidden state h(t)

is a function with weights of the input x(t) and the previous hidden state h(t-1) [86]. This function

and the set of parameters are same at every time step and with every time step, hidden state h(t)

is updated as shown in Figure 3.32. The basic set of equations of a RNN are shown below.

 ℎ(𝑡) = 𝑓𝑤(𝑥(𝑡), ℎ(𝑡−1))

(12)

 ℎ(𝑡) = 𝑔1(𝑊ℎℎℎ(𝑡−1) + 𝑊𝑥ℎ𝑥(𝑡) + 𝑏ℎ)

(13)

 �̂�(𝑡) = 𝑔2(𝑊ℎ𝑦ℎ(𝑡) + 𝑏𝑦)

(14)

Back propagation in RNN is different from the traditional feed forward neural network which

is known as Back Propagation through Time (BPT). A computational graph of BPT is shown

in Figure 3.33 obtained from [87].

Figure 3.33: Back propagation through time[87]

Methodology

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 40 -

Back propagation through time is performed at every single time step T, the basic equation for

BPT is shown below [88]. More details on the BPT can be found at [84] where each step of

gradient calculation and weight updating can be found.

 𝜕𝐿(𝑇)

𝜕𝑊
= ∑

𝜕𝐿(𝑇)

𝜕𝑊 (𝑡)

𝑇

𝑡=1

(15)

When computing the gradient with respect to h0 involves many factors of Whh and consequently

there is a long term dependency when handling the repeated gradient computation back in time.

The two common problems faced by RNN are vanishing and exploding gradient.

 When gradient becomes too small, updating of the parameters do not add any

significant information to the process as it becomes insignificant with not really a major

update of the weights. So with respect to the number of layers with long sequence, RNN

suffers from long term dependency. This situation of insignificant weight update due to

very small values of gradient is known as vanishing gradient.

 The second problem known as exploding gradient happens when gradient becomes too

large with exponential growing, the resulting weight after the update becomes too large.

Figure 3.34: Vanishing and Exploding Gradient [89]

The common techniques to overcome these errors are shown in Figure 3.34. In this thesis, the

most popular version of RNN, LSTM will be used to get rid of the vanishing gradient problem

associated with RNN especially in long time series which is similar to the dataset presented in

this thesis. A short description of LSTM will be provided in section 3.2.3.1.

3.2.3.1 Long Short Term Memory

Long Short Term Memory (LSTM) is a special kind of RNN which uses a complex recurrent

unit with gates so that the gates can control what information will pass through the next step.

RNN does not bother whether a particular information is important or not. LSTM relies on a

gated cell in order to track information throughout many steps[87]. The gated memory unit

controls the information flow and thus carry on with the selective long term information and

forgets short term information which the model finds unnecessary. This is how LSTM solves

the RNN’s problem of exploding gradient and vanishing gradient. LSTM uses repeating chain

like structure where each unit is repeated over the architecture, but layers are present in each

unit which interact with each other. Figure 3.35 shows how a single unit of LSTM works.

Methodology

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 41 -

Figure 3.35: LSTM structure[31], [89]

As shown in Figure 3.35, there are three different gates in a LSTM which are forget gate, input

gate and output gate.

Forget Gate: This gate controls the information flow from the previous timestamp. The basic

equation at this gate is provided below.

 𝑓𝑡 = 𝜎(𝑤𝑖𝑓𝑥𝑡 + 𝑏𝑖𝑓 + 𝑤ℎ𝑓ℎ𝑡−1 + 𝑏ℎ𝑓)

(16)

Where xt = input timestamp at time t, wif = weight matrix for the input, ht-1 = hidden state at

time t-1, whf = weight matrix for the hidden state; bif and bhf are the bias terms associated with

input and hidden state respectively. Sigmoid function as shown in Figure 3.27 is used after the

linear combination of weights and biases which will convert the value of ft between 0 and 1. If

ft = 0, the network will forget the information and if ft = 1, the network will remember the

information for further processing.

Input gate and New Information Processing: The input gate is used to quantify the

information obtained from the newest input [90]. The basic equation is provided below.

 𝑖𝑡 = 𝜎(𝑤𝑖𝑖𝑥𝑡 + 𝑏𝑖𝑖 + 𝑤ℎ𝑖ℎ𝑡−1 + 𝑏ℎ𝑖)

(17)

Where wii= weight matrix for the input, whi = weight matrix for the hidden state; bii and bhi are

the bias terms associated with input and hidden state respectively for the input gate. A sigmoid

function is used in this gate as well to convert the input timestamp between 0 and 1.

Afterwards, the new information which will be passed to the cell state needs to be processed.

The basic equation is shown below.

 𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝑤𝑖𝑔𝑥𝑡 + 𝑏𝑖𝑔 + 𝑤ℎ𝑔ℎ𝑡−1 + 𝑏ℎ𝑔)

(18)

 𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡𝑔𝑡

(19)

Where wig= weight matrix for the input, whg = weight matrix for the hidden state; big and bhg

are the bias terms associated with input and hidden state respectively for the update of new

Methodology

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 42 -

information, ct-1 = cell state at timestamp t-1. Here tanh activation function as shown in Figure

3.27 is used. The reason is the tanh activation function converts the value of gt between -1 and

1. If the value of gt is negative, the new information will be subtracted from the previous cell

state and if it is positive, it will be added to the new information.

Output gate: The basic equations for the output gate is shown below.

 𝑂𝑡 = 𝑡𝑎𝑛ℎ(𝑤𝑖𝑜𝑥𝑡 + 𝑏𝑖𝑜 + 𝑤ℎ𝑜ℎ𝑡−1 + 𝑏ℎ𝑜)

(20)

 ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝑐𝑡)

(21)

The output value used a sigmoid function like the previous gates and turn the output into a

value between 0 and 1. Afterwards, the current hidden state will be calculated using the output

and the cell state at time t with a tanh activation function which indicates the hidden state is

function of the long term memory ct and the current output.

In this thesis, LSTM will be used to capture the time dependency of the events occurred in the

drying hopper. For a large sequence, LSTM will figure out which information might be

necessary for this case and use that information to maintain the time dependency. In addition

to that, as an improvement over RNN, LSTM has the high capturing power in terms of temporal

information. But it does not really care about the internal features like spatial feature which is

mainly handled by CNN. So, in the next section combination of both LSTM and CNN will be

explored.

3.2.4 Combination of CNN and LSTM

Combination of CNN and LSTM which is commonly known as CNN LSTM is mainly used

for capturing internal features of input like time series or sequence of images through CNN

layer and LSTM layer for sequential learning simultaneously. The architecture also includes a

deep neural network like MLP at after the CNN and LSTM layer. The architecture of CNN

LSTM is shown in Figure 3.36 [91].

Figure 3.36: CNN LSTM architecture[91]

CNN LSTM has been used for sequence analysis problems in various ways in the literature. In

[92], the authors trained three models CNN, LSTM and deep neural network like MLP

separately and combined the outputs from these three networks using a combination layer

which is similar to ensemble learning.

Methodology

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 43 -

CNN LSTM works well on dataset which have 2D structure or pixels in an image or 1D

structure like words in sentence. In addition to that, the input or output or both has a temporal

structure. In this case, drying hopper temperature profile has both spatial and temporal features.

The spatial features are for example, the peak temperature value of an event or the specific

pattern observed in an event. Moreover, as the drying hopper temperature values are recorded

over the period, any event or non-event has temporal dependency. For example, this dataset is

processed in such a way that each event or non-event is of one hour length. Each time step in

an event is temporally dependent on the previous time step. So, theoretically it makes more

sense to use the CNN LSTM model. So in simple block diagrams, the architecture looks like

as follows.

A CNN LSTM model uses the input subsequences as blocks, extract features from each block

and then uses LSTM to use the flattened extracted features and identify its own features before

a final mapping on each class is made [93]. In this case, the input subsequence of length 60

will be divided into four subsequences each of which will have a length of 15 minutes.

3.2.5 Machine Learning Algorithms

In this thesis, several machine learning algorithms will be used along with the deep learning

techniques to perform a comprehensive evaluation of these algorithms on drying hopper use

case dataset. Both non-linear algorithms like k-nearest neighbors, classification and regression

tree, SVM and naïve bayes as well as ensemble algorithms like bagged decision trees, random

forest, extra trees and gradient boosting will be used to evaluate the performances of these

algorithms compared to the deep learning algorithms and traditional methods like dynamic time

warping with k nearest neighbor. In the next two subsection, a brief background of SVM and

random forest will be provided to have an overview of both non-linear method and ensemble

method.

3.2.5.1 Support Vector Machine (SVM)

SVM is a non-linear machine learning algorithm used for supervised learning like classification

or regression problem mostly for classification problems. The main idea is each data points of

all classes are plotted in an n-dimensional space with n number of features. The final goal is to

obtain the hyper plane that separates the classes. A simple example of SVM is shown in Figure

3.37 where three hyperplanes are shown among which optimum hyperplane will be chosen

which separates the two classes better.

Input CNN LSTM ANN Output

Methodology

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 44 -

Figure 3.37: Support Vector Machine [94]

Figure 3.38: Optimizing hyperplanes [95]

In this thesis, the drying hopper temperature values recorded are divided into a number of

subsequences, each of which is treated as one example (train or test). Each example has 60*12

=720 features or 60 features at each time stamp for all twelve temperature zones. In order to

use SVM, the input must be a two dimensional array. This is why the input array of shape (no.

of examples, window length, number of sensors or variables) is reshaped into a shape of (no.

of examples, no. of features in one example). Figure 3.37 shows how SVM optimizes

hyperplanes in variety of cases.

The general thumb rule is choosing the hyperplane that separates the classes well as in case 1

of Figure 3.38. In case 2, SVM tries to minimize the distance between nearest data points which

is known as margin. It gives more priority on separating classes than minimizing margin as

shown in case 3. SVM ignores outliers and with a defined feature and tries to optimize the

margin (case 4). If the dataset is linearly inseparable, SVM uses non-linear hyperplane by using

radial basis function (RBF) kernel or polynomial kernel. Normally in high dimensional space,

dataset are more linearly separable [95]. More details on SVM can be found at [96].

Methodology

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 45 -

3.2.5.2 Random Forest

Random forest is an ensemble machine learning algorithm used in variety of cases. The main

idea behind random forest is building multiple decision trees and combining them together to

provide a better prediction. As mentioned, random forest is an ensemble technique which uses

bagging technique where the core idea is the combination of learning models increase the

accuracy of the prediction. In section 3.1.3.4.3, ensemble learning though undersampling

technique was mentioned which is used in this thesis in order to overcome the issue, imbalanced

dataset. The ensemble method was used to improve the classification accuracy of the neural

network combining multiple undersampling neural network model and random forest works in

similar fashion.

Decision tree is another machine learning algorithm based on which random forest works.

Decision tree splits the dataset repetitively using the decision node unless the leaf nodes or

terminal nodes are obtained where the best split is found through maximizing the entropy gain.

As decision tree is highly sensitive to the training data which might result in high variance with

generalizing error. Random forest is developed to overcome this issue through a random

collection of trees which is less sensitive to training data.

Figure 3.39: Decision Tree[97]

Random forest starts with random sampling with replacement multiple times. For example, our

training data has 720 features in each example and there are m training examples. So out of

those m training example, it will randomly sample the dataset with replacement, which

indicates any row or example can be appeared more than once in the new dataset. This process

is known as bootstrapping. Afterwards each bootstrapped dataset will be trained using a

decision tree where each dataset will use a subset of features, 720 in this case. For the test set,

each example will be passed through the each of the newly developed trees and prediction will

be made on each trees for the new example. A majority voting system will be used to define

the final class of that example. This ensemble technique is known as aggregation.

Bootstrapping and aggregation in together is known as bagging.

Methodology

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 46 -

Figure 3.40: Random Forest[98]

The process is called random forest as two operations performed in the algorithm;

bootstrapping and random feature selection, both are random process. Bootstrapping ensures

that same data are not used in every tree, thus it prevents the sensitivity to original training data

problem of decision tree.

Random feature selection helps to reduce the correlation between trees as when all the features

are used in bootstrapped data, the trees developed from those data will be similar in nature with

same decision nodes. This might increase the variance and will reduce the efficacy of the

random forest. The number of features used in each bootstrapped data is normally the log or

square root of the total number of features. More details on the theory of the random forest can

be found in [99].

3.2.6 K-Nearest neighbor (KNN)

K nearest neighbor is another nonlinear machine learning algorithm and is probably the most

intuitive algorithm in machine learning. The main intuition behind K- nearest neighbor is the

examples which have same labels or similar features should be close enough from each other

in an n dimensional space. K nearest neighbor uses a distance approach to calculate the distance

between two time series or two MTS. The most commonly used distance method is Euclidean

distance method, but it has a disadvantage. When two time series have unequal length

Euclidean distance method cannot be used. This is why another distance approach which is

highly popular in time series application, dynamic time warping (DTW) is often incorporated

with K nearest neighbor to classify time series. Figure 3.41 shows the basic of K nearest

neighbor algorithm. The main steps of using a KNN are:

 Calculating the distance between each pair of training examples using distance measures

like Euclidean (equal length time series) or DTW (unequal length time series)

 Selecting k nearest examples based on the distance calculated in the previous step.

 Assigning the most common label among k nearest examples to the new example.

Methodology

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 47 -

Figure 3.41: KNN [100]

For this thesis, KNN with Euclidean distance approach will be used as the extracted

subsequences are of same length. More details about KNN with distance approach can be found

in [32], [101].

3.2.7 Performance Measure

In this thesis, accuracy, precision, recall and f1 scores will be used as performance measure. In

order to calculate these measures, four terms need to be introduced which are true positive

(TP), true negative (TN), false positive (FP) and false negative (FN). For the rest of this thesis,

non-events will be identified as positive class whereas events will be identified as negative

class. These performance measures are described below.

Accuracy:

 Accuracy is defined as the ratio between correctly classified examples and total number of

examples. It can be misleading especially in case of imbalance dataset. It can be used if

percentage of examples belonged to the majority class is known before, so that the lower bound

of accuracy can be determined.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(22)

Precision:

Although accuracy is a performance measure for the overall datasets, precision is a

performance measure for individual class. Precision is a performance measure which is related

to the prediction. It can be defined as the ratio between correctly predicted positive class

example and all predicted positive class examples or the definition can be provided in terms of

negative class as well. It is a well-known measure to identify percentage of examples from a

class which are correctly identified in terms of predicted labels.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃

(23)

Methodology

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 48 -

Recall:

Another highly useful performance measure is recall also known as sensitivity which is related

to the truth instead of prediction. It can be identified as the ratio between the examples which

are actually positive and the examples which are predicted as negative, but actually positive.

This definition can be extended to the negative class perspective as well. It is also a well-known

measure to identify the percentage of examples from a class which are correctly identified in

terms of the actual labels.

𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(24)

F1 score:

Probably the best performance measure is the f1 score which considers the data imbalance

issue. It is a more structured performance measure using precision and recall.

𝐹1 =

2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

(25)

Another useful graphical technique to visualize the model’s performance is confusion matrix.

A confusion matrix is a matrix with number of dimension equals to the number of classes. A

typical confusion matrix for two classes is shown in Figure 3.42.

Figure 3.42: Confusion Matrix

3.2.8 System specification

In this thesis, python programming language will be used for data preprocessing, model

development, experimental runs and evaluation. A variety of python frameworks like pandas

and numpy for data preprocessing and neural network framework like tensorflow and keras

will be used for model development and experimentation. The experiment will be run on

windows 10, Intel® core ™ i5-3337U CPU @ 1.8 GHz. The following table shows the python

libraries used for the experimentation.

Methodology

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 49 -

Table 3.4: Python libraries

Name Purpose of use

Pandas Data preprocessing

Numpy Data preprocessing

Scikit learn ML model build up and data preprocessing

like min-max scaling

imblearn Data balancing

Matplotlib Plotting graph

keras Deep learning model build up

Tensorflow Backend for keras

Seaborn Confusion matrix

In the next chapter, the detail of the experimentation on the models described in this chapter,

result and evaluation will be highlighted. Afterwards, the discussion regarding the result and

limitation of the thesis will be presented.

Experimental Results and Discussion

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 50 -

4 Experimental Results and Discussion
The first goal of the previous chapter was to highlight the characteristics of the dataset and

various preprocessing steps with data labeling and imbalanced data issue. Furthermore, the

next goal was to highlight the solution approaches that will be implemented on this specific

drying hopper case study. In this chapter, a detail of the experimental setup and results will be

showed. Furthermore, a comparative analysis will be performed on the deep learning

algorithms and traditional techniques dedicated to time series.

4.1 Experimental setup

One of the common issues regarding the dataset was imbalanced dataset as discussed in the

previous chapter. In order to remedy this issue, four techniques were presented which are

random undersampling, random oversampling, SMOTE, and ensemble learning using random

undersampling. In this section, experimental setup for SMOTE and ensemble learning will be

highlighted. Undersampling technique will not be explicitly showed as a separate experiment

as it will be used extensively in ensemble learning. Moreover, data balancing techniques will

be used only for deep learning algorithms as in predictive modeling, most of the deep learning

algorithms are designed with the assumption of equal number of samples in each class. For

other traditional approaches, the regular preprocessed dataset will be used.

As discussed in the previous chapter, in order to use ensemble learning with majority voting,

the training dataset will be divided into certain segments. In Table 4.1, it can be seen that only

22.39% examples belong to class 1 in the training set which makes the dataset highly

imbalanced. When no special consideration was taken for the data imbalance issue, with any

one of the deep learning models; CNN, LSTM, MLP, the final test accuracy was found as

94.34%.

Table 4.1: Training and Test Examples

Examples Test Examples Training Examples

Class Events (class1) Non-events

(class 0)

Events

(class 1)

Non-events

 (class 0)

examples 50 833 791 2742

percentage 5.66% 94.34% 22.39% 77.61%

Figure 4.1: Confusion matrix and classification report of imabalanced dataset (CNN)

Experimental Results and Discussion

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 51 -

Figure 4.1 shows a very high accuracy of the model and can fool anyone who is not aware of

the distribution of the two classes in the test set. As shown in Table 4.1, 93.43% test examples

belong to class 0. This is why the deep learning model showed an accuracy of 93.43% as it

cannot identify any events of class 1. All the events of class 1 were identified as 0 which

resulted in the test accuracy of 93.43%. The performance of this model using CNN can be more

clearly understood from confusion matrix and classification report with precision, recall and f1

score as shown in Figure 4.1.

As a remedy to this issue, ensemble learning, oversampling and SMOTE have been used. For

ensemble learning, three approaches have been taken to evaluate the effectiveness in terms of

precision and recall.

Approach 1: 2,742 training examples of class 0 are divided into five groups. As 2,742 is not

divisible by 5 (2,742/5 = 548.4), the first three groups have 548 examples each, other two

groups have 549 examples each, combining together five groups have total 548*3+549*2 =

2742 examples of class 0. Afterwards, 548 or 549 examples from class 1 were chosen

randomly. These 548 examples from class 1 and 548 examples from class 0 are combined and

shuffled to obtain one group of dataset for training. In this way, five group of training sets have

been generated and each of them is trained using a separate model and majority voting is used

at the end in the following way.

𝑛1 = ∑ 𝑦�̂�

5

𝑖=1

(26)

 �̂� = {
1, 𝑛1 > 2
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(27)

Here, n1 is the sum of the outputs of any particular test example from five undersampling

models which can be maximum of five if all models determined that example as 1 and

minimum of 0 if all models determined that example as 0. n1 can also be defined as number of

models which determined the class of that particular example as 1.

Approach 2: 2,742 training examples of class 0 are divided into three groups. First two groups

have 791 examples each and the last group has 2,742-791*2 = 1,160 examples. Afterwards,

791 examples of class 1 will be combined with each group to build three group of datasets.

Each group will be shuffled properly before training. In this way, three group of training sets

have been generated and each of them is trained under a separate model. Majority voting is

used in the following way.

𝑛1 = ∑ 𝑦�̂�

3

𝑖=1

(28)

 �̂� = {
1, 𝑛1 > 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(29)

Approach 3: This approach is similar to the previous one. The only difference is 2,742

examples are divided into three equal segments where each of the group has 914 examples.

Afterwards, 791 examples are combined and shuffled with each of the three groups. In this

Experimental Results and Discussion

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 52 -

way, each training dataset has 914 (class 0) +791 (class 1) = 1,705 training examples. The

majority voting is used similarly as shown in approach 2.

4.2 Hyperparameter Tuning

In order to use deep learning algorithms, hyperparameter tuning is a very important step. A lot

of hyperparameters exist in a deep learning algorithm from which the ideal combination needs

to be selected for optimal performance. Table 4.2 shows a list of parameters and

hyperparameters associated with CNN, LSTM and MLP.

Table 4.2: List of hyperparameters

 Neural Network / Fully connected

layer of CNN

CNN and Long Short

Term Memory

Parameters Weights, 𝑊[𝐿], biases, 𝑏[𝐿] Filters, 𝑓[𝐿]

Hyperparameters # hidden layers, L

 # hidden units in each hidden

layer, 𝐾[𝐿]

 Choice of activation function

(Sigmoid, Tanh, ReLU, Leaky

ReLU)

 Optimizer (SGD, Adam,

RMSprop)

 Batch size

 # epochs

 Filter size, f

 # filters

 stride, s

 Choice of pooling

strategy (max or

average)

 Pooling or subsampling

size

 # LSTM units

As mentioned in the previous chapter, Keras deep learning framework in python is used for the

experimentation which runs on top of tensorflow. Apart from the hyperparameters shown in

Table 4.2, there are other hyperparameters as well. One of the most important hyperparameters

in any deep learning algorithm is the learning rate, α. The default value of α in keras is 0.01

with no momentum. The default value of α was used for the initial test run. First group of

samples mentioned in approach 2 was taken for the hyperparameter tuning of CNN and LSTM.

The following tables show the summary of the hyperparameters for the initial experiment on

hyperparameter tuning.

Table 4.3: values considered for hyperparameters

Hyperparameter Values considered

filters 8, 16

Filter size 3, 5, 7

Batch size 32, 64, 128

Table 4.4: Initial values for hyperparameters

Hyperparameter Initial value

Learning rate 0.01

Activation function in convolutional layers and

dense layers

ReLu

Activation function in the output layer sigmoid

Probability rate in dropout layer 0.5

Subsampling size (pooling size) 2

Experimental Results and Discussion

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 53 -

hidden layer in fully connected layer (FCL) 1

neurons in FCL 200

epochs 100

Different values for number of filters, filter size and batch size have been used as shown in

Table 4.3 and other hyperparameters were kept constant as shown in Table 4.4. 10 experimental

runs were performed to figure out the best set of hyperparameters. As neural network is highly

stochastic in nature due to random weight initialization, each run obtains different test

accuracy. This is why test accuracy average and variability has taken into consideration for

choosing a hyperparameter. Figure 4.2 shows the box plots for number of filters, filter size and

batch size in terms of test accuracy.

Figure 4.2: Hyperparameter tuning

It can be seen from Figure 4.2, average test accuracy for all three filter sizes show almost

similar average test accuracy, but filter size 5 shows less variability in terms of accuracy.

Number of filters is chosen as 16 as it has the higher average accuracy and batch size is chosen

as 64 for higher average and less variability.

Now a final test run will be performed using the finalized value of filter size, number of filters

and batch size as well as other hyperparameters as shown in Table 4.4. In this regard, a

validation split of 10% will be used which indicates 10% of the training data will not be used

in training, they will be used to validate the model. The following figure shows the graph of

accuracy and loss with respect to number of epochs.

Figure 4.3: accuracy vs. epoch and loss vs. epoch

Experimental Results and Discussion

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 54 -

From Figure 4.3, it is evident that the model is converging to the optimal solution. So these

hyperparameters will be used in the final experiment except no. of epochs. Although the

accuracy is good, but it is also evident that the model suffers from overfitting which can be

seen in Figure 4.3 that the learning curve is fluctuating continuously. This indicates the model

has learned too much and is suffering from generalization error [102]. From the figure, it can

be seen that within 10 epochs the model reaches almost zero loss and very high accuracy. This

is why number of epochs will be used as 10 in the final experiment.

4.3 Result

After performing the hyperparameter search, final experimental runs were performed. The

following section provides a summary of the results for all of the considered algorithms and

corresponding data balancing techniques.

4.3.1 Ensemble Learning (CNN)

In the final experiment, 10 experimental runs were performed for each of the deep learning and

machine learning algorithms. For this specific drying hopper case, the main goal is to capture

the events automatically so that a predictive maintenance approach can be taken as a remedy.

As the number of non-events are very high, it is natural that if the model can determine the

non-events correctly, accuracy will be automatically higher regardless of whether the model is

able to identify the events or not as they are very low in numbers. This is why instead of

accuracy, precision of class 0 and recall of class 1are more important in this case as these two

depend on how many of events are wrongly identified also known as false positive. For this

case study, it is desirable to have precision of class 0 and recall of class 1 as high as possible

or number of false positive as low as possible. Figure 4.4 shows the CNN framework used in

this thesis.

Figure 4.4: CNN framework

Summary of the ten experimental runs using CNN is shown in Figure 4.5 and Figure 4.6. In

terms of average accuracy, approach 3 clearly shows best result with 99.30% average accuracy.

False positive (events identified as non-events) values vary between 1 and 2 whereas false

negative values (non-events identified as events) vary between 0 and 7 in ten experimental runs

with two outliers (11 and 19). First experimental run obtained the best result for approach 3 as

only 1 example was misclassified as non-event which was actually an event. The following

figures show the best result achieved from these three approaches in ten experimental runs.

Experimental Results and Discussion

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 55 -

Figure 4.5: Result summary of CNN (Ensemble Learning)

Figure 4.6: Confusion matrix and classification report of approach 3, run 1

As mentioned in the experimental setup, undersampling approaches were combined for

ensemble learning and majority voting is used for predicting the class of test examples. Each

undersample of all three approaches provided different predictions for the test examples and

these are combined later which improved the overall accuracy. The best undersamples of the

ensemble learning in each run are shown in Figure 4.7.

Figure 4.7: best undersamples in each experimental run

Experimental Results and Discussion

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 56 -

Segment 2 of approach 3 where 914 training examples of class 0 (915 to 1828) and 791 training

examples of class 1 were combined, obtained best result in four experimental runs. This

evidence clearly indicates these 914 training examples of class 0 provide significant

information for training a CNN model. If undersampling is used without any ensemble

learning, there is an uncertainty about the significance of that specific segment of the data used

for training. Figure 4.8 shows the best learning curves obtained from the best undersampling

strategies.

Figure 4.8: best learning curves (CNN)

So, using CNN and ensemble learning no. of false positives can be reduced to 1 and false

negatives to 0. The best accuracy obtained using CNN and ensemble learning was 99.30%

(approach 3) where one example was wrongly classified in maximum runs.

4.3.2 Ensemble Method (LSTM)

For LSTM, hyperparameters setup is exactly the same as in CNN in the common portion like

in the fully connected layer. The experiment starts with 200 LSTM units in the LSTM layer

after the input layer and obtained significant result. Figure 4.9 shows the LSTM framework

used in this thesis. Figure 4.10 provides a summary of the ten experimental runs using Long

Short Term Memory network.

In case of LSTM, approach 3 showed the best result as shown in Figure 4.10. It has one outlier

in run 3 when it results is 24 false positives which is a highly extraneous case. The result is

quite similar as compared to CNN and the three approach produced almost similar result with

small variation and approach 3 provides the best average accuracy again. The following figures

show the best results obtained in ten experimental runs for LSTM.

Experimental Results and Discussion

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 57 -

Figure 4.9: LSTM framework and summary

Figure 4.10: Result summary of LSTM

Figure 4.11: Confusion matrix and classification report of approach 1, run 7

The best undersamples of the ensemble learning in each run are shown in Figure 4.12.

Figure 4.12: Best undersamples in each experimental run (LSTM)

Experimental Results and Discussion

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 58 -

Segment 3 of approach 2 where 1160 training examples of class 0 (1583 to 2742) and 791

training examples of class 1 were combined, obtained best result in four experimental runs.

This evidence clearly indicates these 1160 training examples of class 0 provide significant

information for training a LSTM model. Figure 4.13 shows the best learning curves obtained

from the best undersampling strategies of ensemble learning with LSTM.

Figure 4.13: Best learning curves (LSTM)

So, using CNN and ensemble learning, no. of false positives can be reduced to 2 and false

negatives to 0. The best accuracy obtained using CNN and ensemble learning was 99.05%

(approach 3) where two examples were wrongly classified in maximum runs.

4.3.3 Ensemble Learning (CNN-LSTM)

Same hyperparameters setup as in CNN and LSTM is used for CNN-LSTM model. Figure 4.14

shows the CNN-LSTM framework.

Figure 4.14: CNN-LSTM framework and summary

Experimental Results and Discussion

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 59 -

Figure 4.15 provides a summary of the ten experimental runs using CNN-LSTM.

Figure 4.15: Result summary of CNN-LSTM

Although, approach 3 works best for CNN and LSTM model, for CNN-LSTM approach 1

works well with 98.75% average accuracy across ten runs. Figure 4.16 shows the best results

obtained in ten experimental runs for LSTM.

Figure 4.16: Confusion matrix and classification report of appr. 1, run 4 and appr. 2, run 1

The best undersamples of the ensemble learning in each run are shown in Figure 4.17.

Approach 3, segment 2 appears twice in the list along with approach 1, segment 5 and approach

2, segment 2 and approach 2, segment 3.

Figure 4.17: Best undersamples in each experimental run (CNN- LSTM)

Experimental Results and Discussion

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 60 -

Figure 4.18 shows the best learning curves obtained from the best undersampling strategies of

ensemble learning with CNN-LSTM.

Figure 4.18: Best learning curves (CNN-LSTM)

The result is similar with LSTM as the combination of CNN and LSTM can reduce the number

of false positive to as low as 2 and false negatives to 0 as well. Although approach 1 works

best in terms of average accuracy, it has some outliers across ten runs which is not the case for

approach 2 and 3.

4.3.4 SMOTE

In the training set, 2,742 examples belong to class 0 and 791 examples belong to class 0. Using

SMOTE, 1,951 more samples were generated from the minority class, so that class 1 has 2,742

examples as well. These 2,742+2,742 = 5,484 examples were combined and shuffled properly

for training the dataset using CNN, LSTM and CNN-LSTM. The following figure shows the

summary of the ten experimental runs.

CNN again performs best when using SMOTE for data augmentation with 99.42% average

accuracy with no outlier in the false positive values across ten runs. The best result obtained

using SMOTE is shown in Figure 4.20.

Experimental Results and Discussion

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 61 -

Figure 4.19: Result summary of SMOTE

Figure 4.20: Confusion Matrix and Classification report (CNN, run 3)

So using SMOTE, CNN performs best where number of false positive can be reduced as low

as 1 and false negative as low as zero. CNN also shows less variability in terms of false

positive and false negative with only one outlier in false negative values. The best learning

curves are shown in Figure 4.21.

Figure 4.21: Learning curves (SMOTE)

Experimental Results and Discussion

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 62 -

4.3.5 Machine learning algorithms

In order to compare the performance of deep learning with other existing approaches, some

machine learning algorithms have been used like k-nearest neighbor, support vector machine,

naïve Bayes, random forest and gradient boosting. The following figures summarize the results

obtained from machine learning model using the actual dataset and SMOTE dataset.

Figure 4.22: Result summary of ML algorithms

4.3.6 Summary

The final results from all algorithms using different approaches showed in the previous section

can be summarized from two perspectives. One of them is the best result (accuracy, FP and

FN) obtained for an algorithm either using ensemble learning, SMOTE or the actual dataset in

ten experimental runs. The second one is the average result obtained (accuracy) for an

algorithm in ten experimental runs. Table 4.5 and Table 4.6 summarize the result using these

two measures.

Table 4.5: Result summary (average result in ten runs)

Method
Ensemble Learning

Approach 1 Approach 2 Approach 3

Algorithm CNN LSTM CNN-LSTM CNN LSTM CNN-LSTM CNN LSTM CNN-LSTM

Average
accuracy

(10 runs)

0.9866 0.9874 0.9875 0.9900 0.9855 0.9826 0.9930 0.9905 0.9807

Method SMOTE

Algorithm CNN LSTM CNN-LSTM

K-

nearest

neighbor

Suppor

Vector

Machine

Naïve bayes
Decision

Trees
Random
Forest

Gradient
Boosting

Average
accuracy

(10 runs)

0.9942 0.9830 0.9900 0.9813 0.9766 0.9703 0.9643 0.9601 0.9732

Experimental Results and Discussion

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 63 -

Method Original dataset

Algorithm
K-nearest

neighbor

Suppor
Vector

Machine

Naïve bayes
Decision

Trees

Random

Forest

Gradient

Boosting

Average
accuracy

(10 runs)

0.9742 0.9789 0.9692 0.9621 0.9735 0.9684

Table 4.6: Result summary (Best result in ten runs)

Method Algorithm TP TN FP FN Accuracy

Ensemble

Learning

Approach 1

CNN 832 49 1 1 0.9977

LSTM 833 48 2 0 0.9977

CNN-LSTM 833 48 2 0 0.9977

Approach 2

CNN 833 48 2 0 0.9977

LSTM 832 48 2 1 0.9966

CNN-LSTM 833 48 2 0 0.9977

Approach 3

CNN 833 49 1 0 0.9989

LSTM 831 48 2 2 0.9955

CNN-LSTM 833 47 3 0 0.9966

SMOTE

CNN 833 49 1 0 0.9989

LSTM 832 49 1 1 0.9977

CNN-LSTM 832 49 1 1 0.9977

K-nearest neighbor 833 38 12 0 0.9864

Support Vector Machine 822 49 1 11 0.9864

Naïve bayes 817 48 2 16 0.9796

Decision Trees 813 50 0 20 0.9773

Random Forest 820 49 1 13 0.9841

Gradient Boosting 822 49 1 11 0.9864

Original dataset
(No data balancing techniques)

K-nearest neighbor 833 44 6 0 0.9932

Support Vector Machine 818 50 0 15 0.9830

Experimental Results and Discussion

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 64 -

Naïve bayes 817 48 2 16 0.9796

Decision Trees 815 49 1 18 0.9785

Random Forest 815 49 1 18 0.9785

Gradient Boosting 820 49 1 13 0.9841

It is evident from the above shown summary, CNN method works best both in terms of average

result and best result in ten experimental runs. For ensemble learning, approach 3 shows the

best accuracy with CNN and for SMOTE CNN works best among all algorithms.

4.4 Discussion

In this section, major limitations of this thesis as well as understanding of the result and how

it can be interpreted from manufacturing perspective are highlighted.

4.4.1 Event definition and subsequence extraction

The purpose of this thesis was to automatically detect any unusual event occurring on the

industrial drying hopper installed in the manufacturing shop floor of a polymer manufacturing

industry. As the raw dataset obtained from the machine interface was not in ideal structure for

using in a ML or DL algorithms, it needed certain preprocessing from the expert. Even after

primary preprocessing done by an expert in this field, the dataset still had missing values and

no labeling. The major hindrance in using the dataset for event detection was no accurate

definition of unusual event through which temperature profile can be visually divided in

various classes. This is why, the events needed to be defined at the very beginning of the

experiment considering all variations in the unusual events. Several assumptions had to be

made in order to maintain consistency in the definition of an event. For example, if there is a

certain small peak in any temperature value for three or four minutes, those are not defined as

events. There were two limitations in defining an event. First, no physics based model or

mechanics of the drying hopper was available from which the events and their structure like

temperature profiles can be understood. Second, in all possible scenarios which can be

identified as events, there are too many variations of them which can be potential candidates

of the events. For example, hopper 1 hopper outlet temperature varies around 150° F. In some

time steps, this temperature value goes below 100° F whereas all other sensors reading are

normal. Now the question is, whether this should be identified as events or non-events. This

type of confusion was universal in almost all cases where temperature is dropping down or

rising all on a sudden. So, events were defined based on the visualization of the temperature

profile. Whenever something unusual and lasting phenomenon was notified in the temperature

profile which is significantly different from the steady state condition were listed as events.

As mentioned in 3.1.2, the previous study on this particular drying hopper case [36] predicts

three different type of unusual events; dryer undersize, conveying issue and cleaning cycle. But

in the temperature profile, defining this individual event was not straightforward due to the

variation of these events. This is why, the goal of this thesis was to identify any unusual event

rather than identifying the type of the event. Another assumption had to made for defining an

event which is the start and end time of an event for simplification. The temperature profiles

Experimental Results and Discussion

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 65 -

were segmented in an hourly basis and each hour there are 60 entries or time steps. So, if

something unusual has started happening in an hour, regardless of the actual start time, that

particular hour is defined as an example of an event for labeling simplicity.

The window approach used in data preprocessing step for extracting subsequences and labeling

each subsequence from the labels of each row is also based on some assumptions. For the ease

of labeling a window length of sixty minutes and sliding step of 60 minutes were considered

for which 4416 examples or subsequences were obtained. As at the beginning each row was

assigned a label and events or non-events were defined hourly which indicates in each hour all

sixty minutes or rows have same labels. If the start time end time were defined more precisely

like the actual start and time instead of hourly basis, then other window approach like different

sliding step other than sixty or multiples of sixty can be used. For example, an event starts at

1:26 pm, so the hour from 1:01 pm to 2:00 pm was defined as an event and each row was

assigned the same label, 1. But it could have been done otherwise like from 1:01 pm to 1:25

pm, these 25 rows as label 0, remaining 35 rows; 1:26 pm to 2:00 pm as label 1 as the event

started from 1:26 pm. In this way, apart from 60 or its multiple, any other values could be used

for sliding step. But labeling each subsequence would become more complex from the labelled

rows. The reason is not all rows have same labels if this approach is used. For example, if

window length is sixty minutes, but sliding step is 1, first subsequence will start from 5:01 am,

May 2018, end at 6:00 am, May 1, 2018. But the second subsequence will start from 5:02 am

and will end at 6:01 am which was not the same for sliding step of sixty minutes. For sixty

minutes sliding step, second event starts at 6:01 am and ends at 7:00 am. Now, when moving

the sliding window using sliding step of 1 minute, at one point it will extract a subsequence

which starts from 12:39 pm and ends at 1:38 pm. As mentioned above, events started from 1:26

pm precisely, so the rows from 1:26 pm to 1:38 pm are labelled as 1, but rows from 12:39 pm

to 1:25 pm are labelled as 0. So, this subsequence has rows with both labels which makes it

difficult to define as an event or non-event. If events are defined as any 1 hour where at least

one row or minute was labelled as 1, this might lead to a problem. If in an hour at least 30 %

rows are labelled as 1, that hour can be defined as event as something unusual is happening in

that hour. But if only one row has label 1, rest of the rows have label 0, defining that hour as

an event is misleading. The issue is to determine the minimum percentage of rows which has

to be labelled as 1 to define that hour as an event. If this problem can be taken care of number

of examples would be much higher than the current number. For example, with sliding step of

1 and window length of 60, number of extracted subsequences would be, m = (264960-60)/1+1

= 264,901 according to the formula in 3.1.2.5.1, which is 463.88 % more than the current

number of examples. As this thesis is dependent on data driven modeling completely with not

much input about the physics of the events and non-events with no clear definition, the simplest

way to define and visualize the events was chosen for classification.

4.4.2 Data imbalance issue

As shown before, training set had 2742 examples from class 0 (77.61%) and 791 examples

from class 1 (22.39%) which indicates that the dataset is not balanced. During first

experimental trial using simple neural network, all test examples were identified as class 0 as

shown in Figure 4.1. From the literature review of the scientific journals and exploration of

various data analytics blogs like “towardsdatascience” [103], “analyticsvidhya” [104] and so

on, the issue was figured out as imbalance classification issue. Afterwards, CNN, LSTM and

CNN-LSTM were applied to the same imbalanced dataset, but resulted same as the simple

Experimental Results and Discussion

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 66 -

neural network. But machine learning algorithms like SVM, KNN and others were working

fine with the imbalanced dataset. This is why data imbalance issue handling techniques like

ensemble learning with undersampling and SMOTE as an oversampling technique was used

for deep learning algorithms and the result turned out very reasonable. For machine learning

algorithms, apart from regular dataset, SMOTE was also used as a data augmentation technique

in order to check the performance of ML algorithms. Undersampling was used to combine all

undersampling models as an ensemble learner. Without combination of all undersamples, the

performance of an algorithm cannot be determined properly using a single undersampling

approach. For example, if only one undersample from approach 3 was used for training the

algorithm and no ensemble learner was used, there is no certainty that the algorithm will

converge to the optimum without overfitting during training with this dataset and will perform

well on validation set and test set as shown in Figure 4.23. Even if one undersample performs

well on new data, there is still uncertainty regarding the stochastic nature of deep learning

algorithm. This particular undersample might work well in one run, but there is no guarantee

that it will work well in all experimental runs. This is why ensemble learning with

undersampling provides very powerful result as it combines the output from undersamples with

majority voting. Through majority voting, even if one undersample out of three undersamples

works badly on the new dataset, ensemble learning will take care of this issue by using the

prediction from the majority voting. The problem appears when majority of the undersamples

perform bad as the voting favors the wrong prediction.

Figure 4.23: Learning curves with high fluctation during convergence

Random oversampling technique was not used as it does not add any value or new information

to the dataset. As simple copying of the minority examples oftentimes lead to overfitting and

overfitting controlling techniques like L2 regularization and dropout also fails to prevent it.

This is why, more structured oversampling approach like SMOTE was used to as data

imbalance handling technique.

Apart from these techniques, other data imbalance handling techniques like using class weights

to two classes was also tried with this dataset. In this technique, the minority class is assigned

higher weight during training so that the convergence is not always inclined to majority class.

But this weighting technique did not work at all with this dataset. Even with different weights

provided to the minority class, the algorithms were classifying all test examples as majority

class. This is why, this thesis explored only ensemble learning with undersampling and

SMOTE as oversampling technique.

Experimental Results and Discussion

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 67 -

4.4.3 Result interpretation

Section 4.3 provides the summary of the final result obtained from various algorithms used for

classification of the drying hopper MTS dataset. In ensemble learning, the best result for each

approach in each run was summarized for all three deep learning algorithms used; CNN,

LSTM, CNN-LSTM. In addition to that, best undersampling result for each run was highlighted

as well. For SMOTE, average result for three deep learning algorithms and the six ML

algorithms were showed and the best results found in ten runs were also highlighted.

The performance measure used in this thesis are precision, recall, f1 score and accuracy.

Among them precision, recall and accuracy depends on TP, TN, FP and FN values whereas f1

score is measured from precision and recall. In a manufacturing industry, fault detection is

highly important in order to take predictive or preventive maintenance. Now the question is

which measure is more important in context of manufacturing. The main goal is to accurately

identify events, but if any event is wrongly classified as event that leads to machine failure or

other related issue. If this issues is missed by the operator, it might create serious issue

depending on the type of failure. This is why, the primary goal is to reduce the FP values

(events wrongly identified as non-events) or increase the TN values (events accurately

identified as events). The secondary goal is to reduce the FN values (non-events wrongly

identified as events) or increase the TP values (non-events accurately identified as non-events).

For example, the algorithm identifies a non-event as an event. The operator will check that

instance manually and will identify that it is actually a non-event, nothing bad is happening in

the machine. If this instance is high in number, it will be waste of time for the operator to check

those misleading predictions. But if the algorithm identifies an event as non-event, the operator

will not check that prediction as it is predicting non-event. This can lead to serious issue as the

operator has no idea that something is happening in the machine. If any event is identified, the

operator of the machine has two and a half hours to fix it. The length of each example is one

hour, so after training the dataset, any future example of 1 hour length directly extracted from

the sensors with primary preprocessing can be used by the algorithm to predict its class and

take initiatives accordingly. With industry 4.0 and AI revolution, this type of automation is

highly important in any manufacturing plant.

This is why reducing FP values is the primary goal in context of manufacturing. It is also

desirable in this experimental setup that across all ten runs number of FP values remain

consistent with less outlier for an algorithm with ensemble learning or SMOTE. In each run,

the goal is to capture the best model with high accuracy and less FP values. So the best model

is selected in the following way: First the model with highest accuracy will be picked as the

best model, afterwards second highest accuracy will be picked. If the first one has less number

of FP values, this is arguable the best model. This is the general case in almost all experimental

runs where the model with best accuracy has least number of FP values as well. But also there

are some exceptions. In some cases, the model identified all non-events but missed some events

and wrongly classified. But due to the large number of correctly identified non-events the

accuracy goes higher. For example, in Figure 4.22, the best result in terms of accuracy and

average accuracy across 10 runs, obtained using SMOTE for ML algorithms is K nearest

neighbor with best accuracy of 99.32% in run 6 and average accuracy of 98.13% across ten

runs. Now the question is whether it is really the best one among ML algorithms when using

SMOTE. It is evident it has 6 FP values and 0 FN values whereas the second best, gradient

boosting has 98.41% accuracy in run 6 with only 1 FP values, but 13 FN values and 97.32%

Experimental Results and Discussion

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 68 -

average accuracy across 10 runs. This is why the best method among ML algorithms while

using SMOTE is chosen as gradient boosting, not k nearest neighbor as it identifies more events

wrongly.

Table 4.5 summarizes the best result in terms of average accuracy of 10 runs. The best average

accuracy was found for CNN in SMOTE with 99. 42 % average accuracy. The FP and FN

values are also consistent in ten experimental runs while using CNN with only one outlier

where 18 non-events were classified as events (FN). Apart from this instance, number of FP

values varies between 0 and 3 whereas number of FN values varies between 0 and 6. The

second best model was also found using CNN in ensemble learning approach 3 with 99.30 %

average accuracy. The FP values are highly consistent across 10 runs and the number varies

between 1 and 2. But it has two outliers in the FN values with 11 and 19. The number of FN

varies between 0 and 7 which is also higher than the CNN using SMOTE.

Table 4.6 summarizes the best result obtained in 10 runs in terms of accuracy. Again, the best

result found in CNN with ensemble learning approach 3 and CNN with SMOTE. Both of these

two showed 99.89% accuracy with only one FP value and no FN value. So certainly, CNN is

the best algorithm to classify this dataset into two categories with both ensemble learning and

SMOTE.

Performance of LSTM and CNN-LSTM is also good enough which is not much lesser than the

CNN. But CNN shows not only high accuracy, but also consistence in less number of FP and

FN values across ten runs. ML algorithms performance is relatively worse than the deep

learning approaches. The maximum average found is 98.13% with KNN in terms of average

accuracy across 10 runs when no imbalance data handling technique is used. The second best

was SVM with 97.89% average accuracy. In terms of best accuracy among ten runs, KNN

provides 99.32 % accuracy (no data imbalance technique), but it wrongly classified 6 events.

The second best is KNN, SVM and GB (SMOTE) with 98.64% accuracy. KNN again suffers

from the high FP values, it has wrongly classified 12 events whereas both SVM and GB

wrongly classified only 1 event and 11 non-events. So among ML algorithms, SVM is selected

as the best one.

 Conclusion and Future Work

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 69 -

5 Conclusion and Future Work
The recent evolution in Industry 4.0, artificial intelligence and internet of things (IOT) have

increased the data availability in various domains. This is why data analytics has become highly

popular over the year with newer algorithms and techniques being developed regularly for

continuous improvement. Among variety of data, time series dataset has become highly

available in various domain and various analyses on time series are being performed by

researchers frequently. This thesis exploits deep learning algorithms in order to classify MTS

data obtained from the sensors installed at the drying hopper in a polymer manufacturing

industry. Perfect dataset never really exists in real life scenario which is also the case for the

dataset used in this thesis. This is why necessary preprocessing was performed in the dataset

to make it usable by deep learning and machine learning algorithms. As classification is a

supervised learning approach, any DL or ML algorithms need labelled data. So, the data was

also labelled after defining the two categories precisely. To tackle the imbalance data issue,

ensemble learning with undersampling and SMOTE as an oversampling technique was

explored on different deep learning approaches. The result showed that CNN is arguably the

best algorithm for classifying this dataset as events and non-events.

Previously two more research have been performed on this dataset. One of them focused on

understanding of the process of an industrial drying hopper [36] and the other one focused on

pattern recognition as unsupervised learning [105]. Both of those research made significant

contribution towards automatic event detection in the drying hopper. This thesis takes the work

from the previous two research to the next step through classifying the dataset into two

categories as events and non-events. But there are still other potential future works possible for

this specific case which are described below.

 The events need to be defined more precisely with the help of an expert who has the solid

understanding of all equipment and sensors of the industrial drying hopper. Afterwards, the

events need to be categorized in three different types as mentioned in [36] which might be

the hardest part due to too many variations of those events. The next goal should be instead

of binary class classification, multi class classification techniques need to be applied if the

events can be labelled as various types.

 The sliding window technique used in this thesis used the subsequences extracted as an

hour with hourly sliding step. This approach can be further changed into variable

windowing approach with different sliding steps to figure out the best window and sliding

step size.

 The deep learning approaches used in this thesis are the simplest version of CNN, LSTM

and CNN-LSTM. Now a days, lot of variation of these networks have been proposed and

those are performing very well in large datasets. For example, residual network which is a

variant of CNN has been extremely popular in recent years. Moreover, multi-channel deep

CNN, dilated CNN are among other variants of CNN which are used extensively in MTS

classification. Similarly, RNN variants like gated recurrent unit (GRU) has also been used

for some MTS datasets. Moreover CNN-LSTM has also some established variants like

CONV-LSTM which is used oftentimes. For multiclass classification, simple CNN or

LSTM model may not work well. So more complex deep learning approaches might be

needed to classify the dataset.

 References

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 70 -

References
[1] “What is Artificial Intelligence? How Does AI Work? | Built In.”

https://builtin.com/artificial-intelligence (accessed May 27, 2021).

[2] E. Oztemel and S. Gursev, “Literature review of Industry 4.0 and related technologies,”

J. Intell. Manuf., vol. 31, no. 1, pp. 127–182, 2020, doi: 10.1007/s10845-018-1433-8.

[3] C. Y. Hsu and W. C. Liu, “Multiple time-series convolutional neural network for fault

detection and diagnosis and empirical study in semiconductor manufacturing,” J. Intell.

Manuf., vol. 32, no. 3, pp. 823–836, 2021, doi: 10.1007/s10845-020-01591-0.

[4] S. S. Jones et al., “A multivariate time series approach to modeling and forecasting

demand in the emergency department,” J. Biomed. Inform., vol. 42, no. 1, pp. 123–139,

Feb. 2009, doi: 10.1016/j.jbi.2008.05.003.

[5] Z. Du, W. R. Lawrence, W. Zhang, D. Zhang, S. Yu, and Y. Hao, “Interactions between

climate factors and air pollution on daily HFMD cases: A time series study in

Guangdong, China,” Sci. Total Environ., vol. 656, pp. 1358–1364, Mar. 2019, doi:

10.1016/j.scitotenv.2018.11.391.

[6] C. Pérez-D’Arpino and J. A. Shah, “Fast target prediction of human reaching motion for

cooperative human-robot manipulation tasks using time series classification,” in 2015

IEEE International Conference on Robotics and Automation (ICRA), 2015, pp. 6175–

6182, doi: 10.1109/ICRA.2015.7140066.

[7] N. Maknickienė, A. V. Rutkauskas, and A. Maknickas, “Investigation of financial

market prediction by recurrent neural network,” Innov. Technol. Sci. Bus. Educ., vol. 2,

no. 11, pp. 3–8, 2011.

[8] L. Martín, L. F. Zarzalejo, J. Polo, A. Navarro, R. Marchante, and M. Cony, “Prediction

of global solar irradiance based on time series analysis: Application to solar thermal

power plants energy production planning,” Sol. Energy, vol. 84, no. 10, pp. 1772–1781,

Oct. 2010, doi: 10.1016/j.solener.2010.07.002.

[9] J. F. Muth, “Optimal Properties of Exponentially Weighted Forecasts,” J. Am. Stat.

Assoc., vol. 55, no. 290, pp. 299–306, 1960, doi: 10.1080/01621459.1960.10482064.

[10] A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh, “The great time series

classification bake off: a review and experimental evaluation of recent algorithmic

advances,” Data Min. Knowl. Discov., vol. 31, no. 3, pp. 606–660, 2017, doi:

10.1007/s10618-016-0483-9.

[11] D. J. Berndt and J. Clifford, “Using dynamic time warping to find patterns in time

series.,” in KDD workshop, 1994, vol. 10, no. 16, pp. 359–370.

[12] G. E. P. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time series analysis:

forecasting and control. John Wiley & Sons, 2015.

[13] G. He, Y. Li, and W. Zhao, “An uncertainty and density based active semi-supervised

learning scheme for positive unlabeled multivariate time series classification,”

Knowledge-Based Syst., vol. 124, pp. 80–92, 2017, doi: 10.1016/j.knosys.2017.03.004.

[14] M. L. Tuballa and M. L. Abundo, “A review of the development of Smart Grid

technologies,” Renewable and Sustainable Energy Reviews, vol. 59. Elsevier Ltd, pp.

710–725, Jun. 01, 2016, doi: 10.1016/j.rser.2016.01.011.

 References

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 71 -

[15] L. Batal, L. Sacchi, R. Bellazzi, and M. Hauskrecht, “Multivariate time series

classification with temporal abstractions,” in Proceedings of the 22nd International

Florida Artificial Intelligence Research Society Conference, FLAIRS-22, 2009, pp. 344–

349.

[16] K. Yang and C. Shahabi, “An efficient k nearest neighbor search for multivariate time

series,” Inf. Comput., vol. 205, no. 1, pp. 65–98, Jan. 2007, doi:

10.1016/j.ic.2006.08.004.

[17] J. Hills, J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall, “Classification of time series

by shapelet transformation,” Data Min. Knowl. Discov., vol. 28, no. 4, pp. 851–881,

2014, doi: 10.1007/s10618-013-0322-1.

[18] Y. Chang et al., “A Multi-Task Imputation and Classification Neural Architecture for

Early Prediction of Sepsis from Multivariate Clinical Time Series,” 2019 Comput.

Cardiol. Conf., vol. 45, no. 1, pp. 2–5, 2019, doi: 10.22489/cinc.2019.110.

[19] J. Lines and A. Bagnall, “Time series classification with ensembles of elastic distance

measures,” Data Min. Knowl. Discov., vol. 29, no. 3, pp. 565–592, 2015, doi:

10.1007/s10618-014-0361-2.

[20] H. Ismail Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P. A. Muller, “Deep learning

for time series classification: a review,” Data Min. Knowl. Discov., vol. 33, no. 4, pp.

917–963, 2019, doi: 10.1007/s10618-019-00619-1.

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” Adv. Neural Inf. Process. Syst., vol. 25, pp. 1097–1105,

2012.

[22] C. Szegedy et al., “Going Deeper with Convolutions,” 2015.

[23] D. Bahdanau, K. H. Cho, and Y. Bengio, “Neural machine translation by jointly learning

to align and translate,” Sep. 2015, Accessed: May 28, 2021. [Online]. Available:

https://arxiv.org/abs/1409.0473v7.

[24] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural

networks,” in Advances in Neural Information Processing Systems, Sep. 2014, vol. 4,

no. January, pp. 3104–3112, Accessed: May 28, 2021. [Online]. Available:

https://arxiv.org/abs/1409.3215v3.

[25] A. M. Alayba, V. Palade, M. England, and R. Iqbal, “A combined CNN and LSTM

model for Arabic sentiment analysis,” in Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

Aug. 2018, vol. 11015 LNCS, pp. 179–191, doi: 10.1007/978-3-319-99740-7_12.

[26] T. N. Sainath et al., “Improvements to deep convolutional neural networks for LVCSR,”

in 2013 IEEE Workshop on Automatic Speech Recognition and Understanding, ASRU

2013 - Proceedings, 2013, pp. 315–320, doi: 10.1109/ASRU.2013.6707749.

[27] C. L. Liu, W. H. Hsaio, and Y. C. Tu, “Time Series Classification with Multivariate

Convolutional Neural Network,” IEEE Trans. Ind. Electron., vol. 66, no. 6, pp. 4788–

4797, 2019, doi: 10.1109/TIE.2018.2864702.

[28] H. S. Huang, C. L. Liu, and V. S. Tseng, “Multivariate time series early classification

using multi-domain deep neural network,” Proc. - 2018 IEEE 5th Int. Conf. Data Sci.

 References

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 72 -

Adv. Anal. DSAA 2018, pp. 90–98, 2019, doi: 10.1109/DSAA.2018.00019.

[29] O. Yazdanbakhsh and S. Dick, “Multivariate Time Series Classification using Dilated

Convolutional Neural Network,” 2019, [Online]. Available:

http://arxiv.org/abs/1905.01697.

[30] F. Karim, S. Majumdar, H. Darabi, and S. Harford, “Multivariate LSTM-FCNs for time

series classification,” Neural Networks, vol. 116, pp. 237–245, 2019.

[31] Z. Guo, P. Liu, J. Yang, and Y. Hu, “Multivariate Time Series Classification Based on

MCNN-LSTMs Network,” ACM Int. Conf. Proceeding Ser., pp. 510–517, 2020, doi:

10.1145/3383972.3384013.

[32] Y. Zheng, Q. Liu, E. Chen, Y. Ge, and J. L. Zhao, “Exploiting multi-channels deep

convolutional neural networks for multivariate time series classification,” Front.

Comput. Sci., vol. 10, no. 1, pp. 96–112, 2016, doi: 10.1007/s11704-015-4478-2.

[33] T. C. Images, “Sensor Classification Using Convolutional Neural,” Sensors

(Switzerland), no. 1, 2020.

[34] K. C. Lei and X. D. Zhang, “An approach on discretizing time series using recurrent

neural network,” Proc. - 2018 IEEE Int. Conf. Bioinforma. Biomed. BIBM 2018, pp.

2522–2526, 2019, doi: 10.1109/BIBM.2018.8621092.

[35] Z. Che, S. Purushotham, K. Cho, D. Sontag, and Y. Liu, “Recurrent Neural Networks

for Multivariate Time Series with Missing Values,” Sci. Rep., vol. 8, no. 1, pp. 1–14,

2018, doi: 10.1038/s41598-018-24271-9.

[36] J. Lenz, S. Swerdlow, A. Landers, R. Shaffer, A. Geller, and T. Wuest, “Smart services

for polymer processing auxiliary equipment: An industrial case study,” Smart Sustain.

Manuf. Syst., vol. 4, no. 1, pp. 103–120, 2020, doi: 10.1520/SSMS20200032.

[37] M. Shokoohi-Yekta, J. Wang, and E. Keogh, “On the non-trivial generalization of

Dynamic Time Warping to the multi-dimensional case,” in SIAM International

Conference on Data Mining 2015, SDM 2015, 2015, pp. 289–297, doi:

10.1137/1.9781611974010.33.

[38] J. Shen, W. Huang, D. Zhu, and J. Liang, “A Novel Similarity Measure Model for

Multivariate Time Series Based on LMNN and DTW,” Neural Process. Lett., vol. 45,

no. 3, pp. 925–937, Jun. 2017, doi: 10.1007/s11063-016-9555-5.

[39] J. Mei, M. Liu, Y. F. Wang, and H. Gao, “Learning a Mahalanobis Distance-Based

Dynamic Time Warping Measure for Multivariate Time Series Classification,” IEEE

Trans. Cybern., vol. 46, no. 6, pp. 1363–1374, Jun. 2016, doi:

10.1109/TCYB.2015.2426723.

[40] N. Vaughan and B. Gabrys, “Scoring and assessment in medical VR training simulators

with dynamic time series classification,” Eng. Appl. Artif. Intell., vol. 94, p. 103760,

Sep. 2020, doi: 10.1016/j.engappai.2020.103760.

[41] J. Ircio, A. Lojo, U. Mori, and J. A. Lozano, “Mutual information based feature subset

selection in multivariate time series classification,” Pattern Recognit., vol. 108, p.

107525, Dec. 2020, doi: 10.1016/j.patcog.2020.107525.

[42] T. Górecki and M. Łuczak, “Multivariate time series classification with parametric

derivative dynamic time warping,” Expert Syst. Appl., vol. 42, no. 5, pp. 2305–2312,

 References

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 73 -

Apr. 2015, doi: 10.1016/j.eswa.2014.11.007.

[43] S. Seto, W. Zhang, and Y. Zhou, “Multivariate time series classification using dynamic

time warping template selection for human activity recognition,” in Proceedings - 2015

IEEE Symposium Series on Computational Intelligence, SSCI 2015, 2015, pp. 1399–

1406, doi: 10.1109/SSCI.2015.199.

[44] M. Łuczak, “Univariate and multivariate time series classification with parametric

integral dynamic time warping,” J. Intell. Fuzzy Syst., vol. 33, no. 4, pp. 2403–2413,

Jan. 2017, doi: 10.3233/JIFS-17523.

[45] S. Liu and C. Liu, “Scale-varying dynamic time warping based on hesitant fuzzy sets

for multivariate time series classification,” Meas. J. Int. Meas. Confed., vol. 130, pp.

290–297, Dec. 2018, doi: 10.1016/j.measurement.2018.07.094.

[46] M. Łuczak, “Combining raw and normalized data in multivariate time series

classification with dynamic time warping,” J. Intell. Fuzzy Syst., vol. 34, no. 1, pp. 373–

380, Jan. 2018, doi: 10.3233/JIFS-171393.

[47] T. Górecki, “Classification of time series using combination of DTW and LCSS

dissimilarity measures,” Commun. Stat. Simul. Comput., vol. 47, no. 1, pp. 263–276,

Jan. 2018, doi: 10.1080/03610918.2017.1280829.

[48] M. G. Baydogan and G. Runger, “Learning a symbolic representation for multivariate

time series classification,” Data Min. Knowl. Discov., vol. 29, no. 2, pp. 400–422, Mar.

2015, doi: 10.1007/s10618-014-0349-y.

[49] J. Lin, E. Keogh, L. Wei, and S. Lonardi, “Experiencing SAX: A novel symbolic

representation of time series,” Data Min. Knowl. Discov., vol. 15, no. 2, pp. 107–144,

Oct. 2007, doi: 10.1007/s10618-007-0064-z.

[50] P. Schäfer and M. Högqvist, “SFA: A symbolic fourier approximation and index for

similarity search in high dimensional datasets,” in ACM International Conference

Proceeding Series, 2012, pp. 516–527, doi: 10.1145/2247596.2247656.

[51] T. Le Nguyen, S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim, “Interpretable time series

classification using linear models and multi-resolution multi-domain symbolic

representations,” Data Min. Knowl. Discov., vol. 33, no. 4, pp. 1183–1222, Jul. 2019,

doi: 10.1007/s10618-019-00633-3.

[52] B. Dhariyal, T. Le Nguyen, S. Gsponer, and G. Ifrim, “An Examination of the State-of-

the-Art for Multivariate Time Series Classification Machine Learning Methods for Text

Classification View project Text and Web Mining View project An Examination of the

State-of-the-Art for Multivariate Time Series Classification,” doi:

10.1109/ICDMW51313.2020.00042.

[53] P. Schäfer and U. Leser, “Multivariate Time Series Classification with

WEASEL+MUSE,” vol. 11, Nov. 2017, Accessed: Jun. 22, 2021. [Online]. Available:

http://arxiv.org/abs/1711.11343.

[54] D. Yang, H. Chen, Y. Song, and Z. Gong, “Granger Causality for Multivariate Time

Series Classification,” Proc. - 2017 IEEE Int. Conf. Big Knowledge, ICBK 2017, pp.

103–110, 2017, doi: 10.1109/ICBK.2017.36.

[55] L. Batal, L. Sacchi, R. Bellazzi, and M. Hauskrecht, “Multivariate time series

 References

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 74 -

classification with temporal abstractions,” Proc. 22nd Int. Florida Artif. Intell. Res. Soc.

Conf. FLAIRS-22, pp. 344–349, 2009.

[56] B. Zhao, H. Lu, S. Chen, J. Liu, and D. Wu, “Convolutional neural networks for time

series classification,” J. Syst. Eng. Electron., vol. 28, no. 1, pp. 162–169, 2017, doi:

10.21629/JSEE.2017.01.18.

[57] A. P. Ruiz, M. Flynn, J. Large, M. Middlehurst, and A. Bagnall, “The great multivariate

time series classification bake off: a review and experimental evaluation of recent

algorithmic advances,” Data Min. Knowl. Discov., vol. 35, no. 2, pp. 401–449, Mar.

2021, doi: 10.1007/s10618-020-00727-3.

[58] W. Song, L. Liu, M. Liu, W. Wang, X. Wang, and Y. Song, “Representation Learning

with Deconvolution for Multivariate Time Series Classification and Visualization,”

Commun. Comput. Inf. Sci., vol. 1257 CCIS, pp. 310–326, 2020, doi: 10.1007/978-981-

15-7981-3_22.

[59] K. S. Kiangala and Z. Wang, “An Effective Predictive Maintenance Framework for

Conveyor Motors Using Dual Time-Series Imaging and Convolutional Neural Network

in an Industry 4.0 Environment,” IEEE Access, vol. 8, pp. 121033–121049, 2020, doi:

10.1109/ACCESS.2020.3006788.

[60] T. N. Sainath, O. Vinyals, A. Senior, and H. Sak, “Convolutional, Long Short-Term

Memory, fully connected Deep Neural Networks,” ICASSP, IEEE Int. Conf. Acoust.

Speech Signal Process. - Proc., vol. 2015-Augus, pp. 4580–4584, 2015, doi:

10.1109/ICASSP.2015.7178838.

[61] E. Y. Hsu, C. L. Liu, and V. S. Tseng, “Multivariate time series early classification with

interpretability using deep learning and attention mechanism,” in Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), Apr. 2019, vol. 11441 LNAI, pp. 541–553, doi:

10.1007/978-3-030-16142-2_42.

[62] M. Khan, H. Wang, A. Ngueilbaye, and A. Elfatyany, “End-to-end multivariate time

series classification via hybrid deep learning architectures,” Pers. Ubiquitous Comput.,

2020, doi: 10.1007/s00779-020-01447-7.

[63] A. M. Tripathi, “Enhancing Multivariate Time Series Classification Using LSTM and

Evidence Feed Forward HMM,” Proc. Int. Jt. Conf. Neural Networks, 2020, doi:

10.1109/IJCNN48605.2020.9207636.

[64] G. He, Y. Duan, Y. Li, T. Qian, J. He, and X. Jia, “Active learning for multivariate time

series classification with positive unlabeled data,” Proc. - Int. Conf. Tools with Artif.

Intell. ICTAI, vol. 2016-Janua, pp. 178–185, 2016, doi: 10.1109/ICTAI.2015.38.

[65] M. González, C. Bergmeir, I. Triguero, Y. Rodríguez, and J. M. Benítez, “Self-labeling

techniques for semi-supervised time series classification: an empirical study,” Knowl.

Inf. Syst., vol. 55, no. 2, pp. 493–528, 2018, doi: 10.1007/s10115-017-1090-9.

[66] L. Wei and E. Keogh, “Semi-supervised time series classification,” in Proceedings of

the 12th ACM SIGKDD international conference on Knowledge discovery and data

mining, 2006, pp. 748–753.

[67] “Unix time - Wikipedia.” https://en.wikipedia.org/wiki/Unix_time (accessed Jun. 10,

2021).

 References

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 75 -

[68] L. Gruenwald, H. Chok, and M. Aboukhamis, “Using data mining to estimate missing

sensor data,” in Proceedings - IEEE International Conference on Data Mining, ICDM,

2007, pp. 207–212, doi: 10.1109/ICDMW.2007.103.

[69] “Labelling Time Series Data in Python | by Lucy Rothwell | Towards Data Science.”

https://towardsdatascience.com/labelling-time-series-data-in-python-af62325e8f60

(accessed Jun. 11, 2021).

[70] J. Chris Bishop, C. Bishop, G. Hinton, and P. Bishop, “Neural networks for pattern

recognition. Advanced texts in econometrics.” Oxford: Clarendon Press, 1995.

[71] “Undersampling Algorithms for Imbalanced Classification.”

https://machinelearningmastery.com/undersampling-algorithms-for-imbalanced-

classification/ (accessed Jun. 12, 2021).

[72] “The 5 Most Useful Techniques to Handle Imbalanced Datasets - KDnuggets.”

https://www.kdnuggets.com/2020/01/5-most-useful-techniques-handle-imbalanced-

datasets.html (accessed Jun. 12, 2021).

[73] “Random Oversampling and Undersampling for Imbalanced Classification.”

https://machinelearningmastery.com/random-oversampling-and-undersampling-for-

imbalanced-classification/ (accessed Jun. 12, 2021).

[74] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: Synthetic

Minority Over-sampling Technique,” J. Artif. Intell. Res., vol. 16, pp. 321–357, Jun.

2011, doi: 10.1613/jair.953.

[75] “Imbalanced Learning: Foundations, Algorithms, and Applications - Google Books.”

https://books.google.com/books?hl=en&lr=&id=CVHx-

Gp9jzUC&oi=fnd&pg=PT9&dq=Imbalanced+Learning:+Foundations,+Algorithms,+a

nd+Applications+1st+Edition&ots=2iMkJjGobj&sig=ydvxXpVL7gZa66NLKwKctoE

wyJw#v=onepage&q&f=false (accessed Jun. 12, 2021).

[76] “Bank Data: SMOTE. This will be a short post before we… | by Zaki Jefferson |

Analytics Vidhya | Medium.” https://medium.com/analytics-vidhya/bank-data-smote-

b5cb01a5e0a2 (accessed Jun. 12, 2021).

[77] “(34) Handling imbalanced dataset in machine learning | Deep Learning Tutorial 21

(Tensorflow2.0 & Python) - YouTube.”

https://www.youtube.com/watch?v=JnlM4yLFNuo&t=1914s (accessed Jun. 12, 2021).

[78] “Perceptron - Wikipedia.” https://en.wikipedia.org/wiki/Perceptron (accessed May 28,

2021).

[79] “[Memo Sheet] Deep Neural Network. Have you ever dreamed of a place where… | by

Harry Pommier | Zenika.” https://medium.zenika.com/memo-sheet-deep-neural-

network-dedcda759d9c (accessed May 28, 2021).

[80] “Activation Functions for Artificial Neural Networks - mlxtend.”

http://rasbt.github.io/mlxtend/user_guide/general_concepts/activation-functions/

(accessed May 28, 2021).

[81] “Difference Between a Batch and an Epoch in a Neural Network.”

https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/

(accessed May 28, 2021).

 References

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 76 -

[82] “GitHub - Kulbear/deep-learning-coursera: Deep Learning Specialization by Andrew

Ng on Coursera.” https://github.com/Kulbear/deep-learning-coursera (accessed Jun. 15,

2021).

[83] “Convolutional neural networks for time series forecasting - Python for Finance

Cookbook.”

https://subscription.packtpub.com/book/data/9781789618518/10/ch10lvl1sec63/convol

utional-neural-networks-for-time-series-forecasting (accessed Jun. 15, 2021).

[84] “Vanilla Recurrent Neural Network - Machine Learning Notebook.”

https://calvinfeng.gitbook.io/machine-learning-notebook/supervised-

learning/recurrent-neural-network/recurrent_neural_networks (accessed Jun. 17, 2021).

[85] “Chapter 4 Recurrent neural networks and their applications in NLP | Modern

Approaches in Natural Language Processing.” https://compstat-

lmu.github.io/seminar_nlp_ss20/recurrent-neural-networks-and-their-applications-in-

nlp.html (accessed Jun. 17, 2021).

[86] A. Graves, “Generating Sequences With Recurrent Neural Networks,” Aug. 2013,

Accessed: Jun. 18, 2021. [Online]. Available: http://arxiv.org/abs/1308.0850.

[87] “MIT Deep Learning 6.S191.” http://introtodeeplearning.com/ (accessed Jun. 18, 2021).

[88] “CS 230 - Recurrent Neural Networks Cheatsheet.”

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

(accessed Jun. 18, 2021).

[89] “Recurrent Neural Network (RNN) Tutorial for Beginners.”

https://www.simplilearn.com/tutorials/deep-learning-tutorial/rnn (accessed Jun. 18,

2021).

[90] “LSTM | Introduction to LSTM | Long Short Term Memor.”

https://www.analyticsvidhya.com/blog/2021/03/introduction-to-long-short-term-

memory-lstm/ (accessed Jun. 18, 2021).

[91] I. E. Livieris, E. Pintelas, and P. Pintelas, “A CNN–LSTM model for gold price time-

series forecasting,” Neural Comput. Appl., vol. 32, no. 23, pp. 17351–17360, Dec. 2020,

doi: 10.1007/s00521-020-04867-x.

[92] L. Deng and J. C. Platt, “Ensemble deep learning for speech recognition,” 2014.

[93] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “Human activity

recognition on smartphones using a multiclass hardware-friendly support vector

machine,” in Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), 2012, vol. 7657 LNCS, pp.

216–223, doi: 10.1007/978-3-642-35395-6_30.

[94] “SVM | What is SVM | Support Vector Machine | SVM in Python.”

https://www.analyticsvidhya.com/blog/2021/04/insight-into-svm-support-vector-

machine-along-with-code/ (accessed Jun. 19, 2021).

[95] “SVM | Support Vector Machine Algorithm in Machine Learning.”

https://www.analyticsvidhya.com/blog/2017/09/understaing-support-vector-machine-

example-code/ (accessed Jun. 19, 2021).

[96] V. Jakkula, “Tutorial on Support Vector Machine (SVM),” Sch. EECS, Washingt. State

 References

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 77 -

Univ., pp. 1–13, 2011, [Online]. Available:

http://www.ccs.neu.edu/course/cs5100f11/resources/jakkula.pdf.

[97] “Decision Tree Algorithm, Explained - KDnuggets.”

https://www.kdnuggets.com/2020/01/decision-tree-algorithm-explained.html (accessed

Jun. 20, 2021).

[98] “Random Forest Simple Explanation. Understanding the Random Forest with an… | by

Will Koehrsen | Medium.” https://williamkoehrsen.medium.com/random-forest-simple-

explanation-377895a60d2d (accessed Jun. 20, 2021).

[99] M. Reza, S. Miri, and R. Javidan, “A Hybrid Data Mining Approach for Intrusion

Detection on Imbalanced NSL-KDD Dataset,” Int. J. Adv. Comput. Sci. Appl., vol. 7,

no. 6, pp. 1–33, 2016, doi: 10.14569/ijacsa.2016.070603.

[100] “KNN Classification using Scikit-learn - DataCamp.”

https://www.datacamp.com/community/tutorials/k-nearest-neighbor-classification-

scikit-learn (accessed Jun. 27, 2021).

[101] “Dynamic Time Warping k-Nearest Neighbors Classifier (KNNClassifier) — sequentia

0.12.0 documentation.”

https://sequentia.readthedocs.io/en/latest/sections/classifiers/knn.html (accessed Jun.

27, 2021).

[102] “How to use Learning Curves to Diagnose Machine Learning Model Performance.”

https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-

learning-model-performance/ (accessed Jun. 25, 2021).

[103] “Towards Data Science.” https://towardsdatascience.com/ (accessed Jun. 29, 2021).

[104] “Analytics Vidhya - Learn Machine learning, artificial intelligence, business analytics,

data science, big data, data visualizations tools and techniques. | Analytics Vidhya.”

https://www.analyticsvidhya.com/ (accessed Jun. 29, 2021).

[105] V. Kapp, M. C. May, G. Lanza, and T. Wuest, “Pattern recognition in multivariate time

series: Towards an automated event detection method for smart manufacturing

systems,” J. Manuf. Mater. Process., vol. 4, no. 3, 2020, doi: 10.3390/JMMP4030088.

Appendix

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 78 -

Appendix
 N.B. Implementation in python is inspired from YouTube Channel “Codebasics” and

website “https://machinelearningmastery.com/”.

Ensemble Learning (CNN, LSTM, CNN-LSTM):

……………………………………………………………………………………………….

import numpy as np

import pandas as pd

from numpy import array

labelled_data_file_name = 'Hopper_labelled_data.csv'

dataset = pd.read_csv(labelled_data_file_name, skiprows=0)

dataset[' Delivery Air Dewpoint (F)']= pd.to_numeric(dataset[' Delivery Air Dewpoint (F)'],

errors = 'coerce')

dataset['Regen Temp Wheel Inlet (F)']= pd.to_numeric(dataset['Regen Temp Wheel Inlet

(F)'], errors = 'coerce')

dataset['Hopper 1 Hopper Outlet Temp (F)']= pd.to_numeric(dataset['Hopper 1 Hopper Outlet

Temp (F)'], errors = 'coerce')

dataset['Hopper 1 Drying Monitor 2 Temp (F)']= pd.to_numeric(dataset['Hopper 1 Drying

Monitor 2 Temp (F)'], errors = 'coerce')

dataset['Hopper 1 Drying Monitor 4 Temp (F)']= pd.to_numeric(dataset['Hopper 1 Drying

Monitor 4 Temp (F)'], errors = 'coerce')

dataset['Hopper 1 Drying Monitor 6 Temp (Top) (F)']= pd.to_numeric(dataset['Hopper 1

Drying Monitor 6 Temp (Top) (F)'], errors = 'coerce')

dataset['labels']= pd.to_numeric(dataset['labels'], errors = 'coerce')

dataset.columns = ['DAD', 'RTAS', 'RTWI', 'RTWO', 'H1DAT', 'H1HOT', 'H1DM1T',

'H1DM2T','H1DM3T', 'H1DM4T', 'H1DM5T', 'H1DM6T', 'labels']

dataset['DAD'].fillna(method='pad', inplace=True)

dataset['RTWI'].fillna(method='pad', inplace=True)

dataset['H1HOT'].fillna(method='pad', inplace=True)

dataset['H1DM2T'].fillna(method='pad', inplace=True)

dataset['H1DM4T'].fillna(method='pad', inplace=True)

dataset['H1DM6T'].fillna(method='pad', inplace=True)

columns_scaling = ['DAD', 'RTAS', 'RTWI', 'RTWO', 'H1DAT', 'H1HOT', 'H1DM1T',

'H1DM2T','H1DM3T', 'H1DM4T', 'H1DM5T', 'H1DM6T']

from sklearn.preprocessing import MinMaxScaler

Appendix

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 79 -

scaler = MinMaxScaler()

dataset[columns_scaling] = scaler.fit_transform(dataset[columns_scaling])

rows, columns = dataset.shape

count_test = int((rows/60)*0.2)*60

count_train = rows - count_test

dataset_train = dataset[:count_train]

dataset_test = dataset[count_train:]

dataset_train = np.array(dataset_train)

dataset_test = np.array(dataset_test)

split a multivariate sequence into samples

def split_sequences(sequences, n_steps):

 X, y = list(), list()

 for i in range(len(sequences)):

 # find the end of this pattern

 end_ix = 60*i + n_steps

 # check if we are beyond the dataset

 if end_ix > len(sequences):

 break

 # gather input and output parts of the pattern

 seq_x, seq_y = sequences[60*i:end_ix, :-1], sequences[end_ix-1, -1]

 X.append(seq_x)

 y.append(seq_y)

 return array(X), array(y)

choose a number of time steps

n_steps = 60

convert into input/output

trainX_pre, trainy_pre = split_sequences(dataset_train, n_steps)

trainy_pre = trainy_pre.reshape(trainy_pre.shape[0],1)

trainX_pre = np.asarray(trainX_pre).astype(np.float32)

testX, testy = split_sequences(dataset_test, n_steps)

Appendix

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 80 -

testy = testy.reshape(testy.shape[0],1)

testX = np.asarray(testX).astype(np.float32)

print(trainX_pre.shape, trainy_pre.shape, testX.shape, testy.shape)

dim1 =trainX_pre.shape[0]

dim2 =trainX_pre.shape[1]

dim3 =trainX_pre.shape[2]

trainX_pre = trainX_pre.reshape(dim1, dim2*dim3)

trainX_pre = pd.DataFrame(trainX_pre)

trainy_pre = pd.DataFrame(trainy_pre)

trainy_pre.columns = ['labels']

dataframe = pd.concat([trainX_pre, trainy_pre], axis =1)

count_train0, count_train1 = dataframe.labels.value_counts()

dataframe_train0 = dataframe[dataframe['labels']==0]

dataframe_train1 = dataframe[dataframe['labels']==1]

dataframe_train0.shape, dataframe_train1.shape

def train_set(df_majority, df_minority, start, end):

 df_train = pd.concat([df_majority[start:end], df_minority], axis =0)

 df_train = df_train.sample(frac=1)

 trainX = df_train.drop(['labels'], axis =1)

 trainy = df_train['labels']

 trainX = np.array(trainX)

 trainy = np.array(trainy)

 new_dim = trainX.shape[0]

 trainX = trainX.reshape(new_dim, dim2, dim3)

 trainy = trainy.reshape(trainy.shape[0],1)

 return trainX, trainy

from numpy import mean

from numpy import std

from tensorflow import keras

Appendix

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 81 -

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Flatten

from keras.layers import Dropout

from keras.layers import LSTM

from keras.layers import TimeDistributed

from keras.layers.convolutional import Conv1D

from keras.layers.convolutional import MaxPooling1D

from keras.utils import to_categorical

from sklearn.metrics import confusion_matrix, classification_report

import matplotlib.pyplot as plt

import tensorflow as tf

import seaborn as sn

def CNN(trainX, trainy, testX, testy, loss):

 n_timesteps, n_features, n_outputs = trainX.shape[1], trainX.shape[2], trainy.shape[1]

 model = Sequential()

 model.add(Conv1D(filters=16, kernel_size=5, activation='relu',

input_shape=(n_timesteps,n_features)))

 model.add(Conv1D(filters=16, kernel_size=5, activation='relu'))

 model.add(Dropout(0.5))

 model.add(MaxPooling1D(pool_size=2))

 model.add(Flatten())

 model.add(Dense(200, activation='relu'))

 model.add(Dense(n_outputs, activation='sigmoid'))

 model.compile(loss=loss, optimizer='adam', metrics=['accuracy'])

 history = model.fit(trainX, trainy, validation_split = 0.1, epochs=100, batch_size=64)

 print(history.history.keys())

 # summarize history for accuracy

 plt.plot(history.history['accuracy'])

 plt.plot(history.history['val_accuracy'])

Appendix

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 82 -

 plt.title('model accuracy')

 plt.ylabel('accuracy')

 plt.xlabel('epoch')

 plt.legend(['train', 'validation'], loc='upper left')

 plt.show()

 # summarize history for loss

 plt.plot(history.history['loss'])

 plt.plot(history.history['val_loss'])

 plt.title('model loss')

 plt.ylabel('loss')

 plt.xlabel('epoch')

 plt.legend(['train', 'validation'], loc='upper left')

 plt.show()

 print(model.evaluate(testX, testy, batch_size=64))

 yp = model.predict(testX)

 y_pred =[]

 for element in yp:

 if element>0.5:

 y_pred.append(1)

 else:

 y_pred.append(0)

 print(classification_report(testy, y_pred))

 cm = tf.math.confusion_matrix(labels = testy, predictions =y_pred)

 plt.figure(figsize =(10,6))

 sn.heatmap(cm, annot=True, fmt='d')

 plt.xlabel('Predicted')

 plt.ylabel('Truth')

 return y_pred

trainX11, trainy11 = train_set(dataframe_train0, dataframe_train1.sample(548), 0, 548)

Appendix

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 83 -

print(trainX11.shape, trainy11.shape, testX.shape, testy.shape)

trainX21, trainy21 = train_set(dataframe_train0, dataframe_train1, 0, 791)

print(trainX21.shape, trainy21.shape, testX.shape, testy.shape)

trainX31, trainy31 = train_set(dataframe_train0, dataframe_train1, 0, 914)

print(trainX31.shape, trainy31.shape, testX.shape, testy.shape)

y_pred11_CNN = CNN(trainX11, trainy11, testX, testy, 'binary_crossentropy')

y_pred21_CNN = CNN(trainX21, trainy21, testX, testy, 'binary_crossentropy')

y_pred31_CNN = CNN(trainX31, trainy31, testX, testy, 'binary_crossentropy')

trainX12, trainy12 = train_set(dataframe_train0, dataframe_train1.sample(548), 548, 1096)

print(trainX12.shape, trainy12.shape, testX.shape, testy.shape)

trainX22, trainy22 = train_set(dataframe_train0, dataframe_train1, 791, 1582)

print(trainX22.shape, trainy22.shape, testX.shape, testy.shape)

trainX32, trainy32 = train_set(dataframe_train0, dataframe_train1, 914, 1828)

print(trainX32.shape, trainy32.shape, testX.shape, testy.shape)

y_pred12_CNN = CNN(trainX12, trainy12, testX, testy, 'binary_crossentropy')

y_pred22_CNN = CNN(trainX22, trainy22, testX, testy, 'binary_crossentropy')

y_pred32_CNN = CNN(trainX32, trainy32, testX, testy, 'binary_crossentropy')

trainX13, trainy13 = train_set(dataframe_train0, dataframe_train1.sample(548), 1096, 1644)

print(trainX13.shape, trainy13.shape, testX.shape, testy.shape)

trainX23, trainy23 = train_set(dataframe_train0, dataframe_train1, 1582, 2742)

print(trainX23.shape, trainy23.shape, testX.shape, testy.shape)

trainX33, trainy33 = train_set(dataframe_train0, dataframe_train1, 1828, 2742)

print(trainX33.shape, trainy33.shape, testX.shape, testy.shape)

y_pred13_CNN = CNN(trainX13, trainy13, testX, testy, 'binary_crossentropy')

y_pred23_CNN = CNN(trainX23, trainy23, testX, testy, 'binary_crossentropy')

y_pred33_CNN = CNN(trainX33, trainy33, testX, testy, 'binary_crossentropy')

trainX14, trainy14 = train_set(dataframe_train0, dataframe_train1.sample(549), 1644, 2193)

print(trainX14.shape, trainy14.shape, testX.shape, testy.shape)

y_pred14_CNN = CNN(trainX14, trainy14, testX, testy, 'binary_crossentropy')

Appendix

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 84 -

trainX15, trainy15 = train_set(dataframe_train0, dataframe_train1.sample(549), 2193, 2742)

print(trainX15.shape, trainy15.shape, testX.shape, testy.shape)

y_pred15_CNN = CNN(trainX15, trainy15, testX, testy, 'binary_crossentropy')

def final_result23(y_pred1, y_pred2, y_pred3):

 y_pred_final = y_pred1.copy()

 for i in range(len(y_pred1)):

 n_ones = y_pred1[i]+y_pred2[i]+y_pred3[i]

 if n_ones>1:

 y_pred_final[i]=1

 else:

 y_pred_final[i]=0

 return y_pred_final

y_pred_final2_CNN = final_result23(y_pred21_CNN, y_pred22_CNN, y_pred23_CNN)

y_pred_final3_CNN = final_result23(y_pred31_CNN, y_pred32_CNN, y_pred33_CNN)

print(classification_report(testy, y_pred_final2_CNN), classification_report(testy,

y_pred_final3_CNN))

cm2_CNN = tf.math.confusion_matrix(labels = testy, predictions =y_pred_final2_CNN)

plt.figure(figsize =(10,6))

sn.heatmap(cm2_CNN, annot=True, fmt='d')

plt.xlabel('Predicted')

plt.ylabel('Truth')

cm3_CNN = tf.math.confusion_matrix(labels = testy, predictions =y_pred_final3_CNN)

plt.figure(figsize =(10,6))

sn.heatmap(cm3_CNN, annot=True, fmt='d')

plt.xlabel('Predicted')

plt.ylabel('Truth')

def final_result1(y_pred1, y_pred2, y_pred3, y_pred4, y_pred5):

 y_pred_final = y_pred1.copy()

 for i in range(len(y_pred1)):

 n_ones = y_pred1[i]+y_pred2[i]+y_pred3[i]+y_pred4[i]+y_pred5[i]

Appendix

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 85 -

 if n_ones>2:

 y_pred_final[i]=1

 else:

 y_pred_final[i]=0

 return y_pred_final

y_pred_final1_CNN = final_result1(y_pred11_CNN, y_pred12_CNN, y_pred13_CNN,

y_pred14_CNN, y_pred15_CNN)

print(classification_report(testy, y_pred_final1_CNN))

cm1_CNN = tf.math.confusion_matrix(labels = testy, predictions =y_pred_final1_CNN)

plt.figure(figsize =(10,6))

sn.heatmap(cm1_CNN, annot=True, fmt='d')

plt.xlabel('Predicted')

plt.ylabel('Truth')

LSTM model cell:

n_timesteps, n_features, n_outputs = trainX21.shape[1], trainX21.shape[2], trainy21.shape[1]

model = Sequential()

model.add(LSTM(100, input_shape=(n_timesteps,n_features)))

model.add(Dropout(0.5))

model.add(Dense(200, activation='relu'))

model.add(Dense(n_outputs, activation='sigmoid'))

model.summary()

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

history = model.fit(trainX21, trainy21, validation_split = 0.1, epochs=10, batch_size=64)

print(history.history.keys())

summarize history for accuracy

plt.plot(history.history['accuracy'])

plt.plot(history.history['val_accuracy'])

plt.title('model accuracy')

plt.ylabel('accuracy')

plt.xlabel('epoch')

plt.legend(['train', 'validation'], loc='upper left')

Appendix

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 86 -

plt.show()

summarize history for loss

plt.plot(history.history['loss'])

plt.plot(history.history['val_loss'])

plt.title('model loss')

plt.ylabel('loss')

plt.xlabel('epoch')

plt.legend(['train', 'validation'], loc='upper left')

plt.show()

print(model.evaluate(testX, testy, batch_size=64))

yp = model.predict(testX)

y_pred21 =[]

for element in yp:

 if element>0.5:

 y_pred21.append(1)

 else:

 y_pred21.append(0)

print(classification_report(testy, y_pred21))

cm = tf.math.confusion_matrix(labels = testy, predictions =y_pred21)

plt.figure(figsize =(10,6))

sn.heatmap(cm, annot=True, fmt='d')

plt.xlabel('Predicted')

plt.ylabel('Truth')

CNN-LSTM cell:

n_timesteps, n_features, n_outputs = trainX11.shape[1], trainX11.shape[2], trainy11.shape[1]

n_steps, n_length = 4, 15

trainX11 = trainX11.reshape((trainX11.shape[0], n_steps, n_length, n_features))

testX = testX.reshape((testX.shape[0], n_steps, n_length, n_features))

model = Sequential()

model.add(TimeDistributed(Conv1D(filters=16, kernel_size=5, activation='relu'),

input_shape=(None,n_length,n_features)))

Appendix

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 87 -

model.add(TimeDistributed(Dropout(0.5)))

model.add(TimeDistributed(Conv1D(filters=16, kernel_size=5, activation='relu')))

model.add(TimeDistributed(Dropout(0.5)))

model.add(TimeDistributed(MaxPooling1D(pool_size=2)))

model.add(TimeDistributed(Flatten()))

model.add(LSTM(100))

model.add(Dropout(0.5))

model.add(Dense(200, activation='relu'))

model.add(Dense(n_outputs, activation='sigmoid'))

model.summary()

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

history = model.fit(trainX11, trainy11, validation_split = 0.1, epochs=10, batch_size=64)

print(history.history.keys())

summarize history for accuracy

plt.plot(history.history['accuracy'])

plt.plot(history.history['val_accuracy'])

plt.title('model accuracy')

plt.ylabel('accuracy')

plt.xlabel('epoch')

plt.legend(['train', 'validation'], loc='upper left')

plt.show()

summarize history for loss

plt.plot(history.history['loss'])

plt.plot(history.history['val_loss'])

plt.title('model loss')

plt.ylabel('loss')

plt.xlabel('epoch')

plt.legend(['train', 'validation'], loc='upper left')

plt.show()

print(model.evaluate(testX, testy, batch_size=64))

Appendix

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 88 -

yp = model.predict(testX)

y_pred11 =[]

for element in yp:

 if element>0.5:

 y_pred11.append(1)

 else:

 y_pred11.append(0)

print(classification_report(testy, y_pred11))

cm = tf.math.confusion_matrix(labels = testy, predictions =y_pred11)

plt.figure(figsize =(10,6))

sn.heatmap(cm, annot=True, fmt='d')

plt.xlabel('Predicted')

plt.ylabel('Truth')

SMOTE (CNN, LSTM, CNN-LSTM, ML algorithms) cells:

dim1 =trainX_pre.shape[0]

dim2 =trainX_pre.shape[1]

dim3 =trainX_pre.shape[2]

dim1, dim2, dim3

trainX_pre = trainX_pre.reshape(dim1, dim2*dim3)

trainX_pre.shape

from imblearn.over_sampling import SMOTE

smote = SMOTE(sampling_strategy = 'minority')

trainX_sm, trainy_sm = smote.fit_resample(trainX_pre, trainy_pre)

trainX_sm = pd.DataFrame(trainX_sm)

trainy_sm = pd.DataFrame(trainy_sm)

trainy_sm.columns = ['labels']

dataframe = pd.concat([trainX_sm, trainy_sm], axis =1)

dataframe = dataframe.sample(frac=1)

dataframe.labels.value_counts()

trainX = dataframe.drop(['labels'], axis =1)

Appendix

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 89 -

trainy = dataframe['labels']

trainX = np.array(trainX)

trainy = np.array(trainy)

new_dim = trainX.shape[0]

trainX = trainX.reshape(new_dim, dim2, dim3)

trainy = trainy.reshape(trainy.shape[0],1)

trainX.shape, trainy.shape

print(trainX.shape, trainy.shape, testX.shape, testy.shape)

ML algorithms application cells:

from sklearn.metrics import accuracy_score

from sklearn.neighbors import KNeighborsClassifier

from sklearn.tree import DecisionTreeClassifier

from sklearn.svm import SVC

from sklearn.naive_bayes import GaussianNB

from sklearn.ensemble import BaggingClassifier

from sklearn.ensemble import RandomForestClassifier

from sklearn.ensemble import ExtraTreesClassifier

from sklearn.ensemble import GradientBoostingClassifier

from sklearn.metrics import confusion_matrix, classification_report

import matplotlib.pyplot as plt

import tensorflow as tf

import seaborn as sn

def define_models(models=dict()):

 models['knn'] = KNeighborsClassifier(n_neighbors=7)

 models['cart'] = DecisionTreeClassifier()

 models['svm'] = SVC(kernel = 'poly')

 models['bayes'] = GaussianNB()

 models['bag'] = BaggingClassifier(n_estimators=50)

 models['rf'] = RandomForestClassifier(n_estimators=50)

 models['et'] = ExtraTreesClassifier(n_estimators=100)

Appendix

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 90 -

 models['gbm'] = GradientBoostingClassifier(n_estimators=100)

 print('Defined %d models' % len(models))

 return models

def evaluate_model(trainX, trainy, testX, testy, model)

 model.fit(trainX, trainy)

 yhat = model.predict(testX)

 cm = tf.math.confusion_matrix(labels = testy, predictions =yhat)

 plt.figure(figsize =(10,6))

 sn.heatmap(cm, annot=True, fmt='d')

 plt.xlabel('Predicted')

 plt.ylabel('Truth')

 accuracy = accuracy_score(testy, yhat)

 print(classification_report(testy, yhat))

 return accuracy * 100.0

def evaluate_models(trainX, trainy, testX, testy, models):

 results = dict()

 for name, model in models.items():

 # evaluate the model

 results[name] = evaluate_model(trainX, trainy, testX, testy, model)

 # show process

 print('>%s: %.3f' % (name, results[name]))

 return results

def summarize_results(results, maximize=True):

 # create a list of (name, mean(scores)) tuples

 mean_scores = [(k,v) for k,v in results.items()]

 # sort tuples by mean score

 mean_scores = sorted(mean_scores, key=lambda x: x[1])

 # reverse for descending order (e.g. for accuracy)

 if maximize:

 mean_scores = list(reversed(mean_scores))

Appendix

Md Mushfiqur Rahman, MS in Industrial Engineering, IMSE, WVU - 91 -

 print()

 for name, score in mean_scores:

 print('Name=%s, Score=%.3f' % (name, score))

models = define_models()

results = evaluate_models(trainX, trainy, testX, testy, models)

summarize_results(results)

	Multivariate Time Series Classification of Sensor Data from an Industrial Drying Hopper: A Deep Learning Approach
	Recommended Citation

	Multivariate Time Series Classification of Sensor Data from an Industrial Drying Hopper: A Deep Learning Approach
	tmp.1626985381.pdf.p5Nxn

