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REVIEW

Bacilli as sources of agrobiotechnology: recent advances and future directions
Zerihun T. Dame a, Mahfuz Rahman b and Tofazzal Islam c

aDepartment of Biology, College of Natural and Computational Science, Ambo University, Ambo, Ethiopia; bWVU Extension Service, West
Virginia University, Morgantown, WV, USA; cInstitute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman
Agricultural University, Gazipur, Bangladesh

ABSTRACT
The group bacilli represent the Gram-positive ubiquitous spore-forming bacteria. Their diversity,
versatility and the ability of producing diverse secondary metabolites including enzymes
created enormous potential for applications in agriculture, biotechnology, environment and
medicine. The bacilli are considered as one of the most studied groups of bacteria providing
plant growth-promotion and biocontrol of multiple diseases reflecting their vital role in
enhancing plants’ tolerance to biotic and abiotic stresses. Some of the Bacillus species are
available commercially as phytostimulants, biopesticides, and biofertilizers. Genetically
engineered plants such as maize, cotton, brinjal with endotoxins producing genes from Bacillus
thuringiensis (Bt) has revolutionized agriculture. Many of these applications have been widely
adopted in various fields as viable and environmentally friendly alternatives of synthetic
chemical fertilizers and pesticides. A better understanding of the biology, ecology, and
mechanisms of action of the beneficial strains of bacilli are needed for the development of
products to support green biotechnology in agriculture and industries. This report
comprehensively reviewed the applications of bacilli in agriculture and industry and discussed
their potentials for the development of new products of biotechnological implications.
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1. Introduction

Bacillus species are widely distributed in a wide range of
environmental (including extreme) conditions such as
water, dead insects, plants, soil, marine environment,
the gut of animals and food samples (1, 2). They are
aerobic endospore-forming bacteria that can survive in
the harshest climatic and edaphic conditions. Members
of the genus Bacillus produce a vast array of bioactive
metabolites that have potential applications in agricul-
ture, fisheries, medical, and veterinary sciences (3–5). In
addition, Bacillus-produced enzymes, antibiotics and
other metabolites have been utilized in medical, agricul-
tural and pharmaceutical industires (5). Mass production

of metabolites such as cyclicpeptides (6), polyketides (7),
and bacteriocin (8) by the species of Bacillus is an attrac-
tive area of research with enormous potential of com-
mercialization (4). One of the promising applications of
bacilli in agricultural sector is their use as a biological
control agent of biotic diseases (9, 10). Bacillus alone is
estimated to account for half of the commercially avail-
able bacteria-based biological control agents. They
belong to one of the most studied microorganisms
that have been used as antagonists of phytopathogenic
bacteria, fungi, oomycetes, nematodes, and insects (10,
11). Currently, there is an urgent need for intensifying
agricultural production to keep pace with the rapid
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increase of global population. This elevated production
target compelled agricultural community to use syn-
thetic products such as fertlizers and pesticices making
the whole agro-ecosystem more unsustainable than
ever. Therefore, there are growing appeals for the use
of environmentally safe and sustainable pest control
agents such as Bacillus spp. to support ‘Zero hunger’
the second most important sustainable development
goal (SDG) set by the UNO. In this regard, several
strains of the genus Bacillus have demonstrated the
potential to be used as plant growth-promoting bacteria
(PGPB) and proved to have antagonistic activities
against several phytopathogenic microorganisms (12).

According to estimates of the Food and Agriculture
Organization (FAO), the world population would reach
9.7 billion by the year 2050 (13). This necessitates sub-
stantial increase in agricultural production to feed a
population of such magnitude. Besides, climate change
is also posing a challenge to worldwide crop production.
Much of the arable land may no longer be usable due to
increase in salinity, drought or pest attack. These pro-
blems can’t be solved by the use of chemicals. Therefore,
there is an urgent need to look for a sustainable way to
maximize agricultural production. In this regard, the role
of Bacillus species in controlling plant pathogens, enhan-
cing their tolerance to various biotic and abiotic stresses
thereby increasing production would be an exciting area
of research. T he discovery of the elite strains of Bacillus
spp. has high potentials for commercialization and man-
agement of abiotic and biotic stresses to improve crop
production. Recent advances in genomics and postge-
nomics analyses have shed light on the molecular mech-
anisms of biocontrol of plant diseases by the Bacillus
species (14, 140). Insecticidal toxins produced in com-
mercially available transgenic plants is originated from
the soil bacterium Bacillus thuringiensis (Bt). Although
Bt strains show differing specificities of insecticidal
activity toward pests, they constitute a large reservoir
of genes encoding insecticidal proteins, which are accu-
mulated in the crystalline inclusion bodies produced by
the bacterium on sporulation (Cry proteins, Cyt proteins)
or expressed during bacterial growth (Vip proteins)(15).
Development of insect-resistant crops is one of the
major successes of plant genetic engineering technol-
ogy by inserting B. thuringiensis genes in many agricultu-
rally important crops. Some of the success stories of Bt
technology include cotton (Gossypium hirsutum) resist-
ant to lepidopteran larvae (caterpillars) and maize (Zea
mays) resistant to both lepidopteran and coleopteran
larvae (rootworms) that have been widely used in
global agriculture resulting in reductions in pesticide
usage and lower production costs (16, 17). A recently
introduced Bt-brinjal in Bangladesh dramatically

reduced synthetic pesticide application and increased
farmers’ income (18). However, the use of Bt GM crops
comes with various challenges that are to be addressed.
Some insects have developed resistance to Bt GM crops
creating new economic or agronomic challenges.
Additional scientific efforts were made to stack Bt
genes in certain crops or new agronomic practices
were introduced to prevent insects from developing
resistance. For example, farmers need to plant a
certain amount of conventional plants alongside Bt
plants in ‘refuge’ areas. Several reviews have been pub-
lished on bioactive compounds from terrestrial and
marine bacilli, their biosynthetic pathways and engineer-
ing plants using Bt genes (4, 14, 15, 19–24). However,
there is no comprehensive review published on baccili
as source of agrobiotechnology. This comprehensive
review updates our understanding of the applications
of bacilli in agriculture and industry, and discusses
their promise for the development of new
agrobiotechnology.

2. Bacillus spp. as biocontrol agents

2.1. Bacillus spp. as antagonists of
phytopathogens

Phytopathogens pose a great challenge to world food
security (25, 11, 10). They diminish the annual yield by
a significant amount that could otherwise feed millions
of people (25). Thus, they cause huge economic losses
to both developing and developed economies. Various
studies have established the potential use of Bacillus
spp. in controlling plant pathogens (26, 27). Antagonistic
activities of these bacilli take place primarily through the
production and secretion of various bioactive secondary
metabolites (11, 14, 28–32) and lytic enzymes (33–36).
Verschuere et al. (37) argued that among bacteria-
based antagonists, B. subtilis is one of the most studied
and used bacteria with a wide range of activities
against phytopathogens. On the other hand,
B. thuringiensis (Bt) accounts for over 90% of all marketed
biological control agents with millions of dollars of
annual sales.

The emergence of fungal diseases in plants increased
remarkably in the last few decades, and they are posing
a serious threat to future food and nutritional security
(11, 38). From many years of research, a large body of lit-
erature is now available on the biological activities of the
bacilli against fungal and other phytopathogens. A strain
of B. subtilis has shown more than 80% suppression of
Rhizoctonia solani, the causative agent of damping-off
of tomato seedlings (39). In a similar study, Ji et al. (40)
isolated a strain of B. amyloliquefaciens from the
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Republic of Korea and tested the strain against various
fungal plant diseases. It displayed activities both in lab-
oratory and greenhouse settings against cucumber
scleotiorum rot. It also showed antagonistic activity in
laboratory setting against tomato gray mold and
powdery mildew disease in cucumber. Similarly, a
strain B. velezensis isolated by Toral et al. (41) demon-
strated the potential for protecting tomatoes, grapes,
and strawberries from various phytopathogens includ-
ing B. cinerea. The strain produces various lipopeptides
with activities against B. cinerea and has the potential
to trigger an antioxidant activity in fruit. Novel linear
lipopeptides produced by a marine B. subtilis strain
109GGC020 significantly suppressed oomycete phyto-
pathogens (42).

The filamentous fungus, Fusarium graminearum
causes Fusarium head blight (FHB) on wheat and
barley leading to massive economic loss to the
growers (43). It is also known to cause seedling blight
on maize. Gu et al. (44) investigated a strain of B. amylo-
liquefaciens’s potential to suppress F. graminearum.
Results from their study showed that the strain produces
bacillomycin D, which causes morphological changes in
the plasma membrane and cell wall of F. graminearum,
induces accumulation of reactive oxygen species, and
ultimately causes cell death in the pathogen. Araujo
et al. (45) isolated strains of Bacillus from soil samples
of Paraná State, Brazil, to investigate their potential as
biological control agents of soybean seed pathogens.
They identified strains of B. subtilis with promising
antagonistic activities against several fungal phyto-
pathogens, e.g. R. solani, Colletotrichum truncatum, Scler-
otinia sclerotiorum, Macrophomina phaseolina, and
Phomopsis spp. On the other hand, Zalila-Kolsi et al.
(46) have shown that co-application of
B. amyloliquefaciens, B. subtilis, and P. polymyxa bacterial
cells led to the highest protection against several phyto-
pathogenic fungi in vivo in wheat. B. subtilis Ch-13, an
industrial strain was shown to have a wide spectrum of
antagonistic activities against phythopathogens. It pro-
duces various metabolites with the potentials to
protect plants against fungal pathogens and promote
their growth (47).

2.2. Biocontrol of plant diseases

The term biological control was first used a century ago
to describe the introduction of exotic species to sup-
press pests. However, its application is much older
than the term itself (48). While the use of chemical-
based pesticides increased agricultural productivity,
their lasting consequence on the environment urges
the use of safe and effective alternatives. In this regard,

the use of a biological control agent is an increasingly
successful and widespread strategy to decrease plant
pathogens and the negative effects of agricultural prac-
tices on the environment. Likewise, biological control of
phytopthogens has received considerable attention and
involves the use of bacteria or fungi with antagonistic
activities against plant pathogens (49, 50). A large
body of literature suggests that elite strains of bacilli
protect plants from the phytopathogens (Table 1).
Some of the strains alone or in the consortium have
been commercialized as biocontrol and/or phytostimu-
lants. Application of B. amyloliquefaciens together with
commercial fungicides significantly reduces branch
canker disease in tea plants under field conditions (51).
In a related study, the use of B. amyloliquefaciens
together with other microorganisms has been shown
to improve the strain’s biocontrol potential (52).

While biological control is often seen as the safest,
most environment-friendly, and cost-effective method,
there are challenges related to its application from a prac-
tical point of view. Waage et al. (48) argued that the
primary challenge with the use of biological control
comes from conflicts of interest with the conservation
of native species. Lack of consistent efficacy under
different environmental conditions and longer regis-
tration time are also some of the hindrances that limit
the use of Bacillus as biological control of plant pests (53).

One important mechanism by which Bacilli may
inhibit fungal pathogens that cause diseases in plants
is through enhancing the host plant defence mechan-
isms by stimulating their immune systems. Surfactants
are among the molecules that induce significant protec-
tive effects against diseases caused by fungal pathogens
(54). This has been demonstrated in maize through the
treatment of the roots with a suspension of B. subtilis
strain capable of inducing defence genes (55).

A substantial amount of literature is available on the
mechanisms of bacilli biocontrol. Genomics and postge-
nomics study also elucidated the mechanisms in biocon-
trol of phytopathogens (19). Inhibition of hyphal growth,
induction of cell death, competition for space and nutri-
ents, direct effects on mycotoxin biosynthesis and stab-
ility, and promotion of host immunity are some of the
modes of actions of the Bacillus antagonists (59, 87).
While biological control has several merits over chemical
fungicides, there are also disadvantages if not applied
properly. The misuse of biocontrol in terms of dose
and frequency, for example, should be avoided.

2.3. Bacillus as insecticides

While plants and insects have coexisted for millions of
years, their relationship is not confined to mutual
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benefits such as pollination but also involves insect pre-
dation of plants. Therefore, insect pests are one of the
challenges plants face in the environment. Farmers
lose a sizeable amount of agricultural production due
to various insect pests every year (88). Moreover, the
rapid increase of the world population intensified the
use of synthetic insecticides that has enabled doubling
of worldwide grain production in the last century (89).

However, this progress came with undesirable environ-
mental and ecological impacts. Therefore, there is a
growing appeal for alternatives with natural and non-
synthetic molecules (90). In this regard, Bacillus-based
pest control has attracted much attention and has
been a subject of increased investigation for last
couple of decades. Strains of B. thuringiensis are arguably
the most used species as biological control of insect

Table 1. Biocontrol of plant pathogens by Bacillus spp.
Bacillus species with strain Targeted phytopathogen Controlled plant disease References

B. amyloliquefaciens NJN-6 Fusarium oxysporum Fusarium wilt (56)
Clavibacter michiganensis Stem canker and leaf wilt (57)

B. cereus IB311 Pseudomonas syringae Kiwifruit canker (58)
B. cereus AR156 Agrobacterium tumefaciens Crown gall
B. firmus DS-1 Ralstonia solanacearum Bacterial wilt (59)

Meloidogyne incognita Root-knot nematode (60)
B. halotolerans Fusarium oxysporum Fusarium wilt (61)
B. subtilis В-1323 Phaeoacremonium aleophilum (62)

Botrytis cinerea Gray mold
Rhizoctonia solani Damping off, stem lesions, stem rot, root rot, crown rot, and

aerial web blighting
(63)

Colletotrichum gloeosporioides Anthracnose
Phytophthora capsici Stem and fruit rot

B. licheniformis BC98 Magnaporthe grisea Rice seedling blight (64)
B. licheniformis MH48 Botrytis cinerea Gray mold (65)

Pestalotiopsis karstenii Smut
Pestalotia diospyri Leaf spot
Glomerella cingulata Bitter rot of fruits

B. licheniformis MH48 Botrytis cinerea Gray mold of tomato caused (66, 67)
B. methylotrophicus N1 Fusarium moniliforme Seedling blight of corn (68)

Aspergillus awamori Black mold
Penicillium sp. Mold
Aspergillus niger Black mold

B. pumilus Fusarium oxysporum Fusarium wilt (69)
B. pumilus HN-10 Trichothecium roseum Fruit rot of tomato, orange, and apple (70)
B. pumilus AR03 Altenaria alternata Leaf spot (71)
B. pumilus AR03 Erysiphe cichoracearum Powdery mildew (71)
B. subtilis 30B-B6 Phytophthora infestans Late blight (72)
B. pumilus SS-10.7 and B. amyloliquefaciens
(SS-12.6 and SS-38.4)

Pseudomonas syringae Blossom blast and spur dieback (73)

B. subtilis 30VD-1 F. oxysporum Fusarium wilt (74, 75)
B. subtilis SPB1 F. solani Root rot (76)
B. subtilis strain 168 Zymoseptoria tritici Wheat leaf blotch (77)
B. velezensis B. velezensis A2 F. oxysporum Root rot (78, 79)
B. velezensis XT1 CECT 8661 Botrytis cinerea Gray mold (41)

Clavibacter michiganensis Potato (80)
Ralstonia solanacearum Bacterial Wilt
Xanthomonas campestris Black rot
Xanthomonas euvesicatoria Bacterial spot
Alternaria solani, Early blight of tomato and potato
Cochliobolus carbonum, Northern leaf spot and ear rot
Fusarium oxysporum Vascular wilt
Fusarium solani Soft rot
Gibberella pulicaris Potatoe dry rot
Gibberella zeae Fusarium head blight
Monilinia fructicola Brown rot
Pyrenochaeta terrestris Pink-root
Rhizoctonia solani Damping-off

B. velezensis NRRL B-23189 Penicillium roqueforti (81, 82)
F. graminearum Fusarium head blight

B. mojavensis A21 Ralstonia solanacearum Moko disease of banana and brown rot of potato (83)
Fusarium oxysporum Fusarium wilt

Lacto Bacillus plantarum CC100 Pseudomonas syringae pv.
actinidiae;

Bacterial canker of kiwifruit (84)

Xanthomonas arboricola pv.
Pruni

Bacterial spot of stone fruits

Xanthomonas fragariae Leaf spot of strawberry
Paenibacillus polymyxa NSY50 F. oxysporum Fusarium wilt (85, 86)
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pests as they produce various metabolites that possess
wide-spectrum insecticidal properties (91).

Moreover, advances in genetic engineering tech-
niques have enabled the production of transgenic
pest-resistant crops by using the genes discovered in
B. thuringiensis (92). Maize, potato, brinjal, and cotton
were engineered for the expression of the entomoci-
dalδ-endotoxins from various strains of B. thuringiensis
(Table 2). These toxins have provided efficient suppres-
sion of lepidopteran and coleopteran insects, and
remarkably increased yield and reduced the application
of insecticides (15, 18). The worldwide application of Bt
technologies remarkably reduced the application of
hazardous chemical insecticides and increased the
yield and income of the farmers. Increased yield alone,
however, can not offset costs associated with genetically
engineered seeds and, therefore, requires other con-
siderations such as environmental stewardship and sus-
tainability factored in.

Transgenic Bt-crops expressing cry genes from
B. thuringiensis are protected against not only insect
pests but also pathogenic microbes vectored by those
insects. Bt-corn, although not very effective in aflatoxin
mitigation, has been shown to reduce fumonisins
(FUMs) and deoxynivalenol contamination (100). Asper-
gillus flavus and A. parasiticus invade the seed through
silk and are vectored mainly by insects that are not con-
trolled by Bt-corn (101). Lower mycotoxin levels in Bt-
corn have been shown from the feeding damage
caused by the European corn borer but not the corn
earworm. B. thuringiensismay have additional biocontrol
effects. For example, seed treatment with a chitinase
from B. thuringiensis-controlled Fusarium infection in
soybean (102). Brown plant hopper (BPH; Nilaparvata
lugens Stål) is one of the most destructive insect
pests, which reduce rice yield remarkably in many
rice-growing areas. Based on a high-throughput tran-
scriptome analysis, Rashid et al. (103) demonstrated
that systemic resistance induced by B. velezensis
YC7010 against BPH is linked with activation of salicylic
acid (SA) – and jasmonic acid (JA)-dependent pathways

in rice. Furthermore, the authors confirmed that bac-
terial metabolites, bacillopeptin A, B and X were found
to be involved in the induction of systemic resistance
in rice (103).

2.4. Reduction of mycotoxin in agricultural
produce

Mycotoxins are toxic secondary metabolites produced
by various filamentous fungi. They have medical and
veterinary importance. The toxins consist of low molecu-
lar weight fungal metabolites. Fungi of the genera Asper-
gillus, Fusarium, and Penicillium are responsible for the
production of most mycotoxins reported (104). Bennett
(105) describes mycotoxins as natural products that
trigger a toxic response in animals, plants, and microor-
ganisms. At present, hundreds of them have been ident-
ified and investigated from various fungal species. One
of the highly toxic groups of mycotoxins is aflatoxins,
which are produced by Aspergillus spp. The Aspergillus
infects wheat, walnut, corn, cotton, peanuts, and tree
nuts. Consumption of aflatoxin-contaminated food for
a while leads to health complications. Liver cancer, a
decline in the immune system, malnutrition, and
retarded child growth are some of the health impacts
caused by aflatoxin consumptions (106). Acute toxicity
can lead to liver failure and subsequent death associated
with the ingestion of higher amounts of aflatoxin
through contaminated foods (107, 108). Other groups
of mycotoxins such as ochratoxins, fumonisins, deoxyni-
valenol, patulin, zearalenone (ZEA), and trichothecenes
have also been associated with acute or chronic toxicity.
Moreover, they are ubiquitous and pose a significant
threat to human and animal health (109). Ringot et al.
(110) argued that ochratoxin A (OTA) as one of the
most harmful metabolites produced by toxigenic fungi
has the potential to contaminate products such as
cereals, figs, grapes, spices, coffee beans, cocoa beans,
pork meat and dried vine fruits. According to Peraica
et al. (111) mycotoxicosis has been a threat for millennia
basically from the consumption of contaminated food.

Table 2. Insecticidal proteins/toxins produced by the starins of Bacillus thuringiensis.
Strain Targeted insect/worm Insectididal proteins References

B. thuringiensis strain AB1 Plutella xylostella Cry toxins (93)
B. thuringiensis var. israelensis Anopheles gambiae Cry toxins (94)
B. thuringiensis israelensis (Bti) Aedes aegypti ATP-binding proteins (ABP) (95)
B. sthuringiensis Vip1 Holotrichia parallela larvae Vegetative insecticidal proteins (96)
B. thuringiensisvarious Caterpillars Cry 1 C insecticidal protein (51)

Spodoptera frugiperda Cry1Da_7 and Cry1B.868 proteins (97)
Spodoptera eridania Vegetative insecticidal proteins (Vips) Vip3Ab1-740 (98)
Spodoptera frugiperda, Vegetative insecticidal proteins (Vips) Vip3Ab1-740 (98)
Helicoverpa zea Vegetative insecticidal proteins (Vips) Vip3Ab1-740 (98)
Pseudoplusia includens Vegetative insecticidal proteins (Vips) Vip3Ab1-740 (98)
Anticarsia gemmatalis Bt toxins (99)
Leucinodes orbonalis Cry1Ac (EE-) (18)
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Few examples, ’St. Anthony’s fire’ caused by toxins from
the ergot fungus, Claviceps purpurea, the 1891 cardiac
beriberi in Japan, and alimentary toxic aleukia (charac-
terized by nausea, vomiting, diarrhea, leukopenia,
hemorrhaging, skin inflammation, and sometimes
death) was another example of mycotoxicosis outbreak
that occurred during the World War II in Russia and
associated with the Fusarium toxin T-2. In addition to
the health impact of mycotoxins on humans and
animals, they account for a loss of about a quarter of
global crop productions leading to the loss of billions
of dollars.

While preventing contamination of crops from myco-
toxin producing strains is one of the best approaches to
curb their effects on humans and animals’ health,
degrading the toxins to their harmless state is also a
potential method of controlling the damage they
cause. While approaches such as the use of chemicals
and physical techniques to degrade mycotoxins have
been widely described, they are indicated to be unsafe
and usually impractical. Hence, one of the methods to
mitigate mycotoxin contamination is through biological
detoxification in which the toxins are degraded into
lesser or nontoxic metabolites (112–116). The appli-
cation of bacilli as agents of biocontrol of mycotoxin
producing fungi is a promising approach for solving
this critical problem. A report by Fu et al. (117) showed
that a strain of B. licheniformis degrades zearalenone in
feed and reduces its toxicity in piglets. Similarly, fengycin
producing B. amyloliquefaciens FZB42 controls Fusarium
graminearum and significantly reduces mycotoxins such
as deoxynivalenol (DON), 3-acetyldeoxinivalenol
(3-ADON), 15-acetoxydeoxinivalenol (15-ADON) and
zearalenone (ZEN) (125). Biocontrol of mycotoxins in
the agricultural produce by the application of Bacillus

spp. has been reviewed (118). Moreover, these
approaches have received increased attention as they
are safe and effective than the use of chemicals for
mycotoxin contamination control (110).

2.5. Mechanisms of biocontrol

The members of the genus Bacillus use various mechan-
isms to suppress phytopathogens. Competing with the
pathogen for resources, secretion of secondary metab-
olites that inhibit the growth of pathogens, and stimu-
lation of the systemic resistance in the host plants are
some of the reported mechanisms of biocontrol of
plant pests by the bacilli (10).

2.5.1. Antibiosis
Antibiosis as a mechanism of biocontrol of plant patho-
gens by the Bacillus spp. has extensively been explored.
A study published in weekly Nature in 1948 documented
the isolation of an antibiotic subtilin from a freeze-dried
B. subtils culture (119). Bacillus species have also been
hailed as sources of antifungal compounds that have
effectively suppressed various pathogens. Table 3 and
Figure 1 presents some major antibiotics produced by
various strains of Bacillus species. Cyclic lipopeptides
(CLPs) from Bacillus have received much attention in
recent years as potential class of antifungal compounds
(4). They are rings of amino acids with fatty acid side
chains and exhibit remarkable heterogeneity. These
structural diversities endowed CLPs with a broad-spec-
trum and environmentally-stable antimicrobial (120).
While CLPs belong to three families, surfactin, iturin,
and fengycin, a single Bacillus strain can make one or
more of them (121). Although surfactins are character-
ized as poor antagonists of some pathogenic fungi,

Table 3. Secondary metabolites or antibiotics produced by the strains of Bacillus species.
Bacillus species Metabolite Chemical nature Bioactiviy References

B. subtilis (unidentified marin starin) Bacilotetrins Cyclic-lipotetrapeptides Antimicrobial (42)
B. amyloliquefaciens AP183 Bacillusin Macrocyclic polyene Antimicrobial (135)
B. subtilis (unidentified marin starin) Gageotetrins Linear lipopeptides Antimicrobial, anticancer (133)
B. subtilis DSM 16696 Macrolactin Macrolides Antimicrobial (136)

Plipastatin A Lipopeptides Antifungal (137)
B. subtilis MTCC 10403 Furanoterpenoids Polyketide Antimicrobial (138)
Unidentified Bacillus strain Turnagainolides Depsipeptides Activation of SHIP1 (139)
B. subterraneus 11593 Bacilsubteramide A Alkaloid (140)
B. cereus RKHC-09 Cereusitin A Cyclic tetrapeptide Antifungal (141)
B. amyloliquefaciens HAB-2 Bacillomycin Cyclic lipopeptide Antifungal (142)
Bacillus sp. FS8D Pseurotin A Spirocyclic Anticancer (143)
B. coagulans 14 Coagulin Peptide Antibacterial (144)
B. thuringenesis Bacthurucin f4 Peptide Antifungal (145)
B. cereus Cerein Peptide Antibacterial (146)
B. megaterium Megacin Peptide Antibacterial (147)
B. thuringenesis S Thuricin Peptide (148)
B. licheniformis Halobacillin 5b Hemolytic, cytotoxic (149)
B. amyloliquefaciens GSB272 Bacilysin 1 Antifungal, antibacterial (150)
B. subtilis 168 Bacilysocin Fungicidal, antibacterial (151)
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they have received attention because of their ability to
induce systemic resistance in host plants (122; 56). Fen-
gycins on the other hand, are known to inhibit most
filamentous fungi and species such as F. verticilloides
(123–125). Their mode of action ranges from disrupting
the membrane integrity to organelle dysfunction
leading to cell death. The group iturins are also reported
to have strong antagonistic activities against A. flavus
(126) and F. graminearum (127). Besides, both surfactins
and iturins are promoters of biofilm formation (128).

Romero et al. (130) reported that iturin and fengycin
families of lipopeptides play a major role in the antagon-
ism of B. subtilis against Podosphaera fusca (129). The
surfactin – and fengycin-type lipopeptides can act as
bacterial determinants in plant cells by initiating the
immune response through the stimulation of ISR
(induced systemic resistance) (77). Lipopeptides of

B. subtilis S499 proved to be effective triggers of ISR in
tobacco and bean plants (77). Comparison of the level
of production of antibiotic substances with different
strains showed the advantages of B. subtilis species.
For example, concentrations of lipopeptides in the
culture medium of the most active strain of B. subtilis
IB-54 exceeded those of active Pseudomonas. ehimensis
and P. polymyxa by 10–100 times. Differences between
B. subtilis strains were also observed both
in an individual activity level and in the spectrum of
the lipopeptides formed. It has been established that
the main components of B. subtilis lipopeptide
complex are iturin, surfactin, and related compounds
(129, 130). It was also identified that antifungal peptides
produced by B. subtilis AU195 show similarity with bacil-
lomycin (group iturin A) and exhibit strong antagonistic
activity against Aspergillus flavus and other plant

Figure 1. Structures of the few representatives of antimicrobial metabolites discovered from various species of Bacillus.
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pathogenic fungi. The iturin and fengycin from B. subtilis
strains UMAF6614, UMAF6616, UMAF6639, and
UMAF8561 were involved in the suppression of cucurbit
disease caused by Podosphaera fusca (77). The analysis of
culture filtrate, along with the recovery of inhibitory
components (fengycin, surfactin, and iturin A or

bacillomycin) from melon leaves inoculated with
B. subtilis UMAF6614 and B. subtilis UMAF663, strongly
supported the evidence of in situ production of these
antimicrobials. Bais et al. (131) reported that protective
action of surfactin produced by B. subtilis against infec-
tion caused by Pseudomonas syringae in Arabidopsis

Figure 1 Continued.
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thaliana and suggested that surfactin was necessary for
both root colonization and protection of the plant
against the pathogen. Ahmad et al. (130) observed
that endophytic B. subtilis 330–2 enhanced rice and
maize plant growth (ranging 14–37%) and tolerance to
biotic/abiotic stresses, regulate the expression of
different non-ribosomal polyketide synthases (NRPSs)
including surfactin (srfAA), fengycin ( fen), and bacillaene
(bae). In addition to NRPS, B. subtilis 330–2 triggered the
production of secondary metabolites, including anti-
biotics such as macrolactin (mln), difficidin (dfn), iturin
A (ituA), bacillibactin (dhbF), penicillin-binding protein
2B (pbpB) and beta-lactamase (penP), which are impor-
tant manifestations of a plant’s defence mechanism to
cope with competing microorganisms and inhibit the
growth of phytopathogenic fungi or bacteria. It should
be noted that only 10% of all 114 genes of B. subtilis
330–2 were involved that differentially expressed for
antibiotic production (130).

Bacteriocins produced by Bacillus species also display
various biological activities that are heat-stable antimi-
crobial peptides and ribosomally synthesized.

Versatility in their structure and function made bac-
teriocins potential candidates for antimicrobial study
(132). These peptides are active against a wide range
of microorganisms, including bacteria, fungi, oomycetes,
and viruses. The linear non-cytotoxic lipopeptides, e.g.
gageotetrins A-C produced by a marine B. subtilis effec-
tively controlled oomycete Phytophthora capscisi that
has a broad host range (133), and the most destructive
wheat killer fungus Magnaporthe oryzae Triticum (134).

2.5.2. Production of lytic enzymes
Bacillus species are also good sources of various
enzymes. Particularly, the production of hydrolytic
enzymes by the species has attracted attention in the

last decades. Keratinases, for example, from
B. licheniformis and other microorganisms, have been
extensively used in a variety of industrial applications
such as feed, fertilizer, detergent, and leather industries,
as well as for pharmaceutical and biomedical appli-
cations (152). The bacilli also serve as a source of vital
enzymes such as proteases, lipases, β-glucanases,
L-asparaginase and cellulases (Table 4). The use of
B. subtilis keratinolytic ability to recycle feathers and
helped to reduce the environmental impact of the
poultry industry. This is an interesting application as
keratin contains a significant number of amino acids
containing sulphur-forming disulphide bridges which
present mechanical stability and resistance to common
proteolytic enzymes (153). There are other several
classes of enzymes produced by Bacillus spp. with poten-
tial industrial and biotechnological applications. A group
multi-copper oxidoreductase enzyme, laccases
(E.C.1.10.3.2; benzenediol: oxygen-oxidoreductase) with
broader substrate affinity to compounds such as pheno-
lic, aniline, aromatic, amines, and some environmental
pollutants have been used for decolorization of textile
dyes, polymer synthesis, wine and beverage stabiliz-
ation, detoxification of industrial effluents and

Figure 1 Continued.

Table 4. Lytic enzymes produced by Bacillus spp.
Bacillusspecies Enzyme References

B. megaterium Ti3 Biolytic extraction of poly
(3-hydroxybutyrate)

(156)

Cortex lytic enzymes (157)
B. cereus KCCM40133 LysB4 (158)
B. subtilis ATCC 11774 Endolysin (endopeptidase)

Chitinase (34)
Nattokinase (NK) (35)
Cortex-lytic enzymes (33)

B. thuringiensis Endolysin PlyBt33 (56)
B. cereus ATCC 14579 LysBC17 (36)
B. licheniformis Chitosanase (159)
B. tequilensis L-asparginase (21)
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biodegradation of environmental pollutants, in pro-
duction of anti-cancerous and antibiotic drugs, ingredi-
ents for cosmetics, and hair coloring (21,154).
Chitinolytic activity of some Bacillus spp. plays an impor-
tant role in the biocontrol of A. parasiticus and show
varied level of antifungal activity (155).

They induce cell death by actively degrading fungal
cell walls (160). Jayaraj et al. (161) inoculated rice plants
with a strain of B. subtilis capable of producing β-1-3-glu-
canases and thaumatin and have shown their protective
capabilities against sheath blight disease. In a related
study, an endophytic B. subtilis has shown protective
effects against fungal pathogens. The strain produced
β-1,3-glucanase, β-1,4-glucanase, and proteases that
could degrade the fungal cell wall composition (130).

2.5.3. Induction of systemic resistance in plants
Plants use various strategies to defend against patho-
gens and stressors. with, which induced systemic resist-
ance (ISR) mediated by Bacillus spp. have been reported
in several studies (162). This defence mechanism is
effective against fungi, bacteria, viruses, and insect her-
bivores (163). Moreover, co-evolution between plants
and their pathogens plays a role in the activation of
plants’ innate immune system (164). Bais et al. (133)
has demonstrated that surfactin and iturin producing
Bacillus spp. have successfully reduced infection by Pseu-
domonas syringae in Arabidopsis. A study by Toure et al.
(165) involving inoculation of B. subtilis endospore to
apple pulp has demonstrated in vivo synthesis of lipo-
peptides which have a strong protective effect against
the gray mold of apple fruits. Induced systemic resist-
ance and promotion of plant growth by Bacillus spp.
have been reviewed (162). A potential bioinsecticidal
B. thuringiensis inoculum suppressed gray mold disease
through induction of systemic resistance in tomato
plants (166). Biocontrol of plant disease by endophytic
Bacillus species through induced systemic resistance
has also been reviewed recently (167).

2.5.4. Quorum sensing and biofilm formation
Quorum sensing (QS) is a process by which bacteria
communicate. It involves detection and mounting of
response to extracellular signaling molecules (autoindu-
cers) through secretion of antibiotics, biofilm formation,
and production of virulence factors. It allows bacteria to
share information about cell density and adjust gene
expression accordingly. This process enables bacteria
to express energetically expensive processes as a collec-
tive only when the impact of those processes on the
environment or a host will be maximized. Among the
many traits controlled through quorum sensing, one is
the expression of virulence factors by pathogenic

bacteria (168). This communication process among the
cells involves the production, detection, and response
to extracellular signaling molecules. As bacterial popu-
lation density increases, extracellular signaling mol-
ecules or autoinducers (AIs) accumulate in the
environment. It helps them monitoring the information
and track changes in their cell numbers leading to
gene expression. The QS controls genes that dictates
beneficial activities when performed by groups of bac-
teria in synchrony. The processes that are controlled
by QS include bioluminescence, sporulation, compe-
tence, antibiotic production, biofilm formation, and
secretions related to virulence factor.

Studies show all known QS systems depend on three
basic principles: first, members of the community
produce AIs, which are the signaling molecules. At low
cell density (LCD), AIs diffuse away present at concen-
trations below the threshold required for detection. At
high cell density (HCD), the cumulative production of
AIs leads to a locally high concentration, enabling detec-
tion and response (169). Second, AIs are detected by
receptors that exist in the cytoplasm or the membrane.
Third, in addition to activating the expression of genes
necessary for cooperative behaviors, detection of AIs
results in activation of AI production (170, 171). This
feed-forward autoinduction loop presumably promotes
synchrony in the population.

Microorganisms come together and form a commu-
nity that is attached to a surface forming biofilms.
Biofilm formation is a common phenomenon among
bacteria (172). Several lines of evidence show that
plant growth-promoting rhizobacteria (PGPR) such as
B. subtilis form beneficial biofilms on plants root (172).
They have been reported to protect the host plant
from infections. Production of antimicrobial compounds
such as surfactin in the biofilm matrix plays a major role
in biocontrol. A study by Bais et al. (131) demonstrated
that biofilm formed on the roots of Arabidopsis by a
strain of B. subtilis in Murashige and Skoog medium
has led to protecting effect against P. syringae. The
genetic regulatory circuit that governs biofilm formation
has been well studied in Bacillus species (173).

Rhizosphere colonization by plant growth-promoting
rhizobacteria (PGPR) along plant roots facilitates the
ability of PGPR to promote plant growth and health. Xu
et al. (122) provided evidence that the major wall teichoic
acid (WTA) biosynthetic enzyme GtaB is involved in both
biofilm formation and root colonization. The deficiency in
biofilm formation of the ΔgtaB mutant may be due to an
absence of UDP-glucose, which is necessary for the syn-
thesis of biofilm matrix exopolysaccharides (EPS). There-
fore, these observations provide insights into the root
colonization process by a plant-beneficial Bacillus strain,
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which will help improve its application as a biofertilizer.
The contribution of bacillomycin D in Bacillus amylolique-
faciens SQR9 to antifungal activity and biofilm formation
has been reported (122).

3. Plant growth promotion, quality
improvement, and yield increase

A considerable amount of literature is available on the
effects of plant growth-promoting rhizobacteria (PGPR)
on plant growth and development (174,175). These
PGPRs are closely associated with plant roots and
promote plants’ defence against pathogens. There is a
growing interest in root-colonizing bacteria as sup-
plements or alternatives to chemicals to increase crop
productivity in agriculture as they can influence plants’
growth and development through production of phyto-
hormones such as auxins, gibberellins, and cytokinins.
They also play a protective role against harmful microor-
ganisms through competition and activation of plant
defence mechanisms. Several experimental reports
proved these roles of beneficial microorganisms in
plant growth and development. A strain of
B. megaterium has been shown to promote the growth
of A. thaliana and Phaseolus vulgaris plants in vitro and
in soil. Inoculation of B. Megaterium to the root system
of A. thaliana inhibited primary root growth followed
by an increase in lateral root number growth, and root
hair length mediated by phytohormones (176). In a
similar study, the root-colonizing B. subtilis strain has
been reported to suppress soil-borne disease thereby
fostering the growth of tomato plants (177). Seed treat-
ment with B. amyloliquefaciens resulted in maximum
enhancement of germination (84.75%), seedling vigor
(1423.8) and an increase in vegetative growth par-
ameters. Significant protection (71%) against anthrac-
nose disease was observed in plants pretreated with
B. amyloliquefaciens (178). Besides production of phyto-
hormones, Bacillus spp. such as B. licheniformis promotes
plant growth through fixing atmospheric nitrogen and
solubilizing phosphorus.

In addition to ISR, many BCBs also promote plant
growth (179), by producing phytohormones that are
related to growth conditions (180). For example, plants
treated with B. aryabhattai showed greater tolerance
to heat stress and produced more abscisic acid, the
stress hormone that controls stomatal closure (180).
Heat and drought stresses are known to exacerbate
mycotoxin synthesis and also insect damage (105).
Species such as B. megaterium and Paenibacillus poly-
myxa can be used as biofertilizers since they can fix
nitrogen and solubilize phosphate (181).

Strawberry is an excellent source of natural antioxi-
dants with a high capacity for scavenging free radicals.
Rahman et al. (175) demonstrated that application of
B. amyloliquefaciens BChi1 not only remarkably
increased (43% over control) fruit yield but also
enhanced contents of phenolics, carotenoids, flavo-
noids, anthocyanins and total antioxidants of strawberry
fruit over untreated control. However, the mechanism of
the quality improvement of fruits by the application of
B. amyloliquefaciens is unknown. Further study is
needed to elucidate the underlying mechanism of straw-
berry fruit quality improvement by the
B. amyloliquefaciens strain BChi1.

3.1. Production of phytohormones

Plant associated microbes of different genera and
species produce vital phytohormones (182). Bacillus
strains such as B. amyloliquefaciens, B. megaterium,
B. licheniformis, B. pumilus, and B. subtilis are some of
the species associated with crops. They reside in the rhi-
zosphere and positively influence plants’ growth and
development (162). Phytohormones are also known as
plant growth regulators (PGRs) that are produced at a
very low concentration but play an important role in
plants’ growth and development. Stress tolerance
(112), seed dormancy, formation of floral organs,
lateral shoot growth (183), cellular proliferation and
differentiation, inhibition of premature leaf senescence
(184,185), and promotion of heavy metal tolerance are
some of the roles they play. Auxins, cytokinins, abscisic
acid, gibberellic acid, and salicylic acids are well
studied and functionally characterized phytohormones.
They also function as signaling molecules enabling
plants to mobilize responses to abiotic and biotic stres-
ses (186). A B. Aryabhattai strain isolated from rhizo-
spheric soil of a soybean collected in South Korea for
example has shown to significantly promote growth
and heat tolerance of the plant through production of
abscisic acid, indole acetic acid, cytokinin and different
gibberellic acids (187). Bacillus spp., as one of the phyto-
hormone producing bacteria positively impact plants’

Table 5. Phytohormone production by Bacillus spp.
Bacillius species Phytohormone Reference

B. licheniformis IAA (191)
B. subtilis IAA (192–194)
B. subtilis CK (195)
B. amyloliquefaciens ABA (196)
B. licheniformis ABA (196)
B. aryabhattai IAA, GA, ABA (187)
B. megaterium IAA (74)
B. cereus IAA (197)

IAA, indole acetic acid; GA, giberallic acid; ABA, abscisic acid; CK, citokinin.
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growth and development in many ways. They either
improve the bioavailability of nutrients or influence phy-
tohormone concentrations (188–190). Table 5 listed
various phytohormones produced by some Bacillus
species.

3.2. Solubilization of nutrients

Rhizobacteria play a role as biofertilizers that enhance
plant growth and development. Biofertilizers involve
live microorganisms that have potential applications in
stimulating plant growth and development (198). They
are preferred to chemical fertilizers as they are environ-
mentally benign, support sustainability and may also be
less expensive. Examples are phosphate and potassium
solubilizing and N2 fixing bacteria. Phosphorus, one of
the most important nutrients needed for plant growth
and development has limited availability in soluble
forms. To alleviate this challenge, either soil should be
supplemented with artificial fertilizer, rich in phosphate
or phosphate solubilizing microorganisms (PSMs)
should be introduced. Various Bacillus spp. have demon-
strated phosphate solubilizing potential. Bacilli such as
B. circulans, B. megaterium, B. pulvifaciens, and
B. sircalmous are few examples (199). Likewise, the role
of bacilli in N2 fixation has been known for a long
time. The work of Wahab (200) has demonstrated the
potential of Bacillus as nitrogen-fixing species. A study
by Pramanik et al (201) has also demonstrated that
a strain of B. pseudomycoides can be used as a
Potassium-solubilizing biofertilizer.

4. Enhancement of stress tolerance

Plants are exposed to adverse environmental conditions
known as abiotic stressors in their natural habitats. These
stressors include salinity, drought, heat, cold, flooding,
heavy metals, and UV radiation that pose serious
threats to the sustainability of crop yields. Due to
global climate change, the impacts of abiotic stresses
on crop production are increasing. Studies have shown
that losses to major crops due to abiotic stressors have
increased at an alarming rate in recent years posing
serious threats to food security (202, 203). Since abiotic
stresses are major constraints for crop production,
finding biorational approaches to enhance stress toler-
ance is crucial to increase crop production and achieve
food security. A large body of literature indicates that
application of elite strains of Bacillus spp. enhances tol-
erance of plants to abiotic stresses (204). Microbial
genes providing beneficial effects to plants have been
characterized (204, 205). The Food and Agriculture
Organization of the United Nations (FAO) predicts that

current agricultural production should be increased by
more than 70% (206, 207) to feed the rapidly increasing
world population.

4.1. Drought tolerance

As one of the most damaging abiotic stresses, drought
affects agricultural productivity worldwide. Reports
show that it inhibits growth and development of
plants resulting a reduction in yield (206, 208). The
current trend in climate change shows drought is
affecting a wide range of crop-producing countries
posing a significant amount of threat to food security.
Its effect, however, ranges from moderate and short to
extremely severe and prolonged duration. Plants
employ various adaptations and mitigation strategies
to stand drought stress. They initiate a series of physio-
logical reactions to reduce water loss through the
closure of stomata, ABA accumulation, photosynthetic
rate reduction, expression of aquaporins and vacuolar
H+-pyrophosphatases for maintaining cell turgor
through osmotic adjustments, accumulation of compati-
ble osmolytes, and reactive oxygen species (ROS)
enzymes, which result in cell integrity, functionality
and survival of plants (209–211).

Plants partly rely on soil microorganisms to mitigate
stress caused by drought. Plants use microbial molecules
such as exopolysaccharides (EPS), phytohormones, and
1-aminocyclopropane- 1-carboxylate (ACC) for drought
tolerance. These molecules play a role in plant’s osmor-
egulation by decreasing electrolyte leakage and promot-
ing the production of metabolites such as amino acids
and sugars.

In many regions, agricultural production is adversely
affected by a variety of abiotic stresses such as
drought, salinity, extreme temperatures, and toxic
metals resulting in a significant reduction of crop pro-
ductivity (201, 212). Abiotic stresses are often inter-
related and induce general signaling pathways for the
regulation of cellular responses aimed at plant adap-
tation causing similar morphological, physiological, bio-
chemical, molecular, and genetic changes (213–215).
Many studies have shown that various strains of
B. subtilis contribute to the protection of different host
plants against diverse abiotic stresses leading to the
increase of plant growth and productivity (130, 197,
216, 217). Investigations on the mechanisms mediated
by B. subtilis on plant stress tolerance are of the most
urgent scientific demand in modern plant biology due
to the fact that B. subtilis-induced responses against
stresses could range from diverse to very specific
(130,218). The comparative physiological and metabolic
analysis revealed that a complex metabolic change in
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plants is associated with enhanced drought tolerance
(219). Application of B.subtilis, B. thuringiensis, and
B. megaterium significantly enhanced drought tolerance
through increased accumulation of riboflavin, L-aspara-
gine, aspartate, glycerol, nicotinamide, 4-hydroxy
methylglycine and 3-hydroxy-3-methylglutarate in the
leaves of chickpea (219). Another important aspect
associated with the enhancement of drought tolerance
in plants by Bacillus spp. is the ability of biofilm for-
mation on plants’ surfaces. In a recent report, Wang
et al. (220) demonstrated that B. amyloliquefaciens 54
inoculation in tomato exerts drought tolerance in
plants through enhanced expression levels of stress-
responsive genes, such as lea, tdi65, and ltpg2 in the
treated plants. Enhancement of drought tolerance was
also linked to the enhancement of survival rate, relative
water content and root vigor in tomato. It was also
found that B. amyloliquefaciens 54 induced stomatal
closure through the abscisic acid pathway. Biofilm
forming ability of Bacillus bacteria was positively corre-
lated with plant root colonization. Interestingly, plants
inoculated with hyper-robust biofilm-forming (ΔabrB
and ΔywcC) mutants were better able to resist drought
stress compared to defective biofilm mutants (220).
Although a large body of literature is available on the
enhancement of drought tolerance in plants by plant-
associated bacilli, precise mechanisms of their beneficial
actions in plants are still poorly understood. Further
genomics and postgenomics studies are needed to
clarify the mode of actions of the elite strains of bacilli
associated with plants.

4.2. Salinity tolerance

Disturbed water balance and ion homeostasis lead to soil
salinity imposing deleterious effects on plant growth and
development (215, 221). This leads to a loss in crop yield.
Salinity causes oxidative stress, water deficit (222) and
deficiency of essential nutrients. It also affects lipid
metabolism, protein synthesis, and biomass accumulation
(215). This also impacts the process of photosynthesis
leading to perturbations in carbon and nitrogen assimila-
tory pathways (223). It has also been associated with the
accumulation of toxic ions such as Na+ and Cl- in cells
resulting in immediate stress. To mitigate the effects of
salt stress, plants employ strategies that regulate water
status and have osmoregulatory functions. They initiate
the expression of genes coding for various enzymes and
accumulation of metabolites such as amino acids,
sugars, and betaines (224).

Harnessing the potential of beneficial microorgan-
isms present in the rhizosphere is an alternative strategy
for improving plant stress tolerance. Promising results

have been reported in areas where saline irrigation of
crops is practiced. A handful of studies revealed that
some elite strains of plant-associated bacilli enhance
plants’ tolerance to salinity (204, 205). In the Sinai
region of Egypt, a strain of B. subtilis was field-tested
and reported to promote salt tolerance in two cultivars
of eggplant and pepper in saline soil (225). B. subtilis
has been reported to enhance the production of phyto-
hormones: auxin, IAA, CKs, and giberellines in crops such
as wheat thereby increasing their salinity tolerance (225–
227). In a similar study, Bochow et al. (225) described
that plants in saline soil that grew from B. subtilis FZB2
treated seeds showed a multi-fold increase in yield. In
a similar study, endophytic strain B. subtilis NUU4
improved symbiotic performance of host plant (Cicer
arietinum L.) with rhizobia by uptaking more nutrients,
which resulted in a significant increase in growth par-
ameters (roots and shoots) and yield under salinity com-
pared to non-inoculated control plants (197). This strain
is known to produce IAA, HCN, siderophores, cell wall
degrading enzymes, and demonstrated antagonistic
activity against F. oxysporum, F. solani, F. culmorum,
B. cinerea, and A. alternata. Most of the common osmo-
protectants are low molecular weight metabolites such
as amino acids that show no toxicity towards plant
tissues when present in higher concentrations (228).
The amino acid proline is known to enable plants to
cope with osmotic stress (229). An important mechanism
of rhizobacteria-induced salt tolerance in plants is the
production of enzyme 1-aminocyclopropane-1-car-
boxylic acid (ACC) deaminase, which acts by degrading
ACC (230). The enzymatic activity of ACC deaminase
results in the production of alpha-ketoglutarate and
ammonia, which, by lowering ACC levels, prevents
excessive increases in the synthesis of ethylene and
enhances plants tolerance to salt stress.

Rhizobacteria exert beneficial functions to plants
through induction of gene expression in the interacting
plants. For example, B. amyloliquefaciens-SN13 induced
changes in expression of a considerable number of
photosynthesis, hormone, and stress responsive genes
in rice under salt stress as compared to salt stress or
SN13 inoculation alone, indicating its potential role in
reducing harmful effects of salinity (204). Functional
expression of rice genes OsNAM and OsGRAM in yeast
showed enhanced tolerance to various abiotic stresses
including salinity. (204). Likewise, expression analysis of
OsGRAM genes in rice roots subjected to salt stress
with or without B. amyloliquefaciens SN13 inoculation
revealed significant differential expression patterns
suggesting their crucial role in beneficial plant-rhizobac-
teria interactions under salinity (205). Further study
using mutants of OsGRAM would precisely elucidated
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the role of these genes in salt tolerance induction in rice
by SN13. Findings of these and other studies demon-
strate that Bacillus spp. has the potential to induce
gene expression in plants associated with salt tolerance.
Bacteria that enhance salt tolerance in plants are
recruited by root exudate secreted from the roots of
the host plants. The secreted organic acids are 2-methyl-
butyric acid, stearic acid, palmitic acid, palmitoleic acid,
and oleic acid. Precise molecular cross-talks between
roots and rhizobacteria are needed to be elucidated
for getting better benefit from the elite strains of bac-
teria that exert salt tolerance to plants.

4.3. Low temperature tolerance

Cold stress can affect plant distribution, development,
and productivity thereby threatening food security by
limiting crop yield. Plants activate various physiological
and molecular processes in response to cold stress
(220). In particular, Bacillus spp. has demonstrated the
capability of increasing plant’s tolerance against cold.
They have genetic features that enable them to initiate
a physiological response to cold stress including synthe-
sizing of cold shock proteins, initiation of signal trans-
duction pathways, osmotic regulation, membrane
transportation, and antioxidant enzymes (231, 232).

Advancement in biotechnology has enabled the
identification of genes associated with stress tolerance.
While this opens opportunities to improve cold toler-
ance by gene transformation or altering multigenic
traits, challenges do exist in understanding the
changes in cellular, biochemical and molecular mechan-
isms that occur in response to cold stress (233)

Members of the Bacillus genus are among the most
naturally abundant plant growth-promoting rhizobac-
teria (PGPR) in the soil. As Bacillus spp. are among the
most naturally abundant PGPR capable of producing
phytohormones such as AUX, CK, and GA, they can also
increase plant growth by reducing their susceptibility
to stressors such as cold (205). They cause alterations in
metabolic and physiological activities leading to pro-
duction of metabolites, abundant proteins with protec-
tive properties during cold stress. Zubair et al. (232)
demonstrated that inoculation of cold-tolerant Bacillus
strains aided in inducing stress responses in wheat by
regulating abscisic acid, lipid peroxidation and proline
accumulation pathways in a beneficial manner.

5. Bioremediation of heavy metals and
contaminated soils

The discharge of untreated industrial wastewater con-
taining biotoxic substances of heavy metals in the

ecosystem is one of the most important environmental
and health challenges society facing today. Hence,
there is a growing need for the development of a
novel, efficient, eco-friendly, and cost-effective approach
for the remediation of toxic metals (Cr, Hg, Cd, and Pb)
released into the environment and to safeguard the eco-
system. In this regard, recent advances in microbe-based
heavy metal bioremediation have propelled a prospec-
tive alternative to conventional techniques. Bioremedia-
tion is a process that involves all methods and activities
for the reduction of environmental pollutants with the
help of biological entities. Bioremediation offers a prom-
ising means to reclaim such contaminated soil in an
economical and eco-friendly way (234). Metal toxicity is
of great environmental concern because of its bioaccu-
mulation and non-biodegradability in nature (235). Bior-
emediation is employed to transform toxic heavy metals
into a less harmful state using microbes. Species of Bacil-
lus isolated from solar salterns were shown to have a
potential of detoxifying the heavy metals such as lead,
chromium, and copper by biosorption (236).

Pollution of soils with heavy metals (HM) has become
a common phenomenon throughout the world due to
the increase in the scale of anthropogenic activities.
The plants growing on HM contaminated soils are
characterized by a decreased growth rates and yields
(237). Some of the direct toxic effects caused by high
concentrations of HM include inhibition of cytoplasmic
enzymes and damage to cellular structures due to the
development of oxidative stress (238). An example of
an indirect toxic effect is the replacement by HM of
cations in the functional groups of various bioorganic
compounds (239). Moreover, the negative influence of
HM on the activity of soil microorganisms can indirectly
affect plant growth. The decrease in the number of ben-
eficial soil microorganisms due to the high concen-
tration of metal can lead to a decrease in the
decomposition of organic matter, which in turn can
cause a decrease in the content of certain nutrients in
the soil. The PGPB, including B. subtilis, can grow in
HM-contaminated environment and protect plants
against toxicity of HM (240). Beneficial microorganisms
have different mechanisms for HM tolerance through
mobilization, immobilization, and transformation to
less toxic forms. Such mechanisms include exclusion,
extrusion, active removal, biotransformation, biosorp-
tion, precipitation or bioaccumulation of metals both
in external and intracellular spaces of plants (237).
Naseem et al. (241) demonstrated that inoculation of
wheat with Bacillus sp. AMP2 caused a reduction in the
Cr uptake of seedlings both at 10 and 20 μg mL-¹ chro-
mium salts (CrCl3, K2CrO4 and K2Cr2O7) when compared
with non-inoculated plants. Moreover, increased levels
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of acid phosphatase and PA were recorded in bacterial
inoculated plants compared to the control (241). In a
related study, inoculation of wheat plants with
B. subtilis QM3 promoted their growth in the presence
of Pb (240) with concurrent increase of antioxidant
enzymes like superoxide dismutase (SOD, EC 1.15.1.1),
ascorbate peroxidase (APX, EC 1.11.1.1), and catalase
(CAT, EC 1.11.1.6) in plant tissues and decrease of
metal concentration in the roots in comparison with
non-inoculated control plants (240). It was shown that
endophytic strains of B. subtilis26D and 11VM improves
tolerance of S. alba to the toxic effect of Cd and Ni
and reduces manifestation of oxidative stress in the pres-
ence of higher levels of metal ions in the above-ground
part of plants (242). Treesubsuntorn et al. (243) showed
that B. subtilis inoculation of rice (Oryza sativa L.) can
highly reduce Cd accumulation in every part of rice
roots and shoots (45 days), and grains (120 days).
B. subtilis can effectively absorb Cd compared to
B. cereus, which might be the main mechanism to
reduce Cd transportation in rice plants. Interestingly,
plants that were inoculated with bacterial species indivi-
dually, harbored higher calcium (Ca) and magnesium
(Mg) accumulation; B. subtilis-inoculated plants had the
highest levels of Ca and Mg compared to plants inocu-
lated with B. cereus. Moreover, B. subtilis could increase
the dry weight of the rice plant and protect them from
Cd stress due to the ability to produce IAA, solubilize
phosphate, and control ethylene levels by ACC-deami-
nase activity (243).

Arguably one of the environmental challenges we
face today is soil contamination of our environment. A
petroleum waste causes an imbalance between
carbon, nitrogen, and phosphorus ratio in soil affecting
all forms of life (244). As cleaning is costly and labor-
intensive, companies show less interest in the use of
physicochemical methods. On the other hand, bioreme-
diation is attracting attention as an alternative to phys-
icochemical methods of cleaning an oil-contaminated
environment (245). The use of microorganisms that
have the potential to degrade pollutants (Bioaugmenta-
tion) can be employed to degrade petroleum wastes
(246). Microorganisms produce various biosurfactants.
These molecules play a significant role in reducing
surface tension and critical micelle dilution. This favors
the creation of micro-emulsion formation leading to
the solubilization of hydrocarbons in water (247). Appli-
cation of biosurfactants as bioremediation in an oil-con-
taminated environment has an advantage over the use
of synthetic surfactants as they are less toxic and more
biodegradable (248). Moreover, biosurfactants show
efficiency, high selectivity, and versatility (pH and
salinity) (245).

Some members of the microbial community might
have the ability to secrete important degradative
enzymes and growth factors, whereas others can
exhibit the potential of biosurfactant production
leading to the enhanced solubilization of hydrophobic
hydrocarbons for their better utilization by microbes
(249). Ubiquitous presence of cypermethrin as a con-
taminant in surface stream and soil necessitates devel-
oping potential bioremediation methods to degrade
and eliminate this pollutant from the environment.
B. subtilis has been found efficient in biodegradation
and detoxification of cypermethrin (250). Enhanced
degradation of cypermethrin by B. thuringiensis strain
SG4 has also been reported (251). The β-glalactosidase
generated by B. subtilis catalyzes the hydrolysis
of o-nitrophenyl-β-D-galactopyranoside (ONPG) to
produce o-nitrophenol (ONP), which can be detected
at 420 nm and used to evaluate acute biotoxicity of
heavy metal ions that inhibit the activity of the
enzyme (252). This B. subtilis-based bioassay is a sensi-
tive, economically feasible, simple and promising
alternative for acute biotoxicity assessment. Generally,
remediation of heavy metal using microbes has several
advantages. It is eco-friendly and considered to be a
long-term solution compared to the physical and chemi-
cal methods. However, shortcomings like slowness of
the process, difficulty in controlling the treatment,
specificity of the microbes towards a particular metal
contaminant, and problem with large-scale applications
are the areas that need improvement.

6. Bacillus as a reservoir of novel genes for
engineering

B. thuringiensis is ubiquitous in nature. It produces insec-
ticidal crystal proteins (Cry) on sporulation. The most
widely known toxins of B. thuringiensis include the
δ-endotoxins; Cry and Cyt toxins. Cry proteins consist
of various groups based on their structure (253).
Strains of B. thuringiensis are recognized as one of the
most used biocontrol agents. Crystal proteins produced
by the species are commercially available for pest
control. They show larvicidal activities against larvae of
hymenoptera, homoptera, lepidopteran, dipteran,
coleopteran etc (254). Recent advancements in the
omics technology has created an opportunity to mine
for potential gene cluster to increase bioactive metab-
olites discovery. Moreover, the host-specific toxicity of
Bt proteins has attracted researchers’ attention to the
search for genes potentially coding for novel toxins
within the group. Selective solubility of Bt crystal and
their specificity for their hosts have gained worldwide
attention as an alternative to chemical insecticides. The
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usefulness of these insecticidal proteins has also motiv-
ated researcher to explore new Bt isolates from the
most diverse habitats in order to identify and character-
ize new insecticidal proteins with different specificities.
Some of these isolates exhibit novel and unexpected
toxic activities against organisms other than insects,
suggesting a pluripotential nature of some toxins. Bt
corn, cotton, brinjal etc. that have been genetically
modified to express insecticidal toxins derived from
the bacterium B. thuringiensis to kill lepidopteran pests
feeding on these plants. Genetically modified Bt corn
has lower levels of mycotoxins compared to non-Bt
(255). On farm field trials revealed that Bt cotton technol-
ogy substantially reduces pest damage and increases
yields (256). Discussions and debates of environmental
risks and benefits of adopting genetically engineered
Bt technology in corn, cotton and brinjal are highly
polarized between pro – and anti-biotechnology
groups (257). Nonetheless, the current state of our
knowledge is frequently overlooked in this debate.
While organic and conventional crops’ value could be
jeopardized if genes from GE crops flow to non-GE var-
ieties through cross-pollination or seed mingling, a
survey of existing scientific literature reveals that key
experiments on both the environmental risks and
benefits are lacking (257). However, the number of
genes present in various species of Bacillus that
encode insecticidal toxins are great resources for
future research and judicious introgression in different
crops.

7. Bacillus spp. as a source of carotenoids

Carotenoids represent one of the most abundant pig-
ments available in nature. They have considerable indus-
trial applications in biotechnology, food processing, and
pharmaceuticals (258). They are also currently receiving
attention as studies indicate that they can be used to
prevent the incidence of cancers, cardiovascular dis-
eases, and some degenerative diseases (259–262). This
prompted an interest in the commercial production of
carotenoids. Few studies have reported bacilli as poten-
tial sources of carotenoids. Sy et al. (263) recovered two
Bacillus species, B. indicus and B. firmus capable of produ-
cing carotenoids from a marine environment. A strain of
B. megaterium has also been characterized as a potential
producer of carotenoids (264).

8. Concluding remarks and future
perspectives

The genus Bacillus represents spore-forming Gram-posi-
tive bacteria. They are ubiquitous in the environment.

They produce diverse secondary metabolites that have
applications in the fields of biotechnology and agricul-
ture. They are good sources of bioactive compounds,
enzymes, vitamins, and other several secondary metab-
olites that could be used for industrial applications.
Members of the genus have also been known for their
effect on plant growth and development. They
improve crop yield through enhancing plant stress toler-
ance, disease defence, and through facilitating minerals
and water uptake. Moreover, the current trend in the
rapid increase of the world population together with
climate unpredictability urges immediate and effective
strategies to increase crop productivity. This sub-
sequently involves the use of synthetic chemicals and
fertilizers that may make the whole production system
unsustainable with unwanted environmental conse-
quences. Therefore, developing biological control
against pests and plant pathogens, biofertilizers, and
stress-tolerant crop varieties are the areas of future
research. Despite their immense potential, bacilli are
not fully utilized in the fields of agriculture and biotech-
nology. Therefore, research on bacilli should aim at (i)
searching for novel bioactive metabolites that could be
used as lead compounds in developing effective
remedy against plant pathogens; (ii) developing bioferti-
lizers that have minimal adverse impact on the environ-
ment; (iii) selecting strains that have the potential of
stimulating plant defence mechanisms and improve
yield; and (iv) applying bacilli species as a source of
plant growth hormones.
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