
Coupling biophysical and micro-economic models to

assess the effect of mitigation measures on greenhouse

gas emissions from agriculture

Sophie Durandeau, Benoit Gabrielle, Caroline Godard, Pierre-Alain Jayet,

Christine Le Bas

To cite this version:

Sophie Durandeau, Benoit Gabrielle, Caroline Godard, Pierre-Alain Jayet, Christine Le Bas.
Coupling biophysical and micro-economic models to assess the effect of mitigation measures
on greenhouse gas emissions from agriculture. Climatic Change, Springer Verlag, 2010, 98,
pp.51-73. <10.1007/s10584-009-9653-8>. <hal-00410001>

HAL Id: hal-00410001

https://hal.archives-ouvertes.fr/hal-00410001

Submitted on 14 Aug 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Abstract19

Agricultural soils are a major source of atmospheric nitrous oxide (N2O), a potent greenhouse20

gas (GHG). Because N2O emissions strongly depend on soil type, climate, and crop manage-21

ment, their inventory requires the combination of biophysical and economic modeling, to simu-22

late farmers’ behavior. Here, we coupled a biophysical soil-crop model, CERES-EGC, with an23

economic farm type supply model, AROPAj, at the regional scale in northern France. Response24

curves of N2O emissions to fertilizer nitrogen (Nf) inputs were generated with CERES-EGC, and25

linearized to obtain emission factors. The latter ranged from 0.001 to 0.0225 kg N2O-N kg−1 Nf,26

depending on soil and crop type, compared to the fixed 0.0125 value of the IPCC guidelines.27

The modeled emission factors were fed into the economic model AROPAj which relates farm-28

level GHG emissions to production factors. This resulted in a N2O efflux 20% lower than with29

the default IPCC method. The costs of abating GHG emissions from agriculture were calculated30

using a first-best tax on GHG emissions, and a second-best tax on their presumed factors (live-31

stock size and fertilizer inputs). The first-best taxation was relatively efficient, achieving an 8%32

reduction with a tax of 11 =C/ t-CO2-equivalent, compared to 68 =C/t-CO2 eq for the same target33

with the second-best scheme.34

Keywords: nitrous oxide, agro-ecosystem model, economic modeling, greenhouse gas, mitiga-35

tion measures36

Abbreviations: GHG – Greenhouse Gas ; Nf – Fertilizer nitrogen ; IPCC – Intergovernmental37

Panel on Climate Change ; CAP – Common Agricultural Policy ; FADN – Farm Accountancy38

Data Network ; t-CO2-eq – t DM-CO2-equivalent ; LU – Livestock Unit; CERES-EGC: agro-39

ecosystem model simulating N2O emissions; STICS: agro-ecosystem model simulating crop40

yields; AROPAj: economic farm model including GHG emissions; NOE: algorithm predicting41

N2O emissions from soil drivers.42
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1 Introduction43

1.1 N2O emissions in agriculture44

The global abundance of nitrous oxide (N2O) in the atmosphere was 319.2 ppb in 2004, and had45

been increasing at a rate of 0.74 ppb per year over the past decade WMO and WDCGG (2006).46

Nitrous oxide is a potent greenhouse gas, with a global warming potential about 300 times higer47

than the carbon dioxide (CO2). It is the third contributor to anthropogenic global warming, after48

CO2 and methane (CH4). Nitrous oxide is naturally emitted from soils and oceans, but human ac-49

tivities also contribute a third of its overall release (WMO and WDCGG, 2006). Policy measures50

aiming at abating anthropogenic emissions of N2O are thus being actively sought. At the country51

level, the agricultural sector is generally the first anthropogenic source of N2O. In France, its52

share was estimated at 76% in 2004 (CITEPA, 2008), when summing the emissions related to53

land-use and to the use of synthetic fertilizer nitrogen (Nf).54

Agricultural N2O emissions are known to depend on Nf inputs of to a large extent (Houghton55

et al., 1996). Besides, excessive use of fertilizer N is also responsible for the increase of ni-56

trate leaching (Beaudoin et al., 2005; Schnebelen et al., 2004) and ammonia (NH3) emissions57

(Herrmann et al., 2001). Nitrate pollution of groundwater is a well-known environmental prob-58

lem, particularly harmful for aquatic ecosystems, while NH3 is a major atmospheric pollutant59

with impacts on atmospheric chemistry and on the stability and the biodiversity of terrestrial and60

aquatic ecosystems (Asman et al., 1998). However, the emission of these reactive N compounds61

are not solely related to fertilizer inputs, inasmuch as they occur throughout the N cycle in the62

soil. Complex processes involving soil microbiology affect the dynamics of inorganic and or-63

ganic forms of nitrogen in the soil, with the result that N losses by arable systems are tightly64

related to environmental conditions, and chiefly climatic sequence and soil type.65
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1.2 Coupling economic and biophysical models to assess N2O emissions66

The Kyoto protocol (1997) is an agreement made under the United Nations Framework Conven-67

tion on Climate Change. It requires signatory countries to inventory and report emissions for a68

set of greenhouse gases (GHG), including N2O on an annual basis to monitor their time course.69

Guidelines were set up by the Intergovernmental Panel on Climate Change (IPCC) to help these70

countries in their national inventories (Houghton et al., 1996), with a tiered approach. The sim-71

plest and most used methodology provided by the IPCC (Tier 1) relies on generic, fixed factors72

to convert national statistics on economic activities into GHG emissions. Because these factors73

are default ones, they should not be considered as an exclusive standard. Caution is expressed in74

the guidelines regarding ”the default assumptions and data which are not always appropriate for75

specific national contexts”. The development of alternative methodologies, as permitted under76

the Tiers 2 & 3 ot the latest IPCC guidelines (IPCC, 2006), thus appears as a promising way to77

assess GHG emissions more accurately.78

79

The major shortcoming of the IPCC default method lies in its ignoring the complexity of the80

microbiological processes responsible for N2O emissions (nitrification and denitrification; Fire-81

stone and Davidson 1989). Also, it is necessary to take into account the effects of soil charac-82

teristics, climate, crop management and land use in the assessment of the N2O emissions (Granli83

and Bockman, 1995; Smith et al., 1998; Ruser et al., 2001), and their variability in both space84

and time (Kaiser et al., 1998; Dobbie et al., 1999; Smith et al., 2004).85

Contrary to the IPCC Tier 1 method, biophysical soil-crop models have the potential to deal with86

these drivers, and may be used to assess more accurately the amounts of N2O emitted from agri-87

cultural soils, in relation to crop management (Neufeldt et al., 2006). As those models integrate88

the complexity of nitrogen cycles pathways in the soil-crop-atmosphere system, they are also89

expected to provide a rather fine assessment of other forms of N losses as well (among which90
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NO−

3 , NH3 and NO). However, while there exist spatially-explicit maps for the biophysical input91

parameters of these models (including soil properties and climatic data), information on crop92

management on the same mapping units proves much more challenging to infer because of the93

variety of agricultural production systems present within a given geographical zone. Such data94

are usually obtained through field surveys, regional statistics or farm accountancy data, but their95

scales do not match that of the spatial units relevant to the biophysical processes at stake (Leip96

et al., 2008). Intersecting the two levels practically implies the use of agricultural fields as ele-97

mentary objects. Economic models at the farm level provide a unique means of predicting and98

scaling down management data from aggregated statistics. Coupling economic and biophysical99

models has therefore emerged as a promising route to address the environmental impacts of agri-100

culture and their regulation (Vatn et al., 1999; Godard et al., 2008), tackling the issue of spatial101

and temporal variability in environmental losses. However, because economic and biophysical102

models do not operate at the same level, disaggregation techniques are required to generate man-103

agement information at the scale relevant to biophysical processes. These include econometrics,104

Bayesian inference of spatial distribution parameters based on physical co-variables (Leip et al.,105

2008), and expert knowledge (Godard et al., 2008; Godard, 2005).106

107

Recent work has underlined the usefulness of such coupling in the estimation of GHG emissions108

from agriculture at regional (Neufeldt et al., 2006) to continental (Leip et al., 2008) level. The109

latter authors fed outputs from economic modeling of agricultural activities at farm or regional110

level to a biophysical model, DNDC (Li et al., 1992), to predict the GHG balances of statistically111

representative farms or homogeneous simulation units. They highlighted the large variability of112

N2O emissions across landscape, soil, climate characteristics and farming systems. However,113

they did not address the effects of taking this variability into account when designing policies to114

regulate GHG emissions from agriculture, which is the focus of this paper. In principle, it should115
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allow more accurate studies on the effects of public policies, because agro-ecosystem models116

can deal with heterogeneities occuring at finer scales.117

1.3 Modeling the efficiency of mitigation measures for greenhouse gas emis-118

sions from agriculture119

For countries having ratified the Kyoto Protocol, there is a need to investigate the efficiency of120

GHG mitigation measures, including their economic costs. Economic models have a capacity to121

simulate the impact of various policy scenarios of the agricultural sector, in our case. Coupling122

them with biophysical agro-ecosystem models is thus a promising way to appraise the efficiency123

of pollution mitigation policies, and of GHG emissions in particular. Economic regulation aim-124

ing at mitigating environmental damage leads to consider two standardized taxing schemes: a125

first-best scheme levying a tax on the direct damage, such as the quantity of pollutants dumped126

into the environment; and a second-best scheme taxing the presumed factors of the damages in-127

curred (Henry, 1989; De Cara and Jayet, 2000b). First-best taxing allows a very tight linkage128

with damages, and thereby theoretically the best economic efficiency in its abatement. It usu-129

ally refers to an ideal world where information is fully accessible and transaction costs are as130

small as possible. Although the underlying assumptions are never satisfied in the real world, the131

first-best option provides the ’best possible world’ reference. Namely, in our case, this situation132

refers to a world where farmers do actually optimize their N fertilizing level to maximize their133

profit, based on their knowledge of the relationships between yield and GHG emissions and Nf134

rates. It implies they would make the most of the information currently provided to AROPAj135

by the biophysical models. This reference corresponds to what could be expected in terms of136

welfare, including environmental economics, when the best options are implemented into the137

system. However, it requires a detailed knowledge of the actual damage, an information which138

is very costly if not impossible to obtain. In practice, it is thus more convenient to consider the139

6



production factors presumed to be responsible for the damage, which may be better-known and140

measurable. This leads to the implementation of a second-best taxation, which usually results141

in a loss in the efficiency of the mitigation measure 1. Second best options are obviously more142

relevant for policy makers, and incur a loss of welfare which is interesting to assess. Here, we143

investigated two possible measures for the reduction of GHG emissions from agriculture, using144

either a first-best tax on the GHG emissions or a second-best tax on their presumed management145

factors.146

147

Godard et al. (Godard et al., 2008; Godard, 2005) coupled the biophysical crop-model STICS148

(Brisson et al., 1998) and the economic farm type model AROPAj (De Cara and Jayet, 2000a),149

which is based on the European data of the Farm Accountancy Data Network (FADN; see section150

2.2 for a detailed presentation). This linkage made it possible to simulate the response of crop151

yields to fertilizer nitrogen (Nf), in various regions of the European Union (EU), and thereby152

predict the effect of various GHG emissions taxation scenarios on farmers’ crop management153

practices. Currently, with the AROPAj model, the consequences in terms of GHG emissions at154

the farm type level were estimated using the optimized Nf doses and the IPCC default emission155

factor of 1.25% for N2O (whereby 1.25% of applied Nf is evolved as N2O).156

157

Here, we set out to further the analysis by using a biophysical crop model to predict the N2O emis-158

sions, instead of the fixed emission factor of the IPCC Tier 1 methodology. Such an approach159

allows for improved relationships between farming activities and N pollution, and should ben-160

efit the economic analysis of GHG emissions and mitigation. This is especially relevant since161

agriculture is a major contributor to N2O emissions. This paper thus focuses on the derivation of162

N2O emission functions and on the impact of their implementation in an agricultural economic163

model, regarding GHG emissions and the efficiency of two GHG taxation schemes. Ideally, the164
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same biophysical model could have have been used to simulate both the response of crop yields165

to Nf and the emissions of N2O. However, because the STICS model does not simulate N2O166

emissions as yet , we had to use another one for N2O. We selected the CERES-EGC crop model167

(Gabrielle et al., 2006a) for the coupling, as it struck a good balance between process description168

level and ease of use.169

The objectives of this work were thus three-fold: i/ to build response curves relating N2O emis-170

sions from cropland to fertilizer N application rates using the CERES-EGC model, ii/ to input171

these results to the economic model AROPAj to assess the regional N2O emissions from agricul-172

ture, and iii/ to investigate the effects of various mitigation measures. We focused on the Picardie173

region in Northern France, but the following methodology could easily be extrapolated to any174

FADN region within the EU.175

2 Materials and Methods176

2.1 The biophysical model CERES-EGC177

CERES-EGC was adapted from the CERES family of soil-crop models, which have been ex-178

tensively tested worldwide for more than 20 years (see Jones et al. (2005) for a review). This179

particular version focuses on environmental outputs (nitrate leaching, gaseous emissions of N2O,180

ammonia and nitrogen oxides). It comprises sub-models that simulate the major processes gov-181

erning the cycles of water, carbon and nitrogen in soil-crop systems, on a daily time step. A182

physical module simulates the transfer of heat, water and nitrate down the soil profile, as well183

as soil evaporation, plant water uptake and transpiration in relation to climatic demand. Water184

infiltrates down the soil profile following a tipping-bucket approach, and may be redistributed185

upwards after evapo-transpiration has dried some soil layers. In both of these equations, the186

generalized Darcy’s law has subsequently been introduced in order to better simulate water dy-187

namics in fine-textured soils. A microbiological module simulates the turnover of organic matter188

8



in the plough layer, involving both mineralization and immobilization of inorganic N (Gabrielle189

and Kengni, 1996). Ammonia volatilization is calculated using a classical resistance model for190

turbulent transport between the soil surface and the atmosphere, and physico-chemical equilib-191

riums in the liquid and gaseous phases of the topsoil, as a function of soil pH and ammonium192

concentration. The model is available for a wide range of crops, and was tested against experi-193

mental data for a broad range of agronomic and pedoclimatic situations, mostly in France and in194

Europe, for the simulation of crop yields, soil water and N dynamics, nitrate leaching, or gaseous195

losses (Gabrielle and Kengni, 1996; Gabrielle et al., 2002; Rolland et al., 2008). In particular, it196

was used to simulate N2O emissions from wheat crops at the field and regional scales (Gabrielle197

et al., 2006a,b; Gabrielle and Gagnaire, 2007), using a large database of field-scale observations198

over Northern France (Lehuger et al., 2008). Figure 1 presents a general schematic of the model,199

with the various modules involved.200

201

202

[Figure 1 about here.]203

NOE is the semi-empirical sub-model used in CERES-EGC to simulate the production and re-204

duction of N2O in agricultural soils (Hénault et al., 2005). NOE simulates N2O release through205

the denitrification and nitrification pathways. The total denitrification of soil NO−

3 is calculated206

as the product of a soil-specific potential rate with three unit-less factors related to soil water207

content, nitrate content and temperature. The fraction of denitrified nitrate that evolves as N2O is208

then considered as constant for a given soil type. Nitrification is modeled as a Michaëlis-Menten209

reaction, with NH+
4 as substrate. The corresponding rate is multiplied by unit-less modifiers210

related to soil water content and temperature. A soil-specific proportion of total nitrification211

evolves as N2O.212

9



2.2 The AROPAj economic farm-type model213

AROPAj is a linear programming model which simulates the agricultural supply of the European214

Union regions (De Cara and Jayet, 2000a; Godard et al., 2008). For a given economic situation215

(i.e. a set of prices, taxes and policy measures), it provides an assessment of the type and amount216

of the agricultural products delivered on the markets. This model is mostly used to study the217

successive reforms of the Common Agricultural Policy (CAP) of the European Union (Jayet and218

Labonne, 2005), but it has been used also to address global agro-environmental problems such219

as agricultural GHG emissions (De Cara et al., 2005).220

221

AROPAj is built as a set of independent sub-models, each of them simulating the behavior of222

a category of producers as related to a ’farm-type’ (Chakir et al., 2005). The farm types result223

from the clustering of individual farms described in the Farm Accounting Data Network (FADN),224

using (i) FADN normalized farm types, (ii) elevation class, and (iii) normalized economic size.225

Clustering is done at the FADN-Region level. Farm types are weighted by a parameter estimated226

through the individual weights provided by the FADN. These farm types are statistically repre-227

sentative of actual production systems at the regional level, and reflect the behavior of the farmers228

assuming that they optimize their gross margin. A detailed presentation of the AROPAj model229

is available in (Chakir et al., 2005; De Cara and Jayet, 2000a), while additional information is230

also provided by deliverables from the GENEDEC project1. In the version of the AROPAj model231

used in this study, French agriculture is divided into 131 farm types, among which 4 are located232

in the Picardie Region.233

Figure 2 presents a schematic of the AROPAj model, deatailing its input parameters, constraints,234

and outputs. The variables taken into account in AROPAj include the area of each crop (among235

a total of 32 crop activities), the livestock size per animal type (with 31 pre-defined classes),236

1http://www.grignon.inra.fr/economie-publique/genedec/eng/enpub.htm
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the quantity of meat, milk, grains or other crop types produced, the quantity of animal feed pur-237

chased, and the opportunity cost of land.238

239

240

[Figure 2 about here.]241

AROPAj includes a GHG calculation module inventorying around 20 sources of CH4 and N2O242

from livestock and arable farming, based on the IPCC Tier 1 guidelines. Methane is produced243

by enteric fermentation of mono-gastric livestock, manure management, and rice cultivation. Ni-244

trous oxide is mostly produced by agricultural soils as a result of mineral Nf application, manure245

application as well as soil incorporation of crop residues. The model assumes that the most im-246

portant factors behind GHG emissions may be assumed to be livestock size (for CH4 and N2O),247

and nitrogen fertilizer use (for N2O) (De Cara et al., 2005). By default, N2O emissions from248

soils are assumed proportional to Nf inputs (Bouwman, 1996), ignoring the background emis-249

sions (considered non-anthropogenic). Thus, N2O emissions represent a fixed fraction of the250

inputs. This fraction, referred to as the emission factor, is set to 1.25% by default in the Tier 1251

methodology (Houghton et al., 1996). However, the emission factor may be varied in AROPAj,252

in order to explore alternative estimation methods.253

254

In the implementation of AROPAj we used, it is important to note that the utilized arable area255

for each farm-type is constant. Also, cattle farmers have the possibility to adjust their livestock256

within a range from 85% up to 115% of their initial size. Within AROPAj it is possible to in-257

troduce various mitigation measures, such as taxes on GHG emissions, on animals or on the258

fertilizer N use, and to examine their effects on the model outputs.259
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2.3 Coupling CERES-EGC and AROPAj260

2.3.1 Principles of the coupling : Nf-response curves261

The coupling is based on the introduction in AROPAj of two mathematical relationships, relating

Nf rates to crop yields and N2O emissions, respectively. The former were generated with the

methodology developed by Godard et al. (2008), by running the STICS model over a range

of Nf rates for various possible combinations of other crop production factors (soil type, crop

management practices, climate) specific to each farm type. The methodology to determine those

factors and the input data is detailed in Godard et al. (2008). Thus, a series of points (Nf rate

and crop yield) were obtained for each crop in all farm types, and an exponential function was

fitted to these series. Such a form of function met economic requirements for the estimation of a

mathematical optimum (ie, a concave shape with 1st derivative greater than 0), being altogether

consistent with the expected agronomic response (Godard et al., 2008). Hence, the following

function was selected :

Y (Nf) = Y max − (Y max − Y min) × e−τ Nf (1)

where Y(Nf) is the crop yield (in t ha−1), Nf is the fertilizer N rate (kg N ha−1), τ the rate of262

increase (curvature) of the yield function, and Ymin and Ymax are the minimum and maximum263

(asymptotic) yields, respectively. This relationship was derived by running the STICS model264

with the same input data and adjustment procedure as Godard et al. (2008).265

266

The relationship between N2O emissions and Nf was generated by running the CERES-EGC267

models in the same conditions as with the yield response curve, namely the same biophysical268

inputs and Nf range for each crop in all farm types. The resulting yearly N2O emissions curves269

were regressed against Nf assuming a straight-line, following the ’emission factor’ approach of270

the IPCC Tier 1 methodology.271
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2.3.2 Simulation scenarios with the coupled models AROPAj and CERES-EGC272

The two relationships Nf-yield response curve and N2O emission factor were fed into the AROPAj273

model. The yield response curves were input in the form of the exponential function given in274

eq. 1, specific for each crop of each farm type, as were with the N2O emission factors generated275

with the CERES-EGC simulations. An exception was made for the crops not simulated with276

CERES-EGC, in which case the IPCC default value of 1.25% was used. The CAP agenda 2000277

scenario (De Cara et al., 2005) was implemented in the economic model that was also run under278

a set of taxation rules, in which case the farmers could be expected to adjust their fertilizer doses279

taking into account these new economic environment. The objective of this paper was to study280

the variation of N2O emissions and the effect on them of various taxation scenarios, under vari-281

ous modeling assumptions relating the biophysical model CERES-EGC and the economic model282

AROPAj . After having checked the consistency of the yield-Nf response curves obtained with283

the CERES-EGC and the STICS models, the N2O emissions factors were computed from the284

CERES-EGC simulations. Two simulation scenarios for crop yields and two simulation scenar-285

ios for N2O emission factors were tested. In the first variant for yields (referred to as EXOG in286

the following), the yields were considered constant and fixed at the values given in the FADN for287

each crop and farm type. The total nitrogen fertilizer inputs were estimated based on the costs of288

each crop and farm type, as extracted from the FADN data. In the second variant for crop yields289

(noted ENDOG), the yields and the fertilizers rates were calculated by optimizing the field’s290

gross margins based on the response curves. This led to solve simple mathematical programs of291

the type ’maxNf [p Y (Nf) − w Nf ] subject to Nf ≥ 0’, where Nf is fertilizer N input rate, p292

is the crop selling price, Y(Nf) is the crop yield, and w is the market price of fertilizer N. Within293

this ”ENDOG” scenario, changes in fertilizer costs due to taxes on this commodity are expected294

to alter the optimum Nf rate. For comparison with the IPCC method, the N2O emissions of the295

farm types were assessed with AROPAj either with the default emission factor (noted IPCC) or296
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with the CERES-EGC derived emission factors (noted CERES). Table 1 summarizes the four297

simulation scenarios tested with the AROPAj micro-economic model.298

[Table 1 about here.]299

2.4 Crop simulations at the regional level300

Since this work directly follows that of Godard et al., and involves comparison with her results,301

we chose the same simulation conditions. We focused on the Picardie region (northern France),302

which is characterized by an important agricultural activity based on intensive cereal, sugar beet,303

potato, oil and protein-producing crops. Its climate is temperate and mild, with marine influence.304

The annual rainfall is 630 mm, and the mean annual air temperature is 10.6 ◦C. In the AROPAj305

model, the Picardie region is represented by four farm types (CrPi1, CrPi2, CaPi1, and CaPi2)306

representing, respectively, 2819, 4786, 2116, and 1002 real farms. They involve both arable and307

arable-livestock farming. The harvest year of the simulations is 1997 because the economic data308

used by AROPAj are derived from the FADN data for this particular year. Since all farm types309

belong to the same AROPAj altitude class (namely, less than 300 meters above sea level), we310

considered only one set of daily weather data for the whole Picardie region (Godard et al., 2008).311

We used weather data for the years 1995 through 1997, to take into account the preceding crop.312

The main data sources and methods to estimate inputs for the biophysical models are listed in313

Table 2. Readers are referred to Godard et al. (2008) for a full description of these databases. The314

characteristics of the cases studied in Picardie are presented in Tables 3 (for the farm types and315

crops) and 4 for soils’ properties. CERES-EGC uses the same soil parameters as STICS with316

the exception of specific additional parameters needed by the nitrification and denitrification317

routines. Those were obtained from references involving similar soil types, as listed in Table 4.318

[Table 2 about here.]319
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Simulations with the CERES-EGC model for the studied cases for yield and N2O Nf-response320

curves were carried out with yearly Nf rates varying from 0 to 400 kg N ha−1, in 20 kg N ha−1
321

increments.322

[Table 3 about here.]323

[Table 4 about here.]324

The variation in the earliness implies a variation in the dates of the phenological stages of the325

crops, and thus in the fertilizers application dates (Godard, 2005). We started the simulations326

upon sowing of the preceding crop in order to smooth out the effects of initial soil conditions327

setting. The preceding crop was either a non-fertilized pea or a fertilized soft wheat. Since we328

focused on N-losses in relation to Nf application, and because the processes in the nitrogen cycle329

responsible for the various N-losses do not instantly respond to Nf inputs, it may be relevant330

to include the N losses occurring over the next few years of the crop rotation. However, as the331

economic model only takes into account the year of the FADN data (1997, in this case), we only332

used the N-loss estimates for this year.333

Not all crops grown in Picardie could be simulated by the CERES-EGC model: such was the case334

for potato and sunflower, which have not yet been implemented in the model. However, as shown335

in Table 5, we worked with the major crops present in Picardie: wheat, barley, maize, rapeseed336

and sugar beet cultivation made up 74% of the total arable area of the region in 1997 (AGRESTE,337

1997). For the crops that were not simulated with CERES-EGC, we kept the default yield and Nf338

values, i.e. the ones from the FADN of the year 1997. Since there was some livestock farming339

in the region, manure N was taken into account in the yield response curves simulated by STICS340

(Godard et al., 2008). Emissions of GHG from manure handling and spreading are included341

in AROPAj, based on IPCC guidelines and regional coefficients. Since CERES-EGC was not342

used to simulate the direct emissions of N2O resulting from manure application, there were no343
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modeled emission factors for manure N input and we used the IPCC Tier 1 emission factor of344

0.0125 kg N-N2O kg−1 Nf.345

[Table 5 about here.]346

3 Results and discussion347

3.1 Response of N2O emissions to nitrogen fertilizer inputs348

3.1.1 Simulation of N2O emissions across crops and farm types349

[Figure 3 about here.]350

Figure 3 presents the N2O emissions simulated with the CERES-EGC crop-model, for Nf rates351

varying from 0 to 400 kg N ha−1, in the various regional cases. Generally, N2O emissions in-352

creased as Nf increased. Strong differences occurred between the cases in the magnitude of353

the N2O emissions. For a 400 kg N ha−1 fertilizer input, N2O emissions reached as much as354

3.5 kg N2O-N ha−1 for soft wheat, and nearly 11 kg N2O-N ha−1 for sugar beet. In the medium355

range of Nf (around 200 kg N ha−1) corresponding to the actual application rates determined356

with the Nf yield response curves (Godard et al., 2008), the emissions rates ranged from 0.60357

for winter barley to 7.61 kg N2O-N ha−1, and averaged about 2.94 kg N2O-N ha−1 across the358

various cases. This value is very close to the average flux of 2.7 kg N2O-N ha−1 reported by359

(Leip et al., 2008) for the whole of France with a similar mean application rate (201 kg N ha−1),360

and to the 1.94-2.53 kg N2O-N ha−1 range by (Neufeldt et al., 2006) for the Baden-Wurtemberg361

region of Germany.362

There was a stark contrast between winter- and spring-sown crops, with emissions being higher363

by a factor of 2 for the latter compared to the former. This may be explained by the fact that Nf364

application occurred later in the season for spring crops, when temperature conditions are more365

conducive for nitrification and denitrification. These processes may also be enhanced because366
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of the build-up of inorganic N from spring mineralization of soil organic matter under the bare367

soil preceding the planting of spring crops. However, this may be a specific to the environmental368

conditions of Picardie. In Baden-Wurtemberg, an opposite trend was noted with winter cereals369

emitting slightly more N2O than spring types (Neufeldt et al., 2006). This highlights the interplay370

between climate, soil conditions and crop management which may produce different outcomes371

depending on their respective dynamics.372

Besides, the response pattern to the Nf input differed significantly between cases, to the extent373

that in a 2 cases out of 12 (involving soft wheat crops) the model simulated a decrease of N2O374

emissions when Nf increased. This may be seen for case 6 on Figure 3, and was actually due to375

the fractionation scheme for fertilizer application, which changed around that rate. Under a total376

dose of 80 kg N ha−1, fertilizer was applied all at once in mid-April, whereas it was split into 2377

applications (early March and mid-April) above. This split resulted in a higher growth potential378

for the wheat in early spring, and a higher N use efficiency (and hence lower emissions) following379

subsequent Nf inputs. This feedback leading to counter-intuitive results may still be an artefact380

of the model simulations, but nevertheless reflects the long-established agronomic principle that381

split applications increase Nf use efficiency. The resulting regression curve was somewhat sen-382

sitive to the 4 first data points, since shifting them down to force a monotonic response increased383

its slope from 0.58% to 0.70%. This slight variation would have had limited consequences in the384

economic modeling, and we kept the original simulation curves to maintain the consistency of385

the models’ coupling. Note that the economic model uses the regression coefficients (and not the386

jagged simulation line itself). Other than that, the response curves obtained with CERES-EGC387

for the different cases varied according to of one or several of their specific parameters: soil and388

crop types, sowing date, and previous crop.389

390

The straight lines (noted Bouwman assessment) on Figure 3 represent the N2O emissions as-391
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sessments according to the equation EN2O = 1 + 0.0125 ∗ Nf , with EN2O is the annual direct392

emission of N2O (kg N-N2O ha−1) and Nf the fertilizer N rate (kg Nf ha−1) (Bouwman, 1996).393

This linear model is used as the default IPCC methodology (Tier 1) (Houghton et al., 1996),394

and represents the current calculation of the N2O emissions in the AROPAj economic model,395

with the difference that the background emissions (in the absence Nf inputs) are not taken into396

account. The Bouwman equation and the CERES-EGC response curves never matched, whether397

regarding the background emission rates or the slope of the curves. Depending on the cases, the398

former led to either lower of higher estimates than those resulting from the biophysical modeling.399

Such discrepancies were also noted in a study on N2O emissions from winter wheat crops in a400

neighboring region, where the modeled N2O emissions were 40% to 80% lower than estimated401

with the Tier 1 emission factor (Gabrielle et al., 2006b). When compared with observations at the402

field-scale, the CERES-EGC model had a mean deviation typically ranging (in absolute values)403

from less than 1 to 5 g N-N2O ha−1 d−1 (Gabrielle et al., 2006a,b), which may be considered as404

resulting in unbiased predictions at the yearly scale given the high temporal variability of these405

fluxes (Hénault et al., 2005). These gaps between the two estimation methods also stress the im-406

portance of a finer assessment of the N2O emissions with a biophysical model that can take into407

account regional variations in soil and climate conditions, along with crop management practices.408

409

While CERES-EGC model was only applied to one year, the inter-annual variability of climate410

was likely to affect its simulation of N2O emissions in the long run. In a study on GHG emis-411

sions from arable crops in the same region, Gabrielle and Gagnaire (2007) found coefficients of412

variations of up to 80% across the years when running the same model on a 30-yr series of past413

weather data. However, the differences between crops were persistent over the years, as did the414

discrepancies between the IPCC Tier 1 estimates and the modeled emissions. Thus, inter-annual415

variability should not undermine the tendency obtained with the particular year we used here416
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when comparing our biophysical/economic modeling with approaches that fully ignore soil and417

climate variability. From a quantitative point of view, and to put our particular simulation year418

into prospective, it should lastly be mentioned that it led to N2O emission levels 30% lower than419

the 30-yr average for the cases simulated here. Thus, the discrepancies with the IPCC Tier 1420

estimates were probably slightly over-emphasized.421

3.1.2 Regression analysis and link with economic model422

The N2O response curves simulated by CERES-EGC for the various cases were input to the eco-423

nomic model AROPAj in the form of linear regression coefficients. Note that the rather variable424

levels of background emissions, in the absence of fertilizer inputs (ranging from 0.37 to 3.67 kg425

N2O-N ha−1), were not input to AROPAj, since they were deemed natural and not anthropogenic.426

However, the fact that they varied across crops (contrary to the Bouwman (1996) equation) un-427

derlines the arbitraty limitation of this convention. Table 6 presents the characteristics of the428

linear regressions of N2O emissions against Nf inputs.429

[Table 6 about here.]430

The linear regressions fitted the N2O emission response curves rather well, with R-squared values431

ranging above 0.80 in 8 cases out of 12. Such pattern was also reported by Neufeldt et al. (2006)432

with the biophysical model DNDC in the Baden-Wurtemberg region of Germany, with an R2
433

of 0.79 for the same types of crops and Nf rates ranging from 40 to 250 kg N ha−1. However,434

for two cases involving soft wheat, the N2O emissions curves presented an important dip (see435

case 6 on Figure 3). This particular pattern in the response curve was ignored by the linear436

regression, and resulted in poorer R2 values. Non-linear models were also tested, including an437

exponential model, which achieved a better fit and a lower residual standard error. However,438

the latter remained relatively low and acceptable with the linear models, being for instance of439

only 0.13 kg N2O-N ha−1 for the wheat crops, i.e. less than 10% of the annual total for the440
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optimal fertilizer rate. We reverted to the liner model, considering it sufficient to address the441

first-order effect of our approach, which stems from the slope of the regression curve being in442

sharp contrast with the Tier 1 IPCC emission factor. Deviations from the linear response curves443

are a second-order effect, which would be worth tackling in future work.444

3.2 Impacts of response functions to nitrogen input in economic modeling.445

3.2.1 Regional GHG emissions and economic margins446

[Figure 4 about here.]447

[Figure 5 about here.]448

Figures 4 and 5 present the AROPAj results for the N2O emissions and the global GHG emis-449

sions for the whole Picardie region. The emission factors obtained with CERES-EGC led to a450

reduced estimate of N2O emissions, whether with the exogenous or endogenous yields, with a451

20% decrease compared to the IPCC estimate. Whatever the emission factors, the emissions of452

N2O were also 30% lower with the endogenous yields than with the exogenous ones. This could453

be expected, since the use of yield response curves allowed a higher efficiency of fertilizer use454

by crops, and thus led to an overall reduction in fertilizer consumption by farmers. With the en-455

dogenous yields, the model was also more reactive to the CAP ’Agenda 2000’ scenario, resulting456

in changes in the management of each farm type: the areas allocated to each crop were slightly457

modified, as well as crop yields, so were the GHG emissions.458

Total GHG emissions followed the same pattern as the N2O emissions across the simulation sce-459

narios (Figure 5), being lower with the CERES-EGC emission factors compared to the IPCC460

one, and lowest with the endogenous yields. Obviously, GHG emissions from animals were not461

affected by the choice of the N2O emission factors. On the one hand, as was expected, the gross462

margins, crop areas and crop productivity levels calculated by AROPAj were not impacted by463

the changes in N2O emissions’ estimates (IPCC vs CERES). On the other hand, changes in the464
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yield assessment method in AROPAj (EXOG vs ENDOG) strongly affected the AROPAj results.465

The total gross margin increased by 5% with the endogenous method compared to the exoge-466

nous one, reflecting the higher efficiency of Nf inputs and marketable yield levels permitted by467

the yield response curves. This increase was higher for the arable crops specialized farm types468

(CrPi1 and CrPi2), and lower for the livestock-oriented farm types. The total arable area of the469

farm types was not modified because the AROPAj model considers them as constant. Never-470

theless, the breakdown of arable area among crops was modified: there was a slight increase in471

cereal crops, industrial crops and pea, and a decrease in fodder crops.472

3.2.2 Mitigation measures and taxation schemes473

Various tax policies may be implemented within AROPAj, using different parameter sets. In474

order to mitigate the total GHG emissions, and thereby the emissions of N2O, we enforced two475

taxation schemes: a first-best scheme directly taxing the GHG emissions; and a second-best476

scheme taxing the presumed factors behind the GHG emissions.477

Direct taxation of GHG emissions478

[Figure 6 about here.]479

We studied for each of the simulation scenarios presented in Table 1 the effects of an increasing480

tax on the GHG emissions, ranging from 0 to 100 =C per t-CO2-eq. Figure 6 presents the results481

for the Picardie region regarding the total GHG emissions and their abatement. As expected,482

the GHG emissions decreased as the tax level increased, for all simulation scenarios. The major483

difference between the scenarios was due to the yield assessment method: GHG emissions were484

significantly higher with the exogenous method than with the endogenous one. This could be485

expected since farmers have more degrees of freedom avaiable with the endogenous yield deter-486

mination to maximize N use efficiency and abate GHG emissions than with the fixed, exogenous487
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yields. The rate of abatement was also higher with the endogenous yields. However, these pat-488

terns were affected by the N2O emission factors, which drastically changed the magnitude of the489

emissions, and to a minor extent the abatement rates. Examination of the level of tax needed to490

achieve a given target of GHG mitigation corroborates this analysis. The three horizontal lines491

on Figure 6 present three mitigation targets of 4, 8 and 12% compared to the baseline emissions492

(ie in the absence of GHG-related taxes). Their intersection with the GHG emission curves ob-493

tained with the four simulation scenarios provide an estimate of the tax level required to meet494

these targets, which are quantified in Table 7.495

[Table 7 about here.]496

Higher taxes on GHG emissions were necessary to reach a given mitigation target with the ex-497

ogenous yield assessment compared to the endogenous one. This gap widened as the mitigation498

target increased: taxes with the exogenous yields were twice higher than with the endogenous499

yields for the 4% mitigation target, and 3 to 4 times higher for the 8% target. Differences between500

the N2O assessment methods were also evidenced. Generally, the tax level needed to achieve a501

given mitigation target was slightly higher when using the CERES-EGC emission factors than502

the IPCC one, and this gap widened as the mitigation target increased.503

504

505

[Figure 7 about here.]506

The same tendencies were observed with the total gross margin for the whole Picardie region507

and its response to increasing tax on GHG emissions (Figure 7). There was a notable difference508

between the two yield assessment methods, with a higher gross margin with the endogenous509

yields. In addition, the reduction in the gross margin as the tax increased was significantly lower510

with the endogenous method than with the exogenous one. Indeed, the former allows a better511
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reactivity of the farmer to changes in crop prices, and thereby to political measures. These gross512

margin results also evidence small differences due to the use of the CERES-EGC emission factor,513

which became more pronounced as the tax level increased.514

This first-best tax on GHG emissions allows the public regulator to reach ambitious target of515

environmental damage abatement. However, such taxation is very costly to implement because516

each farmer’s GHG emissions must be precisely known. Economically and practically speaking,517

it is unfeasible to measure these GHG emissions on each arable field. That is why we also518

compared that first-best scheme with its alternative, a second-best scheme taxing the presumed519

factors of the environmental damage.520

Taxing the presumed factors of the GHG emissions521

AROPAj calculates the emissions of two GHG: methane (CH4) and N2O. Because farming activ-522

ities are globally affected by any change in the economic environment, changes in land allocation523

between marketed crops, fodder crops and pastures (linked to livestock farming) have to be im-524

plemented in our framework. We thus included the methane emissions and livestock activities in525

the below results. As livestock or nitrogen fertilizer consumption are easily observable factors526

(through the CAP or the markets), they may serve as a basis for a second-best GHG mitigation527

policy. It would lead to tax the livestock population and the fertilizer use of each farm type. We528

thus implemented such a scheme in the AROPAj model, and its effects on GHG emissions using529

the four simulation scenarios of Table 1.530

531

[Figure 8 about here.]532

Figure 8 presents the results of AROPAj simulations with a combination of two taxes: one on533

Livestock Units 2 (in =C/LU) and one on nitrogen fertilizer input (in =C/t Nf). The curves present534

the combined tax needed to reach a certain level of reduction (2 to 12% reduction of the total535
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GHG emissions - in relation to the baseline level of emissions). Similar to the first-best taxa-536

tion, important differences occurred between the exogenous and endogenous yield assessment537

methods. With the exogenous yields, reasonable mitigation targets were harder to reach: a 2%538

or higher reduction in GHG emissions required both taxes on LU and Nf to be higher than539

200 =C(per LU or t Nf). With the endogenous yields, such tax levels make it possible to abate540

the emissions by more than 10%. It is important to note that in the current implementation of541

AROPAj , contrary to crop yields, animal productions are not optimized against their production542

factors. The production levels of meat or milk are not related to the levels of animal feed sup-543

ply. Obviously, such assessment would confer more reactivity to the model, and a more realistic544

response to the second-best taxation. The graphs also show an effect of the method used for the545

assessment of N2O emissions. Overall, the taxes were higher with the CERES-EGC emission546

factors than with the IPCC one for the same reduction target. Using the endogenous yields, a547

12% reduction of the GHG emissions was attained with a tax on fertilizer N ranging from 180548

to 250 =C/t N with the IPCC emission factor, compared to a 240 to 250 =C/t N range with the549

CERES-EGC emission factors.550

551

Second-best taxes should be quite high to reach a given target of GHG emission abatement,552

much higher than the first-best tax when expressed in =C/t-CO2 eq abated through the physical553

relationship between the factor and the emission. For an 8% reduction in GHG emissions, the554

first-best tax was around 11 =C/t-CO2 eq, whereas the second-best tax could reach as high as555

125 =C/t N and 110 =C/LU. Considering that 1 t of Nf produces about 4 t-CO2 eq, and that 1 LU556

produces 3 t-CO2 eq, the equivalent tax on GHG emissions for the second-best taxation would be557

68 =C/t-CO2 eq, i.e. 6 times higher than the first-best tax. Moreover, the relative efficiency of the558

second best tax scheme compared to first-best one may be highly dependent on the abatement559

target. Therefore, an analysis of costs and profits of the various taxation policies needs to be560
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done in order to compare the efficiency of the 2 taxes more rigorously.561

4 Conclusion562

The IPCC Tier 1 methodology is currently widely used to assess greenhouse gas emissions - and563

in particular N2O emissions from agriculture. However, this methodology is relatively imprecise564

when used at the regional scale as it ignores the effect of the local environment. This paper565

explored an alternative methodology to assess the N2O emissions by coupling a biophysical soil-566

crop model to a micro-economic farm model. The biophysical model CERES-EGC enabled a567

fine assessment of N2O emissions, as related to local environmental conditions, and the eco-568

nomic model AROPAj enabled the generalization of the N2O results at the level of farm types569

representative of actual farms. The paper also studied possible policy measures to mitigate GHG570

emissions.571

572

A series of cases representing different soil and crop management characteristics was set up in573

the Picardie region, based on an analysis of various comprehensive databases. Response curves574

of N2O emissions to Nf inputs were built for these cases, and fitted with a a linear regression575

function. The slopes of these regressions ranged from 0.10% to 2.25% depending on the cases,576

whereas the IPCC default method considered a constant 1.25% emission factor. These slopes577

were input to the economic model AROPAj as new emission factors depending on crop type and578

farm type. Four simulation scenarios were run with AROPAj: crop yields were either exogenous579

or endogenous using yield response curves to nitrogen input, and the N2O emission factors were580

either obtained from the biophysical model or set at the IPCC value. The use of the modeled581

emission factors resulted in a 20% decrease in the magnitude of N2O emissions compared to582

the IPCC estimate. Thus, taking into account the yield response functions to Nf inputs appeared583

beneficial to the economic modeling.584
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585

AROPAj allowed us to study two different greenhouse gas mitigation measures: a first-best586

tax on GHG emissions, and a second-best tax on the presumed factors of the GHG emissions587

(livestock and Nf inputs). Interestingly, the simulation variants (using exogenous or endogenous588

yields, and IPCC or CERES-EGC N2O emission factors) had a marked influence in the response589

to taxes, and thereby in the conclusions that could be drawn on the efficiency of the mitigation590

policies. With the first-best scheme, the discrepancies between the scenarios led to a tax range591

of 11 to 53 =C/t-CO2 eq for an 8% reduction of the GHG emissions. The gap was firstly due to592

the yield assessment method: the reduction of the GHG emissions was more pronounced with593

the endogenous yields as the tax increased. For high level of taxes (up to 50 =C/t-CO2 eq), dif-594

ferences due to the N2O emission factors started to appear. A similar pattern was observed with595

the second-best taxation scheme. Endogenous yields conferred a higher reactivity to the model,596

and mitigation targets were easier to reach than with the exogenous yields. However, the taxes597

were higher than with the first-best taxation: an 8% abatement of GHG emissions required, for598

instance, a tax of 110 =C per livestock unit and a tax of 125 =C per ton of fertilizer N. However, a599

detailed analysis of the costs and profits of each taxation scheme should be undertaken to com-600

pare the 2 types of taxation, and measure their respective efficiency.601

602

The method we proposed here needs to be extended to a wider set of EU regions and crop types603

to improve its operational status. It also has the potential to address environmental impacts, such604

as related to the emissions of NH3 and NO−

3 , which could be easily introduced into the economic605

analysis. It could also be interesting to use the best-fit model (which is not necessarily linear) to606

describe the response of N losses to Nf inputs, and introduce these functions in AROPAj. Imple-607

menting response functions of animal production (meat and milk) to animal feed supply levels608

in AROPAj is also an important issue, allowing a more realistic response of farmers to GHG609
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taxation schemes.610

Notes611

612

1The theoretical economic second-best world is quite large and complex. In the wide body of literature on the613

subject, we refer readers to Henry (1989) for a review.614

2Livestock Unit (LU) is a unit used in order to compare livestock size of different species or category of animals.615

It is based on the feeding demand of the animals.616
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Figure 1: Schematic of the CERES-EGC model: inputs, compartments, modules and outputs.

34



Figure 2: Schematic of the AROPAj model.
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Figure 3: Response curves of N2O emissions to Nf input, as simulated by CERES-EGC. The

resulting linear regression and IPCC Tier 1 estimation lines (noted Bouwman) are also depicted.
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Figure 4: N2O emissions from synthetic fertilizers (in 1000 t of CO2-eq.) for the Picardie region.
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Figure 5: Global GHG (N2O and CH4) emissions from agriculture for the Picardie region (in

1000 t of CO2-eq.), as calculated by the AROPAj model for the various yield and N2O estimation

methods.
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Figure 6: Effect of a direct taxation of GHG emissions on the relative reduction of GHG emis-

sions from agriculture in the Picardie region. The horizontal lines refer to target abatement levels

of 4, 8 and 12%, resp.
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Figure 8: Tax levels required to achieve various mitigation targets with the coupled second-best

taxes on livestock units (LU) and on fertilizer N inputs, for the Picardie region, with the various

crop yield and N2O estimation methods. EXOG means that crop yields are kept constant for any

one farm type while ENDOG uses the yield response curves. These methods are combined with

two variants for N2O emissions: the IPCC Tier 1 emission factor, or the CERES-EGC derived

factors.
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Yield N2O emissions

IPCC-EXOG Exogenous 1.25% of Nf inputs

CERES-EXOG Exogenous Fraction of Nf inputs depending

on crop and farm types

IPCC-ENDOG Endogenous 1.25 % of Nf inputs

CERES-ENDOG Endogenous Fraction of Nf inputs depending

on crop and farm types

Table 1: Characteristics of the AROPAj simulations regarding the yields and N2O emissions

estimation methods.
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Inputs Main information sources Determination method

Climate MARS1 Project database (van

der Groot, 1998)

Climatic conditions based on altitude class

Soil - 1:1,000,000 European geo-

graphical soil database (King

et al., 1994)

Aggregation of soil types with identical STICS

parameters and largest areas within the Picardie

region

- Corine Land Cover 20002

Earliness3

group

Lorgeou and Souverain

(2008)

Selection of one cultivar and one earliness

group depending on the crop,

Sowing

date

- Phenological MARS Project

database (Willekens et al.,

1998)

and on the weight of the earliness factor in the

cultivar choice (Godard et al., 2008)

- Expert knowledge

Preceding

crop

Wheat (non N-fixing crop) or pea (N-fixing

crop)

Synthetic

fertilizer

N inputs

Expert knowledge and deci-

sion rules

Fertilizer type(s) fully determined, splitting

of Nf applications according to development

stages (based on degree-days).

Organic - Expert knowledge and rules Rates and types of manure spread

N inputs - FADN4 estimated from priority order and livestock esti-

mations by AROPAj from FADN

Table 2: Summary of the sources and methods for the determination of the STICS input data

used for CERES-EGC (adapted from Godard et al. 2008).

1: MARS: Monitoring Agriculture from Remote Sensing.

2: http://www.ifen.fr/bases-de-donnees/occupation-du-sol.html

3: Earliness is a characteristic of a crop cultivar defining its maturity date.

4: FADN: Farm Accountancy Data Network.
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Earliness Sowing Preceding

Case Crop Farm type Soil Group 1 date Crop 2

Spring crops

1 Maize CrPi1, CaPi1 1969 2 5 May 1997 Wheat

2 Maize CrPi2 1974 1 5 May 1997 Pea

3 Sugar beet CrPi 1-2, CaPi 1-2 1974 RA 3 2 Apr. 1997 Wheat

4 Spring Barley CrPi1 1042 RA 16 Mar. 1997 Wheat

5 Spring Barley CaPi2 1974 RA 2 Feb. 1997 Pea

Winter crops

6 Soft wheat CrPi1, CaPi 1-2 1042 1 15 Oct. 1996 Pea

7 Soft wheat CrPi2 1974 2 15 Oct. 1996 Pea

8 Rapeseed CrPi1 1042 RA 30 Aug. 1996 Pea

9 Rapeseed CrPi2, CaPi1 1974 RA 30 Aug. 1996 Pea

10 Rapeseed CaPi2 1974 RA 27 Aug. 1996 Wheat

11 Winter Barley CrPi2 1792 RA 31 Oct. 1996 Wheat

12 Winter Barley CaPi1 1974 RA 31 Oct. 1996 Pea

1: Earliness is a characteristic of a crop cultivar defining its maturity date. It determines the dates of the various

management intervention during the crop growing cycle. Cultivars belonging to ’earliness group 1’ have an earlier

maturity than those of ’earliness group 2’.

2: The preceding crop ’Pea’ is not fertilized whereas ’Wheat’ is fertilized with 200 kg N ha−1.

3: RA: regional average.

Table 3: Characteristics of the various simulation cases in Picardie. Farm types CrPi1 and SCrPi2

specialize in arable crops, whereas farm types CaPi1 and CaPi2 are mixed livestock-arable farms.

Soil characteristics are given in Table 4.
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Soil FAO pH Organic CaCO3 PDR3

code Classification1 PAW 2 value carbon content

mm g kg−1 g kg−1 kg N ha−1 d−1

1042 Eutric Fluvisol 150.6 6.5 10 10 8.0

1792 Calcic Cambisol 118.4 8.0 18 50 3.4

1969 Orthic Luvisol 189.6 6.5 10 0 16.0

1974 Calcaric Eutric Cambisol 114 7.0 10 20 6.0

1: FAO-UNESCO (1974)
2PAW: Plant Available Water.
3PDR: Potential Denitrification Rate (Hénault et al., 2005).

Table 4: Codes and selected characteristics of the soils used in the Picardie simulations.
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Crop type Area (ha)

Soft wheat 502 343

Maize 35 100

Sugar beet 166 855

Rapeseed 37 839

Spring barley 39 286

Winter barley 91 183

Total 872 606

Table 5: Crop types simulated with CERES-EGC and cultivated area in Picardie (AGRESTE,

1997). The area covered by these 6 crops made up 74 % of the regional utilized arable area.
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Crop a b Residual Adjusted

Case standard error R-squared

type % kg N2ON ha−1

1 Maize 0.83 1.01 0.36 0.89

2 Maize 1.55 3.56 0.26 0.98

3 Sugar beet 1.98 3.67 0.42 0.97

4 Spring Barley 2.25 1.73 0.61 0.95

5 Spring Barley 1.63 1.93 0.17 0.99

6 Wheat 0.58 0.37 0.60 0.58

7 Wheat 0.46 0.42 0.25 0.84

8 Rapeseed 0.21 2.74 0.71 0.08

9 Rapeseed 0.29 0.93 0.48 0.35

10 Rapeseed 0.31 1.09 0.51 0.34

11 Winter Barley 0.10 0.39 0.03 0.95

12 Winter Barley 0.24 0.79 0.13 0.83

Table 6: Coefficients of the linear regressions of N2O emissions against fertilizer N rates (Nf).

The regression equation reads: EN2O = a × Nf + b, where EN2O are the N2O emissions in kg

N2ON ha−1.
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Exogenous Yields Endogenous Yields

GHG emissions reduction IPCC CERES-EGC IPCC CERES-EGC

4% 14.5 14 6.9 8

8% 46 53 10.8 11

12% 59 85 19 24

Table 7: Tax levels (in euros/t-CO2-eq) required to achieve a set of GHG mitigation targets, as

calculated with AROPAj with various methods to estimate yield and N2O emissions.
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