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Abstract: For the multidimensional heat equation, the long-time asymptotic approximation of the solution
of the Cauchy problem is obtained in the case when the initial function grows at infinity and contains loga-
rithms in its asymptotics. In addition to natural applications to processes of heat conduction and diffusion,
the investigation of the asymptotic behavior of the solution of the problem under consideration is of interest for
the asymptotic analysis of equations of parabolic type. The auxiliary parameter method plays a decisive role
in the investigation.

Key words: Multidimensional heat equation, Cauchy problem, Asymptotics, Auxiliary parameter method.

1. Introduction

In 1822, J. Fourier published his most fundamental work [4], where the heat conduction equation
was presented and analyzed. This event provided a strong impetus for later researches in the fields
of partial differential equations and trigonometric series. The famous equation has been further
successfully used for effective descriptions of molecular diffusion, stochastic motion, the capillary
conduction of liquids in porous media, and even for the analysis of social economic data. Already
Fourier himself pointed out the universality of this mathematical model sine qua non in his eminent
book as follows: “Il est facile de juger combien ces recherches intéressent les sciences physiques et
l’économie civile, et quelle peut être leur influence sur les progrès des arts qui exigent l’emploi
et la distribution du feu.”2 Fourier’s preliminary theoretical studying of heat phenomena and
some vivid particulars of his elaborations in early 1800s are expressively reflected in the prefatory
part of [4]. The historical survey [10] supplied with appropriate general and specialized references
depicts many significant details of the subsequent life of the heat equation during the XIX and XX
centuries.

Since the literature about the heat equation, in particular, and parabolic equations, in general,
is immense, it is impossible in this introduction to give a complete picture of available results, and
the bibliography below is of course by no means exhaustive. Here, we mention that existence and
uniqueness theorems were obtained for a wide class of parabolic equations and systems [6, 15, 18, 19];
some results for unbounded solutions were presented in [11, 13]. As for the long-time behavior
of solutions, we see that their stabilization, certain estimates, and the leading terms of asymptotics

1Dedicated to the 200th anniversary of Charles Hermite and “Théorie analytique de la chaleur” by
Joseph Fourier.

2“It is easy to judge how much these researches are interesting for the physical sciences and the civil
economy and what may be their influence on the progress of the arts which require the employment and the
distribution of fire.”
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were mainly considered [2, 8, 12, 17]. Complete asymptotic expansions of solutions into infinite
series in inverse integer powers of the time variable were earlier obtained by Friedman in [5] and [6,
Ch. 6] for bounded space-domains.

In the present paper, the long-time asymptotics of the solution of the Cauchy problem for the
multidimensional heat equation

∂u

∂t
=

∂2u

∂x21
+ . . .+

∂2u

∂x2m
, t > 0, m > 2, (1.1)

u(x1, . . . , xm, 0) = Λ(x1, . . . , xm), (x1, . . . , xm) ∈ R
m, (1.2)

is obtained for a locally Lebesgue integrable initial function Λ : Rm → R of polynomial growth.
As is well known [18], in the class of smooth functions of moderate growth for t > 0, there exists
a unique solution of problem (1.1)–(1.2) and it can be written in the form of the Poisson integral3

u(x, t) =
1

(4πt)m/2

∫

Rm

Λ(s) exp
(
− |s− x|2

4t

)
ds, (1.3)

where x = (x1, . . . , xm) ∈ R
m, s = (s1, . . . , sm) ∈ R

m, and ds = ds1 . . . dsm.
It should be noted that the investigation of the asymptotic behavior of the function u(x, t),

in addition to possible natural applications to the modeling of physical processes of heat conduction
and diffusion, may be of interest for the asymptotic analysis of solutions of nonlinear parabolic
equations by the matching method [9, 21] as well as for the theory of invariants [7] and some issues
of matrix geometry [14].

Below, a complete asymptotic expansion of the solution u(x, t) of problem (1.1)–(1.2) is found
as |x|+ t → +∞ under the following suppositions:

Λ(x1, . . . , xm) = 0, x1 < 0, (1.4)

Λ(x1, . . . , xm) = xp1

∞∑

n=0

x−n
1

n∑

j=0

Λn,j(x
′) lnj x1, x1 → +∞, (1.5)

where p is a positive integer and Λn,j(x
′) are Lebesgue integrable functions of x′ = (x2, . . . , xm);

for simplicity, we also suppose that

suppΛ ⊂
{
(x1, . . . , xm) : x1 > 0, |x2|+ . . .+ |xm| < xν1

}
, ν > 0,

suppΛn,j ⊂
{
(x2, . . . , xm) : |x2|+ . . .+ |xm| < rn

}
, rn > 0.

(1.6)

Although Λ is a function of several variables, the asymptotic series (1.5) must be understood here
in the usual sense of Poincaré [16, § 1] due to the second condition (1.6), that is

Λ(x1, . . . , xm) =

N−1∑

n=0

xp−n
1

n∑

j=0

Λn,j(x
′) lnj x1 +O

(
xp−N
1 lnN x1

)
, x1 → +∞, (1.7)

for any integer N > 1. It should be also said that the appearance of asymptotic series of form (1.5)
is typical for the matching method [9].

The main difficulty of the calculation of the asymptotic expansion of integral (1.3) is exactly
due to condition (1.5) and the “smearing” of the integrand exponent as t → +∞; if we formally
put t = +∞, then we generally get the divergence of the integral. Thus, the asymptotic limit under
consideration is diametrically opposite to the well-known case of the integrals of Laplace’s type
with the sharpening exponent and a suitable computational technique suggested by Danilin in [1]
is therefore complementary to the standard Laplace method. This technique is called the auxiliary
parameter method.

3In essence, this solution was given by Fourier [4, Ch. IX, §392].
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2. Applying the auxiliary parameter method

To obtain the asymptotic behavior of integral (1.3) as the space-time variables (x, t) indepen-
dently tend to infinity, we apply a scheme similar to that used in [20] for the solution of the heat
equation in R

1
x × R

+
t . First of all, taking into account condition (1.4), we represent function (1.3)

in the form of the sum
u(x, t) = U0(x, t) + U1(x, t), (2.1)

where

U0(x, t) =

σ(x,t)∫

0

∫

Rm−1

. . . ds′ds1, U1(x, t) =

+∞∫

σ(x,t)

∫

Rm−1

. . . ds′ds1,

σ(x, t) =
(
|x|2 + t

)β/2
, 0 < β < 1, (2.2)

the dots denote the integrand in formula (1.3) together with the factor (4πt)−m/2, the number β
is an arbitrary parameter, and ds′ = ds2 . . . dsm. Under conditions (1.4) and (1.5), the asymptotics
of the integrals U0(x, t) and U1(x, t) can be computed by using the expansions of the kernel exponent
and the initial function Λ, respectively.

2.1. Asymptotics of U1(x, t)

In the integral U1(x, t), we make the change s1 = 2z
√
t and put

µ(x, t) =
σ(x, t)

2
√
t

, η1 =
x1

2
√
t
. (2.3)

Next, using condition (1.5), for any integer N > p + 1, we obtain (hereinafter we often omit
the arguments of σ and µ)

U1(x, t) =
1

πm/2(4t)(m−1)/2

+∞∫

µ

exp
(
−(η1 − z)2

) ∫

Rm−1

Λ(2z
√
t, s′) exp

(
−|s′ − x′|2

4t

)
ds′dz

=
tp/2√
π

N−1∑

n=0

2p−nt−n/2
n∑

j=0

+∞∫

µ

zp−n lnj(2z
√
t) exp

(
−(z − η1)

2
)
dz

× 1

(4πt)(m−1)/2

∫

Rm−1

Λn,j(s
′) exp

(
−|s′ − x′|2

4t

)
ds′ +R(x, t),

where

|R(x, t)| 6 MN√
t

+∞∫

σ

sp−N
1 lnN s1 exp

(
−(s1 − x1)

2

4t

)
ds1, MN > 0,

by formula (1.7). Then, for N > p+ 1, we have

U1(x, t) =
tp/2√
π

N−1∑

n=0

2p−nt−n/2
n∑

j=0

j∑

l=0

j! lnl t

2ll!(j − l)!

+∞∫

µ

zp−n lnj−l(2z) exp
(
−(z − η1)

2
)
dz

× 1

(4πt)(m−1)/2

∫

Rm−1

Λn,j(s
′) exp

(
−|s′ − x′|2

4t

)
ds′ +O

(
σp−N lnN σ

)
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as σ = σ(x, t) → +∞. Changing the order of summation, we find

U1(x, t) = tp/2
N−1∑

n=0

t−n/2
n∑

l=0

lnl t

n∑

j=l

j! 2p−n−l

√
π l!(j − l)!

+∞∫

µ

zp−n lnj−l(2z) exp
(
−(z − η1)

2
)
dz

× 1

(4πt)(m−1)/2

∫

Rm−1

Λn,j(s
′) exp

(
−|s′ − x′|2

4t

)
ds′ +O

(
σp−N lnN σ

)
, σ → +∞.

(2.4)

To handle the integral with respect to z, it is convenient to consider first the following set of inde-
pendent variables:

Tα =
{
(x, t) : x ∈ R

m, t > |x|α > 1, 1 + β < α < 2
}
. (2.5)

The obvious inequalities

σ(x, t) 6 (t2/α + t)β/2 < 2β/2tβ/α

for (x, t) ∈ Tα imply that

t > 2−α/2[σ(x, t)]α/β for (x, t) ∈ Tα; (2.6)

therefore, on account of the first definition (2.3), we obtain

0 < µ(x, t) < 2α/4−1[σ(x, t)]−γ for (x, t) ∈ Tα, where γ =
α

2β
− 1 > 0. (2.7)

For 0 6 n 6 p, we have

+∞∫

µ

zp−n lnj−l(2z) e−(z−η1)2dz =

+∞∫

0

zp−n lnj−l(2z) e−(z−η1)2dz −
µ∫

0

zp−n lnj−l(2z) e−(z−η1)2dz

=

+∞∫

−η1

(η1 + s)p−n lnj−l(2(η1 + s)) e−s2ds−
µ∫

0

zp−n lnj−l(2z) e−(z−η1)2dz.

Since by (2.7) µ → +0 as σ → +∞ for (x, t) ∈ Tα, it follows that

+∞∫

µ

zp−n lnj−l(2z)e−(z−η1)2dz =

p−n∑

q=0

(p − n)! ηp−n−q
1

q!(p − n− q)!

+∞∫

−η1

sq lnj−l[2(η1 + s)]e−s2 ds

+ e−η2
1

∑

s: r2s+l2s 6=0

b′sη
ns

1 µrs lnls µ+O
(
σ−γN

)
, σ → +∞,

(2.8)

where the finite sum over s with b′s being some constants and ns, rs, ls being some nonnegative
integers depends naturally on N . For n > p, we have

+∞∫

µ

zp−n lnj−l(2z) e−(z−η1)2dz =

+∞∫

1

zp−n lnj−l(2z) e−(z−η1)2dz

+

1∫

µ

lnj−l(2z)Ψn−p(z, η1)dz + e−η2
1

n−p−1∑

r=0

Pr(η1)

1∫

µ

lnj−l(2z)zr+p−ndz,
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where Pr(η1) are some polynomials of degree r,

Ψn−p(z, η1) = zp−n

[
e−(z−η1)2 − e−η2

1

n−p−1∑

r=0

Hr(η1)
zr

r!

]
, (2.9)

and the sum in the square brackets is a partial sum of the Maclaurin series for the function
exp(2zη1 − z2) in variable z with Hr(η1) being the Hermite polynomials of degree r. This implies
the equality

+∞∫

µ

zp−n lnj−l(2z) e−(z−η1)2dz

=

+∞∫

1

zp−n lnj−l(2z) e−(z−η1)2dz + e−η2
1

∑

s: r2s+l2s 6=0

b′′s η
ns

1 µrs lnls µ

+

1∫

0

lnj−l(2z)Ψn−p(z, η1)dz −
µ∫

0

lnj−l(2z)Ψn−p(z, η1)dz

(2.10)

with b′′s being some constants and ns, rs, ls being some nonnegative integers. From formula (2.9)
we easily conclude that the function Ψn−p(z, η1) has no singularities as z → 0; therefore, the last
two integrals in (2.10) converge and relation (2.10) itself thus becomes

+∞∫

µ

zp−n lnj−l(2z) e−(z−η1)2dz = Jp,n,j,l(η1) + e−η2
1

∑

s: r2s+l2s 6=0

b′′′s ηns

1 µrs lnls µ + O
(
σ−γN

)
(2.11)

as σ → +∞, where

Jp,n,j,l(η1) =

+∞∫

1

zp−n lnj−l(2z) e−(z−η1)2dz +

1∫

0

lnj−l(2z)Ψn−p(z, η1)dz, (2.12)

b′′′s are some constants, ns, rs, ls are some nonnegative integers, and γ is defined in (2.7).

Using the second condition (1.6) and Maclaurin’s expansion for the exponent in the integrand
of (2.4) in s′t−1/2, for any natural N∗ > 1, we obtain

1

(4πt)(m−1)/2

∫

Rm−1

Λn,j(s
′) exp

(
− |s′ − x′|2

4t

)
ds′

= t(1−m)/2 exp
(
−|η′|2

) [N∗−1∑

l=0

t−l/2Q
(n,j)
l (η′) +O

(
t−N∗/2|η′|N∗

)]
,

(2.13)

where Q
(n,j)
l (η′) are some lth degree polynomials in η′ = 2−1t−1/2x′ whose coefficients depend on n

and j. Substituting expressions (2.8), (2.11), and (2.13) into formula (2.4) and taking into account
that σ−(γ+α/2β)N = O(σ−N ), since γ + α/2β = α/β − 1 > 1, we find that

U1(x, t) = t(p−m+1)/2
N−1∑

n=0

t−n/2
n∑

l=0

S̃n,l(η) ln
l t+ V1,N (µ, η, t) +O

(
σp−N lnN σ

)
(2.14)
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as σ → +∞, where, according to formulas (2.9) and (2.12), the coefficients S̃n,l(η) are some smooth
functions of polynomial growth for 0 6 n 6 p and of superexponential decreasing for n > p,

V1,N (µ, η, t) = exp
(
−|η|2

) ∑

s: r2s+l2s 6=0

a′s t
ksηnsµrs lnls µ (2.15)

is a finite sum with ηns = η
n1,s

1 . . . η
nm,s
m , a′s being some real constants, ks being half-integer numbers,

and nj,s, rs, ls being some nonnegative integers. Because of the factor exp(−|η|2), the estimate
of the remainder in formula (2.14) remains true for the values of the independent variables from
the set

Xα =
{
(x, t) : |x| > 1, 0 < t < |x|α

}
, (2.16)

since for (x, t) ∈ Xα there hold the following inequalities:

µ2 =
(|x|2 + t)β

4t
< 2|η|2|x|−2(1−β), |η|2 >

1

4
|x|2−α >

1

8
σ(2−α)/β . (2.17)

2.2. Asymptotics of U0(x, t)

Now, let us pass to the evaluation of the integral

U0(x, t) =
1

(4πt)m/2

σ(x,t)∫

0

ds1

∫

Rm−1

ds′Λ(s1, s
′) exp

(
− |s− x|2

4t

)
ds.

From the obvious inequality |x|2 6 [σ(x, t)]2/β and inequality (2.6) we conclude that

|s|2
t

= O(σ−2δ),
xksk
t

=
2ηksk√

t
= O(σ−δ), δ =

α− 1

β
− 1 > 0, (2.18)

for |s| 6 σ and (x, t) ∈ Tα, where 1 6 k 6 m. Then, using conditions (1.6), (1.7) and esti-
mates (2.18), we represent the integral U0(x, t) in the following form:

U0(x, t) =
exp(−|η|2)
(4πt)m/2

[ σ∫

0

∫

Rm−1

Λ(s1, s
′)

N−1∑

q=0

1

q!

(
η1s1 + . . .+ ηmsm√

t
− |s|2

4t

)q

ds′ds1+ O
(
σp+1−δN

)]

as σ → +∞ with any N > 1. Because of the factor exp(−|η|2), the estimate of the remainder
holds also true on the set Xα defined by (2.16). Expanding the parenthesis in the above formula
for U0(x, t) and changing the order of summation, we obtain

U0(x, t) =
exp(−|η|2)

tm/2

N−1∑

n=0

t−n/2
∑

06k1+...+km6n
06l1+l2,2+...+l2,m6n

ak,l η
k

σ∫

0

∫

Rm−1

sl11 (s
′)l2Λ(s1, s

′)ds′ds1

+O
(exp(−|η|2)

tm/2
σp+1−δN

)

as σ → +∞, where ak,l = ak1,...,km,l1,l2,2,...,l2,m are some constants, ηk = ηk11 . . . ηkmm ,

and (s′)l2 = s
l2,2
2 . . . s

l2,m
m . Keeping in mind the asymptotic condition (1.7), we transform the mul-

tiple integral appeared above as follows:

σ∫

0

∫

Rm−1

sl11 (s
′)l2Λ(s1, s

′) ds′ds1 =

1∫

0

∫

Rm−1

sl11 (s
′)l2Λ(s1, s

′) ds′ds1
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+

σ∫

1

∫

Rm−1

sl11 (s
′)l2

[
Λ(s1, s

′)−
p+l1+1∑

q=0

sp−q
1

q∑

j=0

Λq,j(s
′) lnj s1

]
ds′ds1

+

σ∫

1

∫

Rm−1

[
(s′)l2

p+l1+1∑

q=0

sp−q+l1
1

q∑

j=0

Λq,j(s
′) lnj s1

]
ds′ds1

=

p+l1+1∑

j=0

cl1,l2,j lnj+1 σ +
∑

i,j: i 6=0

c∗l1,l2,i,j σ
i lnj σ +O

(
σ−N∗

lnN
∗

σ
)
, σ → +∞,

with cl1,l2,j and c∗l1,l2,i,j being some constants, where the finite sum over i, j depends naturally
on a sufficiently large N∗; here we used the elementary relation

σ∫

1

sk1 ln
j s1ds1 = σk+1

j−1∑

l=0

(−1)lj! lnj−l σ

(k + 1)l+1(j − l)!
+ (σk+1 − 1)

(−1)jj!

(k + 1)j+1
(k > 0, j > 1).

From formulas (2.3), inequality (2.6), the uniform estimate

t−m/2ηn exp
(
−|η|2

)
= O

(
σ−αm/2β

)
,

and the previous asymptotic expression for U0(x, t), it follows that

U0(x, t) =
exp

(
−|η|2

)

tm/2

N−1∑

n=0

t−n/2
p+n+2∑

j=0

Πn,j(η) ln
j t+ V0,N (µ, η, t) +O

(
σp+1−δN

)
(2.19)

as σ → +∞, where δ is defined in (2.18), Πn,j(η) are some polynomials of degree n, and the finite
sum

V0,N (µ, η, t) = exp
(
−|η|2

) ∑

s: r2s+l2s 6=0

a′′s t
ksηnsµrs lnls µ, (2.20)

with a′′s being some constants, is obtained similarly to expression (2.15).

2.3. Evaluation of the “virtual terms”

In the sequel, it is convenient to suppose that 1 + β < α < 1 + 2β, whence we find the in-
equalities 0 < δ = (α− 1)/β − 1 < 1 and the asymptotic estimate σp−N lnN σ = O

(
σp+1−δN

)

as σ → +∞. Then substituting expansions (2.14) and (2.19) into formula (2.1), we summarize
the results of the previous two subsections as follows.

Lemma 1. For the solution of the Cauchy problem (1.1)–(1.2), the asymptotic formula

u(x, t) = t−m/2
N−1∑

n=0

t−n/2

[ n∑

l=0

t(p+1)/2S̃n,l(η) ln
l t+

p+n+2∑

j=0

Πn,j(η) exp
(
−|η|2

)
lnj t

]

+V0,N (µ, η, t) + V1,N (µ, η, t) +O
(
σp+1−δN

)
(2.21)

holds true as σ → +∞, where N > p + 1, S̃n,j(η) are smooth functions of polynomial growth,
Πn,j(η) are nth degree polynomials, and the functions V0,N (µ, η, t) and V1,N (µ, η, t) are defined by
expressions (2.15) and (2.20).
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Now we must evaluate the “virtual terms” that depend on the value
µ(x, t) = 2−1t−1/2(|x|2 + t)β/2 with the arbitrary parameter β.

From inequalities (2.17), we conclude that, for (x, t) ∈ Xα, any integer numbers ns,j, rs, ls, and
half-integer number ks, there exist C > 0 and q > 0 such that

∣∣tksηns,j

j µrs lnls µ
∣∣ exp

(
−|η|2

)
6 Cσq exp

(
− 8−1σ(2−α)/β

)
.

Consequently, the expressions V0,N (µ, η, t) and V1,N (µ, η, t) in formulas (2.14) and (2.19) are expo-
nentially small for (x, t) ∈ Xα, since α < 2 by (2.5).

For (x, t) ∈ Tα, we introduce a small quantity ε = (|x|2 + t)−1/4; whence, according to (2.2) and
(2.3), we easily get the relations

σ = ε−2β , µ = 2−1t−1/2ε−2β . (2.22)

Then, by formulas (2.15), (2.20), and (2.22), we have

V0,N (µ, η, t) + V1,N (µ, η, t) = exp
(
−|η|2

) L(N)∑

s=1

a′′′s tks lnk
′

s t ηnsε−2βrs lnls ε2β, (2.23)

where ε → +0 as |x|2 + t → +∞, L(N) ∈ N, a′′′s are some constants, ηns = η
ns,1

1 . . . η
ns,m
m , ks

are half-integer numbers, k′s, ns,j, rs, ls, are nonnegative integers such that r2s + l2s 6= 0, and β is
an arbitrary parameter, without loss of generality, such that 0 < β1 6 β 6 β2 < 1, where β1 < β2.

By virtue of the arbitrariness of the value β, from formulas (2.21) and (2.23) with β = β1
and β = β2 such that all numbers 2β1r1, . . . , 2β1rL(N), 2β2r1, . . . , 2β2rL(N) are pairwise distinct,
we obtain the following asymptotic relation with r2s + l2s 6= 0:

exp
(
−|η|2

) L(N)∑

s=1

a′′′s tks lnk
′

s t ηns

(
ε−2β1rs lnls ε2β1 − ε−2β2rs lnls ε2β2

)
= O

(
ε2(α−1−β1)N−2β1(p+1)

)

as ε → +0. Consequently, taking into account the finiteness of the sum in the left-hand side,
we have to conclude about every particular term in the left-hand side that either its order is not
greater than the estimate in the right-hand side or the corresponding coefficient a′′′s is equal to zero.
Thus, we arrive at the following statement with β = β1.

Lemma 2. For some β ∈ (0, 1) and α ∈ (1 + β, 1 + 2β), the asymptotic estimate

V0,N (µ, η, t) + V1,N (µ, η, t) = O
(
(|x|2 + t)−(α−1−β)N/2+β(p+1)/2

)
(2.24)

holds true as |x|2 + t → +∞.

3. Asymptotics of the solution

Immediately from Lemmas 1 and 2, we obtain our main result.

Theorem 1. Let u : Rm × R
+ → R be the solution of the Cauchy problem

∂u

∂t
=

∂2u

∂x21
+ . . .+

∂2u

∂x2m
, t > 0, m > 2,

u(x1, . . . , xm, 0) = Λ(x1, . . . , xm), (x1, . . . , xm) ∈ R
m,
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with a locally Lebesgue integrable initial function Λ : Rm → R. And let the following conditions
be fulfilled :

Λ(x1, . . . , xm) = 0 for x1 < 0,

Λ(x1, . . . , xm) = xp1

∞∑

n=0

x−n
1

n∑

j=0

Λn,j(x2, . . . , xm) lnj x1 as x1 → +∞,

where p is a positive integer,

suppΛ ⊂
{
(x1, . . . , xm) : x1 > 0, |x2|+ . . .+ |xm| < xν1

}
, ν > 0,

suppΛn,j ⊂
{
(x2, . . . , xm) : |x2|+ . . .+ |xm| < rn

}
, rn > 0.

Then there holds the asymptotic formula

u(x1, . . . , xm, t)=t−m/2
∞∑

n=0

t−n/2
p+n+2∑

j=0

lnj t
[
t(p+1)/2Sn,j(η1, . . . , ηm)+Πn,j(η1, . . . , ηm) exp

(
−|η|2

) ]

as |x1| + . . . + |xm| + t → +∞, where Sn,j(η1, . . . , ηm) are smooth functions of polynomial growth
and Πn,j(η1, . . . , ηm) are nth degree polynomials in the self-similar variables

η1 =
x1

2
√
t
, . . . , ηm =

xm

2
√
t
.

4. Conclusion

According to formulas (2.14), (2.19), and (2.24), the obtained expansion of the solution in
Theorem 1 is understood in the sense of Erdélyi [3, Definition 2.4] with the gauge (asymptotic)
sequence

{
(|x|2 + t)−ρN

}∞

N=1
, where ρ > 0, that is

u(x, t) =

N−1∑

n=0

t−(m+n)/2
p+n+2∑

j=0

lnj t

[
t(p+1)/2Sn,j

( x

2
√
t

)
+Πn,j

( x

2
√
t

)
exp

(
− |x|2

4t

)]

+O
(
(|x|2 + t)−ρN

)

for each N > p + 1 as |x|2 + t → +∞. In general, the exact formulas for Sn,j(η) and Πn,j(η) are
fairly cumbersome; however, by using the above proofs, one can derive them in particular cases.
Note that, as shown by earlier investigations, asymptotic expansions in half-integer powers of t are
naturally intrinsic to solutions of the heat equation, see, for example, [19, Ch.X, §1] and [20].

In conclusion, following Poincaré’s thesis “sans généralisation, la prévision est impossible”4 (see
his “La Science et l’Hypothèse”, Ch. IX), it is appropriate to say that the immense variety of asymp-
totics of initial data together with the account of possible external sources of heat opens a wide
field of further investigation of the long-time behavior of heat distribution by the above-presented
method; in addition, other types of equations whose solutions have the form of convolutions can
also be treated in a similar way.
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18. Tychonoff A. Théorèmes d’unicité pour l’équation de la chaleur. Math. Sb., 1935. Vol. 42, No. 2. P. 199–
216. (in French)

19. Widder D.V. The Heat Equation. New York: Academic Press, 1976. 267 p.

20. Zakharov S.V. Heat distribution in an infinite rod. Math. Notes, 2006. Vol. 80, No. 3. P. 366–371.
DOI: 10.1007/s11006-006-0148-x

21. Zakharov S.V. Two-parameter asymptotics in the Cauchy problem for a quasi-linear parabolic equation.
Asympt. Anal., 2009. Vol. 63, No. 1–2. P. 49–54. DOI: 10.3233/ASY-2008-0927

https://doi.org/10.1070/RM2005v060n04ABEH003675
https://doi.org/10.1007/BF00250704
https://doi.org/10.1007/BF02545812
https://doi.org/10.1029/1998RG900006
https://doi.org/10.1007/978-1-4612-0393-3_18
https://doi.org/10.1006/jdeq.1993.1006
https://doi.org/10.1016/j.crma.2014.10.024
https://doi.org/10.1142/3302
https://doi.org/10.1007/BF02417092
https://doi.org/10.1016/0022-0396(72)90032-0
https://doi.org/10.1007/s11006-006-0148-x
https://doi.org/10.3233/ASY-2008-0927

	Introduction
	Applying the auxiliary parameter method
	Asymptotics of U1(x,t)
	Asymptotics of U0(x,t)
	Evaluation of the ``virtual terms''

	Asymptotics of the solution
	Conclusion

