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ABSTRACT 

A LOOK AT LAND COVER CLASSIFICATION METHODS IN NORTHERN 
CALIFORNIA WITH THE USE OF HIGH SPATIAL RESOLUTION GEOSPATIAL 

DATA 
 

Lucila Corro 

 

Land use and land cover (LULC) mapping plays a vital role in understanding the 

state of the world, showing us a visual representation of the natural and anthropogenic 

features covering our planet. Northern California in the United States is home to many 

critical habitats that provide for a variety of endemic and some threatened and 

engendered species, making it an area of particular concern to better understand and 

monitor. There is a greater need to identify specific methods for vegetation modeling in 

Northern California due to its unique species; to do this we examined two case studies 

with the following objectives: 1) Determine whether unmanned aerial system (UAS) 

image analysis can provide similar estimates of eelgrass biometrics, such as percent 

coverage, to those obtained in situ using traditional field survey methods; 2) To develop a 

GIS data fusion workflow for high-resolution habitat classification in the Napa 

Watershed of central California with a focus on oak savanna habitat. UAS Imagery for 

two eelgrass sites were collected during June, 2019 using a DJI Matrice 100 equipped 

with MicaSense RedEdge Multispectral sensor (5-band). Following UAS image 

collection, ground survey data were collected at three tidal elevation transects per site, 
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with 20 quadrats stationed randomly along each transect. Eelgrass percent coverage was 

measured for each quadrat and then compared to eelgrass classification models derived 

from UAS derived imagery. In the Napa watershed, we examined methods necessary to 

accurately incorporate ancillary geospatial spatial datasets into a remote sensing land 

cover classification. By doing so, I developed a habitat distribution dataset that may 

better analyze interactions of wildlife, humans, and the endemic habitat types of the Napa 

watershed in California. UAVs provided a means to obtain high resolution remote 

sensing imagery of eelgrass at a resolution of 3.46 – 3.70 cm per pixel or greater at 

specific tidal periods, providing a useful methodology that allowed for percent coverage 

estimates with an R2 value of 0.6496 compared to in situ measurements. While 

developing a land cover classification workflow for the Napa watershed, I found that by 

incorporating ancillary geospatial data, remotely sensed data, and threshold classification, 

I could obtain a LULC model that more accurately depicts the endemic land use and land 

cover features of the Napa watershed. With an overall accuracy of 70.20% and a kappa 

statistic of 0.6140, this modeling method proved more accurate than traditional image 

classification methods. With ground sampled reference data and remotely sensed data 

gathered at the same temporal and spatial scales these classification methods would be 

robust and replicable for future analyses.  
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INTRODUCTION 

Land use and land cover (LULC) classification is a method of remote sensing that 

separates land cover and land use based on the surface reflectance of the earth or other 

geospatial data. Land cover describes what physical material covers the earth or what is 

seen on land from above. Land use differs from land cover in that it focuses on how the 

land is being utilized. LULC plays a vital role in understanding the state of the world, 

showing us a visual representation of the natural and anthropogenic features covering our 

planet (Tesfaw et al., 2018). Land cover models have been developed for many years to 

classify landscapes into descriptive informational groups based on the land cover 

characteristics seen on land from above (Lillesand et al., 2008). Land cover maps can 

also be used to describe the different land uses, land cover patterns and habitat types. 

These types of maps are also used to assess land cover changes (Green et al., 1994). Land 

cover maps that are classified based on habitat needs have been used by biologist to 

better understand patterns of wildlife distributions (Shi et al., 2006), reproduction (Brown 

et al., 2017), and behavior (Hargrove et al., 2005). 

Remote sensing is a scientific method that aims to gather information about a 

subject without encountering that object and has been a vital resource to land managers 

for many years (Lillesand, Kiefer, & Chipman, 2008). With the use of remote sensing 

data, researchers can observe trends across the landscape more efficiently (Hardin, 1999). 

Spatial modeling is often used in remote sensing to classify features or objects of interest 

from imagery (Lillesand et al., 2008). The use of spatial modeling as a tool in natural 
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resource management has proliferated in recent years as computing power has become 

more affordable and therefore more accessible to researchers and land managers 

(Digruttolo & Mohamed, 2010). Now, remote sensing data collection is becoming even 

more accessible with the advent of Unmanned Aerial Vehicles (UAVs). 

To better understand the natural ecosystems around us, it is important to have 

representative data of natural phenomenon (John R Jensen, 2007; Plummer, 2000). 

Gathering these data is often a costly and time-consuming process that requires large on 

the ground campaigns to gather accurate and standardized data (Buiten & Clevers, 1993). 

However, with the advancement of aero-nautical science and imaging sensor technology, 

aerial images of the Earth are readily available and have emerged as a more cost-effective 

mapping tool (Lillesand et al., 2008). Remote sensing data, such as aerial imagery, is 

collected without encountering the object of interest. This means that remote sensing data 

is often less invasive, less costly and more accurate (Congalton & Green, 1999). Using 

remotely sensed data, such as aerial imagery, scientists have gained a unique perspective 

to landscape patterns and characteristics allowing for a greater understanding of the 

natural world around us (Suribabu et al., 2012). 

While land cover maps are some of the most widely available data, they are 

limited in information to discrete nominal classes (Hollister et al., 2004). These data are 

also often coarse in resolution (30 m or greater) and consist of generalized classifications 

not specific to regional habitat types (J. Robinson et al., 1994). It is also true that with 

coarser resolutions of 30 meters per pixel or greater, most of these land cover data are 

also contain more inherit uncertainty (Cracknell, 1998). These land cover data are often 
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classified into broad land cover classes that may not address the finer spatial scale of 

research needs (Hollister et al., 2004).  

Though it is clear there is a need to map land use and land cover, it can often be 

difficult to identify the best methods for the desired final product (Moody & Woodcock, 

1995). Most LULC mapping is done using remotely sensed imagery, by separating land 

cover classes based on surface reflectance. Aerial mapping methods began as early as the 

1860s with maps drawn using some of the first aerial images (Graham & Read, 1986). 

While this emerged as a useful tool, it wasn’t until the 1990s when satellite imagery 

became a more available and accurate resource for LULC mapping (Wulder et al., 2012). 

With higher temporal, spectral, and spatial resolution in remotely sensed imagery, remote 

sensing experts developed more complex, detailed and often more accurate land cover 

maps. 

Higher spatial resolution imagery has proven useful in land cover classifications 

as it allows for more detailed mapping and more fine-scale delineation of features (West, 

2007). Higher resolution imagery with relatively low spectral resolution has been used to 

classify urban, water, and vegetation land cover features (Perumal & Bhaskaran, 2010). 

Imagery with high spatial resolution (0.1-1.0m) can be very useful in delineating features 

that exhibit a fine-scale pattern on the landscape. For instance, urban land cover can be 

difficult to identify with moderate resolution (10.0m-30.0m) imagery (Hu et al., 2016). 

Using images with high spatial resolution can improve the final resolution of land cover 

mapping and can improve accuracy. While high spatial resolution imagery, such as NAIP 

(USDA National Agriculture Imagery Program), can be used to delineate three feature 
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classes (urban, water, and vegetation), with limited spectral information, it is difficult to 

further classify different types of vegetation (Srivastava et al., 2012). 

For instance, it is often necessary to include supplementary data either collected 

on the ground with geographic positioning systems or using remote sensing (Vogelmann 

et al., 1998). For example, lidar height data can be used to supplement a spectrally-

limited remote sensing image classification (Pham et al., 2016). The addition of lidar 

height data can help to further distinguish different types of vegetation. In addition to 

lidar data, the Napa County GIS Department developed a ground-validated spatial dataset 

that accurately mapped agricultural land cover at a high resolution (Matt Lamborn, 2010). 

Using both lidar height data and vector based agricultural coverage and high-resolution 

hydrography data, it is possible that a more detailed and comprehensive model can be 

produced with higher accuracy for the Napa Valley. 

Northern California is characterized by a Mediterranean climate, with more mild 

temperatures and relatively more rainfall than Southern California (Elford, 1963). With 

this productive climate and diverse landscape it’s no wonder this area of California is also 

considered a hotspot for threatened and endangered species (Flather et al., 1998). Like 

many natural phenomena, there is a large degree of heterogeneity in spatial patterns of 

habitat characteristics and these characteristics are often overlooked in coarse satellite-

based classification methods (Morgan et al., 2010). In addition to this natural complexity, 

Northern California is known for difficult atmospheric conditions, including, haze, fog, 

and clouds (Augyte & Simona, 2011; Schlosser & Eicher, 2012). All of these factors 

make it difficult to accurately map habitats in Northern California from above. Here we 
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will discuss two indicative habitats of Northern California that present particularly 

complex mapping challenges, these are; intertidal submerged aquatic vegetation (SAV) in 

Humboldt Bay and oak dominant savanna habitat in the Napa Valley Watershed.  

Eelgrass (Zostera marina) is a seagrass found in Northeast Pacific and North 

Atlantic estuaries where it occurs in low intertidal and shallow subtidal zones (Carter-

Griffin et al., 2010; Waycott et al., 2009). Humboldt Bay in Northern California is home 

to a species of eelgrass, Zostera marina. Seagrasses like eelgrass are some of the most 

productive primary producers on the planet (Duarte & Chiscano, 1999) and play a vital 

role in providing habitat to diverse species (Carter-Griffin et al., 2010; Gilkerson, 2008). 

Eelgrass communities also contribute to complex detrital and grazer food webs (Phillips 

& Watson, 1984). All of the ecosystem services provided by eelgrass are susceptible to a 

wide range of disturbances that are responsible for direct habitat loss, due both to 

anthropogenic and natural processes (Waycott et al., 2009). Furthermore, as climate 

change and anthropogenic disturbances begin to change the dynamics of coastal estuaries, 

it is essential to examine how those changes may impact the services provided by 

eelgrass ecosystems (Shaughnessy et al., 2012; Waycott et al., 2009). 

Quantitative monitoring of eelgrass and other seagrass systems is necessary for 

knowing how these ecosystems are changing through time. A series of in situ sampling 

methods have been employed; including scuba diving (Whippo et al., 2018), active 

sensing with side-scan sonar (Xu et al., 2020), and transect and quadrat sampling. While 

ground sampling of intertidal eelgrass habitat is detailed and reliable, it is also a 

potentially destructive, invasive, expensive, exhausting, and the spatial extent of a habitat 
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that actually get sampled is often low (Merkel & Consultant, 2017). This situation has 

motivated scientists to identify the most cost-effective methods for seagrass surveys, 

eventually leading to the development of standard operating protocols for ground 

sampled coverage estimates (Dean & Bodkin, 2016; Radloff et al., 2013), benthic habitat 

mapping, and even aerial image analysis (Clinton et al., 2007). More recent efforts have 

been made to track eelgrass coverage using remotely sensed satellite imagery and image 

classification analysis techniques rather than intensive on the ground efforts (O’Neill & 

Costa, 2013). 

While there have been many efforts to identify eelgrass with remote sensing 

methods, researchers still face several obstacles. One limitation is the temporal frequency 

of image capture which is either dependent on satellite configuration or pre-planned flight 

schedules (Al-Wassai & Kalyankar, 2013). To survey intertidal phenomenon, it is 

important to capture data during low tide cycles that also align with good lighting 

conditions (Nesbit, 2018). With an uncontrollable data capture time in most remote 

sensing platforms, it is often difficult to obtain data captured at low tides that also possess 

optimal light conditions to yield sufficient image quality (Digruttolo & Mohamed, 2010). 

For this reason, remote sensing data, although , is quite limited for intertidal areas 

(Klemas, 2016). Remote sensing data of eelgrass is also known to underestimate areas of 

subtidal eelgrass as well as sparse eelgrass (Meehan et al., 2005). Furthermore, with the 

coastal influence and climatic conditions of Humboldt Bay, the frequently foggy or hazy 

days reduce the ability to capture intertidal remote sensing imagery (Judd et al., 2007). 

Water conditions such as turbidity, the extent of eutrophication, and wind wave action 
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can make it difficult to obtain clear remotely sensed images of eelgrass in temperate 

estuaries because of light attenuation and spectrally confusing surface reflectance 

(Reshitnyk et al., 2014). 

The second study area for my thesis is the Napa watershed of Northern California, 

which is located north of San Francisco Bay and marks the northern portion of the 

Central Valley. There are unique habitat types that possess particular characteristics of 

ecological interest within the Napa watershed area. One example is the expansive oak 

dominant savanna, characterized by a combination of grassland and sparse or clustered 

oak tree canopy cover (~10-70%) (Grossinger et al., 2008; Law et al., 1994). A variety of 

endemic wildlife depend on the unique habitat provided by oak woodland and savanna, 

including hundreds of vertebrate species, thousands of invertebrate species, and almost 

1500 flowering plants (Grossinger et al., 2008). In addition to hosting several important 

native wildlife species, the Napa Valley falls within the Pacific Flyway, attracting large 

populations of migratory birds (Grossinger et al., 2008). These habitats are an important 

ecological indicator of ecosystem function and biodiversity (Mahall et al., 2005). This 

area of California is also well known for its expansive vineyard agriculture. With an 

estimated 45,000 acres of vineyards in Napa Valley, it is expected many wildlife depend 

on these agriculturally modified areas for critical habitat (Wendt, 2016). These distinct 

habitat types, like oak dominant savanna, are not distinguished from other forested land 

cover types in most available LULC models for the Napa Valley, such as the National 

Land Cover Dataset. In addition to oak dominant savanna and vineyard agriculture, other 
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habitat types of ecological interest are often overlooked in most available LULC models, 

including riparian habitat and other specific agricultural types.  

Previous efforts have been made to monitor oak savanna characteristics such as 

canopy cover, tree species composition, distribution, mortality and basal area (Colgan et 

al., 2012). Most of these efforts have involved on the ground sampling campaigns, 

though some of these ground data have also been incorporated in spatial models to 

identify more detailed ecosystem function such as soil dynamics (D. A. Robinson et al., 

2010). While most of these efforts focus on oak savanna habitat, they often rely on 

ground sampled data (Karlik & Chojnacky, 2014) or spectrally calibrated in situ data 

(Colgan et al., 2012). That is why efforts have focused on satellite based modeling 

methods for oak savanna classification (Wolter et al., 2014), allowing researchers to map 

larger areal extents at different temporal intervals. Satellite mapping methods have been 

successfully developed to map oak savanna habitat (Wolter et al., 2014); however, these 

efforts focused on pristine oak savanna habitat, where  model confusion with other 

similar vegetation and vegetation structure was not a problem. In addition to this 

oversight, these models are often coarse in resolution (30m or greater). Research has 

begun to focus on savanna classification in the face of new high spatial resolution data, 

employing new classification modeling methods such as machine learning and object 

based image classification (Whiteside et al., 2011). Object-based image analysis is an 

image classification method that works to incorporate contextual spectral and spatial 

information in the classification process (Blaschke, 2010). While object-based 
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classification, methods have shown the most promise in oak savanna mapping, these 

methods often require costly software and specialized software knowledge. 

My thesis objectives are to present two case studies from Northern California that 

examine the use of land cover modeling in two challenging ecological scenarios. For the 

remote monitoring of intertidal eelgrass abundance in Humboldt Bay, CA, we compared 

a measure of eelgrass abundance derived from UAS multispectral imagery and image 

classification to measures of abundance from ground sampling at two eelgrass study sites.  

In order to address the second objective – the production of a more targeted land cover 

model in the Napa Valley watershed of California - we developed a GIS data fusion 

workflow that combined remotely sensed imagery with ancillary geospatial data. 
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MATERIALS AND METHODS 

Humboldt Bay Modeling Methods 

Study Area 

Humboldt Bay is located in Northern California (40.75471°N; -124.21509°E) and 

is one of the largest marine estuary systems in the state, with a total area of 28.0 km2 at 

mean lower low water (MLLW). It is comprised of three main sections, the shallow and 

relatively large South Bay, the deeper and larger Arcata Bay, and finally, near where the 

two Bays meet is a narrow and deep entrance channel, leading to the Pacific Ocean. 

Unmanned Aerial Vehicle (UAV) imagery was collected for two ~ 6 ha study areas of 

South Humboldt Bay (Figure 1). South Humboldt Bay is characterized by fairly uniform 

depth throughout and shallow waters. Eelgrass is known to occur in large distributions 

within South Bay, exhibiting some of the most pristine eelgrass populations along the 

West Coast (Schlosser & Eicher, 2012) . These two study areas are characterized by two 

unique management regulations, where one site is located within a Marine Protected Area 

(MPA), while the other does not fall within an MPA. The two sites selected are also 

known to exhibit diverse growth characteristics representative of different eelgrass 

conditions in Humboldt Bay, where the MPA site overall exhibits shallower and less 

dense eelgrass growth and the SBW site overall exhibits deeper and denser eelgrass 

growth. This provides representative data along the natural ecological gradient of eelgrass 

growth.  
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UAV Data Collection and Processing 

UAV data was collected using a DJI Matrice 100 equipped with a MicaSense 

RedEdge sensor. The DJI Matrice quad-copter drone with a customizable platform allows 

for the integration of multispectral image sensors and precise GPS data. MicaSense 

RedEdge sensor images were captured in raw, TIF format, with five spectral bands 

ranging from 475 nm to 840 nm and a bandwidth of 20 nm. Images of the MicaSense 

Figure 1. A) Maps showing the two study area locations within South Humboldt Bay, 

California with insets. B) Marine Protected Area study site showing the three tidal 

ground sampling transects. C) South Bay West study site showing the three tidal 

ground sampling transects. 
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Reflectance Calibration Panel were collected prior and post each UAS flight. UAS image 

data was collected at a flying altitude of 50 m, resulting in an image resolution of 

approximately 3.88 cm per pixel. UAS flights began at the MPA site at 08:22 am on June 

19, 2019 and ended at 10:06 am PST, while the UAS flights began at the SBW site at 

08:21 am and ended at 10:03 am PST. UAS flight conditions at the MPA site on June 19, 

2019, consisted of little to no wind, light overcast skies, and stable conditions with a low 

tide of -1.21 ft MLLW, estimated at 08:05 am PST (NOAA, 2019). UAS flight conditions 

at the SBW site on June 20, 2019 differed from those at the MPA site, where hazy skies 

turned to clear and sunny skies with greater wind gusts, creating more inconsistent 

conditions with a low tide of -0.95 ft MLLW, estimated at 08:43 am PST (NOAA, 2019). 

The images obtained from the UAS flight were processed using AgiSoft Photoscan 

Professional (version 12.5) to create and georectify an orthomosaic raster image. UAS 

images were calibrated for reflectance using calibration reflectance images, sunshine 

sensor data, and down-welling light senor data. Images were georeferenced, a method 

used to tie an image to a geodetic network, using ground tie points obtained with a Reach 

RS+ Emlid Global Navigation Satellite System (GNSS). Reach RS+ Emlid systems 

collect GPS data using real-time kinematic positioning to obtain highly precise data. Five, 

18-inch ground control point (GCP) targets were distributed along the shore near the 

eelgrass meadow study sites. The GPS location of the center point of each target was 

recorded using the GNSS system. 
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Field Data Collection 

In situ data were collected for both sites during the summer of 2019. Three 

permanent 100 m sampling transects were established at the low, middle and high 

portions of the eelgrass beds in each site (Figure 1). PVC poles were inserted at the ends 

of the transects (0.0 m and 100 m) with poles at 20 m increments, where all PVC pole 

points were recorded using a Garmin Montana Series GPS, with accuracies within 3.65 

meters. Along each 100 m transect, 20 sampling quadrats were distributed along each 

tidal transect at random. Each quadrat was photographed using a waterproof Fujifilm 

camera (mo. FinePix XP70) on a constructed square white PVC photograph frame of 

either 0.5 m2, 0.25 m2, 0.0625 m2, depending on the density of eelgrass shoots. To sample 

eelgrass metrics, 30 random points were placed within the photo quadrat. Percent cover 

of eelgrass and green algae (Rhizoclonium) were then determined using a point intercept 

method, by finding the proportion of the 30 sampled points that were visually directly 

above eelgrass shoots and green algae. These data were collected under the Humboldt 

Ocean Carbon Observatory & Eelgrass Monitoring Baseline project and funded by the 

California Ocean Protection Council in 2017. Project investigators included Humboldt 

State University Professors Dr. Jeffery Abell, Dr. Frank Shaughnessy, Dr. Joe Tyburczy, 

University of California Davis Professor Dr. Tessa Hill, Wiyot Tribe personnel, and 

California Department of Fish and Wildlife personnel. 

Feature Selection 

To classify eelgrass presence and percent cover using high resolution 

multispectral UAS imagery, I tested the utility of two different classification methods; 
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supervised classification and unsupervised classification. However, prior to classification, 

a series of vegetation indices, band ratios, and textural component raster mosaics were 

developed to improve model predictions. Studies have shown simple vegetation indices 

such as the Normalized Difference Vegetation Index (NDVI) (Rouse et al., 1973) could 

be applied to aquatic vegetation classification when vegetation was emergent from the 

water surface (Darvishzadeh et al., 2006). However, submerged aquatic vegetation such 

as eelgrass may be better evaluated using a water adjusted vegetation index such as the 

Normalized Difference Aquatic Vegetation Index (NDAVI) (Casado, 2019). With the 

implementation of vegetation index raster data, we were able to more accurately model 

eelgrass in intertidal areas. 

In addition to vegetation index information, other efforts have shown textural 

components to be valuable in the discernment of eelgrass from other intertidal 

phenomenon (Duffy et al., 2018). Textural statistic matrices are derived using grey scale 

images and moving window calculations to create co-occurrence matrices (Gebejes & 

Huertas, 2013). Using this matrix, a series of statistics such as mean, variance, entropy, 

etc., can be calculated to create a raster with data regarding the cell neighborhood 

characteristics (Zvoleff, 2019). These types of statistics have been used to identify unique 

features in a landscape and help to better discern patterns of pixels rather than pixel 

values (Marceau et al., 1990). With the use of additional textural information variables, 

we were able to predict eelgrass coverage and distribution. 

Feature selection is a method of statistical analysis that helps to reduce 

collinearity in model covariates (Dash & Liu, 1997). Collinearity exists when two 
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covariates overlap highly in a feature space, providing redundant information for model 

training (Dormann et al., 2013). Collinearity can introduce unnecessary complexity and 

reduce the model’s predictive power (Dormann et al., 2013). One method of feature 

selection uses learning vector quantization.  

Supervised Classification with Support Vector Machines 

Supervised classification is a type of classification that requires the input of user 

defined training data (Lillesand et al., 2008). Training data is a sample of pixel values 

representing each desired feature class, creating a spectral signature for each feature class 

(Srivastava et al., 2012). Using this sample, supervised classification models can predict 

the distribution of feature classes throughout an image based on pixel values (Lillesand et 

al., 2008). Supervised classification in this study was implemented with Support Vector 

Machine (SVM) classifiers.  

Support vector machines are a popular classification algorithm in image analysis 

and mining, where a set of non-linear decision boundaries are drawn in n-dimensional 

variable space (Hsu et al., 2003). These linear decisions are made using a series of 

training support vectors that together define a hyperplane separating the feature classes 

(Hsu et al., 2003). SVM algorithms were first developed in 1963 by Vladimir Vapnik 

(Vapnik & Lerner, 1963), and were later adapted to define a non-linear classification 

method (Cortes & Vapnik, 1995). SVMs are now one of the most successful modeling 

methods and have been applied to classification and regression problems (Ebrahimi et al., 

2017). These models are best suited for binary classification (Harrington, 2015).  SVMs 

have also become a preferred remote sensing classification method (Zhang et al., 2013) 
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and are often used to classify high resolution imagery (Anthony et al., 2009). This type of 

classification is robust to small sample sizes and does not make any assumptions of the 

data, allowing for flexibility in its application (Clemmensen et al., 2011). These 

classifiers are often criticized for overfitting (Han & Jiang, 2014). To combat this 

concern, model parameters can be adjusted to avoid overfitting (Cawley et al., 2007). 

This type of learning algorithm is often controlled with two parameters, sigma and cost 

(Jed Wing et al., 2019). To classify eelgrass coverage and density, SVM models were 

developed using the classifying features derived from feature selection. 

Unsupervised Classification 

Unlike supervised classification, unsupervised classification is a method of 

classification that does not require training data (J R Jensen, 1996). Unsupervised 

classification creates spectral classes by grouping pixels based on their spectral 

similarities; whereas, supervised classification uses reference data to group pixels into 

informational classes (Long & Srihann, 2004). Unsupervised classification can provide a 

more objective classification of eelgrass, because user bias from training data is removed 

(J R Jensen, 1996). This pixel-based method of classification uses a series of algorithms 

to differentiate spectral classes based on the natural clustering of image reflectance values 

and sometimes image textural components (Villanueva-Rivera et al., 2011). Using this 

objective method of classification, eelgrass percent cover classifications may be more 

robust. The unsupervised classification algorithm K-means was used within the 

RSToolbox package in R (Leutner et al., 2017). This algorithm was similarly used to 

classify eelgrass presence and coverage the United Kingdom (Duffy et al., 2018). 
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Accuracy and Uncertainty 

Classified images were assessed in the statistical software R, using the ‘caret’ 

package (Jed Wing et al., 2019). To assess the eelgrass classification, accuracy, 

specificity, sensitivity, and the kappa coefficient of agreement can be derived from an 

error matrix. An error matrix is an array of columns and rows used to compare the 

number of samples of each feature class in the reference data relative to the classification 

model (Congalton & Green, 1999). To create an error matrix, samples of the image 

classification are taken repeatedly over 100 iterations to incorporate chance. Overall 

accuracy is an estimate based on the percent of correctly classified data (Remesan & 

Mathew, 2014). Sensitivity is defined as the ability to classify presence correctly, while 

specificity is defined as the ability to classify absence correctly (Parikh et al., 2008). 

Cohen’s Kappa coefficient of agreement is considered to be a more conservative or more 

pessimistic accuracy assessment (Kottner, 2009), where the models overall agreement is 

assessed with the addition of this agreement occurring by chance (Verostek, 2014).  

Virtual quadrats were created in a GIS for prediction assessment. Each transect 

start and end point locations were defined, then a transect was drawn between these end 

points. Finally, a set of quadrats were delineated along each transect to represent ground 

sampled quadrats, this yielded 𝑛 = 56 virtual quadrats at SBW, and 𝑛 = 54 virtual 

quadrats at MPA. Predicted eelgrass percent coverage was evaluated against ground 

reference data using linear regression (Verostek, 2014). Using linear regression, the 

degree of similarity between the predicted percent coverage and the reference percent 

coverage data can be quantified with statistics like R2 and the root mean squared 
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deviation (RMSD) (Piñeiro et al., 2008). R2 measures goodness of fit in linear regression, 

demonstrating the proportion of variance in the observed values explained by the 

variance in the predicted values (Verostek, 2014). The RMSD can be used to quantify the 

mean deviation between the predicted values and the observed values (Piñeiro et al., 

2008). If the linear regression yields a significant relationship, the model prediction of 

eelgrass percent coverage will be considered a good fit.  

Napa Valley Modeling Methods 

Study Site 

The study area encompasses the greater Napa watershed of Northern California. 

The Napa watershed is located just northeast of San Francisco Bay. The Napa watershed 

covers an estimated 1,451 km2. This area of California is characterized by a dry 

Mediterranean climate, influenced by the nearby ocean and mountain ranges. The study 

area is comprised of a diverse geographic landscape, with dominant land cover uses 

comprising forests, vineyard agriculture and urban development. In addition to the man-

made land cover types in this area, there is also a set of unique natural and endemic land 

cover types such as oak dominant savanna, lush grasslands, and riparian forests. The 

study area was defined by the areal extent of available spatial data, see Figure 2.  
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Figure 2. Map shows the collection area footprint for the lidar data collected by NCALM 

in 2003. The area is shown over the Napa Valley watershed, with an inset visualizing 

Napa County relative to the state of California. 

LULC and Habitat Cover Types 

The set of feature classifications for this study (water, vineyard agriculture, forest, 

grassland, oak dominant savanna, riparian and other) are unique to the Napa Valley area 

of California and require specific definitions for successful mapping efforts. Water land 

cover is defined as an area where water is the primary and persistent land cover type. The 
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first vegetation feature class to be defined is oak dominant savanna. According to the San 

Francisco Estuary Institute, oak savanna woodlands are known to exhibit a tree canopy 

cover of about 10 to 60% (Grossinger et al., 2008). While other studies suggest oak 

savanna can exhibit tree canopy cover of 10-70%, and that it is more typically between 

25% and 75% cover (Minnesota, 2010). For this study we classified oak savanna using 

the widest range of tree canopy cover reported (10-75% tree canopy cover). This oak 

savanna definition also suggests that oak dominant savanna exists where both grassland 

and sparse tree canopy cover are present. Using this definition, we can then define 

forested cover as land covered by vegetation with heights of 1 meter or greater and a total 

canopy cover of greater than 75%. This leaves grassland to be defined as vegetative land 

cover with canopy heights of less than 1 meter. In addition, vineyard agriculture is 

defined as agricultural land dedicated to viticulture. Riparian areas are defined as areas 

that are within 30 meters of a river or stream, and where forest or oak dominant savanna 

is present. Finally land cover that does not exhibit any of the above characteristics was 

classified as other and is considered to include land cover that is urban, developed, or 

bare ground.  

Data Collection and Preprocessing 

To classify seven unique land cover types across the Napa Watershed, a series of 

remotely sensed and ground derived geospatial data were collected and analyzed. Firstly, 

multispectral imagery was downloaded for the study area. Multispectral imagery was 

collected from the USDA National Agriculture Imagery Program in 2010; acquisition and 

initial preprocessing is managed by the USDA. This year was selected based on the 
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limited cloud cover throughout the scene, this image collection year also matches 

collection year for other data sources. NAIP image data are available online in digital 

ortho quad quarters (DOQQ), each covering just under 50 km2. To cover the entire scene 

of interest, 100 tiles were downloaded, mosaiced together and clipped to the region of 

interest. The resulting image had a spatial resolution of 1 meter and a four-band spectral 

resolution with nominal spectral bands (Blue, Green, Red, and Near-Infrared).  

In addition to multispectral imagery, lidar data was obtained for the study area to classify 

vegetation heights. Lidar data was collected by the National Center for Airborne Laser 

Mapping (NCALM) in the summer of 2003 and was funded by the National Science 

Foundation. The lidar survey area covered the entire Napa Watershed, containing 

approximately 1,230 km2, and required 14 aerial missions at a height of 700 meters above 

ground level. All survey efforts took place from May 15, 2003 to June 1, 2003. The aerial 

missions resulted in 129 flight lines and required an additional 20 lines to densify point 

data.  

In addition to the remotely sensed data, two vector-based spatial datasets were 

utilized to aid in the classification of vineyard agriculture and riparian areas. Firstly, to 

clearly identify vineyard agriculture, a high-resolution and highly accurate vector-based 

agricultural coverage data were obtained from the Napa County GIS Department. These 

data were created using high-resolution digitizing over NAIP imagery from 2010. 

Secondly, to clearly identify riparian areas, a high resolution hydrography dataset 

delineating all streams and rivers was obtained from the USGS (U.S., 2009). Both vector-

based datasets were visually inspected in a GIS to ensure data was properly aligned for 
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further use and integration with remotely sensed data. While all data were visually 

inspected, there are still several sources of error and uncertainty when multiple sources of 

data are utilized at different temporal intervals. 

Habitat Classification Overview 

The primary steps involved in this classification can be summarized by the 

flowchart in Figure 3. The NAIP imagery was classified into three feature classes (water, 

vegetation, and other) using supervised classification. Then, to further classify vegetation 

types, lidar data was processed to create a canopy height model with a spatial resolution 

of 1 meter. To extract height data for vegetation only, the previously classified NAIP 

image was used to extract lidar point data only for pixels classified as vegetation. Using 

the extracted lidar point data, grass or herbaceous vegetation was differentiated from tree 

vegetation with a canopy height threshold at an elevation of 1 meter (grass defined at < 1 

meter and trees defined at ≥ 1 meter). Dense forested land cover was separated from 

individual trees and tree clusters to identify patchy oak savanna habitat, using a patch size 

threshold. Using the individual trees and tree clusters, the ESRI aggregate polygons 

function was used to aggregate these individual trees and tree clusters into oak savanna. 

Riparian areas were identified by buffering the acquired hydrography dataset to 30m and 

only selecting pixels with forest or oak dominant savanna land cover. Finally, all layers 

were combined in a GIS and rasterized to develop a single band classified raster surface. 
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Figure 3. A flowchart outlines the necessary steps to complete the land use/ land cover 

classification. 

Remote Sensing Image Classification 

The first and most necessary distinction in the modeled LULC classification is the 

identification of the three feature classes, vegetation, water, and other land cover. To 

classify these three feature classes, supervised classification was performed on a color 

infrared NAIP image with a 1-meter spatial resolution. Training data were collected in a 

GIS using heads up digitizing and high-resolution image interpretation. The standard is to 

use field collected training data points and accuracy assessment points. However, in this 

study these methods could not be done because of the large areal extent of the study 

region of interest. Training data were manual interpreted using expert knowledge. 

Training points were classified multiple times (𝑛 = 5), then averaged using a mode 

function to reduce interpretation bias. Using the collected training data, a radial-kernel 

support vector machine model was developed using the ‘caret’ package (Jed Wing et al., 

2019), in the statistical software R (R Core Team, 2018). The classified image of the 

Napa watershed comprising the three desired feature classes is later used to further 

classify vegetation types. Because this classified image would be used in later analysis it 

was important to assess model accuracy prior to more detailed classification. To do so, a 

confusion matrix was developed during the model training process using the training data 

as ground truth data. The classified image was only used in further classification when 

accuracy standards were comparable to scientific literature, i.e. when a Kappa coefficient 

of 0.7 or greater was obtained, (Congalton & Green, 1999).  
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Vegetation Height Classification and Savanna Mapping 

To differentiate the different types of vegetation, lidar point data collected in 

2003, with a density of 1.43 pts/m2 was used to create a 1-meter spatial resolution canopy 

height model. Canopy height pixels were extracted only for areas classified as vegetation 

in the three-class multispectral image classification. Using lidar with relatively low 

density, it is difficult to achieve accurate classification of different vegetation structures 

(Bujan et al., 2013). For this reason, lidar canopy heights derived from this dataset were 

only used to differentiate trees and grass vegetation. The extracted canopy heights of 

vegetation were classified as forest being 1 meter or taller and grass was defined as less 

than 1 meter. Because lidar densities were relatively low, further classification of 

vegetation types was too difficult.  

To overcome these difficulties with further vegetation classification, a series of 

rule-based classifications were applied. Oak dominant savanna characteristically exhibits 

patchy canopy cover with a mixture of sparse individual trees, small clusters of trees and 

lush grasslands. First, individual trees and small tree clusters needed to be identified and 

separated from continuous dense forest. To do this we applied a patch size threshold for 

the classified tree pixels, with an area of 500 square meters. In other words, any tree 

patches equal to or greater than 500 m2 were classified as forest land cover. The 

remaining tree pixels in patches less than 500 m2 were considered individual trees and 

small tree clusters. These individual trees and tree clusters were then aggregated using the 

Esri aggregate polygons function, to capture a variation in canopy cover that was 

representative of oak dominant savanna in the Napa Valley. The aggregation distance for 
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oak savanna was set to 1000 meters. The areas captured in the aggregation were 

classified as oak dominant savanna.  

Ancillary Geospatial Data 

Classifying riparian vegetation and vineyard agriculture with remotely sensed 

data proved challenging, where streams were visually obstructed by tree canopy cover, 

and vineyard vegetation was difficult to distinguish both structurally and spectrally. For 

these reasons, it was necessary to incorporate ancillary geospatial data to properly map 

vineyard agriculture and riparian areas. Vineyard LULC was extracted from the Napa 

County GIS Department’s ground-validated spatial dataset of all Williamson Act 

agricultural lands. Riparian areas could not be identified using remotely sensed imagery 

or lidar. This phenomenon has been seen in other classification and is due to the complex 

definition of riparian areas (Cunningham, 2006). In this classification riparian areas are a 

combination of forest or oak dominant savanna land cover that is within 30 meters of a 

stream or river. In order to identify riparian areas, it was necessary to incorporate 

contextual data with the addition of GIS data. First streams, rivers and other flow lines 

needed to be identified. Because these flow lines and streams were unable to be identified 

using remote sensing imagery, we incorporated a high resolution hydrography dataset 

from the USGS (U.S., 2009). These data are mapped at a 1:24,000 scale and identify the 

spatial geometry of predominantly rivers and streams.  

Accuracy Assessment 

Confusion matrices are a commonly used method for assessing the correctness of 

image classification models (Congalton & Green, 1999). Ground reference data were 
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created for the study area using a simple random sample of the classified image (Nowak 

et al., 2006). Prior to classification, 500 points were manually classified using high-

resolution imagery from 2003, using three human label agents similar to previously used 

methods in land cover classification accuracy assessment (Kennedy et al., 2015; Li et al., 

2017). The three sets of human-labeled points were then combined using a mode 

function. Using a GIS, the predicted model classifications were extracted for each of the 

500 points for cross tabulation. The 500 points with manually classified labels and the 

predicted land cover model labels were then cross tabulated in a confusion matrix. A 

confusion matrix offers a series of measures for model accuracy, making it a useful tool 

in land cover model assessment (Verostek, 2014). These matrices provided estimates 

such as specificity and sensitivity as well as balanced accuracies. The kappa coefficient 

of agreement was also derived from the confusion matrix. Using the kappa coefficient of 

agreement, we hope to account for the possibility of chance agreement. 
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RESULTS 

Humboldt Bay Modeling Results 

UAV Data Collected 

The unmanned aerial vehicle flights conducted at the MPA site, on June 19, 2019, 

flown at a height of 52.7 meters, yielded 3,025 useable images with approximately 75% 

image overlap. The orthomosaic derived from the AgiSoft Photoscan processing had a 

ground resolution of 3.50 centimeters per pixel with a reprojection error of 0.686 pixels. 

With an overall size of 10,124 by 12,288 pixels the orthomosaic covered approximately 

0.07 km2, Figure 4. 

The unmanned aerial vehicle flights conducted at the SBW site, on June 21, 2019, 

flown at a height of 55.7 meters, yielded 9,390 useable images with approximately 75% 

image overlap. The orthomosaic derived from the AgiSoft Photoscan processing had a 

ground resolution of 3.76 centimeters per pixel with a reprojection error of 0.700 pixels. 

With an overall size of 21,503 by 20,480 pixels the orthomosaic covered approximately 

0.17 km2, Figure 5. 
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Figure 4. A map shows A) the location of the Marine Protected Area (MPA) sample 

location and B) the true color orthomosaic obtained from UAV imagery at the MPA site. 
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Figure 5. A map shows A) the location of the South Bay West (SBW) sample location 

and B) the true color orthomosaic obtained from UAV imagery at the SBW site. 

Percent Cover Estimates 

Percent cover proportions were extracted to virtual quadrats using the modeled 

presence/absence binary raster image. The proportion of pixels classified as presence or 

absence was extracted as a percentage for each virtual quadrat to compare with on the 

ground quadrat percent cover. The best predicted percent coverage and ground sampled 

percent coverage for the MPA site resulted in a coefficient of correlation or R2 value of 

0.6496 and a root mean squared error of 27.44, Figure 6, while the best model for the 

SBW site resulted in an R2 value of 0.1036 and a root mean squared error of 50.23, 

Figure 7. 
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Figure 6. The predicted (blue) and ground sampled (orange) percent cover of eelgrass are 

shown for the MPA site with quadrat sample ID shown across the x-axis. 

 

Figure 7. The predicted (blue) and ground sampled (orange) percent cover eelgrass are 

shown for the SBW site with quadrat sample ID shown across the x-axis. 
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 The results of all models at the MPA site are shown in Table 1 showing the two 

best model to be the supervised SVM classification with all variables and the 

unsupervised classification with all variables and 𝑛 = 4 classes. The results for all 

models at the SBW site are shown in Table 2, indicating again the best models are the 

SVM supervised classification with all variables and the unsupervised classification with 

all variable and 𝑛 = 4 classes. 

Table 1. Summarized model information is shown with a correlation coefficient for the 

results of a linear regression between each model prediction and ground sampled percent 

coverage data for the MPA site. 

Model  Variables No. Classes R-Squared 

SVM Multispectral 2 0.1816 
SVM Multispectral + Indices 2 0.6496 
K-means Multispectral + Indices 2 0.0001 
K-means Multispectral + Indices 3 0.3699 
K-means Multispectral + Indices 4 0.6038 
K-means Multispectral + Indices 5 0.0368 
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Table 2. Summarized model information is shown with a correlation coefficient for the 

results of a linear regression between each model prediction and ground sampled percent 

coverage data for the SBW site. 

Model  Variables No. Classes R-Squared 

SVM Multispectral 2 0.0808 
SVM Multispectral + Indices 2 0.1036 
K-means Multispectral + Indices 2 0.0032 
K-means Multispectral + Indices 3 0.0553 
K-means Multispectral + Indices 4 0.2023 
K-means Multispectral + Indices 5 0.0014 

 

Predicted eelgrass coverage and ground sampled eelgrass coverage are broken down by 

transect, this isolates each transect and highlights the sources of error in the predictions. 

This breakdown is shown for the SBW site in Appendix A and the MPA site in Appendix 

B. 

Napa Valley Modeling Results 

The results of the habitat classification are shown in Figure 4. Most of the 

cultivated land cover types are seen in the central portion of the Napa Valley, with other 

vegetative types covering the less populated areas of the valley. The majority of classified 

riparian habitat is located within forested land cover. Water bodies were primarily found 

in the southern most portion of the scene where the San Pablo Bay is met by the Napa 

River. In addition, a minority of the water bodies are shown in the north central area of 
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the study site. Most of the classified oak dominant savanna is shown in the eastern side of 

the valley and a minority of the pixels are also shown in the northern portion of the scene. 

 

Figure 8. The final habitat land cover classification is shown in respect to California and 

neighboring areas. 

Classification accuracy statistics were calculated for each feature class (Table 1) 

using a confusion matrix (Table 2).  Forested land cover was the dominant land cover 

class comprising 36.76% of all classified pixels. The least dominant land cover classes 

were water, bare ground, and riparian with 3.06%, 4.96%, and 5.79% of all classified 

pixels, respectively. Therefore, these three classes exhibited the lowest detection rates of 

all the feature classes, Table 1. The remaining land cover classes (vineyards, grassland, 

and savanna) were more frequently classified with 16.24%, 12.89%, and 20.30% of all 

classified pixels respectively. Classified vineyard land use obtained the highest balanced 
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accuracy, 95.66%. The high accuracy of vineyard classification is due to the accuracy of 

the vector-based agriculture data. In addition to vineyard land use, the feature classes 

water and other obtained the next highest balanced accuracies. The remaining feature 

classes obtained balanced accuracies between 71.99% and 81.51%. These remaining 

feature classes, forest, grassland, oak savanna, and riparian have the lowest balanced 

accuracies, and this is largely due to their spectral similarities as these are all different 

vegetation types.  

Table 3. Accuracy assessment statistics for individual classified features. 

Using the manually classified ground reference data, created using multiple 

human label agents, and the model prediction a confusion matrix was cross tabulated, 

Figure 9. By summing the diagonal of the confusion matrix, we derived an overall model 

accuracy of 70.20%. In addition to the overall accuracy, we also calculated the Kappa 

coefficient of agreement, obtaining a value of 0.6140. We can see the most frequently 
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Sensitivity 0.7895 0.7500 0.9326 0.7409 0.4904 0.5938 0.5455 

Specificity 0.9958 0.9854 0.9805 0.8893 0.9495 0.8601 0.9652 

Pos Pred Value 0.8824 0.6818 0.9121 0.8079 0.7183 0.3838 0.2609 

Neg Pred Value 0.9917 0.9895 0.9853 0.8452 0.8765 0.9352 0.9895 

Prevalence 0.0380 0.0400 0.1780 0.3860 0.2080 0.1280 0.0220 

Detection Rate 0.0300 0.0300 0.1660 0.2860 0.1020 0.0760 0.0120 

Detection Prevalence 0.0340 0.0440 0.1820 0.3540 0.1420 0.1980 0.0460 

Balanced Accuracy 0.8927 0.8677 0.9566 0.8151 0.7199 0.7269 0.7553 
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occurring feature class was forest land cover and therefore had the greatest number of 

ground reference points. Using the confusion matrix, we can also see the land cover 

classes with the most confusion were the forest, grassland, and oak savanna. The 

classification methods described in this study yielded an overall accuracy of 70.2% and 

was 18.6% more accurate than the next most accurate readily available LULC datasets 

(NLCD, 2004). 

 

Figure 9. Cross-tabulated prediction and reference data make up a confusion matrix for 

the final model, used to derive accuracy statistics. 

  



37 
 

  

DISCUSSION 

Humboldt Bay Vegetation Modeling Discussion 

UAS Survey Data for Eelgrass Monitoring 

 While UAS imagery is relatively easy to obtain, there are several factors that can 

impact the quality and consistency of these data. Some of these factors include light 

conditions, atmospheric conditions, wind speed, flight speed, and sensor capture 

orientation (Whitehead & Hugenholtz, 2014). Often times image artifacts are exemplified 

when all flight images are mosaicked, resulting in geometric artifacts making the image 

blurry, choppy, striped and holes may even appear in the final mosaic (Whitehead & 

Hugenholtz, 2014). Therefore, it is necessary to perform careful flight planning with a 

goal of obtaining consistent conditions across all study sites, including tidal height of the 

water at the time of data capture. It may be necessary to obtain more detailed tidal height 

predictions to optimize data capture, this is because tidal predictions are provided at a 

course spatial resolution. This course spatial resolution may mean tidal predictions in one 

area of the Bay do not represent tidal heights throughout the entire bay.  

It is likely that conditions at the SBW site were less favorable for eelgrass 

monitoring and with higher wind speeds and hazy conditions image capture was more 

inconsistent than was at the MPA site. More specifically, the image data for the two sites 

were visually disparate, as a result of hazy and intermittent sunny conditions present at 

the SBW site on June 21, 2019. This resulted in image artifacts such as haze, vignetting, 
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and hot spots (Whitehead & Hugenholtz, 2014). While image calibration was completed 

for all sensor data, conditions were too highly variable for all flights within the same day, 

making image calibration difficult to perform across all flight data.  

There is a considerable difference in eelgrass growth characteristics at each site, 

where eelgrass was found at deeper tidal elevations at the SBW site than the MPA site. 

More specifically, the lowest transect at the MPA site is at a higher tidal elevation (0.14 

MLLW) than the highest of the transects at the SBW site (-0.01 MLWW). These 

characteristics along with the difference in tidal height during the two UAS flights could 

explain the difference in model accuracies across study sites. More notably, eelgrass at 

the deep tidal elevations within the SBW site were more likely covered with water which 

likely obscured the spectral signature of eelgrass.  

The discrepancies captured in this study data exemplify the difficulty experienced 

when collecting image data of intertidal phenomenon at multiple sample locations and 

especially in the Northern California area. This makes the case that UAS deployment is 

still the best option for intertidal remote sensing, with the ability to easily perform repeat 

UAS flights to capture more consistent conditions. UAS can allow for more targeted data 

capture with the ability to adapt to tidal cycles in order to obtain data at low tides. UAS 

also allows for adjustable flight height for the target subject or land cover type. All of 

which can be costly or impossible with other remote sensing platforms. 

Mapping Eelgrass with UAS Imagery 

Both sets of imagery obtained for both eelgrass sites yielded a resolution of 3.50 

to 3.76 centimeters; however, it is possible that this resolution is not sufficient to capture 
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the level of detail exhibited in eelgrass meadows (O’Neill et al., 2011) . Individual 

eelgrass leaves were not visible at 3.50 – 3.76-centimeter resolution. It may beneficial to 

decrease the flight height of data capture to increase the spatial resolution of image data 

(Whitehead & Hugenholtz, 2014). However, this may require increased flight times and 

larger data storage. With finer spatial resolution imagery, we may be able to distinguish 

individual eelgrass leaves which could be useful for more detailed health and vigor 

analysis (Duffy et al., 2018). With finer spatial resolution imagery, it may not be 

necessary to include textural features and vegetation indices (Duffy et al., 2018). 

While eelgrass percent coverage estimates achieved an r-squared value of 0.6496, 

it is difficult to compare this metric to other studies, most of which map other eelgrass 

metrics (such as distribution and total area) or utilize different accuracy statistics (Duffy 

et al., 2018). It appears that eelgrass percent coverage may be over estimated at the MPA 

site which is likely due to specificity error in the classification, where eelgrass absence is 

classified as presence instead (Parikh et al., 2008). On the other hand, eelgrass percent 

cover predictions at the SBW site appear to underestimate eelgrass coverage, which may 

be due to more water obstructing the spectral signature of eelgrass. In order to overcome 

issues with classification accuracy others have developed methods for water column 

corrections. However, these methods often require detailed spectral signatures and 

specialized algorithms, both of which can be costly and time consuming (Rowan & 

Kalacska, 2021).  

In addition to environmental sources of error, our virtual quadrat to ground 

sampled quadrat comparison is a likely source of spatial error. It is necessary to improve 
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the spatial accuracy of the ground sampled data to reduce the error in virtual quadrat 

creation. It is recommended that a GNSS GPS system should be used to collect the 

precise locations of ground sample quadrat data. These methods have similarly been 

applied in the United Kingdom with success (Duffy et al., 2018). Green algae coverage 

can be compared with eelgrass percent cover estimates at both sites to understand if 

spectral confusion in vegetation types influenced model success. More specifically, we 

can see at the SBW site there is no reported green algae coverage, from the ground 

sampled data, Appendix C. This indicates, there is minimal vegetative confusion from 

green algae reflectance at the SBW site. On the other hand, at the MPA site we see 

considerable green algae coverage at the high tidal transect, ranging from 6.66 -100 

percent coverage, Appendix D. This could indicate predicted eelgrass coverages could be 

overestimated at the MPA high transect, due to the presence of green algae, creating a 

confusing reflectance signature similar to that of eelgrass. 

Napa Valley Land Cover Modeling Discussion 

With an overall accuracy of 70.20%, the model proved to be more accurate than 

other available land cover datasets. However, a more informative model assessment may 

be individual feature class accuracies. The feature class with the highest accuracy was 

vineyard land use, with a balanced classification accuracy of 95.66%. This high 

classification accuracy of vineyard is due to the high accuracy of the Napa County 

Agricultural coverage data. These data were developed using high resolution GPS 

mapped coverage as well as ground-based surveys. I found the classes with the next 
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highest individual accuracies were the water and other feature classes. The other feature 

class is comprised primarily of bare ground, developed, and urban areas. This high 

individual accuracy in water and other features (mostly bare ground and developed areas) 

is likely due to their unique spectral signature, demonstrating these classes were easily 

classified using the methods described in this study (Srivastava et al., 2012).  

I also found the feature classes with the lowest individual accuracies were those 

of different vegetation types. This confusion is expected due to the spectral similarity 

between different vegetation types. Much of the confusion between vegetation types 

involved the oak savanna feature class. It is possible that the definition of oak savanna is 

causing confusion in the model classification as oak dominant savanna is known to 

exhibit a combination of both grassland and forest canopy cover.  

The most readily available LULC model for California is the National Land 

Cover Dataset provided by the USDA. These models are produced for the entire United 

States and are derived using satellite imagery from Landsat, resulting in a spatial 

resolution of 30 meters (Hollister et al., 2004). These models can provide general 

information with a standardized set of feature classes for the entire country. While these 

data are easy to access and does not require additional processing, these data do not 

always best represent the true LULC patterns on the earth’s surface or the locally 

endemic land cover types (Homer et al., 2015). With the use of higher spatial resolution 

remote sensing data, I was better able to map the fine scale patterns of land cover and 

identify more informative feature classes. These more informative feature classes, such as 
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oak dominant savanna and riparian are more representative of the local vegetation 

characteristics. 

Model Limitations 

One of the limitations in this model was that the data used in this study were 

collected on different temporal scales. By using data from different years, it is possible 

that variability in the actual land cover between data acquisition times may cause 

uncertainty in the model predictions (Lin et al., 2002). For instance, a wildfire that burned 

through part of the Napa Valley Watershed in 2004 could impact the validity of lidar data 

collected in 2003 (Liu, 2008). In addition to temporal disparity in the data, there may also 

be classification error due to the acquisition of remotely sensed imagery. Specifically, by 

using NAIP imagery, it is possible to inherit some uncertainty from image preprocessing 

and georectification and that this uncertainty may be exacerbated by classifying as many 

as 100 individual image scenes. Finally, while lidar data was available for a large area, it 

was not acquired with a high frequency of laser pulses and therefore possessed a 

relatively low point density. While point density is a major limitation when classifying 

vegetation types based on canopy height, it is clear with higher density lidar data it may 

easier to distinguish vegetation types in the future (Bujan et al., 2013). 

Oak Dominant Savanna Classification 

Classifying oak dominant savanna proved most difficult. With a combination of 

variable canopy cover and grass understory, oak dominant savanna exhibited confusing 

spectral and canopy height characteristics. For this reason, we saw the most overlap in the 

feature classes oak savanna, forest, and grassland.  
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Management Implications 

This model has the potential to benefit a variety of local stakeholders in the Napa 

Valley. In particular this LULC model could be used to model change after a disturbance 

(Kennedy et al., 2015). LULC mapping has been a vital resource in change detection and 

urban planning as well (Palamuleni et al., 2007; Suribabu et al., 2012). In addition to land 

cover change mapping and land use planning, this model can be used for other natural 

resource applications. For instance, this model could be used to model wildlife behavior 

and habitat selection similarly to other studies in this area (Huysman & Johnson, 2021; 

Wendt, 2016). 

Future Iterations 

The methods described here demonstrate the ability to combine remotely sensed 

multispectral imagery, lidar data and other ancillary geospatial data to map LULC types. 

The classified feature classes have been defined based on local habitat characteristics and 

biologist knowledge. This means future applications of the LULC model can be adapted 

to other habitat definitions based on local wildlife needs and vegetation characteristics. 

With the need for land cover data increasing and the need for landscape level data, it is 

important that modeling applications work with large datasets (Ray, Ibironke, 

Kommalapati, & Fares, 2019). While this method was applied programmatically and was 

time efficient, it did require costly geospatial software for savanna classification. In order 

to improve accessibility and cost efficiency, future iterations of this method should be 

created using fully open source software. 
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CONCLUSIONS AND RECOMMENDATIONS 

Humboldt Bay Modeling Conclusions 

In this study I demonstrate the value of using a commercial grade image sensor 

and a small UAV to model eelgrass distribution within Southern Humboldt Bay. 

Traditional methods used to survey eelgrass are often labor intensive, and usually involve 

destructive sampling. Here I demonstrate a novel approach to intertidal surveying using 

unmanned aerial systems. The described method allows for speedy and simple 

implementation, while also allowing for adaptation to difficult environmental and tidal 

conditions. 

With the threat of human development (Gao et al., 2017), eelgrass wasting disease 

(Short, 2014) and other disturbances (Unsworth et al., 2015), I believe that this 

methodology will allow for more consistent monitoring of these critical environments. 

These methods can provide high resolution time series remote sensing imagery that will 

allow for more detailed fine scale change analysis of eelgrass and other intertidal 

ecosystems, which are, demonstrated here, as useful to resource managers. The value of 

these methods is also made clear by the ability to obtain imagery at low tide cycles to 

better evaluate eelgrass meadows and reduce confusion in eelgrass models from water 

column reflectance (Nesbit, 2018). Eelgrass meadows are known to be dynamic, making 

these systems difficult to monitor (Cunha et al., 2005). UAVs have given researchers the 

ability to utilize remotely sensed data at a finer scale that may allow for more analysis 
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within eelgrass beds (Duffy et al., 2018). For this reason, the methods described here may 

be well suited to long term monitoring where eelgrass surveys can be performed more 

frequently and consistently (Digruttolo & Mohamed, 2010). While some analyses in this 

study show there is good chance UAV monitoring is a practical option for eelgrass bed 

sampling, it is also clear there are several obstacles that need to be considered when 

conducting UAV monitoring in the intertidal zone of Humboldt Bay, California. In 

conclusion, I believe it is necessary to further evaluate these methods and define a clearer 

definition of protocols for eelgrass monitoring with UAVs. These protocols should be 

focused on defining optimal tidal heights for intertidal and subtidal eelgrass remote 

sensing, determining the optimal flight heights to obtain the proper resolution for the 

species of concern, and evaluating the frequency at which remote sensing data should be 

collected. All of the above factors proved important in modeling eelgrass with UAV 

remotely sensed data.  

Napa Valley Modeling Conclusions 

 The goal of this study was to create a land cover classification model of the Napa 

Valley Watershed that included land cover types such as vineyard land use, forests, 

grasslands, oak dominant savanna and riparian. The classification methods in this study 

used seven different feature classes based on unique wildlife habitat needs. The 

definitions for classification were defined above and utilize a collection of previously 

defined classification schemes. Of particular interest, the different vegetative 

classifications were difficult to distinguish. The savanna definition utilized in this 



46 
 

  

analysis created a confused feature class with unique forest structure of sparse to mixed 

canopy cover and grassland understory. With higher resolution datasets, such as NAIP 1-

meter imagery and 1-meter lidar data, classification of unique vegetation classes was 

much clearer.  

Due to the available geospatial and remote sensing data, I focused on the fusion of 

multiple data sources to classify these habitat land cover types. To this end, I used low 

density lidar data, airborne multispectral imagery, and high-resolution vector data to 

create a high-resolution habitat classification. One of the primary conclusions from the 

analysis was that by using this data fusion method, we increased overall accuracies by 

18.74% compared to the National Land Cover Dataset. This study demonstrably 

classified certain habitat land cover types of which were otherwise not mapped in other 

LULC maps, such as the National Land Cover Dataset. Aside from overall accuracy of 

the land cover model, I was also able to obtain a resolution that is 30 times finer than any 

other available land cover model. This study defined a novel data fusion workflow to 

create a high-resolution habitat map for the Napa Watershed. Going forward, these 

methods can be utilized to develop and update existing land cover maps using newer data 

and other expert knowledge. While I have developed a specific set of rule-based 

classifications for oak dominant savanna, these parameters have the potential to be 

adapted to site specific habitat characteristics. These data have provided useful 

information for modeling natural phenomenon in the Napa Valley and will continue to be 

a useful resource in wildlife and natural resource management. 
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Appendix A 

 

Predicted eelgrass percent coverage is compared with ground sampled percent 

cover a the SBW site for each sampling transect, including the A) high transect, B) 

middle transect, and C) low transect.  
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Appendix B 
 

Predicted eelgrass percent coverage is compared with ground sampled percent 

cover a the MPA site for each sampling transect, including the A) high transect, B) 

middle transect, and C) low transect. 

  



57 
 

  

Appendix C 

 

Ground sampled percent cover for eelgrass (orange, square) and green algae 

(green, triangle) are compared to the predicted percent cover of eelgrass (blue, diamond) 

at the SBW site, showing no green algae coverage at the SBW site. 
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Appendix D 

 

Ground sampled percent cover for eelgrass (orange, square) and green algae 

(green, triangle) are compared to the predicted percent cover of eelgrass (blue, diamond) 

at the MPA site, showing green algae coverage is only present at the high tidal transect 

quadrats. 
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