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ABSTRACT 

DESIGN, SYNTHESIS AND PHARMACOLOGICAL 

EVALUATION OF QUINAZOLINAMINE DERIVATIVES AS 

BCRP AND P-GP INHIBITORS WITH IMPROVED METABOLIC 

STABILITY 

Chao-Yun Cai 

A series of twenty-two quinazolinamine derivatives showing potent inhibitory 

activities on BCRP and P-gp was synthesized. The reversal study showed that when 

combined with the potent dual BCRP and P-gp inhibitors 7-8, 29-31, and 34, the IC50 

value of mitoxantrone was decreased from 6.50 µM to the range of 0.24 - 0.35 µM for 

BCRP, and IC50 value of colchicine was decreased from 7.34 μM to the range of 0.12 

- 0.29 µM for P-gp. Cyclopropyl quinazolinamine 29 (VKCY-1), which was a dual 

BCRP and P-gp inhibitor, and azide quinazolinamine 40 (VKCY-2), which was a 

BCRP inhibitor, were selected for mechanistic studies. The results revealed that target 

compound 29 (VKCY-1) changed the localization of BCRP in H460/MX20 cells and 

P-gp in KB-C2 cells rather than altering the expression level of BCRP or P-gp 

proteins, thus inhibiting the efflux of the anticancer drugs, which is different from the 

mechanisms of other reported ABC transporter inhibitors. Azide quinazolinamine 40 

(VKCY-2), on the other hand, did not change the expression level or the localization 



of BCRP protein. In addition, compounds 29 (VKCY-1) and 40 (VKCY-2) 

significantly stimulated the ATP hydrolysis of BCRP transporter indicating that 

they can be competitive substrates of BCRP transporter, and thereby significantly 

increasing the accumulation of mitoxantrone in BCRP-overexpressing 

H460/MX20 cells. Azide quinazolinamine 40 (VKCY-2) with photoaffinity label 

can be a valuable probe for investigating the interactions of quinazolinamine 

derivatives with BCRP. After activation by the UV light, azide quinazolinamine 

40 (VKCY-2) showed greater inhibitory effect on BCRP. Overall, this study 

indicated that quinazolinamine analogues can significantly reverse both BCRP- 

and P-gp-mediated MDR by blocking the efflux of anticancer drugs. Target 

compounds have the potential to be useful as BCRP and P-gp modulators to 

overcome MDR. The target quinazolinamine derivatives 7-8, 29-32, and 34 

exhibited potency similar to that of the known BCRP inhibitor, Ko143. In 

addition, the P-gp inhibitory activities of quinazolinamine derivatives 7-8, 29-31, 

and 34 were greater than that of verapamil. Notably, the selected dual BCRP and 

P-gp inhibitors 7-8, 29-31, 34, and 40 showed improved metabolic stability than 

the standard pharmacologic tool Ko143. 
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Chapter 1. Introduction 

Cancer is a disease that causes cells to divide uncontrollably and spread into 

surrounding tissues. It is the second leading cause of death globally. In 2021, it is 

estimated that 1.9 million new cancer cases will be diagnosed and 608,570 will die 

from cancer in the United States.1 In 2020, lung, colorectal, breast, and prostate 

cancers were the four leading cancers, with breast cancer causing more deaths than 

lung, prostate, and colorectal cancers.1 The failure of chemotherapy is mainly caused 

by multidrug resistance (MDR), which involves a variety of cellular pathways. The 

factors that contribute to MDR in cancer include the reduction of the intracellular 

accumulation and increase of drug efflux,2 enhanced DNA damage repair,3 cell death 

inhibition, epithelial-mesenchymal transition,4 drug target alteration,5 and the 

enhancement of drug inactivation.6 

1.1. ABC Transporters 

   The overexpression of ATP-binding cassette (ABC) transporters is an important 

cause of drug efflux, resulting in MDR in cancers. ABC transporters, with seven 

subfamilies (ABCA–ABCG), are a superfamily of 48 transporters expressed in humans, 

of which ABCE and ABCF subfamilies have no membrane transport function.7,8 

1.1.1. The Structure and Function of BCRP Transporter 

Breast cancer resistance protein (BCRP), the second member of the G subfamily 

of the ABC transporters, also named ABCG2, was identified in an MDR human breast 

cancer cell line MCF-7/AdrVp in 1998.9 Since then it has been found to be mainly 

overexpressed in drug-resistant tumors. BCRP is an approximately 75 kDa polytopic 
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plasma membrane protein with one cytoplasmic nucleotide binding domain (NBD) 

and one transmembrane domain (TMD) composed of a single polypeptide chain10 

(Figure 1). BCRP is a half-transporter that dimerizes to become a functional 

homodimer with a molecular weight of approximately 144 kDa homodimer. High 

levels of BCRP are found in the BBB, placenta, liver, adrenal gland, prostate, testes, 

and uterus.11 BCRP extrudes endogenous toxins or xenobiotics from the tissues and 

regulates endogenous compounds such as heme, porphyrins, and estrogens.12,13 

 

Figure 1. Topology of BCRP Transporter.  

1.1.2. BCRP Substrates 

BCRP utilizes the energy generated from ATP hydrolysis to drive the efflux of a 

diverse array of chemicals across the cell membranes. A large number of anticancer 

drugs including doxorubicin, mitoxantrone, gefitinib, methotrexate, SN-38, and 

topotecan 14,15 (Figure 2) are BCRP substrates that get pumped out of BCRP 

overexpressing cancer cells resulting in decrease in their efficacy. BCRP substrates 

also comprise antiviral drugs such as zidovudine and lamivudine16; non-chemotherapy 

drugs such as prazosin17 (antihypertensive drug), glyburide18 (anti-diabetic), 

nitrofurantoin19 (antibiotic), and dipyridamole20 (vasodilator); photosensitizers21 such 
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as pheophorbide A and hematoporphyrin (Figure 2); nontherapeutic compounds such 

as the flavonoids22, porphyrins23, and estrone 3-sulfate24. 

 

Figure 2. The substrates of BCRP (continued) 
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Figure 2. The substrates of BCRP  

1.1.3. The Structure and Function of P-gp Transporter 

P-gp, also known as ABCB1, contains two TMDs and two cytoplasmic NBDs25 

(Figure 3). P-gp is the first human ABC transporter to be identified through its ability 

to confer MDR in cancer cells. Drug resistance mediated by P-gp depends on ATP 

hydrolysis, with adenosine triphosphatase (ATPase) activity of P-gp being stimulated 

by the transported drugs. Vanadate (Vi) trapping and photocleavage experiments 

showed that P-gp contains two active ATPase sites, but only one ATP is hydrolyzed at 
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a time26. P-gp translocates the substrates from the basolateral to the apical side of the 

epithelium. 

 

Figure 3. Topology of P-gp Transporter. 

1.1.4. P-gp Substrates  

A variety of compounds have been identified as substrates of P-gp whose 

pharmacokinetic behaviors, efficacy, and toxicity are dramatically altered by P-gp27. 

P-gp substrates include anticancer drugs (etoposide, paclitaxel28, 5-fluorouracil, 

gefitinib29, vincristine30, doxorubicin31); antibiotics27 (ceftriaxone, clarithromycin, 

doxycycline, levofloxacin); antihistamines (cimetidine, fexofenadine32); calcium 

channel blockers33 (diltiazem, felodipine); HIV protease inhibitors34 (ritonavir, 

nelfinavir); corticosteroids35 (dexamethasone, hydrocortisone); diagnostic dyes 

(Hoechst 3334236), and analgesics (morphine37) (Figure 4). 
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Figure 4. The substrates of P-gp (continued) 
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Figure 4. The substrates of P-gp 
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BCRP can transport hydrophobic substrates such as mitoxantrone, in addition to 

hydrophilic conjugated organic anions, particularly the sulfated conjugates, while P-

gp generally transports hydrophobic compounds.27 It was reported that BCRP 

substrates imatinib, methotrexate, mitoxantrone, prazosin, and SN-38 are also P-gp 

substrates.27 The overlap between BCRP and P-gp substrates can lead to a synergistic 

effect in preventing drugs from crossing tissue barriers such as the blood-brain 

barrier.38,39 

1.2. The Co-expression of BCRP and P-gp in Cancers 

Previous reports revealed that cancers with overexpression of multiple 

transporters may be more resistant to chemotherapy than those with a single 

transporter expression, thus the coexpression of multiple transporters was associated 

with worse prognosis. BCRP and P-gp are coexpressed in certain cancers, such as 

leukemia. Wilson et al.40 obtained gene expression profiles of 170 pretreated samples 

of acute myelogenous leukemia to reveal that the highest levels of drug resistance was 

associated with increased expression of both BCRP and P-gp. Comparing 380 drug-

resistance–related genes from a set of 11 paired samples obtained at diagnosis with 

those at relapse, increased expression of BCRP and P-gp at relapse was identified in 

two acute myeloid leukemia patients.41 Liu et al.42 used bone marrow mononuclear 

cells from 96 de novo acute myelogenous leukemia patients to test the expression of 

several ABC transporters, including BCRP (ABCG2), P-gp (ABCB1), MDR3 

(ABCB4), MRP1 (ABCC1), and MRP4 (ABCC4). The results further confirmed that 

coexpression of multiple transporters was associated with worse prognosis. Another 
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study showed that the initial response to chemotherapy was strongly associated with 

the number of overexpressed ABC-transporters in childhood acute myeloid 

leukemia.43 The patients expressing more ABC-transporters have reduced chance to 

have less than 5% leukemic cells after the chemotherapy. This can be the reason why 

some studies involving specific inhibition of P-gp to sensitize leukemic cells were not 

very effective.44 

1.3. Mechanisms of Reversing ABC Transporters-mediated MDR 

Reversal of MDR can occur through various mechanisms such as direct binding 

of inhibitors to ABC transporters, inhibiting ATPase activity of ABC transporters, or 

altered expression level of ABC transporter proteins. 

ABC transporters inhibitors can interact with the binding sites of the transporters, 

thus inhibiting the efflux of anti-cancer drugs, reversing ABC transporter mediated 

MDR. Previous reports indicated that several tyrosine kinase inhibitors (TKIs), such 

as gefitinib, imatinib, nilotinib, and erlotinib, inhibited BCRP-mediated MDR. These 

TKIs themselves are BCRP substrates and may act as competitive BCRP substrates to 

block the efflux of anticancer drugs.  

Compared with TKIs, protein kinase C (PKC) inhibitors suppress the MDR 

through a different mechanism by inhibiting BCRP or P-gp ATPase activity. It has 

been reported that PKC inhibitors with bisindolylmaleimide (BIM) or indolocarbazole 

moiety block BCRP-mediated transport.45 In addition, various PKC inhibitors 

including the pan-PKC inhibitors staurosporine and chelerythrine, the PKC inhibitor 

enzastaurin46 and the bisindolylmaleimide (BIM) PKC inhibitors GF 109203X47 and 
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Ro 32-224148 can directly bind with P-gp transporter to reverse drug resistance. 

Certain St. John’s Wort constituents, such as quercetin, also decreased P-gp ATPase 

activity at the blood-brain barrier.49  

The downregulation of BCRP or P-gp transporters can be another mechanism of 

modulating the drug resistance. It was reported that BAY-1082439 inhibits the 

activation of the PI3K 110α and 110β catalytic subunits, resulting in the 

downregulation of ABC transporters BCRP and P-gp, thereby sensitizing human 

epidermoid carcinoma KB-C2 cells and non-small cell lung cancer (NSCLC) MDR 

H460/MX20 cells to antitumor drugs.50 

1.4. BCRP and P-gp Inhibitors 

ABC transporters can efflux their substrates including anticancer drugs out of the 

cancer cells leading to MDR in cancers. Thus, ABC transporter inhibitors can block 

the efflux function and reverse ABC transporters mediated MDR in cancers. Many 

ABC transporters are also expressed abundantly in different organs in the human 

body, and they largely affect drug absorption, distribution and excretion, and exhibit 

potential effects on the pharmacokinetic properties of drugs. Therefore, ABC 

transporter inhibitors can affect the pharmacokinetics of substrate drugs of ABC 

transporters. 

1.4.1. Representative BCRP and/or P-gp inhibitors 

Fumitremorgin C (FTC) (Figure 5) is the first reported BCRP inhibitor51 which 

can effectively reverse the drug resistance in cancer. However, FTC exhibited severe 

neurotoxicity in vivo, thus researchers ramped up efforts to discover FTC analogues 



11 
 

with low toxicity. They discovered an FTC analogue, Ko143 (Figure 4), with potent 

BCRP inhibitory activity and low toxicity.52 It was reported that Ko143 is not only a 

BCRP inhibitor but also a weak P-gp inhibitor.53 Nevertheless, Ko143 can be 

metabolized rapidly in rats and transformed into an inactive metabolite, which hinders 

its clinical use. A wide variety of other compounds, such as anti-HIV protease 

inhibitors (nelfinavir and ritonavir),54 and the dietary flavonoids (chrysin and 

biochanin A)55 (Figure 5) have been identified as BCRP inhibitors.  

Three generations of P-gp inhibitors have been developed to date. The first 

generation of P-gp inhibitors include verapamil and cyclosporine A, while the second 

generation of P-gp inhibitors include (R)-verapamil and valspodar. The newly 

developed P-gp inhibitors comprise compounds such as tariquidar, mitotane, and 

ONT-093 (Figure 6).27 Various reports have revealed that some drugs including 

elacridar, reserpine, cyclosporin A, tariquidar, and valspodar (Figure 7) are effective 

BCRP and P-gp dual inhibitors. In addition, several TKIs have been found to interact 

with BCRP and P-gp as both substrates and inhibitors. TKIs imatinib, nilotinib and 

pazopanib were potent BCRP inhibitors with IC50 values of 0.94, 2.50, and 10.4 µM, 

while inhibiting P-gp activities with IC50 values of 2.42, 6.11 and 8.06 µM.56 
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Figure 5. Structures of representative BCRP inhibitors. 
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Figure 6. Structures of representative P-gp inhibitors. 
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Figure 7. Structures of BCRP and P-gp dual inhibitors 

1.4.2. Gefitinib as a BCRP and P-gp Dual Inhibitor 

Gefitinib, an EGFR inhibitor with quinazolinamine moiety, is used for the 

treatment of certain breast, lung and other cancers. It has been reported that gefitinib 

can inhibit BCRP57 and reverse 2.7-fold of drug resistance on P-gp overexpressed PC-

6/PTX cells.29 Wiese et al. synthesized a series of quinazolinamines derived from 
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gefitinib as BCRP inhibitors. They discovered that some quinazolinamines can also 

inhibit P-gp (Figure 8).58,59 The IC50 values of compounds 1-3 for BCRP inhibition 

varied from 202 to 652 nM while the IC50 values for P-gp inhibition were in the range 

of 1.04 to 1.88 uM. The reports showed that the quinazolinamine derivatives exhibit 

promising inhibitory activities on BCRP and P-gp transporters. Further investigation 

of the structure-activity relationship of the quinazolinamine derivatives can help 

discover potent BCRP and P-gp dual inhibitors for reversing MDR. 

 

Figure 8. Quinazolinamine analogues as BCRP and P-gp inhibitors 

1.5. Electrophilic and Photoaffinity Probes  

Covalent drugs and probes are widely used as clinical agents and research tools 

for the identification and localization of targets. One of the strategies to discover the 
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covalent probes and drugs is using a non-covalent probe equipped with a reactive 

group and thus converting it into a covalent probe. Chemical probes with various 

reactive groups, both electrophilic (e.g., isothiocyanate,60 bromoacetamide,61 and 

benzophenone62) and photoactivatable (aliphatic/aromatic azides, and trifluoromethyl 

diazirine) type, can react in a chemically defined manner with a distinct amino acid. 

The method of photoaffinity labeling to identify a target was originally introduced by 

Westheimer et al. in 1962.63 Afterwards, photoaffinity labeling has served as a 

powerful tool to covalently bind with its target under UV irradiation to identify targets 

and interaction sites,64 especially for mapping low-abundance protein modifications 

and low-affinity interactions.65 Covalent probes or drugs exhibit various benefits for 

their clinical use,62 including the improvement of the efficiencies for rapidly 

metabolized and excreted drugs, improved pharmacokinetic properties such as fast 

clearance and binding to serum proteins, minimizing the side effects, overcoming 

drug resistance especially when targeting residues of a target protein that are essential 

for its proper function, avoiding off-target effects. The quinazolinamines with 

electrophilic groups or photoaffinity label can help serve as probes to investigate the 

binding of quinazolinamines to ABC transporters.   



17 
 

Chapter 2. Design Rationale 

Quinazolinamine derivatives, which share structural similarity with the BCRP 

and P-gp dual inhibitor gefitinib, have the potential to inhibit both BCRP and P-gp 

activities. Both BCRP and P-gp are known to transport hydrophobic compounds,27 

suggesting that hydrophobicity plays an important role in the binding affinity of target 

compounds for these transporters. 

Nitrogen as a hydrogen bond acceptor can play an important role in the 

interaction of the quinazolinamine derivatives with ABC transporters. Therefore, a 

nitrogen atom was incorporated, and its position in the aromatic rings varied to 

investigate the importance of the nitrogen atom and its location. Target compounds 

with scaffolds A, B, and C (Figure 9) contain a nitrogen atom in rings A, B, or C, 

respectively. A series of quinazolinamine derivatives with methyl, ethyl and n-propyl 

groups on rings A or B, in scaffolds A (6-8), B (19-21), and C (25-27), were designed 

to evaluate the role of hydrophobicity on the binding affinity of the target compounds 

to BCRP and P-gp transporters (Table 1a).  

Based on the MTT assay results, quinazolinamine derivatives 7 and 8 with 

scaffold A showed higher potency as BCRP inhibitors than those compounds with 

scaffolds B or C, decreasing the IC50 values of mitoxantrone from 5.66 µM to 0.27 

and 0.23 µM, respectively. Based on these preliminary results, additional 

quinazolinamine derivatives with scaffold A (Table 1b) were designed to discover 

more potent BCRP inhibitors with a potential to also inhibit P-gp. BCRP and P-gp 

inhibitory activities of all quinazolinamine derivatives were determined to investigate 
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the structure-activity relationship. Compound 28 with no substitution on ring A was 

designed for comparison. It was reported that quinazolinamines with substitutions at 

meta and para positions are more potent than those with substitutions at ortho 

position. Two and three carbon substitutions were made at meta and para positions to 

obtain target compounds 29-32. The inhibitory activities of these compounds were 

compared with that of the ethyl and propyl substituted compounds 7 and 8. 3-NO2-4-

OH substituted quinazolinamine has been previously shown to exhibit potent 

inhibition toward BCRP transporter. 59 To further investigate the structure-activity 

relationship of the quinazolinamine series with scaffold A, the 3-NO2-4-OH moiety 

was introduced in target compound 33 to probe the effects of the hydrophobic and 

hydrophilic groups on the reversal activities of quinazolinamines towards BCRP and 

P-gp transporters. Methoxy quinazolinamine 34 with oxygen as the hydrogen bond 

acceptor was designed to determine how it affects the inhibitory activity of the 

quinazolinamine derivative compared to the more hydrophobic ethyl derivative 7. 

Compounds 35 and 36 with amine and pyridine groups were included to explore the 

effect of polarity on the inhibitory activities. 

The quinazolinamine derivatives 37-40 with electrophilic or photoaffinity label 

were designed for the investigation of potential covalent binding between 

quinazolinamines and ABC transporters (Table 1b). Compounds 37 with 

isothiocyanate group and 38 with bromoacetamide group are electrophilic, while non-

electrophilic acetamide 39 can be used as a control. Compound 40 with photoaffinity 

group azide can covalently bind with the protein upon UV irradiation and can be used 
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as the probe for investigating the binding site. 

 

Figure 9. Design Rationale 
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Table 1a. The list of target compounds 6-8, 19-21, 25-27. 

Compd. Structure Compd. Structure Compd. Structure 

 

  

 

 

6 

 

19 

 

25 

 

7 

 

20 

 

26 

 

8 

 

21 

 

27 
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Table 1b. The list of target compounds 28-40. 

Compd. Structure Compd. Structure 

28 

 

34 

 

29 

 

35 

 

30 

 

36 

 

31 

 

37 

 

32 

 

38 

 

33 

 

39 

 

  40 

 



22 
 

Chapter 3. Experimental Section 

3.1. Chemistry 

1H NMR and 13C NMR spectra were acquired with a Bruker 400 UltrashieldTM 

spectrophotometer (400 MHz). Infrared spectra (IR) were acquired with PerkinElmer 

Spectrum 100 FT-IR Spectrometers. High resolution mass spectra (HRMS) were 

obtained for all target compounds on a Waters Xevo G2-XS QToF mass spectrometer 

equipped with H-Class UPLC inlet and a LockSpray electrospray ionization (ESI) 

source. Reactions were monitored by thin layer chromatography (TLC) and visualized 

using UV light at 254 nm. TLC was performed using Analtech UniplateTM Silica Gel 

GF 250 Micron plates. Purification of reaction mixtures was conducted using silica gel 

column chromatography or Reveleris® X2 flash chromatography system by BÜCHI 

Labortechnik AG. Melting points were determined on a Thomas-Hoover Capillary 

Melting Point Apparatus. The purity of all target compounds was determined by high-

performance liquid chromatography (HPLC), (LC, Agilent 1200 Infinity; column, 

Agilent HC-C18(2), 170Å, 4.6 x 250 mm, 5 µm; column temperature, 25°C; mobile 

phase, solvent A, methanol, solvent B, water, gradient elution, 30-99% solvent A; flow 

rate, 1 mL/min; UV signals were recorded at 254 nm). All tested compounds were 

shown to have >95% purity according to HPLC. Chemicals were purchased from Acros 

Organics or Alfa Aesar Chemical Company and used without further purification. 
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2-(Pyridin-4-yl)quinazolin-4(3H)-one (4) 

 

A mixture of anthranilamide (681 mg, 5 mmol), 4-pyridinecarboxaldehyde (536 

mg, 5 mmol), iodine (1.40 g, 5.5 mmol), and anhydrous potassium carbonate (690 mg, 

5 mmol) in DMF (10 mL) was stirred at reflux for 4-8 h. Completion of the reaction 

was monitored by TLC and the mixture poured into crushed ice to obtain a 

precipitate. The pH of the mixture was adjusted to 7.0 with concentrated HCl to 

optimize the precipitation of the desired product. After filtering off the precipitate, it 

was thoroughly washed with a 20% sodium thiosulfate solution (50 mL) followed by 

50 mL of hot distilled water (50 mL). Purification was performed by recrystallization 

from ethanol to yield 4 as a white solid in 65% yield. 1H NMR (400 MHz, DMSO) δ 

12.83 (s, 1H), 8.80 (dd, J = 4.6, 1.5 Hz, 2H), 8.19 (dd, J = 7.9, 1.1 Hz, 1H), 8.14 – 

8.09 (m, 2H), 7.93 – 7.85 (m, 1H), 7.80 (d, J = 7.8 Hz, 1H), 7.63 – 7.55 (m, 1H). 

4-Chloro-2-(pyridin-4-yl)quinazolinamine (5) 

 

Compound 4 (446 mg, 2 mmol) was added to DMF (5 mL) containing 

phosphorus oxychloride (0.47 mL, 5 mmol) and stirred for 10 min at room 

temperature. The mixture was then refluxed for 2 h and the reaction monitored by 

TLC. After completion of the reaction, excess phosphorus oxychloride was removed 
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under reduced pressure and the residue poured into ice water (20 mL). Subsequently, 

the pH of the mixture was adjusted slowly to 7.0 with 25% NaOH solution and 

extracted three times with dichloromethane (3×20 mL). The organic phase was 

collected, washed with brine (50 mL) and dried over magnesium sulfate. The solvent 

was removed under reduced pressure to obtain compound 5 as a white solid which 

was recrystallized from isopropanol in 96% yield. 1H NMR (400 MHz, DMSO) δ 

8.84 (dd, J = 4.6, 1.5 Hz, 2H), 8.37 (dd, J = 4.5, 1.6 Hz, 3H), 8.28 – 8.16 (m, 2H), 

7.95 (ddd, J = 8.2, 6.5, 1.6 Hz, 1H). 

General Procedure for the Preparation of the Substituted 4-

Anilinoquinazolinamines 6-8.  

4-Chloroquinazolinamine derivative 5 (241 mg, 1 mmol) was added to a solution 

of a para substituted aniline derivative (1 mmol) in isopropanol and the mixture was 

refluxed for a period of 2 h until completion of the reaction as indicated by TLC. The 

precipitate that was formed was filtered off, washed with isopropanol (10 mL) and 

recrystallized from ethanol. 

2-(Pyridin-4-yl)-N-(p-tolyl)quinazolin-4-amine (6) 

 

Compound 6 was synthesized from compound 5 as described in the general 

procedure. It was obtained as a yellow solid in 56% yield, mp. 269-270°C; IR: 3058, 
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1562, 1500, 1422, 815, 786 cm-1; 1H NMR (400 MHz, DMSO) δ 10.36 (s, 1H), 9.00 

(dd, J = 5.3, 1.3 Hz, 2H), 8.72 (d, J = 8.3 Hz, 1H), 8.66 (d, J = 6.5 Hz, 2H), 8.04 – 

7.95 (m, 2H), 7.82 – 7.71 (m, 3H), 7.31 (d, J = 8.2 Hz, 2H), 2.37 (s, 3H). 13C NMR 

(101 MHz, DMSO) δ 158.79, 155.65, 151.17, 149.24, 145.06, 136.26, 134.50, 134.15, 

129.52, 128.34, 128.17, 124.34, 123.89, 123.39, 114.84, 21.09. HRMS (ESI) m/z 

calcd for [C20H16N4 + H]+ 313.1453, found 313.1463. 

N-(4-Ethylphenyl)-2-(pyridin-4-yl)quinazolin-4-amine (7) 

 

Compound 7 was synthesized from compound 5 as described in the general 

procedure. It was obtained as a yellow solid in 77% yield, mp. 228-230°C; IR: 2969, 

1589, 1614, 1366, 798, 776 cm-1; 1H NMR (400 MHz, DMSO) δ 9.96 (s, 1H), 8.76 (d, 

J = 5.8 Hz, 2H), 8.62 (d, J = 8.3 Hz, 1H), 8.28 (dd, J = 4.5, 1.5 Hz, 2H), 7.92 (d, J = 

3.8 Hz, 2H), 7.87 (d, J = 8.5 Hz, 2H), 7.72 – 7.65 (m, 1H), 7.33 (d, J = 8.5 Hz, 2H), 

2.67 (q, J = 7.6 Hz, 2H), 1.25 (t, J = 7.6 Hz, 3H). 13C NMR (101 MHz, DMSO) δ 

158.63, 157.11, 150.15, 148.96, 148.85, 147.75, 140.12, 136.85, 134.12, 128.59, 

128.27, 127.65, 123.59, 123.01, 114.85, 28.15, 16.09. HRMS (ESI) m/z calcd for 

[C21H18N4 + H]+ 327.1610, found 327.1611.  
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N-(4-Propylphenyl)-2-(pyridin-4-yl)quinazolin-4-amine (8) 

 

Compound 8 was synthesized from compound 5 as described in the general 

procedure as a yellow solid in 71% yield, mp. 212-214 °C; IR: 2931, 1513, 1366, 797, 

766 cm-1; 1H NMR (400 MHz, DMSO) δ 9.96 (s, 1H), 8.75 (d, J = 5.9 Hz, 2H), 8.62 

(d, J = 8.4 Hz, 1H), 8.28 (d, J = 5.9 Hz, 2H), 7.92 (d, J = 3.9 Hz, 2H), 7.87 (d, J = 8.4 

Hz, 2H), 7.69 (dt, J = 8.4, 4.1 Hz, 1H), 7.31 (d, J = 8.4 Hz, 2H), 2.65 – 2.57 (m, 2H), 

1.65 (dd, J = 15.0, 7.5 Hz, 2H), 0.95 (t, J = 7.3 Hz, 3H). 13C NMR (101 MHz, DMSO) 

δ 158.61, 157.77, 150.65, 150.53, 146.10, 138.35, 137.06, 133.97, 128.85, 128.76, 

127.33, 123.52, 122.84, 122.28, 114.87, 37.22, 24.58, 14.13. HRMS (ESI) m/z calcd 

for [C22H20N4 + H]+ 341.1766, found 341.1780.  

2-(p-Tolyl)-2,3-dihydroquinazolin-4(1H)-one (9) 

 

A mixture of anthranilamide (680 mg, 5 mmol), the 4-methylbenzaldehyde (600 

mg, 5 mmol), iodine (1.40g, 5.5 mmol), and anhydrous potassium carbonate (690 mg, 

5 mmol) in DMF (10 mL) was stirred at reflux for 6 h. Completion of the reaction was 

monitored by TLC and the mixture poured into crushed ice to obtain a precipitate. The 

pH of the mixture was adjusted to 7.0 with concentrated HCl to optimize the 
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precipitation of the desired product. After filtering, the precipitate was thoroughly 

washed with of 20% sodium thiosulfate solution (50 mL) followed by hot distilled 

water (50 mL). Purification was performed by recrystallization from ethanol to obtain 

compound 9 as a white solid in 10% yield. 1H NMR (400 MHz, DMSO) δ 8.25 (s, 

1H), 7.61 (d, J = 7.6 Hz, 1H), 7.38 (d, J = 8.0 Hz, 2H), 7.27 – 7.16 (m, 3H), 7.07 (s, 

1H), 6.74 (d, J = 8.1 Hz, 1H), 6.67 (t, J = 7.4 Hz, 1H), 5.71 (s, 1H), 2.30 (s, 3H). 

General Procedure for the Preparation of the Quinazolinamine Derivatives 13-15.  

A mixture of anthranilamide (1.36 g, 10 mmol), the corresponding aldehyde (10 

mmol), iodine (6.3 g, 25 mmol) in ethanol (20 mL) was stirred at 80°C for 6 h. During 

the reaction, air was pushed into the mixture. Completion of the reaction was 

monitored by TLC and the mixture poured into 20% sodium thiosulfate (50 mL) 

solution followed by hot distilled water (50 mL). Purification was performed by 

recrystallization from ethanol. 

2-(p-Tolyl)quinazolin-4(3H)-one (13) 

 

Compound 13 was synthesized as described in the general procedure as a white 

solid in 83% yield. 1H NMR (400 MHz, DMSO) δ 12.49 (s, 1H), 8.15 (d, J = 7.9 Hz, 

1H), 8.11 (d, J = 8.2 Hz, 2H), 7.83 (d, J = 7.0 Hz, 1H), 7.74 (d, J = 8.1 Hz, 1H), 7.52 

(t, J = 7.6 Hz, 1H), 7.37 (d, J = 8.4 Hz, 2H), 2.40 (s, 3H). 
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2-(4-Ethylphenyl)quinazolin-4(3H)-one (14) 

 

Compound 14 was synthesized as described in the general procedure as a white 

solid in 84% yield. 1H NMR (400 MHz, DMSO) δ 12.50 (s, 1H), 8.15 (dd, J = 14.0, 

4.8 Hz, 3H), 7.87 – 7.81 (m, 1H), 7.74 (d, J = 8.1 Hz, 1H), 7.55 – 7.48 (m, 1H), 7.40 

(d, J = 8.2 Hz, 2H), 2.70 (q, J = 7.6 Hz, 2H), 1.23 (t, J = 7.6 Hz, 3H). 

2-(4-Propylphenyl)quinazolin-4(3H)-one (15) 

 

Compound 15 was synthesized as described in the general procedure as a white 

solid in 98% yield. 1H NMR (400 MHz, DMSO) δ 12.49 (s, 1H), 8.18 – 8.09 (m, 3H), 

7.84 (ddd, J = 8.6, 7.1, 1.6 Hz, 1H), 7.73 (dd, J = 8.2, 0.6 Hz, 1H), 7.55 – 7.49 (m, 

1H), 7.38 (d, J = 8.4 Hz, 2H), 2.69 – 2.62 (m, 2H), 1.72 – 1.57 (m, 2H), 0.92 (dd, J = 

8.5, 6.2 Hz, 3H). 

General Procedure for the Preparation of the 4-Chloro-quinazolinamine 

Derivatives 16-18.  

Quinazolinamine derivative 13, 14 or 15 (2 mmol) was added to DMF (5 mL) 

containing phosphorus oxychloride (0.47 mL, 5 mmol) and stirred for 10 min at room 

temperature. The mixture was then refluxed for 2 h and the reaction monitored by 

TLC. After completion of the reaction, excess phosphorus oxychloride was removed 
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under reduced pressure and the residue poured into ice water (20 mL). Subsequently, 

the pH of the mixture was adjusted slowly to 7.0 with 25% NaOH solution and was 

extracted three times with dichloromethane (3×20 mL). With a separatory funnel, the 

organic phase was collected, washed with 50 mL brine and dried over magnesium 

sulfate. The solvent was removed under reduced pressure to obtain a white solid 

which was recrystallized from isopropanol. 

4-Chloro-2-(p-tolyl)quinazolinamine (16) 

 

Compound 16 was synthesized from compound 13 as described in the general 

procedure as a white solid in 85% yield. 1H NMR (400 MHz, DMO) δ 8.17 (dd, J = 

7.9, 1.3 Hz, 1H), 8.09 (d, J = 8.3 Hz, 2H), 7.87 (ddd, J = 8.5, 7.1, 1.5 Hz, 1H), 7.79 

(d, J = 7.7 Hz, 1H), 7.59 – 7.52 (m, 1H), 7.39 (d, J = 8.0 Hz, 2H), 2.41 (s, 3H). 

4-Chloro-2-(4-ethylphenyl)quinazolinamine (17) 

 

Compound 17 was synthesized with compound 14 as described in the general 

procedure as a white solid in 97% yield. 1H NMR (400 MHz, DMSO) δ 8.18 (dd, J = 

7.9, 1.4 Hz, 1H), 8.14 – 8.08 (m, 2H), 7.92 – 7.83 (m, 2H), 7.58 (ddd, J = 8.1, 6.7, 1.6 

Hz, 1H), 7.44 (d, J = 8.5 Hz, 2H), 2.72 (q, J = 7.6 Hz, 2H), 1.24 (t, J = 7.6 Hz, 3H). 
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4-Chloro-2-(4-propylphenyl)quinazolinamine (18)  

 

Compound 18 was synthesized with compound 15 as described in the general 

procedure as a white solid in 91% yield. 1H NMR (400 MHz, DMSO) δ 8.42 (d, J = 

8.3 Hz, 2H), 8.31 – 8.27 (m, 1H), 8.16 – 8.09 (m, 2H), 7.84 (ddd, J = 8.2, 4.8, 3.3 Hz, 

1H), 7.42 (d, J = 8.4 Hz, 2H), 2.71 – 2.63 (m, 2H), 1.73 – 1.60 (m, 2H), 0.94 (t, J = 

7.3 Hz, 3H). 
General Procedure for the Preparation of the Substituted 4-

Anilinoquinazolinamines 19-21.  

4-Chloroquinazolinamine derivative 16, 17 or 18 (1 mmol), p-aminopyridine (94 

mg, 1 mmol) and triethylamine (0.14 mL, 1 mmol) were taken into isopropanol (5 

mL). The mixture was refluxed for a period of 3 h until completion of the reaction as 

indicated by TLC. The solvent was removed under reduced pressure and the 

remaining solid was purified using flash column chromatography. 

N-(Pyridin-4-yl)-2-(p-tolyl)quinazolin-4-amine (19) 

 

Compound 19 was synthesized as described in the general procedure and 

obtained as a white solid in 53% yield, mp. 278-279 °C; IR: 2997, 1642, 1542, 1370, 
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1321, 1160, 732 cm-1; 1H NMR (400 MHz, DMSO) δ 9.03 (s, 1H), 8.76 (d, J = 7.2 

Hz, 2H), 8.47 (d, J = 8.2 Hz, 2H), 8.27 (d, J = 8.0 Hz, 1H), 8.19 (t, J = 7.0 Hz, 1H), 

8.01 (d, J = 8.2 Hz, 1H), 7.84 (t, J = 7.1 Hz, 1H), 7.43 (d, J = 8.1 Hz, 2H), 7.13 (d, J = 

7.1 Hz, 2H), 2.43 (s, 3H). 13C NMR (101 MHz, DMSO) δ 160.97, 159.50, 159.47, 

153.81, 142.80, 142.24, 136.53, 133.79, 130.09, 129.71, 129.11, 128.75, 124.59, 

116.78, 109.88, 21.56. HRMS (ESI) m/z calcd for [C20H16N4 + H]+ 313.1453, found 

313.1455.  

2-(4-Ethylphenyl)-N-(pyridin-4-yl)quinazolin-4-amine (20) 

 

Compound 20 was synthesized as described in the general procedure and 

obtained as a yellow solid in 65% yield, mp. 234-236 °C; IR: 3294, 2967, 1569, 1503, 

826, 755 cm-1; 1H NMR (400 MHz, DMSO) δ 10.11 (s, 1H), 8.59 (dd, J = 14.2, 7.3 

Hz, 3H), 8.41 (d, J = 8.3 Hz, 2H), 8.10 (dd, J = 4.9, 1.5 Hz, 2H), 7.93 (d, J = 3.8 Hz, 

2H), 7.67 (dt, J = 8.3, 4.1 Hz, 1H), 7.41 (d, J = 8.3 Hz, 2H), 2.71 (q, J = 7.6 Hz, 2H), 

1.25 (t, J = 7.6 Hz, 4H). 13C NMR (101 MHz, DMSO) δ 159.44, 158.27, 151.17, 

150.52, 147.03, 146.98, 136.00, 134.19, 128.68, 128.53, 126.75, 123.55, 115.55, 

114.53, 28.55, 15.84. HRMS (ESI) m/z calcd for [C21H18N4 + H]+ 327.1610, found 

327.1619. 
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2-(4-Propylphenyl)-N-(pyridin-4-yl)quinazolin-4-amine (21) 

 

Compound 21 was synthesized as described in the general procedure and 

obtained as a yellow solid in 63% yield, mp. 218-220 °C; IR: 2962, 1569, 1504, 822, 

754 cm-1; 1H NMR (400 MHz, DMSO) δ 10.12 (s, 1H), 8.60 (dd, J = 14.2, 7.3 Hz, 

3H), 8.41 (d, J = 8.1 Hz, 2H), 8.10 (d, J = 6.3 Hz, 2H), 7.93 (d, J = 4.3 Hz, 2H), 7.68 

(dt, J = 8.2, 4.2 Hz, 1H), 7.39 (d, J = 8.0 Hz, 2H), 2.70 – 2.61 (m, 2H), 1.72 – 1.59 

(m, 2H), 0.94 (t, J = 7.3 Hz, 3H). 13C NMR (101 MHz, DMSO) δ 159.45, 158.28, 

151.18, 150.53, 146.98, 145.42, 136.03, 134.20, 129.12, 128.68, 128.45, 126.75, 

123.56, 115.55, 114.53, 37.58, 24.35, 14.11. HRMS (ESI) m/z calcd for [C22H20N4 + 

H]+ 341.1766, found 341.1773.  

Methyl 3-benzamidopicolinate (22) 

 

To a mixture of methyl 3-aminopicolinate (2.09 g, 5 mmol), and triethylamine 

(0.7 mL, 5 mmol) in chloroform (10 mL) was added acyl chloride (428 mg, 5.5 

mmol) dropwise at 5 °C. After stirring at room temperature for 2.5 h, the reaction 

mixture was diluted with chloroform and washed with saturated sodium bicarbonate 
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(30 mL) and brine (30 mL). The organic layer was dried over sodium sulfate and 

concentrated in vacuo. The resulting solid was recrystallized from ethyl acetate to 

obtain compound 22 as a white solid in 86% yield. 1H NMR (400 MHz, DMSO) δ 

11.32 (s, 1H), 8.74 (dd, J = 8.5, 1.5 Hz, 1H), 8.46 (dd, J = 4.5, 1.5 Hz, 1H), 8.01 – 

7.95 (m, 2H), 7.75 – 7.57 (m, 4H), 3.89 (s, 3H). 

2-Phenylpyrido[3,2-d]pyrimidin-4(3H)-one (23) 

 

To a solution of 22 (256 mg, 1 mmol) in methanol (20 mL) was added 28% 

aqueous ammonia (20 mL). After stirring at room temperature for 2 h, the reaction 

mixture was filtered to obtain a mixture of uncyclized benzamide. Isopropanol (5 mL) 

and 2 N sodium hydroxide (2 mL) were added and the crude mixture was heated at 

reflux for 3 h. The mixture was cooled, neutralized with 2 N HCl, and the solution 

was evaporated to obtain a precipitate which was collected to obtain 23 as a white 

solid in 60% yield. 1H NMR (400 MHz, DMSO) δ 12.83 (s, 1H), 8.79 (dd, J = 4.3, 1.5 

Hz, 1H), 8.23 – 8.13 (m, 3H), 7.84 (dd, J = 8.3, 4.3 Hz, 1H), 7.66 – 7.54 (m, 3H). 

4-Chloro-2-phenylpyrido[3,2-d]pyrimidine (24) 

 

Compound 23 (2 mmol) was added to DMF (5 mL) containing phosphorus 

oxychloride (0.47 mL, 5 mmol) and stirred for 10 min at room temperature. The 
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mixture was then refluxed for 2 h and the reaction was monitored by TLC. After 

completion of the reaction, excess phosphorus oxychloride was removed under 

reduced pressure and the residue poured into ice water (20 mL). Subsequently, the pH 

of the mixture was adjusted slowly to 7.0 with 25% NaOH solution and was extracted 

three times with dichloromethane (3×20 mL). The organic phase was collected, 

washed with brine (50 mL) and dried over magnesium sulfate. The solvent was 

removed under reduced pressure to obtain a white solid which was recrystallized from 

isopropanol in 94% yield. 1H NMR (400 MHz, DMSO) δ 9.17 (dd, J = 4.1, 1.5 Hz, 

1H), 8.60 – 8.47 (m, 3H), 8.13 (dd, J = 8.6, 4.1 Hz, 1H), 7.67 – 7.57 (m, 3H). 

General Procedure for the Preparation of the Substituted 4-

Anilinoquinazolinamines 25-36.  

4-Chloroquinazolinamine derivative 5 (48 mg, 0.2 mmol) or 24 (48 mg, 0.2 

mmol) was added to a solution of a para substituted aniline derivative (0.2 mmol) and 

triethylamine (0.2 mmol) in isopropanol (3 mL) to synthesize 25-27, 29-32, 34-36. 4-

In the case of compounds 28 and 33, 4-dimethylaminopyridine was used in place of 

triethylamine. The mixture was refluxed for a period of 3 h until completion of the 

reaction as indicated by TLC. The solvent was removed under reduced pressure and 

the remaining solid was purified with flash column. 
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2-Phenyl-N-(p-tolyl)pyrido[3,2-d]pyrimidin-4-amine (25) 

 

Compound 25 was synthesized as described in the general procedure as a yellow 

solid in 73% yield. mp. 161-162 °C; IR: 3333, 1597, 1563, 1409, 802 cm-1; 1H NMR 

(400 MHz, DMSO) δ 10.11 (s, 1H), 8.59 (dd, J = 14.2, 7.3 Hz, 3H), 8.41 (d, J = 8.3 

Hz, 2H), 8.10 (dd, J = 4.9, 1.5 Hz, 2H), 7.93 (d, J = 3.8 Hz, 2H), 7.67 (dt, J = 8.3, 4.1 

Hz, 1H), 7.41 (d, J = 8.3 Hz, 2H), 2.71 (q, J = 7.6 Hz, 2H), 1.25 (t, J = 7.6 Hz, 4H). 

13C NMR (101 MHz, DMSO) δ 160.29, 157.77, 149.06, 145.60, 138.40, 136.72, 

136.41, 133.21, 131.19, 131.12, 129.49, 129.13, 129.00, 128.60, 122.02, 21.03. 

HRMS (ESI) m/z calcd for [C20H16N4 + H]+ 313.1453, found 313.1465. 

N-(4-Ethylphenyl)-2-phenylpyrido[3,2-d]pyrimidin-4-amine (26) 

 

Compound 26 was synthesized as described in the general procedure as a yellow 

solid (65%), mp. 137-138 °C; IR: 3330, 2962, 1595, 1564, 823, 707 cm-1; 1H NMR 

(400 MHz, DMSO) δ 10.28 (s, 1H), 8.91 (dd, J = 4.2, 1.5 Hz, 1H), 8.55 – 8.45 (m, 

2H), 8.28 (dd, J = 8.5, 1.5 Hz, 1H), 8.07 (d, J = 8.5 Hz, 2H), 7.93 (dd, J = 8.5, 4.2 Hz, 

1H), 7.61 – 7.51 (m, 3H), 7.32 (d, J = 8.5 Hz, 2H), 2.65 (q, J = 7.5 Hz, 2H), 1.23 (t, J 
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= 7.6 Hz, 3H). 13C NMR (101 MHz, DMSO) δ 160.35, 157.72, 149.11, 145.53, 

139.69, 138.36, 136.87, 136.36, 131.15, 131.11, 129.14, 129.01, 128.60, 128.33, 

121.92, 28.14, 16.16. HRMS (ESI) m/z calcd for [C21H18N4 + H]+ 327.1610, found 

327.1620. 

2-Phenyl-N-(4-propylphenyl)pyrido[3,2-d]pyrimidin-4-amine (27) 

 

Compound 27 was synthesized as described in the general procedure as a yellow 

solid in 68% yield, mp. 117-119 °C; IR:3342, 2929, 1594, 1565, 803, 707 cm-1; 1H 

NMR (400 MHz, DMSO) δ 10.28 (s, 1H), 8.91 (dd, J = 4.2, 1.5 Hz, 1H), 8.49 (dd, J = 

6.6, 3.2 Hz, 2H), 8.29 (dd, J = 8.5, 1.5 Hz, 1H), 8.07 (d, J = 8.5 Hz, 2H), 7.93 (dd, J = 

8.5, 4.2 Hz, 1H), 7.56 (dd, J = 5.2, 1.8 Hz, 3H), 7.30 (d, J = 8.5 Hz, 2H), 2.64 – 2.56 

(m, 2H), 1.70 – 1.58 (m, 2H), 0.94 (t, J = 7.3 Hz, 3H). 13C NMR (101 MHz, DMSO) 

δ 160.33, 157.69, 149.06, 145.53, 138.37, 138.00, 136.93, 136.36, 131.12, 129.10, 

128.99, 128.89, 128.61, 121.80, 37.22, 24.60, 14.13. HRMS (ESI) m/z calcd for 

[C22H20N4 + H]+ 341.1766, found 341.1775.  

N-Phenyl-2-(pyridin-4-yl)quinazolin-4-amine (28) 
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Compound 28 was synthesized as described in the general procedure as a white 

solid in 85% yield, mp. 282-284 °C; IR:3261, 3043, 1554, 1523, 1411, 745 cm-1; 1H 

NMR (400 MHz, DMSO) δ 10.02 (s, 1H), 8.75 (d, J = 6.0 Hz, 2H), 8.63 (d, J = 8.4 

Hz, 1H), 8.28 (d, J = 6.0 Hz, 2H), 7.95 (dd, J = 9.9, 5.9 Hz, 4H), 7.74 – 7.66 (m, 1H), 

7.50 (t, J = 7.9 Hz, 2H), 7.21 (t, J = 7.4 Hz, 1H). 13C NMR (101 MHz, DMSO) δ 

158.67, 157.73, 150.72, 150.62, 145.99, 139.44, 134.01, 129.05, 128.82, 127.35, 

124.48, 123.62, 122.98, 122.23, 114.91. HRMS (ESI) m/z calcd for [C19H14N4 + H]+ 

299.1297, found 299.1303. 

N-(4-Cyclopropylphenyl)-2-(pyridin-4-yl)quinazolin-4-amine (29) 

 

Compound 29 was synthesized as described in the general procedure, yellow 

solid in 50% yield, mp. 231-232 °C; IR: 3003, 1515, 1409, 1363, 765 cm-1; 1H NMR 

(400 MHz, DMSO) δ 9.93 (s, 1H), 8.75 (d, J = 5.8 Hz, 2H), 8.60 (d, J = 8.4 Hz, 1H), 

8.34 – 8.21 (m, 2H), 7.91 (d, J = 3.7 Hz, 2H), 7.83 (d, J = 8.5 Hz, 2H), 7.74 – 7.61 

(m, 1H), 7.20 (d, J = 8.5 Hz, 2H), 2.03 – 1.92 (m, 1H), 1.03 – 0.92 (m, 2H), 0.79 – 

0.67 (m, 2H). 13C NMR (101 MHz, DMSO) δ 158.56, 157.79, 150.72, 150.58, 146.05, 

139.78, 136.80, 133.90, 128.79, 127.24, 125.89, 123.58, 122.89, 122.23, 114.92, 

15.26, 9.74. HRMS (ESI) m/z calcd for [C22H18N4 + H]+ 339.1610, found 339.1617.
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N-(4-Isopropylphenyl)-2-(pyridin-4-yl)quinazolin-4-amine (30) 

 

Compound 30 was synthesized as described in the general procedure as a yellow 

solid in 76% yield, mp. 225-226°C; IR: 2958, 1563, 1513, 1415, 764 cm-1; 1H NMR 

(400 MHz, DMSO) δ 9.95 (s, 1H), 8.84 – 8.70 (m, 2H), 8.63 (d, J = 8.3 Hz, 1H), 8.37 

– 8.20 (m, 2H), 7.91 (t, J = 5.7 Hz, 4H), 7.69 (dt, J = 8.3, 4.2 Hz, 1H), 7.36 (d, J = 8.5 

Hz, 2H), 2.95 (dt, J = 13.5, 6.7 Hz, 1H), 1.27 (s, 3H), 1.26 (s, 3H). 13C NMR (101 

MHz, DMSO) δ 158.55, 157.81, 150.73, 150.57, 146.05, 144.48, 137.24, 133.91, 

128.81, 127.25, 126.77, 123.60, 122.68, 122.24, 114.92, 33.46, 24.49. HRMS (ESI) 

m/z calcd for [C22H20N4 + H]+ 341.1766, found 341.1780.  

N-(3-Ethylphenyl)-2-(pyridin-4-yl)quinazolin-4-amine (31) 

 

Compound 31 was synthesized as described in the general procedure as a yellow 

solid in 78% yield, mp. 236-238°C; IR: 2963, 2440, 1568, 1378, 767 cm-1; 1H NMR 

(400 MHz, DMSO) δ 10.20 (s, 1H), 8.94 (d, J = 4.8 Hz, 2H), 8.68 (d, J = 8.1 Hz, 1H), 

8.58 (s, 2H), 7.99 (s, 2H), 7.81 – 7.69 (m, 3H), 7.40 (t, J = 7.9 Hz, 1H), 7.09 (d, J = 
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8.0 Hz, 1H), 2.71 (q, J = 7.4 Hz, 2H), 1.28 (t, J = 7.6 Hz, 3H). 13C NMR (101 MHz, 

DMSO) δ 158.95, 155.71, 145.11, 144.67, 138.93, 134.57, 128.99, 128.41, 124.62, 

124.36, 124.00, 122.84, 120.86, 114.99, 40.63, 40.42, 40.21, 40.00, 39.80, 39.59, 

39.38, 28.77, 16.10. HRMS (ESI) m/z calcd for [C21H18N4 + H]+ 327.1610, found 

327.1620.  

N-(3-Propylphenyl)-2-(pyridin-4-yl)quinazolin-4-amine (32) 

 

Compound 32 was synthesized as described in the general procedure as a yellow 

solid in 72% yield, mp. 205-207°C; IR: 2955, 1524, 1365, 787, 757 cm-1; 1H NMR 

(400 MHz, DMSO) δ 9.97 (s, 1H), 8.74 (d, J = 6.0 Hz, 2H), 8.63 (d, J = 8.3 Hz, 1H), 

8.29 (d, J = 6.0 Hz, 2H), 7.92 (d, J = 3.6 Hz, 2H), 7.84 (s, 1H), 7.74 (d, J = 8.9 Hz, 

1H), 7.72 – 7.65 (m, 1H), 7.39 (t, J = 7.8 Hz, 1H), 7.04 (d, J = 7.5 Hz, 1H), 2.68 – 

2.61 (m, 2H), 1.70 (dt, J = 14.5, 7.2 Hz, 2H), 0.98 (t, J = 7.3 Hz, 3H). 13C NMR (101 

MHz, DMSO) δ 158.65, 157.69, 150.65, 146.05, 142.90, 139.36, 133.97, 128.84, 

127.32, 124.65, 123.62, 123.00, 122.23, 120.36, 114.94, 37.94, 24.65, 14.19. HRMS 

(ESI) m/z calcd for [C22H20N4 + H]+ 341.1766, found 341.1779. 
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2-Nitro-4-((2-(pyridin-4-yl)quinazolin-4-yl)amino)phenol (33) 

 

Compound 33 was synthesized as described in the general procedure as a yellow 

solid in 83% yield, mp. 267-268°C; IR: 3427, 3194, 1527, 1487, 1224, 769 cm-1; 1H 

NMR (400 MHz, DMSO) δ 8.83 – 8.69 (m, 2H), 8.43 (d, J = 8.3 Hz, 1H), 8.14 (s, 

2H), 8.09 – 7.99 (m, 2H), 7.87 (s, 1H), 7.40 (d, J = 5.8 Hz, 2H), 7.06 (d, J = 8.9 Hz, 

1H), 5.91 (s, 2H). 13C NMR (101 MHz, DMSO) δ 167.04, 157.17, 152.03, 150.95, 

148.30, 144.29, 142.53, 135.93, 134.08, 129.37, 128.50, 126.09, 124.13, 121.88, 

120.28, 115.02, 108.96. HRMS (ESI) m/z calcd for [C19H13N5O3 + H]+ 360.1097, 

found 360.1103. 

N-(4-Methoxyphenyl)-2-(pyridin-4-yl)quinazolin-4-amine (34) 

 

Compound 34 was synthesized as described in the general procedure as a yellow 

solid in 85% yield. mp. 219-221 °C; IR: 3291, 1510, 1242, 823, 767 cm-1; 1H NMR 

(400 MHz, DMSO) δ 9.94 (s, 1H), 8.74 (d, J = 5.4 Hz, 2H), 8.58 (d, J = 8.3 Hz, 1H), 

8.26 (d, J = 5.4 Hz, 2H), 7.90 (d, J = 3.8 Hz, 2H), 7.82 (d, J = 8.8 Hz, 2H), 7.67 (dt, J 

= 8.0, 4.1 Hz, 1H), 7.07 (d, J = 8.8 Hz, 2H), 3.79 (d, J = 22.1 Hz, 3H). 13C NMR (101 
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MHz, DMSO) δ 158.64, 157.78, 156.38, 150.64, 150.51, 146.08, 133.75, 132.30, 

128.74, 127.10, 124.69, 123.51, 122.21, 114.85, 114.18, 55.72. HRMS (ESI) m/z 

calcd for [C20H16N4O + H]+ 329.1402, found 329.1411. 

N1-(2-(Pyridin-4-yl)quinazolin-4-yl)benzene-1,4-diamine (35) 

 

Compound 35 was synthesized as described in the general procedure as a pale 

white solid in 80% yield. mp. 301-303 °C; IR: 3445, 3363, 1556, 1512, 1411, 761 cm-

1; 1H NMR (400 MHz, DMSO) δ 9.78 (s, 1H), 8.73 (d, J = 5.0 Hz, 2H), 8.54 (d, J = 

8.3 Hz, 1H), 8.24 (d, J = 5.6 Hz, 2H), 7.86 (d, J = 3.8 Hz, 2H), 7.62 (dt, J = 8.1, 4.0 

Hz, 1H), 7.49 (d, J = 8.6 Hz, 2H), 6.69 (d, J = 8.6 Hz, 2H), 5.34 (s, 2H). 13C NMR 

(101 MHz, DMSO) δ 158.72, 157.86, 150.57, 150.47, 146.28, 145.79, 133.59, 128.64, 

128.13, 126.94, 124.98, 123.45, 122.20, 114.91, 114.34, 40.64, 40.43, 40.22, 40.01, 

39.80, 39.59, 39.38. HRMS (ESI) m/z calcd for [C19H15N5 + H]+ 314.1406, found 

314.1417.   

N,2-Di(pyridin-4-yl)quinazolin-4-amine (36) 

 

Compound 36 was synthesized as described in the general procedure as a yellow 
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solid in 80% yield. mp. 277-279 °C; IR: 2941, 1645, 1544, 1384, 1171, 776, 745 cm-1; 

1H NMR (400 MHz, DMSO) δ 9.07 (s, 1H), 8.87 (d, J = 5.9 Hz, 2H), 8.77 (d, J = 7.4 

Hz, 2H), 8.44 (d, J = 6.0 Hz, 2H), 8.36 (d, J = 8.4 Hz, 1H), 8.26 (t, J = 7.7 Hz, 1H), 

8.10 (d, J = 8.3 Hz, 1H), 7.95 (t, J = 7.6 Hz, 1H), 7.15 (d, J = 7.5 Hz, 2H). 13C NMR 

(101 MHz, DMSO) δ 161.10, 159.91, 157.58, 153.59, 151.26, 143.73, 142.83, 136.86, 

130.84, 129.49, 124.93, 122.36, 117.73, 109.92, 40.63, 40.42, 40.22, 40.01, 39.80, 

39.59, 39.38. HRMS (ESI) m/z calcd for [C18H13N5 + H]+ 300.1249, found 300.1285. 

N-(4-Isothiocyanatophenyl)-2-(pyridin-4-yl)quinazolin-4-amine (37) 

 

A solution of amine 35 (31 mg, 0.1 mmol) in dichloromethane (10 mL) was 

treated dropwise with a solution of di-2-pyridyl thionocarbonate (23 mg, 0.11 mmol) 

in dicholoromethane (1 mL) over a period of 1 min with vigorous stirring at room 

temperature. The precipitates were filtered and recrystallized from ethyl acetate to 

obtain a white solid in 73% yield, mp. 307-309 °C; IR: 3279, 3039, 2053, 1491, 1410, 

749 cm-1; 1H NMR (400 MHz, DMSO) δ 10.15 (s, 1H), 8.77 (d, J = 5.0 Hz, 2H), 8.61 

(d, J = 8.4 Hz, 1H), 8.29 (d, J = 4.9 Hz, 2H), 8.15 – 8.02 (m, 2H), 7.95 (d, J = 3.4 Hz, 

2H), 7.79 – 7.67 (m, 1H), 7.57 (d, J = 8.6 Hz, 2H). 13C NMR (101 MHz, DMSO) δ 

158.39, 157.61, 150.81, 150.71, 145.78, 139.21, 134.24, 133.50, 128.91, 127.56, 

126.84, 125.29, 123.65, 123.56, 122.26, 114.94. HRMS (ESI) m/z calcd for 
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[C20H13N5S + H]+ 356.0970, found 356.0985. 

2-Bromo-N-(4-((2-(pyridin-4-yl)quinazolin-4-yl)amino)phenyl)acetamide (38) 

 

A solution of amine 35 (62 mg, 0.2 mmol) in dichloromethane (2 mL) was treated 

dropwise with a solution of bromoacetylbromide (25 mg, 0.2 mmol) in 

dichloromethane (1 mL) over a period of 1 min with vigorous stirring at 0 °C. The 

reaction was stirred at room temperature for 24 h. Then water (10 mL) was added into 

the mixture, and the precipitates were filtered and recrystallized from ethyl acetate to 

obtain a yellow solid in 72% yield, mp. 336-338 °C; IR: 3033, 1566, 1510, 763 cm-1; 

1H NMR (400 MHz, DMSO) δ 10.49 (s, 1H), 10.15 (s, 1H), 8.87 (d, J = 5.2 Hz, 2H), 

8.63 (d, J = 8.2 Hz, 1H), 8.46 (d, J = 4.8 Hz, 2H), 7.95 (d, J = 3.8 Hz, 2H), 7.88 (d, J 

= 8.8 Hz, 2H), 7.72 (d, J = 8.7 Hz, 3H), 4.08 (s, 2H). 13C NMR (101 MHz, TFA) δ 

169.70, 159.95, 151.90, 147.91, 142.88, 138.31, 138.12, 135.44, 132.91, 131.48, 

126.93, 125.42, 123.09, 122.84, 120.14, 112.46, 25.86. HRMS (ESI) m/z calcd for 

[C21H16BrN5O + H]+ 434.0616, found 434.0627. 

N-(4-((2-(Pyridin-4-yl)quinazolin-4-yl)amino)phenyl)acetamide (39)
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To a solution of amine 35 (62 mg, 0.2 mmol) and triethylamine (0.28 mL, 2 

mmol) in dichloromethane (5 mL), acetic anhydride (0.02 mL, 0.2 mmol) was added. 

The reaction mixture was stirred at room temperature for 1 h. The precipitates were 

filtered and recrystallized from ethyl acetate to obtain a white solid in 85% yield, mp. 

367-369 °C; IR: 3341, 3038, 1670, 1560, 1510, 760 cm-1; 1H NMR (400 MHz, 

DMSO) δ 9.98 (d, J = 8.7 Hz, 2H), 8.75 (d, J = 5.1 Hz, 2H), 8.60 (d, J = 8.2 Hz, 1H), 

8.27 (d, J = 4.9 Hz, 2H), 7.91 (d, J = 3.8 Hz, 2H), 7.84 (d, J = 8.6 Hz, 2H), 7.69 (d, J 

= 8.8 Hz, 3H), 2.05 (d, J = 27.1 Hz, 3H). 13C NMR (101 MHz, DMSO) δ 168.74, 

158.61, 157.78, 150.68, 150.54, 146.06, 136.01, 134.43, 133.95, 128.76, 127.30, 

123.56, 123.50, 122.24, 119.60, 114.84, 24.40. HRMS (ESI) m/z calcd for 

[C21H17N5O + H]+ 356.1511, found 356.1521.  

N-(4-Azidophenyl)-2-(pyridin-4-yl)quinazolin-4-amine (40) 

  

A solution of amine 35 (62 mg, 0.2 mmol) in water (2 mL) was treated dropwise 

with conc. hydrochloric acid (0.2 mL) and stirred at 0 °C, followed by dropwise 

addition of sodium nitrite (14 mg, 0.2 mmol) dissolved in water (1 mL) at 0 °C. A 

solution of sodium azide (13 mg, 0.2 mmol) in water (1 mL) was then added to the 

reaction mixture at 0 °C and the reaction mixture was stirred for 2 h at room 

temperature. After the reaction was stirred at room temperature for 2 h, 5 mL of water 
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was added, and the precipitates were filtered and recrystallized from ethyl acetate to 

obtain a yellow solid in 59% yield, mp. 304-305 °C; IR: 3324, 3033, 2114, 1505, 

1410, 761 cm-1; 1H NMR (400 MHz, DMSO) δ 10.06 (s, 1H), 8.77 (s, 2H), 8.61 (d, J 

= 8.4 Hz, 1H), 8.30 (s, 2H), 8.09 – 7.97 (m, 2H), 7.94 (d, J = 3.5 Hz, 2H), 7.76 – 7.65 

(m, 1H), 7.27 (d, J = 8.6 Hz, 2H). 13C NMR (101 MHz, DMSO) δ 158.55, 157.69, 

150.67, 150.60, 145.99, 136.69, 135.02, 134.06, 128.84, 127.41, 124.41, 123.59, 

119.76, 114.89. HRMS (ESI) m/z calcd for [C19H13N7 + H]+ 340.1311, found 

340.1319. 

3.2. Cell Lines and Cell Culture  

The human lung cancer cell line H460, and its MX-selected derivative BCRP-

overexpressing cell line, H460/MX20, were used in this study. The KB-C2 cell line 

was selected by colchicine (Alfa Aesar, Haverhill, MA) (2 μg/mL) with human 

cervical carcinoma cell line KB-3-1. All the cell lines were maintained in Dulbecco's 

Modified Eagle Medium (Corning Inc.) containing 10% fetal bovine serum (Gibco 

Inc.) and 1% penicillin/streptomycin (Gibco Inc.) at 37 ºC with 5% CO2. 

3.3. MTT Assay 

Cytotoxicity tests and reversal experiments were performed using the MTT 

colorimetric assay.66 Cells were seeded evenly into 96-well plates. To determine the 

cytotoxicity of the quinazolinamine derivatives, incremental concentrations of each 

drug were added into the well after 24 h of incubation. To determine the MDR 

reversal efficacy of the quinazolinamine derivatives, an anticancer drug 

(mitoxantrone, colchicine, paclitaxel or cisplatin) was added into the designated wells 



46 
 

after 2 h pre-incubation with a quinazolinamine derivative or a positive control 

inhibitor at non-toxic concentrations. After 72 h of drug incubation, the MTT reagent 

(4 mg/mL) was added into the wells, and then the plates were incubated for an 

additional 4 h. Subsequently, the supernatant was discarded and 100 µL of DMSO 

was added to dissolve the formazan crystals. Cell viability was determined by 

measuring the absorbance at a wavelength of 570 nm.  

3.4. Metabolic Stability Study 

Human liver microsome (20 mg/mL) 6.25 µL, nicotinamide adenine dinucleotide 

phosphate (NADPH) (0.75 µmol), MgCl2 (0.75 µmol), and the test compound (0.05 

µmol) were added into potassium phosphate buffer (pH 7.4) with 250 µL of final 

volume.67 The incubation was carried out aerobically at 37 ºC. The mixture was pre-

incubated without NADPH for 10 min at 37 ºC and NADPH was added to start the 

reaction. At 1 h after the start of reaction, an aliquot (50 µL) of the incubation mixture 

was taken from each incubation and mixed with 150 µL of ice-cold acetonitrile to 

terminate the reaction. Subsequently, the sample was centrifuged (12,000 rpm) at 

room temperature. The resulting supernatant was filtered and analyzed using HPLC 

(LC, Agilent 1200; column, HC-C18(2); column temperature, 25 ºC; mobile phase, 

solvent A, methanol, solvent B, water; gradient elution, 30-99% solvent A; flow rate, 

1 mL/min; UV signals were recorded at 254 nm). 

3.5. Drug Accumulation Assay 

To determine the accumulation of drugs on H460, H460/MX20, KB-3-1, and KB-

C2 cells, the cells (2.5×106 cells/well) were seeded in the 24-well plates and incubated 
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at 37 ºC with 5% CO2.68 After 12 h of incubation, a test compound (5 µM) was added 

and the plates were incubated at 37ºC for 2 h. Cells were then incubated with 0.01 

µM [3H]-MX or [3H]-paclitaxel–containing medium for an additional 2 h at 37°C, 

with or without a test compound. The cells were washed twice with ice-cold PBS, 

trypsinized and lysed at the end of incubation. The radioactivity was measured using 

the Packard TRICARB1 1900A liquid scintillation analyzer. 

3.6. Western Blot Analysis 

Cells in T25 flask were washed with ice-cold PBS. Lysis buffer (100 µL) was 

added into T25 flask. Using a cell scraper, scrape adherent cells were scraped off the 

flask and the cell suspension was transferred into a microcentrifuge tube (1.5 mL). 

Cells were agitated for 20 min at 4°C and cell lysate was centrifuged mixture at 4°C 

for 20 min at 12,000 rpm. The supernatant (lysate) was used for the gel 

electrophoresis. Equal amounts of total cell lysates (20 µg protein) were resolved by 

sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and 

electrophoretically transferred onto polyvinylidene fluoride (PVDF) membranes.69 

After incubation in a blocking solution (5% milk) for 2 h at room temperature, the 

membranes were incubated overnight with primary monoclonal antibodies against 

GAPDH (GA1R) (Invitrogen, Carlsbad, CA) at 1:1000 dilution of BCRP protein 

(BXP 21) (Sigma-Aldrich, Inc., St. Louis, MO) (1:1000) or P-gp (F4) (Sigma-Aldrich, 

Inc., St. Louis, MO) at 4 ºC, and were further incubated with horseradish peroxide 

(HRP)-conjugated secondary antibody (Thermo Fisher Scientific Inc.) at 1:1000 

dilution for 2 h at room temperature. The protein antibody complex was detected 
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using an enhanced chemiluminescence detection system. The Grayscale ratio was 

analyzed by ImageJ and normalized by the grayscale of the ABC protein divided by 

that of GAPDH. 

3.7. Immunofluorescence Assay 

For immunofluorescence analysis, parental and drug-resistant cells were seeded 

in 24-well plates at 10,000-20,000 cells/well and incubated for 24 h.70 The cells were 

incubated with or without cyclopropyl quinazolinamine 29 or azide quinazolinamine 

40 for 24 h, 48 h, and 72 h. Thereafter, cells were washed with PBS and fixed with 

4% paraformaldehyde for 10 min at room temperature and then rinsed with PBS 

twice, followed by permeabilization with 1% Triton X-100 for 10 min at 4 ºC. The 

cells were again washed twice with PBS, and then blocked with 6% BSA for 1 h at 37 

ºC. Fixed cells were incubated with monoclonal antibody against the BCRP protein 

(BXP 21) (Sigma-Aldrich, Inc., St. Louis, MO) (1:1000) or P-gp (F4) (Sigma-Aldrich, 

Inc., St. Louis, MO) overnight at 4 ºC, followed by two washes with PBS. The cells 

were then further incubated with Alexa flour 488 goat anti-mouse IgG (1:1000) 

(Abcam plc.) for 2 h at 37 ºC. After the cells were washed twice with PBS, 4’,6-

diamidino-2-phenylindole (DAPI) (2 µg/mL) was used for nuclear counterstaining. 

The immunofluorescence images were generated using a Nikon TE-2000S 

fluorescence microscope (Nikon Instruments Inc, Melville, NY). 

3.8. ATPase Assay 

The Vi-sensitive ATPase activities were determined as previously described, 

using the PREDEASY ATPase assay kit.71 The results were presented as vanadate-
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sensitive ATPase activities by determining the difference in inorganic phosphate 

liberation measured in the presence and absence of sodium orthovanadate. 

3.9. Molecular Modeling 

Molecular modeling was performed in Maestro v11.1 (Schrodinger, LLC, New 

York, NY, 2020) software as described previously.72 The protein preparation of the 

wild-type human BCRP (PDB ID: 6FFC)73 or human P-gp (PDB ID: 6FN1)74 was 

performed and the grid was generated by selecting residues in the binding pocket of 

the proteins. The ligands were essentially prepared through LigPrep module. The 

best-scored ligands were obtained through Glide XP docking and used for graphical 

analysis.  
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Chapter 4. Results and Discussion 

4.1. Chemistry 

The quinazolinamines 6-8 were synthesized via the following reactions (Scheme 

1): cyclic condensation reaction of amide and aldehyde; chlorination of 

quinazolinone; and then nucleophilic aromatic substitution. As shown in Scheme 1, 2-

substituted quinazolinone 4 was synthesized58 by a cyclic condensation reaction of 

anthranilamide with 4-pyridinecarboxaldehyde. Subsequently, the quinazolinone 

derivative was refluxed with phosphorus oxychloride to obtain 4-

chloroquinazolinamine derivative 5. Nucleophilic aromatic substitution of the 4-

chloroquinazolinamine derivative with para-substituted aniline derivatives was 

carried out under microwave irradiation to obtain methyl, ethyl, and propyl 

quinazolinamines 6-8 in 56-77% yields, respectively. We found that the 

quinazolinamines 6-8 can also be synthesized by the catalysis of triethylamine with 

traditional heating. In addition, the results showed that microwave irradiation did not 

shorten the reaction time significantly. Therefore, the other target compounds were 

synthesized with traditional heating instead of the microwave method.  
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Scheme 1. The synthesis of 6-8. 

Attempted synthesis of 13 using the same method as the synthesis of quinazolone 

derivative 4, led to compound 13 (29%) and a byproduct dihydroquinazolone 

derivative 9 (10%) (Scheme 2). 1H NMR spectrum of compound 9 exhibited a singlet 

at 5.7 ppm for the proton at position 2 of the dihydroquinazolone ring (Figure 10), a 

singlet for the amine proton at 7.1 ppm, and a singlet for the amide proton at 8.3 ppm. 

1H NMR spectrum of compound 13 exhibited a singlet for the amide proton at 12.5 

ppm and no proton peak in the range of 5.7 ppm or 7.1 ppm (Figure 11). The reaction 

mechanism of the synthesis of quinazolinones is shown in Scheme 3. 2-

Aminobenzamides and aldehyde reacted to produce the intermediate 10, followed by 

cyclization to form the intermediate 11 under the catalysis of molecular iodine. 

Intermediate 11 is then transformed to 4-quinazolinone 12 by oxidation with 

molecular iodine and molecular oxygen. In addition, hydrogen iodide generated by 

the oxidation of intermediate 11, is reoxidized to molecular iodine.75 
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Scheme 2. The synthesis of 9. 

 

Figure 10. 1H NMR (400 MHz, d6-DMSO) of 9. 
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Figure 11. 1H NMR (400 MHz, d6-DMSO) of 13. 

  
Scheme 3. Plausible pathway of synthesis of 2-aryl-4-quinazolinones. 

Synthesis of compounds 13-15 via the catalysis of iodine and oxidation by 

oxygen in EtOH (Scheme 4) led to 83%, 84%, and 98% yields, respectively. 

Compounds 16-18 were obtained through chlorination of corresponding 

quinazolinones 13-15, followed by nucleophilic aromatic substitution to produce the 

desired target quinazoliamine derivatives 19-21. 
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Scheme 4. The synthesis of 19-21. 

 Compound 23 could not be obtained successfully from 3-aminopicolinamide by 

the catalysis of iodine. Therefore, a two-step synthesis starting with methyl-3-

aminopicolinate was used to obtain compound 23 via compound 22 as shown in 

Scheme 5. Acylation of the amino group of methyl 3-aminopicolinate with phenyl 

acyl chloride provided benzamidopicolinate 22. Treatment of compound 22 with 

aqueous ammonium hydroxide followed by cyclization with aqueous sodium 

hydroxide provided quinazolinone 23 in 60% yield.76 Chloroquinazolinamine 

derivative 24 was synthesized using phosphorus oxychloride as described previously. 

Quinazolinamine derivatives 25-27 were obtained by reacting compound 24 with 

substituted anilines in presence of triethylamine in 65-73% yields. 
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Scheme 5. The synthesis of 25-27. 

Based on the MTT assay results, quinazolinamine derivatives 7 and 8 with 

scaffold A showed higher potency as BCRP inhibitors than those compounds with 

scaffolds B or C, decreasing the IC50 values of mitoxantrone from 5.66 µM to 0.27 

and 0.23 µM, respectively. Thus, additional quinazolinamine derivatives with scaffold 

A were synthesized in an effort to discover more potent reversal agents of BCRP and 

to further investigate the structure-activity relationship of the quinazolinamines as 

reversal agents of P-gp. Synthesis of target compounds 28-40 is shown in Schemes 6 

and 7. Target compounds 28-36 were synthesized from compound 5 in a similar 

fashion as compounds 6-8. Nucleophilic aromatic substitution of the 4-

chloroquinazolinamine derivatives with various substituted aniline derivatives was 

carried out to obtain the desired quinazolinamines 28-36. It should be noted that the 

synthesis of compounds 28 and 33 required 4-dimethylaminopyridine as a base 

instead of triethylamine.  

Isothiocyanate derivative 37 was obtained by treating amino derivative 35 
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dropwise with a solution of di-2-pyridyl thionocarbonate in dicholoromethane. The IR 

spectrum of target compound 37 exhibited a peak characteristic of the isothiocyanate 

group at 2053 cm-1 (Figure 12). A solution of amine 35 was reacted with a solution of 

bromoacetylbromide in dichloromethane to obtain the bromoacetamide derivative 38. 

Bending band of C(=O)N-H at 1510 cm-1, and comb bands C-N & N-H at 1566 cm-1 

show the formation of bromoacetamide group in the infrared spectrum of compound 

38 (Figure 13). Acetamide 39 was synthesized by the reaction of amine 35 and acetic 

anhydride in the presence of triethylamine. Bending band of C(=O)N-H at 1510 cm-1, 

and comb bands C-N & N-H at 1560 cm-1 in the infrared spectrum reflect the 

formation of acetamide derivative 39 (Figure 14). Treatment of amine 35 dropwise 

with conc. HCl at 0 °C, followed by the reaction with sodium nitrite to produce 

diazonium salt, and subsequent reaction with sodium azide led to azide 

quinazolinamine derivative 40. A stretching band at 2115 cm-1 in the infrared 

spectrum is observed confirming the formation of the azide derivative 40 (Figure 15).  

 

Scheme 6. The synthesis of 28-36. 
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Scheme 7. The synthesis of 37-40. 

 

Figure 12. IR spectrum of 37 

isothiocyanate 

peak 
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Figure 13. IR spectrum of 38 

Figure 14. IR spectrum of 39 

 

Figure 15. IR spectrum of 40 

azide peak 
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4.2. Cytotoxicity and Reversal Study on BCRP 

The cytotoxicities of quinazolinamine derivatives were tested to determine the 

concentrations of quinazolinamines needed for reversal study. Quinazolinamine 

derivatives 6-8, 19-21, and 25-27 exhibited low cytotoxicity toward the parental H460 

and BCRP-overexperssing H460/MX20 cell lines at which the compounds decreased 

the viability of H460 and H460/MX20 cell lines by less than 20%. (Table 2). Next, 

the reversal assays were conducted on drug-resistant H460/MX20 cell line at 5 μM 

concentration of the quinazolinamine derivatives 6-8, 19-21, and 25-27. Based on the 

MTT assay (Table 3), ethyl and propyl substituted derivatives 7 and 8 exhibit the 

strongest reversal activities on BCRP-mediated MDR. Mitoxantrone is a known 

BCRP substrate. The IC50 value of MX on H460 and H460/MX20 are 0.072 μM and 

5.66 μM, respectively. In combination with most of the quinazolinamine derivatives, 

the IC50 value of MX on H460/MX20 decreased. Ko 143, a known BCRP inhibitor, 

can effectively decrease the IC50 value of MX on H460/MX20 to 0.18 μM. The 

efficacies of compounds 7 and 8 with scaffold A are comparable to Ko143, decreasing 

the IC50 values of MX on H460/MX20 to 0.27 μM and 0.23 μM, respectively.  

Table 2. The cytotoxicities of quinazolinamine derivatives 6-8, 19-21, and 25-27 on 

H460 and H460/MX20 cell lines. 

Treatments 
IC50 ± SD (μM)  

H460 H460/MX20 

6 >100 >100 

7 >100 >100 
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8 >100 >100 

19 24.8 ± 1.8 >100 

20 38.3 ± 0.2 27.4 ± 0.9 

21 59.7 ± 2.8 39.6 ± 6.6 

25 >100 >100 

26 >100 >100 

27 >100 >100 

Table 3. The reversal effects of quinazolinamine derivatives 6-8, 19-21, and 25-27 

on BCRP-mediated MDR cell line H460/MX20. 

Treatments 
IC50 ± SD (μM)  

H460 H460/MX20 

Mitoxantrone 0.072 ± 0.009 5.66 ± 0.29 

+ 6 (5 μM) 0.052 ± 0.005 0.47 ± 0.02 

+ 7 (5 μM) 0.054 ± 0.003 0.27 ± 0.01 

+ 8 (5 μM) 0.045 ± 0.006 0.23 ± 0.02 

+ 19 (5 μM) 0.059 ± 0.001 4.82 ± 0.22 

+ 20 (5 μM) 0.048 ± 0.003 0.32 ± 0.02 

+ 21 (5 μM) 0.054 ± 0.001 0.41 ± 0.07 

+ 25 (5 μM) 0.063 ± 0.014 0.65 ± 0.06 

+ 26 (5 μM) 0.064 ± 0.006 0.88 ± 0.08 

+ 27 (5 μM) 0.053 ± 0.006 1.04 ± 0.12 

+ Ko143 (5 μM) 0.029 ± 0.004 0.18 ± 0.02 

 

MTT assays on target compounds 28-40 were conducted to determine whether 

these quinazolinamine derivatives at the concentration of 5 μM are non-toxic to H460 

and H460/MX20 cell lines (Table 4). The results showed that the derivatives 
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exhibited low cytotoxicities on the H460 and H460/MX20 cell lines and did not 

decrease the viability of the cells by more than 20%. Thus, the reversal activities of 

quinazolinamine derivatives were determined at 5 μM. Target compounds 29-32 and 

34 were found to be most potent with potencies similar to those of 7 or 8 (Table 5). 

The IC50 value of mitoxantrone was found to be 0.42 μM when combined with azide 

40 (5 μM), but upon UV activation at 254 nm, its IC50 value decreased to 0.19 μM. It 

is hypothesized that the covalent binding of azide 40 with BCRP may have reduced 

the off-target effect. Gefitinib showed the most potent inhibition on BCRP, decreasing 

the IC50 value of mitoxantrone to 0.13 μM. 

Table 4. The cytotoxicities of quinazolinamine derivatives 28-40 on H460 and 

H460/MX20 cell lines. 

Compd. 
IC50 ± SD (μM)  

H460 H460/MX20 

28 >100 >100 

29 31.0 ± 2.7 31.0 ± 0.8 

30 51.2 ± 3.3 16.9 ± 3.2 

31 >100 >100 

32 >100 >100 

33 >100 >100 

34 >100 >100 

35 >100 >100 

36 >100 >100 

37 >100 31.1 ± 5.5 

38 >100 >100 

39 >100 >100 
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40 >100 >100 

Gefitinib 65.5 ± 3.2  36.5 ±1.1 
 

Table 5. The reversal effects of quinazolinamine compounds 28-40 on BCRP-

mediated MDR cell line H460/MX20. 

Treatments 
IC50 ± SD (μM)  

H460 H460/MX20 

Mitoxantrone 0.154 ± 0.051 6.50 ± 0.14 

+ 28 (5 μM) 0.073 ± 0.007 0.44 ± 0.02 

+ 29 (5 μM) 0.103 ± 0.003 0.30 ± 0.01 

+ 30 (5 μM) 0.070 ± 0.006 0.24 ± 0.02 

+ 31 (5 μM) 0.078 ± 0.023 0.29 ± 0.02 

+ 32 (5 μM) 0.075 ± 0.004 0.30 ± 0.01 

+ 33 (5 μM) 0.052 ± 0.004 0.61 ± 0.04 

+ 34 (5 μM) 0.081 ± 0.008 0.32 ± 0.04 

+ 35 (5 μM) 0.076 ± 0.002 0.54 ± 0.08 

+ 36 (5 μM) 0.082 ± 0.013 4.11 ± 0.29 

+ 37 (5 μM) 0.091 ± 0.004 4.58 ± 0.41 

+ 38 (5 μM) 0.083 ± 0.019 5.41 ± 0.55 

+ 39 (5 μM) 0.110 ± 0.011 1.92 ± 0.47 

+ 40 (5 μM) 0.074 ± 0.013 0.42 ± 0.04 

+ 7 (5 μM) 0.102 ± 0.007 0.34 ± 0.02 

+ 8 (5 μM) 0.081 ± 0.002 0.35 ± 0.01 

+ 40 (5 μM) + UV 0.065 ± 0.013 0.19 ± 0.01 

+ Ko143 (5 μM) 0.070 ± 0.008 0.25 ± 0.05 

+ gefitinib (5 μM) 0.029 ± 0.005 0.13 ± 0.02 
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4.3. Cytotoxicities and Reversal Effects on P-gp 

Inhibitory activities of the quinazolinamines derivatives 6-8, 19-21, and 25-40 on 

P-gp were studied to investigate the selectivity of these compounds. As shown in 

Table 6, the quinazolinamine derivatives exhibit low cytotoxicity at 5 μM 

concentration toward the parental KB-3-1 and P-gp-overexperssing KB-C2 cell lines. 

Hence, the reversal assays were conducted on drug-resistant KB-C2 cell line with the 

quinazolinamine derivatives at the concentration of 5 μM. The results indicated that 

compounds 7-8, 20, 29-32, and 34 exhibit potent P-gp inhibitory effect (Figure 16). 

When these quinazolinamines were combined with a P-gp substrate, colchicine (0.5 

μM), the survival rate of KB-C2 cells dramatically decreased, compared to the 

colchicine alone. Therefore, these eight compounds were further investigated, and it 

was found that compounds 7-8, 29-31, 34 exhibited higher potency than verapamil 

and gefitinib (Figure 17). The results indicated that, in combination with compounds 

7-8, 29-31, 34, the IC50 value of colchicine on KB-C2 cells were decreased 

dramatically from 7.34 μM to lower than 0.30 μM, while verapamil and gefitinib 

decreased the IC50 value of colchicine to 0.43 and 0.55 μM, respectively. In addition, 

azide derivative 40 did not show potent inhibition on the P-gp with IC50 value of 6.05 

μM for colchicine after the combination. 
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Table 6. The cytotoxicities of quinazolinamine derivatives 6-8, 19-21, and 25-40 on 

KB-3-1 and KB-C2 cell lines. 

Compd. 
IC50 ± SD (μM)  

KB-3-1 KB-C2 

6 >100 >100 

7 >100 >100 
8 >100 >100 

19 24.4 ± 3.4 26.9 ± 0.5 

20 16.3 ± 1.5 37.7 ± 0.2 

21 36.8 ± 3.7 55.7 ± 7.7 

25 >100 >100 

26 >100 >100 

27 >100 >100 

28 >100 >100 

29 >100 >100 

30 12.7 ± 2.3 72.0 ± 11.2 

31 60.9 ± 11.6 >100 

32 >100 >100 

33 >100 >100 

34 >100 >100 

35 14.5 ± 3.1 >100 

36 >100 >100 

37 33.2 ± 4.1 >100 

38 50.6 ± 2.9 >100 

39 >100 >100 

40 >100 >100 

Gefitinib 56.1 ± 13.8 41.7 ± 4.0 
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Figure 16. The reversal effects of quinazolinamine derivatives 6-8, 19-21, and 25-40 
on P-gp-mediated MDR cell line KB-C2. 
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Figure 17. The reversal effects of quinazolinamine derivatives on P-gp-mediated MDR 
cell line KB-C2. 

4.4. Metabolic Stability Study 

Ko 143, as a potent BCRP inhibitor, is widely used as a positive control BCRP 

inhibitor in the scientific research. However, Ko 143 has limitation for clinical use 

due to the low metabolic stability in vivo. 77 Therefore, the design of metabolically 
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more stable reversal agents for BCRP-mediated MDR is highly desired. 

Human liver microsomes contain a wide variety of membrane bound drug 

metabolizing CYP450 enzymes,78 derived from human liver where the drugs are 

mainly metabolized. Thus, in vitro metabolic stability testing with human liver 

microsomes has been commonly used to predict the in vivo hepatic metabolism of the 

drugs in the human body.79 The potent BCRP and P-gp inhibitors 7-8, 29-31, 34, and 

potent BCRP inhibitor azide 40 were selected for metabolic stability study. The results 

showed that 80-92% of the seven quinazolinamine derivatives remained after 1 h 

incubation with human liver microsomes, indicating that these compounds have 

higher metabolic stability than Ko143 (Table 7). Thus, these quinazolinamines could 

be valuable and suitable for clinical application in the future. Significantly, 92% of 

cyclopropyl derivative 29 remained after incubation with human liver microsomes 

compared to 41% of Ko143. It has been reported that cyclopropyl group can enhance 

potency, reduce off-target effects, increase metabolic stability, increase brain 

permeability, decrease plasma clearance, contribute to an entropically more favorable 

binding to the receptor, restrict the conformation of peptides/peptidomimetics to 

prevent proteolytic hydrolysis, and alter drug pKa.80 Since the results showed that 

compound 29 is a potent BCRP and P-gp inhibitor with high metabolic stability, it 

was selected for investigation of its mechanism in reversing the MDR mediated by 

BCRP and P-gp. In addition, azide derivative 40 was found to be a potent BCRP 

inhibitor indicating the strong binding with BCRP. Therefore, compound 40 with a 

photoaffinity label was also considered to be suitable for further investigation to learn 
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about the binding mode of quinazolinamines to BCRP protein.  

Table 7. Metabolic stability of selected quinazolinamine derivatives with human 

liver microsomes 

Compd. Metabolic stabilitya /% 

7 87 ± 12 

8 80 ± 5 

29 92 ± 8 

30 75 ± 6 

31 91 ± 3 

34 83 ± 1 

40 86 ± 11 

Ko143 41 ± 7 

a Metabolic stability was calculated as the % compound remaining after 1 h of 

incubation with human liver microsomes. 

4.5 The Reversal Study of 29 (VKCY-1) and 40 (VKCY-2) in Combination with 

Anticancer Drugs 

Reversal study was conducted to further investigate the effects of compounds 29 

and 40 in combination with BCRP substrate -- mitoxantrone, P-gp substrate -- paclitaxel, 

or a non-substrate of both pumps--cisplatin. The results showed that the reversal effects 

of compound 29 (VKCY-1) on P-gp is not limited to one substrate (Figure 18A). It can 

sensitize KB-C2 cells to the anticancer drug, paclitaxel, in addition to colchicine. A non 

BCRP or P-gp substrate, cisplatin, was used as a negative control (Figure 18B, 18C). 

The results suggested that the sensitizing effects of compounds 29 (VKCY-1) and 40 

(VKCY-2) is limited to BCRP and/or P-gp substrates for ABC transporter mediated 
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MDR cancer cell lines. 
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Figure 18. The reversal study of compounds 29 and 40 in combination with anticancer 
drugs. (A) The reversal study of compound 29 with paclitaxel on P-gp-mediated MDR 
cell line KB-C2. (B) The reversal study of compounds 29 and 40 with cisplatin on 
BCRP-mediated MDR cell line H460/MX20. (C) The reversal study of compound 29 
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with cisplatin on P-gp-mediated MDR cell line KB-C2.  

4.6. Drug Accumulation Assay  

Drug accumulation assays were conducted to determine the effects of cyclopropyl 

derivative 29 and azide derivative 40 on the accumulation of mitoxantrone in H460 or 

H460/MX20 cells, or paclitaxel in KB-3-1 and KB-C2 cells. The results of 

accumulation assay showed that both cyclopropyl derivative 29 and azide 40 can 

slightly increase the accumulation of mitoxantrone in parental H460 cells (Figure 

19A). Since low level of BCRP transporter is expressed in H460 cells, compounds 29 

and 40 can also inhibit the efflux function of BCRP in H460 cell. In addition, the two 

compounds increased the accumulation of mitoxantrone in resistant H460/MX20 cells 

which overexpressed BCRP transporter. Treatment of compound 40 followed by UV 

light activation, showed that accumulation of mitoxantrone was increased compared 

to the group without activation. It explained the reason why IC50 value of 

mitoxantrone for the activated 40 treatment group (Table 5) was lower than that of the 

unactivated 40 treatment group. In addition, 29 did not increase the accumulation of 

paclitaxel in the parental cells KB-3-1, while 29 significantly increased the 

accumulation of paclitaxel in the resistant cell line KB-C2 (Figure 19B). When in 

combination with 29 or 40, the accumulation of mitoxantrone and paclitaxel in MDR 

cells were enhanced and viability of cancer cells decreased. It explained why the IC50 

values of mitoxantrone and paclitaxel decreased when they were combined with 29 or 

40. 
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Figure 19. The effect of 29 and 40 on the accumulation of mitoxantrone on 
H460/MX20 or paclitaxel on KB-C2 cells. 

4.7. Western Blot Assay 

Western blot assays were conducted to investigate the effects of compounds 29 

and 40 on the expression levels of BCRP or P-gp proteins. It was observed that 

compound 29 did not alter the expression level of BCRP on H460/MX20 cells, nor 

did it change the P-gp expression on KB-C2 cells (Figure 20). The BCRP expression 

level on H460/MX20 cells was not altered by compound 40 (Figure 21). Thus, it was 

concluded that blocking the efflux function of BCRP or P-gp was not due to the 

downregulation of expression level. 
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Figure 20. The effect of 29 on BCRP and P-gp expression level in drug resistant cell 
lines. 

 

Figure 21. The effect of 40 on BCRP expression level in H460/MX20 cells. 

4.8. Immunofluorescence Assay 

The immunofluorescence assays were conducted to determine the effects of 

compounds 29 and 40 on the localization of BCRP or P-gp proteins. BCRP protein is 

expressed on the membranes of drug resistant cells H460/MX20 and the P-gp protein 

is expressed on the membranes of KB-C2 cells in the control groups (Figure 22 and 

23). With the incubation of compound 29 (5 μM) for 24, 48, and 72 h, the 

fluorescence on the membranes of H460/MX20 decreased gradually. With the 
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treatment of compound 29 (5 μM) for 24 and 48 h, the fluorescence on the 

membranes of KB-C2 cells did not decrease significantly, while the fluorescence 

decreased slightly at 72 h. Since compound 29 does not change the expression level of 

BCRP and P-gp protein based on the Western blot analysis. It is hypothesized that the 

intracellular localization of the ABC transporters on both H460/MX20 and KB-C2 

cells were altered by compound 29. The alteration of ABC transporters localization 

can result in the loss of efflux function of ABC transporter mediated MDR cells. 

Thus, the anticancer drugs can be accumulated in the cells, and effectively kill the 

cells. Interestingly, compound 40 did not change the intracellular localization of 

BCRP on H460/MX20 cells (Figure 24). The reversal effect of compound 40 on 

BCRP can be due to other mechanisms instead of the alteration of BCRP localization.  

 
Figure 22. The effect of compound 29 on BCRP localization in H460 and H460/MX20 
cells. 
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Figure 23. The effect of compound 29 on P-gp localization in KB-C2 cells. 

 

Figure 24. The effect of compound 40 on BCRP localization in H460/MX20 cells. 



74 
 

4.9. The effect of compound 29 on BCRP and P-gp expression levels on membrane 

and cytoplasm. 

Previous reports have shown that the localization of BCRP can be changed with 

the treatment of LY294002,81 an inhibitor of the Akt effector protein 

phosphatidylinositol 3-kinase. In addition, LY294002 can cause the translocation of 

BCRP from the membrane to the intracellular compartment.81 To further investigate 

whether compound 29 affects the localization of BCRP and P-gp, the proteins were 

extracted from the membrane and cytoplasm of the cells, respectively. It was found 

that compound 29 decreased the expression level of BCRP protein on the membranes 

of H460/MX20 cells. On the other hand, BCRP protein expression level in the 

cytoplasm was increased by target compound 29 (Figure 25A, 25B). Compound 29 

showed similar effect on the P-gp protein expression of KB-C2 cells (Figure 26A, 

26B) that the expression level of P-gp protein on the membranes slightly decreased 

and the cytoplasmic P-gp slightly increased through the quantifications with Image J. 

These results revealed that compound 29 can translocate BCRP or P-gp protein from 

the membranes to the cytoplasm.  
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Figure 25. The effect of 29 on BCRP expression level on membrane and cytoplasm. 
(A) The effect of 29 on BCRP expression level in membrane of H460/MX20 cells. (B) 
The effect of 29 on BCRP expression level in cytoplasm of H460/MX20 cells. 

 
 
Figure 26. The effect of compound 29 on P-gp expression level on membrane and 
cytoplasm. (A) The effect of compound 29 on P-gp expression level in membrane of 
KB-C2 cells. (B) The effect of compound 29 on P-gp expression level in cytoplasm of 
KB-C2 cells. 

4.10. ATPase Assay 

ATPase assays were conducted to determine whether compounds 29 and 40 affect 
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the BCRP or P-gp ATPase activities. The results of ATPase assay showed that both 

compound 29 (Figure 27) and compound 40 (Figure 28) were the substrates of BCRP 

transporter. Therefore, they could act as potential competitive substrates, thus 

blocking the efflux of anticancer drugs and increase the accumulation of anticancer 

drugs. The results indicated that compound 29 (Figure 29) can neither stimulate or 

inhibit the P-gp ATPase, thus it is not the substrate or inhibitor of BCRP. From the 

results of Western blot and ATPase assay, compound 29 did not change the P-gp 

protein expression level and did not affect the P-gp ATPase activity. Therefore, 

compound 29 likely reverses the P-gp-mediated MDR through altering the localization 

of P-gp on MDR cancer cells. 
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Figure 27. The effect of compound 29 on orthovanadate (Vi)-sensitive BCRP ATPase 
activity. 
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Figure 28. The effect of compound 40 on orthovanadate (Vi)-sensitive BCRP ATPase 
activity. 
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Figure 29. The effect of compound 29 on orthovanadate (Vi)-sensitive P-gp ATPase 
activity. 

4.11. Docking Analysis 

    The Glide docking scores of 29, 40, and Ko143 binding with BCRP (PDB 6FFC) 

are -11.123, -10.403 and -12.017 kcal/mol, respectively (Figure 30). The quinazoline 

ring and the pyridine ring of 29 interacted with Phe439 of BCRP model through π-π 

interactions. The amino group of 29 formed a hydrogen bond with the carbonyl group 
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in the side chain of Asn436 (Figure 30A, 30D). The quinazoline ring of 40 interacted 

with Phe439 of BCRP model through π-π interactions (Figure 30B, 30E). The 

nitrogen in the pyridine ring of 40 formed a hydrogen bond with the amino group in 

the side chain of Asn436. The amino group of Ko143 interacted with the carbonyl 

group in the side chain of Asn436 through a hydrogen bond. The carbonyl group of 

Ko143 forms a hydrogen bond with hydroxyl group of Thr542. (Figure 30C &F). 

Compounds 29 and 40 were stabilized into a pocket formed by residues Phe432, 

Thr435, Thr542, Val546, and Met549 of BCRP. The Glide docking scores of 29 and 

verapamil binding with P-gp (PDB 6FN1) are -9.599 and -7.789 kcal/mol, 

respectively (Figure 31). The quinazoline ring and the pyridine ring of 29 interacted 

with the side chain of Trp231 of P-gp model through π-π interactions. A nitrogen in 

the quinazoline ring interacted with the amino group in the side chain of Trp231 

through a hydrogen bond, while verapamil formed cation-π interaction with the side 

chain of Phe335 in P-gp. The tertiary amine of verapamil can become a cation in 

cancers due to the acidic tumor microenvironment15 and bind with Phe335.  
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Figure 30. The docking analysis of compound 29, 40, and Ko143 binding with BCRP 
(PDB 6FFC). (A) Docked position of compound 29 within the binding site of the human 
BCRP transporter protein. Compound 29 is shown as a ball and stick model, with the 
atoms colored as follows: carbon- cyan, hydrogen-white, nitrogen-blue, and oxygen-
red. The important residues are depicted as sticks with the same color scheme as above 
except that carbons are indicated by the gray color. Ring centroids were represented as 
dark green dots. Dotted red lines indicate hydrogen bonds. (B) A two-dimensional 
ligand-receptor interaction diagram shows the important interactions of compound 29 
with the binding site residues of human BCRP. The amino acids are shown as colored 
bubbles, cyan indicates polar residues and green indicates hydrophobic residues. 
Hydrogen bonds are indicated by the purple dotted arrow, and p-p stacking aromatic 
interactions are indicated by the green lines. (C) Docked position of compound 40 
within the binding site of the human BCRP transporter protein. (D) A two-dimensional 
ligand-receptor interaction diagram shows the important interactions of compound 40 
with the binding site residues of the human BCRP transporter protein. (E) Docked 
position of Ko143 within the binding site of the human BCRP protein. (F) A two-
dimensional diagram shows the important contacts of Ko143 with the binding site 
residues of the human BCRP transporter protein.  
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Figure 31. The docking analysis of compound 29 and verapamil binding with human 
P-gp (PDB 6FN1). The color scheme is consistent with Figure 30. (A) Docked position 
of compound 29 within the binding site of the human P-gp model. (B) A two-
dimensional ligand-receptor interaction diagram shows the important interactions of 
compound 29 with the binding site residues of human P-gp. (C) Docked position of 
verapamil within the binding site of the human P-gp model. Cation-π interaction is 
indicated by the green dotted line. (D) A two-dimensional ligand-receptor interaction 
diagram shows the important interactions of verapamil with the binding site residues of 
human P-gp. Cation-π interaction is indicated by short red line.   
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Chapter 5. Conclusions 

In this study, we synthesized a series of 22 quinazolinamine derivatives and 

determined their reversal activities for BCRP- and P-gp-mediated MDR. Based on the 

structure-activity relationship, quinazolinamines with scaffold A were found to be 

more potent BCRP inhibitors than those with scaffolds B or C. The results indicated 

that alkyl quinazolinamine analogues 7-8, 20, 29-32, and methoxy quinazolinamine 

34 are potent BCRP and P-gp dual inhibitors with a potential to reverse MDR by 

blocking the efflux of anticancer drugs. In addition, selected quinazolinamine 

derivatives (7-8, 29-31, 34, and 40) that were investigated for metabolic stability 

exhibited higher metabolic stability than Ko143. Cyclopropyl quinazolinamine 29 

(VKCY-1) potently inhibited both BCRP- and P-gp, significantly increased the 

accumulation of mitoxantrone in BCRP-overexpressing H460/MX20 cells, or 

paclitaxel in KB-C2 cells with P-gp overexpression. The results indicated that 

compound 29 (VKCY-1) changed the localization of BCRP in H460/MX20 cells and 

P-gp in KB-C2 cells but did not alter the expression level of BCRP or P-gp, thus 

blocking the efflux function of ABC transporters. In addition, the stimulation of ATP 

hydrolysis of BCRP by compound 29 (VKCY-1) can be another mechanism for 

reversing the BCRP-mediated MDR. Interestingly, compared to compound 29 

(VKCY-1), azide quinazolinamine 40 (VKCY-2) is a BCRP inhibitor with different 

mechanism in that it does not alter the localization of BCRP protein. In addition, 

compound 40 (VKCY-2) did not change the BCRP protein expression level. The 

ATPase results showed that compound 40 (VKCY-2) significantly stimulated the ATP 
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hydrolysis of BCRP transporter indicating it could be a competitive substrate of 

BCRP transporter to block the efflux of anticancer drugs. Azide quinazolinamine 40 

(VKCY-2) with photoaffinity label can be activated by the UV light and covalently 

bind with the BCRP transporter. Thus, it can be a probe to investigate the binding site 

of quinazolinamine derivatives with the BCRP protein. From the molecular modeling 

results, quinazolinamines 29 (VKCY-1) and 40 (VKCY-2) showed high docking 

scores when docked with human BCRP and/or P-gp model, indicating the high 

affinity between compounds 29 (VKCY-1), 40 (VKCY-2) and BCRP and/or P-gp 

protein. The interactions between compounds 29 (VKCY-1) and 40 (VKCY-2) and 

the important residues can be important clues for the further modification of 

quinazolinamine derivatives. The results give insight into the rational design of 

quinazolinamines reversing BCRP and P-gp coexpressing MDR in cancers.  

  



83 
 

References 

(1)  Siegel, R. L.; Miller, K. D.; Jemal, A. Cancer Statistics, 2020. CA. Cancer J. Clin. 

2020, 70 (1), 7–30. https://doi.org/10.3322/caac.21590. 

(2)  Robey, R. W.; Pluchino, K. M.; Hall, M. D.; Fojo, A. T.; Bates, S. E.; Gottesman, 

M. M. Revisiting the Role of ABC Transporters in Multidrug-Resistant Cancer. 

Nat. Rev. Cancer 2018, 18 (7), 452–464. https://doi.org/10.1038/s41568-018-

0005-8. 

(3)  Torgovnick, A.; Schumacher, B. DNA Repair Mechanisms in Cancer 

Development and Therapy. Front. Genet. 2015, 6, 157. 

https://doi.org/10.3389/fgene.2015.00157. 

(4)  Du, B.; Shim, J. S. Targeting Epithelial-Mesenchymal Transition (EMT) to 

Overcome Drug Resistance in Cancer. Molecules 2016, 21 (7), 965. 

https://doi.org/10.3390/molecules21070965. 

(5)  Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; 

Sarkar, S. Drug Resistance in Cancer: An Overview. Cancers (Basel). 2014, 6 

(3), 1769–1792. https://doi.org/10.3390/cancers6031769. 

(6)  Filipits, M. Mechanisms of Cancer: Multidrug Resistance. Drug Discov. Today 

Dis. Mech. 2004, 1 (2), 229–234. 

https://doi.org/10.1016/J.DDMEC.2004.10.001. 

(7)  Nakanishi, T.; Ross, D. D. Breast Cancer Resistance Protein (BCRP/ABCG2): 

Its Role in Multidrug Resistance and Regulation of Its Gene Expression. Chin. 

J. Cancer 2012, 31 (2), 73–99. https://doi.org/10.5732/cjc.011.10320. 



84 
 

(8)  Srikant, S. Evolutionary History of ATP-Binding Cassette Proteins. FEBS Lett. 

2020, 594 (23), 3882–3897. https://doi.org/https://doi.org/10.1002/1873-

3468.13985. 

(9)  Doyle, L. A.; Yang, W.; Abruzzo, L. V; Krogmann, T.; Gao, Y.; Rishi, A. K.; Ross, 

D. D. A Multidrug Resistance Transporter from Human MCF-7 Breast Cancer 

Cells. Proc. Natl. Acad. Sci. U. S. A. 1998, 95 (26), 15665–15670. 

https://doi.org/10.1073/pnas.95.26.15665. 

(10)  Eckenstaler, R.; Benndorf, R. A. 3D Structure of the Transporter ABCG2-What’s 

New? Br. J. Pharmacol. 2020, 177 (7), 1485–1496. 

https://doi.org/10.1111/bph.14991. 

(11)  Robey, R. W.; To, K. K. K.; Polgar, O.; Dohse, M.; Fetsch, P.; Dean, M.; Bates, 

S. E. ABCG2: A Perspective. Adv. Drug Deliv. Rev. 2009, 61 (1), 3–13. 

https://doi.org/10.1016/j.addr.2008.11.003. 

(12)  Krishnamurthy, P.; Xie, T.; Schuetz, J. D. The Role of Transporters in Cellular 

Heme and Porphyrin Homeostasis. Pharmacol. Ther. 2007, 114 (3), 345–358. 

https://doi.org/10.1016/j.pharmthera.2007.02.001. 

(13)  Grube, M.; Reuther, S.; Meyer Zu Schwabedissen, H.; Köck, K.; Draber, K.; 

Ritter, C. A.; Fusch, C.; Jedlitschky, G.; Kroemer, H. K. Organic Anion 

Transporting Polypeptide 2B1 and Breast Cancer Resistance Protein  Interact 

in the Transepithelial Transport of Steroid Sulfates in Human Placenta. Drug 

Metab. Dispos. 2007, 35 (1), 30–35. https://doi.org/10.1124/dmd.106.011411. 

(14)  Doyle, L. A.; Ross, D. D. Multidrug Resistance Mediated by the Breast Cancer 



85 
 

Resistance Protein BCRP (ABCG2). Oncogene 2003, 22 (47), 7340–7358. 

https://doi.org/10.1038/sj.onc.1206938. 

(15)  Ni, Z.; Bikadi, Z.; Rosenberg, M. F.; Mao, Q. Structure and Function of the 

Human Breast Cancer Resistance Protein (BCRP/ABCG2). Curr. Drug Metab. 

2010, 11 (7), 603–617. 

(16)  Pan, G.; Giri, N.; Elmquist, W. F. Abcg2/Bcrp1 Mediates the Polarized Transport 

of Antiretroviral Nucleosides Abacavir and Zidovudine. Drug Metab. Dispos. 

2007, 35 (7), 1165–1173. https://doi.org/10.1124/dmd.106.014274. 

(17)  Robey, R. W.; Honjo, Y.; Morisaki, K.; Nadjem, T. A.; Runge, S.; Risbood, M.; 

Poruchynsky, M. S.; Bates, S. E. Mutations at Amino-Acid 482 in the ABCG2 

Gene Affect Substrate and Antagonist Specificity. Br. J. Cancer 2003, 89 (10), 

1971–1978. https://doi.org/10.1038/sj.bjc.6601370. 

(18)  Zhou, L.; Naraharisetti, S. B.; Wang, H.; Unadkat, J. D.; Hebert, M. F.; Mao, Q. 

The Breast Cancer Resistance Protein (Bcrp1/Abcg2) Limits Fetal Distribution 

of  Glyburide in the Pregnant Mouse: An Obstetric-Fetal Pharmacology 

Research Unit Network and University of Washington Specialized Center of 

Research Study. Mol. Pharmacol. 2008, 73 (3), 949–959. 

https://doi.org/10.1124/mol.107.041616. 

(19)  Feinshtein, V.; Holcberg, G.; Amash, A.; Erez, N.; Rubin, M.; Sheiner, E.; 

Polachek, H.; Ben-Zvi, Z. Nitrofurantoin Transport by Placental 

Choriocarcinoma JAr Cells: Involvement of  BCRP, OATP2B1 and Other 

MDR Transporters. Arch. Gynecol. Obstet. 2010, 281 (6), 1037–1044. 



86 
 

https://doi.org/10.1007/s00404-009-1286-7. 

(20)  Zhang, Y.; Gupta, A.; Wang, H.; Zhou, L.; Vethanayagam, R. R.; Unadkat, J. D.; 

Mao, Q. BCRP Transports Dipyridamole and Is Inhibited by Calcium Channel 

Blockers. Pharm. Res. 2005, 22 (12), 2023–2034. 

https://doi.org/10.1007/s11095-005-8384-4. 

(21)  Robey, R. W.; Steadman, K.; Polgar, O.; Bates, S. E. ABCG2-Mediated 

Transport of Photosensitizers: Potential Impact on Photodynamic Therapy. 

Cancer Biol. Ther. 2005, 4 (2), 187–194. 

(22)  Tan, K. W.; Cooney, J.; Jensen, D.; Li, Y.; Paxton, J. W.; Birch, N. P.; Scheepens, 

A. Hop-Derived Prenylflavonoids Are Substrates and Inhibitors of the Efflux 

Transporter  Breast Cancer Resistance Protein (BCRP/ABCG2). Mol. Nutr. 

Food Res. 2014, 58 (11), 2099–2110. https://doi.org/10.1002/mnfr.201400288. 

(23)  Natarajan, K.; Xie, Y.; Baer, M. R.; Ross, D. D. Role of Breast Cancer Resistance 

Protein (BCRP/ABCG2) in Cancer Drug Resistance. Biochem. Pharmacol. 2012, 

83 (8), 1084–1103. https://doi.org/10.1016/j.bcp.2012.01.002. 

(24)  Järvinen, E.; Deng, F.; Kidron, H.; Finel, M. Efflux Transport of Estrogen 

Glucuronides by Human MRP2, MRP3, MRP4 and BCRP. J. Steroid Biochem. 

Mol. Biol. 2018, 178, 99–107. https://doi.org/10.1016/j.jsbmb.2017.11.007. 

(25)  Kim, Y.; Chen, J. Molecular Structure of Human P-Glycoprotein in the ATP-

Bound, Outward-Facing Conformation. Science (80-. ). 2018. 

https://doi.org/10.1126/science.aar7389. 

(26)  Hrycyna, C. A.; Ramachandra, M.; Ambudkar, S. V; Ko, Y. H.; Pedersen, P. L.; 



87 
 

Pastan, I.; Gottesman, M. M. Mechanism of Action of Human P-Glycoprotein 

ATPase Activity: PHOTOCHEMICAL CLEAVAGE DURING A CATALYTIC 

TRANSITION STATE USING ORTHOVANADATE REVEALS CROSS-

TALK BETWEEN THE TWO ATP SITES*. J. Biol. Chem. 1998, 273 (27), 

16631–16634. https://doi.org/https://doi.org/10.1074/jbc.273.27.16631. 

(27)  Liu, X. ABC Family Transporters. Adv. Exp. Med. Biol. 2019, 1141, 13–100. 

https://doi.org/10.1007/978-981-13-7647-4_2. 

(28)  Jang, S. H.; Wientjes, M. G.; Au, J. L. Kinetics of P-Glycoprotein-Mediated 

Efflux of Paclitaxel. J. Pharmacol. Exp. Ther. 2001, 298 (3), 1236–1242. 

(29)  Kitazaki, T.; Oka, M.; Nakamura, Y.; Tsurutani, J.; Doi, S.; Yasunaga, M.; 

Takemura, M.; Yabuuchi, H.; Soda, H.; Kohno, S. Gefitinib, an EGFR Tyrosine 

Kinase Inhibitor, Directly Inhibits the Function of P-Glycoprotein in Multidrug 

Resistant Cancer Cells. Lung Cancer 2005, 49 (3), 337–343. 

https://doi.org/10.1016/j.lungcan.2005.03.035. 

(30)  Balayssac, D.; Cayre, A.; Authier, N.; Bourdu, S.; Penault-Llorca, F.; Gillet, J. P.; 

Maublant, J.; Eschalier, A.; Coudore, F. Patterns of P-Glycoprotein Activity in 

the Nervous System during Vincristine-Induced  Neuropathy in Rats. J. 

Peripher. Nerv. Syst. 2005, 10 (3), 301–310. https://doi.org/10.1111/j.1085-

9489.2005.10308.x. 

(31)  Mechetner, E.; Kyshtoobayeva, A.; Zonis, S.; Kim, H.; Stroup, R.; Garcia, R.; 

Parker, R. J.; Fruehauf, J. P. Levels of Multidrug Resistance (MDR1) P-

Glycoprotein Expression by Human Breast  Cancer Correlate with in Vitro 



88 
 

Resistance to Taxol and Doxorubicin. Clin. cancer Res.  an Off. J. Am. Assoc.  

Cancer Res. 1998, 4 (2), 389–398. 

(32)  Elmeliegy, M.; Vourvahis, M.; Guo, C.; Wang, D. D. Effect of P-Glycoprotein 

(P-Gp) Inducers on Exposure of P-Gp Substrates: Review of Clinical Drug-Drug 

Interaction Studies. Clin. Pharmacokinet. 2020, 59 (6), 699–714. 

https://doi.org/10.1007/s40262-020-00867-1. 

(33)  Wessler, J. D.; Grip, L. T.; Mendell, J.; Giugliano, R. P. The P-Glycoprotein 

Transport System and Cardiovascular Drugs. J. Am. Coll. Cardiol. 2013, 61 (25), 

2495–2502. https://doi.org/https://doi.org/10.1016/j.jacc.2013.02.058. 

(34)  Washington, C. B.; Duran, G. E.; Man, M. C.; Sikic, B. I.; Blaschke, T. F. 

Interaction of Anti-HIV Protease Inhibitors with the Multidrug Transporter P-

Glycoprotein (P-Gp) in Human Cultured Cells. J. Acquir. Immune Defic. Syndr. 

Hum. Retrovirol. 1998, 19 (3), 203–209. https://doi.org/10.1097/00042560-

199811010-00001. 

(35)  Crowe, A.; Tan, A. M. Oral and Inhaled Corticosteroids: Differences in P-

Glycoprotein (ABCB1) Mediated  Efflux. Toxicol. Appl. Pharmacol. 2012, 260 

(3), 294–302. https://doi.org/10.1016/j.taap.2012.03.008. 

(36)  Shapiro, A. B.; Corder, A. B.; Ling, V. P-Glycoprotein-Mediated Hoechst 33342 

Transport out of the Lipid Bilayer. Eur. J. Biochem. 1997, 250 (1), 115–121. 

https://doi.org/10.1111/j.1432-1033.1997.00115.x. 

(37)  Mercer, S. L.; Coop, A. Opioid Analgesics and P-Glycoprotein Efflux 

Transporters: A Potential Systems-Level  Contribution to Analgesic Tolerance. 



89 
 

Curr. Top. Med. Chem. 2011, 11 (9), 1157–1164. 

https://doi.org/10.2174/156802611795371288. 

(38)  Kodaira, H.; Kusuhara, H.; Ushiki, J.; Fuse, E.; Sugiyama, Y. Kinetic Analysis 

of the Cooperation of P-Glycoprotein (P-Gp/Abcb1) and Breast Cancer 

Resistance Protein (Bcrp/Abcg2) in Limiting the Brain and Testis Penetration of 

Erlotinib, Flavopiridol, and Mitoxantrone. J. Pharmacol. Exp. Ther. 2010, 333 

(3), 788–796. https://doi.org/10.1124/jpet.109.162321. 

(39)  Polli, J. W.; Olson, K. L.; Chism, J. P.; John-Williams, L. S.; Yeager, R. L.; 

Woodard, S. M.; Otto, V.; Castellino, S.; Demby, V. E. An Unexpected Synergist 

Role of P-Glycoprotein and Breast Cancer Resistance Protein  on the Central 

Nervous System Penetration of the Tyrosine Kinase Inhibitor Lapatinib (N-{3-

Chloro-4-[(3-Fluorobenzyl)Oxy]Phenyl}-6-[5-({[2-

(Methylsulfonyl)Ethyl]Amino}met. Drug Metab. Dispos. 2009, 37 (2), 439–442. 

https://doi.org/10.1124/dmd.108.024646. 

(40)  Wilson, C. S.; Davidson, G. S.; Martin, S. B.; Andries, E.; Potter, J.; Harvey, R.; 

Ar, K.; Xu, Y.; Kopecky, K. J.; Ankerst, D. P.; Gundacker, H.; Slovak, M. L.; 

Mosquera-Caro, M.; Chen, I.-M.; Stirewalt, D. L.; Murphy, M.; Schultz, F. A.; 

Kang, H.; Wang, X.; Radich, J. P.; Appelbaum, F. R.; Atlas, S. R.; Godwin, J.; 

Willman, C. L. Gene Expression Profiling of Adult Acute Myeloid Leukemia 

Identifies Novel Biologic Clusters for Risk Classification and Outcome 

Prediction. Blood 2006, 108 (2), 685–696. https://doi.org/10.1182/blood-2004-

12-4633. 



90 
 

(41)  Patel, C.; Stenke, L.; Varma, S.; Lindberg, M. L.; Björkholm, M.; Sjöberg, J.; 

Viktorsson, K.; Lewensohn, R.; Landgren, O.; Gottesman, M. M.; Gillet, J.-P. 

Multidrug Resistance in Relapsed Acute Myeloid Leukemia: Evidence of 

Biological  Heterogeneity. Cancer 2013, 119 (16), 3076–3083. 

https://doi.org/10.1002/cncr.28098. 

(42)  Liu, B.; Li, L.-J.; Gong, X.; Zhang, W.; Zhang, H.; Zhao, L. Co-Expression of 

ATP Binding Cassette Transporters Is Associated with Poor Prognosis  in Acute 

Myeloid Leukemia. Oncol. Lett. 2018, 15 (5), 6671–6677. 

https://doi.org/10.3892/ol.2018.8095. 

(43)  Bartholomae, S.; Gruhn, B.; Debatin, K.-M.; Zimmermann, M.; Creutzig, U.; 

Reinhardt, D.; Steinbach, D. Coexpression of Multiple ABC-Transporters Is 

Strongly Associated with Treatment  Response in Childhood Acute Myeloid 

Leukemia. Pediatr. Blood Cancer 2016, 63 (2), 242–247. 

https://doi.org/10.1002/pbc.25785. 

(44)  Becton, D.; Dahl, G. V; Ravindranath, Y.; Chang, M. N.; Behm, F. G.; Raimondi, 

S. C.; Head, D. R.; Stine, K. C.; Lacayo, N. J.; Sikic, B. I.; Arceci, R. J.; 

Weinstein, H. Randomized Use of Cyclosporin A (CsA) to Modulate P-

Glycoprotein in Children with  AML in Remission: Pediatric Oncology Group 

Study 9421. Blood 2006, 107 (4), 1315–1324. https://doi.org/10.1182/blood-

2004-08-3218. 

(45)  Austin Doyle, L.; Ross, D. D. Multidrug Resistance Mediated by the Breast 

Cancer Resistance Protein BCRP (ABCG2). Oncogene 2003, 22 (47), 7340–



91 
 

7358. https://doi.org/10.1038/sj.onc.1206938. 

(46)  Michaelis, M.; Rothweiler, F.; Löschmann, N.; Sharifi, M.; Ghafourian, T.; 

Cinatl, J. J. Enzastaurin Inhibits ABCB1-Mediated Drug Efflux Independently 

of Effects on Protein  Kinase C Signalling and the Cellular P53 Status. 

Oncotarget 2015, 6 (19), 17605–17620. 

https://doi.org/10.18632/oncotarget.2889. 

(47)  Gekeler, V.; Boer, R.; Uberall, F.; Ise, W.; Schubert, C.; Utz, I.; Hofmann, J.; 

Sanders, K. H.; Schächtele, C.; Klemm, K.; Grunicke, H. Effects of the Selective 

Bisindolylmaleimide Protein Kinase C Inhibitor GF 109203X  on P-

Glycoprotein-Mediated Multidrug Resistance. Br. J. Cancer 1996, 74 (6), 897–

905. https://doi.org/10.1038/bjc.1996.454. 

(48)  Merritt, J. E.; Sullivan, J. A.; Drew, L.; Khan, A.; Wilson, K.; Mulqueen, M.; 

Harris, W.; Bradshaw, D.; Hill, C. H.; Rumsby, M.; Warr, R. The 

Bisindolylmaleimide Protein Kinase C Inhibitor, Ro 32-2241, Reverses 

Multidrug Resistance in KB Tumour Cells. Cancer Chemother. Pharmacol. 1999, 

43 (5), 371–378. https://doi.org/10.1007/s002800050909. 

(49)  Ott, M.; Huls, M.; Cornelius, M. G.; Fricker, G. St. John’s Wort Constituents 

Modulate P-Glycoprotein Transport Activity at the Blood-Brain Barrier. Pharm. 

Res. 2010, 27 (5), 811–822. https://doi.org/10.1007/s11095-010-0074-1. 

(50)  Zhang, L.; Li, Y.; Wang, Q.; Chen, Z.; Li, X.; Wu, Z.; Hu, C.; Liao, D.; Zhang, 

W.; Chen, Z.-S. The PI3K Subunits, P110α and P110β Are Potential Targets for 

Overcoming P-Gp and  BCRP-Mediated MDR in Cancer. Mol. Cancer 2020, 



92 
 

19 (1), 10. https://doi.org/10.1186/s12943-019-1112-1. 

(51)  Rabindran, S. K.; Ross, D. D.; Doyle, L. A.; Yang, W.; Greenberger, L. M. 

Fumitremorgin C Reverses Multidrug Resistance in Cells Transfected with the 

Breast Cancer Resistance Protein. Cancer Res. 2000, 60 (1), 47–50. 

(52)  Allen, J. D.; van Loevezijn, A.; Lakhai, J. M.; van der Valk, M.; van Tellingen, 

O.; Reid, G.; Schellens, J. H. M.; Koomen, G.-J.; Schinkel, A. H. Potent and 

Specific Inhibition of the Breast Cancer Resistance Protein Multidrug  

Transporter in Vitro and in Mouse Intestine by a Novel Analogue of 

Fumitremorgin C. Mol. Cancer Ther. 2002, 1 (6), 417–425. 

(53)  Weidner, L. D.; Zoghbi, S. S.; Lu, S.; Shukla, S.; Ambudkar, S. V; Pike, V. W.; 

Mulder, J.; Gottesman, M. M.; Innis, R. B.; Hall, M. D. The Inhibitor Ko143 Is 

Not Specific for ABCG2. J. Pharmacol. Exp. Ther. 2015, 354 (3), 384–393. 

https://doi.org/10.1124/jpet.115.225482. 

(54)  Gupta, A.; Zhang, Y.; Unadkat, J. D.; Mao, Q. HIV Protease Inhibitors Are 

Inhibitors but Not Substrates of the Human Breast Cancer Resistance Protein 

(BCRP/ABCG2). J. Pharmacol. Exp. Ther. 2004, 310 (1), 334–341. 

https://doi.org/10.1124/jpet.104.065342. 

(55)  Zhang, S.; Yang, X.; Morris, M. E. Flavonoids Are Inhibitors of Breast Cancer 

Resistance Protein (ABCG2)-Mediated Transport. Mol. Pharmacol. 2004, 65 (5), 

1208–1216. https://doi.org/10.1124/mol.65.5.1208. 

(56)  D’Cunha, R.; Bae, S.; Murry, D. J.; An, G. TKI Combination Therapy: Strategy 

to Enhance Dasatinib Uptake by Inhibiting Pgp- and  BCRP-Mediated Efflux. 



93 
 

Biopharm. Drug Dispos. 2016, 37 (7), 397–408. 

https://doi.org/10.1002/bdd.2022. 

(57)  Yanase, K.; Tsukahara, S.; Asada, S.; Ishikawa, E.; Imai, Y.; Sugimoto, Y. 

Gefitinib Reverses Breast Cancer Resistance Protein-Mediated Drug Resistance. 

Mol. Cancer Ther. 2004, 3 (9), 1119–1125. 

(58)  Krapf, M. K.; Gallus, J.; Wiese, M. Synthesis and Biological Investigation of 

2,4-Substituted Quinazolines as Highly  Potent Inhibitors of Breast Cancer 

Resistance Protein (ABCG2). Eur. J. Med. Chem. 2017, 139, 587–611. 

https://doi.org/10.1016/j.ejmech.2017.08.020. 

(59)  Krapf, M. K.; Gallus, J.; Spindler, A.; Wiese, M. Synthesis and Biological 

Evaluation of Quinazoline Derivatives - A SAR Study of Novel Inhibitors of 

ABCG2. Eur. J. Med. Chem. 2019, 161, 506–525. 

https://doi.org/10.1016/j.ejmech.2018.10.026. 

(60)  Kulkarni, P. M.; Kulkarni, A. R.; Korde, A.; Tichkule, R. B.; Laprairie, R. B.; 

Denovan-Wright, E. M.; Zhou, H.; Janero, D. R.; Zvonok, N.; Makriyannis, A.; 

Cascio, M. G.; Pertwee, R. G.; Thakur, G. A. Novel Electrophilic and 

Photoaffinity Covalent Probes for Mapping the Cannabinoid 1 Receptor 

Allosteric Site(S). J. Med. Chem. 2016, 59 (1), 44–60. 

https://doi.org/10.1021/acs.jmedchem.5b01303. 

(61)  Punthasee, P.; Laciak, A. R.; Cummings, A. H.; Ruddraraju, K. V.; Lewis, S. M.; 

Hillebrand, R.; Singh, H.; Tanner, J. J.; Gates, K. S. Covalent Allosteric 

Inactivation of Protein Tyrosine Phosphatase 1B (PTP1B) by an Inhibitor–



94 
 

Electrophile Conjugate. Biochemistry 2017, 56 (14), 2051–2060. 

https://doi.org/10.1021/acs.biochem.7b00151. 

(62)  Kathman, S. G.; Statsyuk, A. V. Covalent Tethering of Fragments For Covalent 

Probe Discovery. Medchemcomm 2016, 7 (4), 576–585. 

https://doi.org/10.1039/c5md00518c. 

(63)  Singh, A.; Thornton, E. R.; Westheimer, F. H. The Photolysis of 

Diazoacetylchymotrypsin. J. Biol. Chem. 1962, 237, 3006—3008. 

(64)  Herner, A.; Marjanovic, J.; Lewandowski, T. M.; Marin, V.; Patterson, M.; 

Miesbauer, L.; Ready, D.; Williams, J.; Vasudevan, A.; Lin, Q. 2-Aryl-5-

Carboxytetrazole as a New Photoaffinity Label for Drug Target Identification. J. 

Am. Chem. Soc. 2016, 138 (44), 14609–14615. 

https://doi.org/10.1021/jacs.6b06645. 

(65)  Zacharias, A. O.; Fang, Z.; Rahman, A.; Talukder, A.; Cornelius, S.; Chowdhury, 

S. M. Affinity and Chemical Enrichment Strategies for Mapping Low-

Abundance Protein Modifications and Protein-Interaction Networks. J. Sep. Sci. 

2021, 44 (1), 310–322. https://doi.org/10.1002/jssc.202000930. 

(66)  DeGraff, W. G.; Mitchell, J. B. Evaluation of a Tetrazolium-Based 

Semiautomated Colorimetric Assay: Assessment of Chemosensitivity Testing. 

Cancer Res. 1987, 47 (4), 936–942. 

(67)  Tung, Y.-S.; Coumar, M. S.; Wu, Y.-S.; Shiao, H.-Y.; Chang, J.-Y.; Liou, J.-P.; 

Shukla, P.; Chang, C.-W.; Chang, C.-Y.; Kuo, C.-C.; Yeh, T.-K.; Lin, C.-Y.; Wu, 

J.-S.; Wu, S.-Y.; Liao, C.-C.; Hsieh, H.-P. Scaffold-Hopping Strategy: Synthesis 



95 
 

and Biological Evaluation of 5,6-Fused Bicyclic Heteroaromatics To Identify 

Orally Bioavailable Anticancer Agents. J. Med. Chem. 2011, 54 (8), 3076–3080. 

https://doi.org/10.1021/jm101027s. 

(68)  Cai, C. Y.; Zhai, H.; Lei, Z. N.; Tan, C. P.; Chen, B. L.; Du, Z. Y.; Wang, J. Q.; 

Zhang, Y. K.; Wang, Y. J.; Gupta, P.; Wang, B.; Chen, Z. S. Benzoyl Indoles with 

Metabolic Stability as Reversal Agents for ABCG2-Mediated Multidrug 

Resistance. Eur. J. Med. Chem. 2019, 179, 849–862. 

https://doi.org/10.1016/j.ejmech.2019.06.066. 

(69)  Ji, N.; Yang, Y.; Cai, C. Y.; Lei, Z. N.; Wang, J. Q.; Gupta, P.; Shukla, S.; 

Ambudkar, S. V.; Kong, D.; Chen, Z. S. Selonsertib (GS-4997), an ASK1 

Inhibitor, Antagonizes Multidrug Resistance in ABCB1- and ABCG2-

Overexpressing Cancer Cells. Cancer Lett. 2019, 440–441, 82–93. 

https://doi.org/10.1016/j.canlet.2018.10.007. 

(70)  Fan, Y. F.; Zhang, W.; Zeng, L.; Lei, Z. N.; Cai, C. Y.; Gupta, P.; Yang, D. H.; 

Cui, Q.; Qin, Z. D.; Chen, Z. S.; Trombetta, L. D. Dacomitinib Antagonizes 

Multidrug Resistance (MDR) in Cancer Cells by Inhibiting the Efflux Activity 

of ABCB1 and ABCG2 Transporters. Cancer Lett. 2018, 421, 186–198. 

https://doi.org/10.1016/j.canlet.2018.01.021. 

(71)  Beéry, E.; Rajnai, Z.; Abonyi, T.; Makai, I.; Bánsághi, S.; Erdő, F.; Sziráki, I.; 

Herédi-Szabó, K.; Kis, E.; Jani, M.; Márki-Zay, J.; Tóth, G. K.; Krajcsi, P. 

ABCG2 Modulates Chlorothiazide Permeability--in Vitro-Characterization of Its  

Interactions. Drug Metab. Pharmacokinet. 2012, 27 (3), 349–353. 



96 
 

https://doi.org/10.2133/dmpk.dmpk-11-nt-068. 

(72)  Cai, C. Y.; Zhang, W.; Wang, J. Q.; Lei, Z. N.; Zhang, Y. K.; Wang, Y. J.; Gupta, 

P.; Tan, C. P.; Wang, B.; Chen, Z. S. Biological Evaluation of Non-Basic 

Chalcone CYB-2 as a Dual ABCG2/ABCB1 Inhibitor. Biochem. Pharmacol. 

2020, 175, 113848. https://doi.org/10.1016/j.bcp.2020.113848. 

(73)  Jackson, S. M.; Manolaridis, I.; Kowal, J.; Zechner, M.; Taylor, N. M. I.; Bause, 

M.; Bauer, S.; Bartholomaeus, R.; Bernhardt, G.; Koenig, B.; Buschauer, A.; 

Stahlberg, H.; Altmann, K.-H.; Locher, K. P. Structural Basis of Small-Molecule 

Inhibition of Human Multidrug Transporter ABCG2. Nat. Struct. Mol. Biol. 2018, 

25 (4), 333–340. https://doi.org/10.1038/s41594-018-0049-1. 

(74)  Alam, A.; Kung, R.; Kowal, J.; McLeod, R. A.; Tremp, N.; Broude, E. V; 

Roninson, I. B.; Stahlberg, H.; Locher, K. P. Structure of a Zosuquidar and UIC2-

Bound Human-Mouse Chimeric ABCB1. Proc. Natl. Acad. Sci. U. S. A. 2018, 

115 (9), 1973–1982. https://doi.org/10.1073/pnas.1717044115. 

(75)  Nagasawa, Y.; Matsusaki, Y.; Nobuta, T.; Tada, N.; Miura, T.; Itoh, A. Aerobic 

Photooxidative Synthesis of 2-Aryl-4-Quinazolinones from Aromatic Aldehydes 

and Aminobenzamide Using Catalytic Amounts of Molecular Iodine. RSC Adv. 

2015, 5 (78), 63952–63954. https://doi.org/10.1039/C5RA07275A. 

(76)  Hayakawa, M.; Kaizawa, H.; Moritomo, H.; Koizumi, T.; Ohishi, T.; Okada, M.; 

Ohta, M.; Tsukamoto, S.; Parker, P.; Workman, P.; Waterfield, M. Synthesis and 

Biological Evaluation of 4-Morpholino-2-Phenylquinazolines and Related 

Derivatives as Novel PI3 Kinase P110alpha Inhibitors. Bioorg. Med. Chem. 2006, 



97 
 

14 (20), 6847–6858. https://doi.org/10.1016/j.bmc.2006.06.046. 

(77)  Liu, K.; Zhu, J.; Huang, Y.; Li, C.; Lu, J.; Sachar, M.; Li, S.; Ma, X. Metabolism 

of KO143, an ABCG2 Inhibitor. Drug Metab. Pharmacokinet. 2017, 32 (4), 

193–200. https://doi.org/10.1016/j.dmpk.2017.02.003. 

(78)  Asha, S.; Vidyavathi, M. Role of Human Liver Microsomes in in Vitro 

Metabolism of Drugs-a Review. Appl. Biochem. Biotechnol. 2010, 160 (6), 

1699–1722. https://doi.org/10.1007/s12010-009-8689-6. 

(79)  Baker, J. A.; Altman, M. D.; Martin, I. J. Interpretation of in Vitro Metabolic 

Stability Studies for Racemic Mixtures. ACS Med. Chem. Lett. 2018, 9 (8), 843–

847. https://doi.org/10.1021/acsmedchemlett.8b00259. 

(80)  Talele, T. T. The “Cyclopropyl Fragment” Is a Versatile Player That Frequently 

Appears in Preclinical/Clinical Drug Molecules. J. Med. Chem. 2016, 59 (19), 

8712–8756. https://doi.org/10.1021/acs.jmedchem.6b00472. 

(81)  Mogi, M.; Yang, J.; Lambert, J.-F.; Colvin, G. A.; Shiojima, I.; Skurk, C.; 

Summer, R.; Fine, A.; Quesenberry, P. J.; Walsh, K. Akt Signaling Regulates Side 

Population Cell Phenotype via Bcrp1 Translocation. J. Biol. Chem. 2003, 278 

(40), 39068–39075. https://doi.org/10.1074/jbc.M306362200. 

(82)  Boedtkjer, E.; Pedersen, S. F. The Acidic Tumor Microenvironment as a Driver 

of Cancer. Annu. Rev. Physiol. 2020, 82, 103–126. 

https://doi.org/10.1146/annurev-physiol-021119-034627. 

 



VITA 

Name: Chao-Yun Cai 

Baccalaureate Degree:  
Bachelor of Science, Sun Yat-
sen University, Guangzhou, 
Major: Chemistry 

Date Graduated 2013.06 

Master’s Degree: 
Master of Science, Sun Yat-
sen University, Guangzhou, 
Major: Organic Chemistry 

Date Graduated 2016.06 

 

 
 

 
 
 
 
 
 
 
 
 
 

 
 


	DESIGN, SYNTHESIS AND PHARMACOLOGICAL EVALUATION OF QUINAZOLINAMINE DERIVATIVES AS BCRP AND P-GP INHIBITORS WITH IMPROVED METABOLIC STABILITY
	tmp.1633612611.pdf._MpyG

