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ABSTRACT 
 

 BOOST THE DSICOVERY OF MRP7/ABCC10 SUBSTRATES AND INHIBITORS: 
ESTABLISHMENT OF NEW IN VITRO AND IN SILICO MODELS 

 
JINGQUAN WANG 

ATP-binding cassette (ABC) transporters are responsible for the efflux of structurally 

distinct endo- and xenobiotics energized by ATP hydrolysis. MRP7/ABCC10 belongs to 

the 10th member of subfamily C and responsible for mediating MDR against a series of 

chemotherapeutic drugs such as taxanes, epothilones, Vinca alkaloids, anthracyclines and 

epipodophyllotoxins.  

Establishment of new in silico and in vitro models for MRP7 substrates/inhibitors 

prediction  

Considering the limited knowledge of MRP7, we established a homology model based on 

bovine MRP1 cryo-EM models. The final model was used for protein global motion 

analysis and docking analysis. Before docking, potential drug binding pockets were 

identified and evaluated. Next, MRP7 substrates and inhibitors were docked into drug 

binding pockets. We found that docked inhibitors and substrates formed separate clusters, 

from which a substrate binding region and an inhibitor binding region were proposed. 

This homology protein model enables the docking analysis of potential MRP7 ligands for 

future studies. Moreover, we established a new SKOV3/MRP7 cell line which exhibits 

similar drug resistance profile as the previously established HEK/MRP7 cell line. This 

new cell line is valuable for MRP7 substrates and inhibitors discovery. Last but not the 

least, we established a novel machine learning model named Mrp7Pred for large-scale 

MRP7 substrates/inhibitors prediction. The model was also deployed as a web server and 



  

is freely available to users in http://www.mrp7pred.com. We successfully identified 2 

substrates and 4 inhibitors from 70 FDA-approved drugs using Mrp7Pred. 

New synthetic agents targeting MRP7 and overcomes MRP7-medited MDR 

Previously, we identified two synthetic compounds, CMP25 and CP55, as potent ABCB1 

and ABCG2 inhibitors. Here we found these two compounds also significantly reversed 

the MDR mediated by MRP7. Both compounds significantly sensitized MRP7-

overexpressing HEK/MRP7 cells to paclitaxel and vincristine. Western blotting indicates 

that neither CMP25 nor CP55 alters MRP7 expression level. Immunofluorescence 

showed that the subcellular localization of MRP7 was not altered by these two 

compounds. However, intracellular accumulation of [3H]-paclitaxel and [3H]-vincristine 

were significantly increased while the efflux was significantly reduced when co-

administered with CMP25 or CP55. Hydrophobic interactions were predicted as the 

major contributors in stabilizing the drug-protein complex via docking analysis. 
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INTRODUCTION 

The ABC transporter superfamily 

Since the first discovery of the membrane transport protein P-glycoprotein (P-gp) 

or ATP-binding cassette (ABC) transporter B1 (ABCB1) in drug resistant cancer cells in 

the mid-1970s, numerous studies have been published regarding ABC transporters and 

their potential therapeutic roles in cancer and other diseases (1). ABC transporters are the 

best known for mediating multidrug resistance (MDR) and lead to failure of 

chemotherapy in cancer. Besides, studies also revealed their importance in cancer beyond 

efflux pumps such as regulating tumor promoting signaling pathways (2,3). ABC 

transporter superfamily is composed of 7 subfamilies, namely ABCA to ABCG, which in 

human derive at least 48 members with different functions. Among the 48 members, 

approximately 13 ABC transporters (including ABCA2/3, ABCB1/2/5, 

ABCC1/2/3/4/5/6/10 and ABCG2) are directly relevant to chemoresistance by mediating 

the efflux of chemotherapeutic agents (4), which subsequently leads to reduced 

intracellular concentration of drugs in cancer cells and deteriorated therapeutic efficacy. 

Due to the critical roles ABC transporters played in human cancers, overcoming cancer 

MDR by targeting the ABC transporters has been prioritized since the development of 

first generation of ABCB1 inhibitor, although clinical trials using these inhibitors have 

not yet achieved satisfactory results (5). Developing novel inhibitors of ABC transporters 

and repurposing approved drugs as ABC transporter modulators are still the major target 

in this field (6). During recent years, numerous synthesized compounds as well as FDA-

approved therapeutic drugs have been discovered as potent ABC transporter modulators 
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in vitro and in vivo, which further extended our knowledge and provided candidates that 

have the potential for clinical applications. 

Multidrug resistance proteins (MRPs) 

As mentioned before, increased efflux of multiple chemotherapeutic agents can 

cause chemotherapy failure due to decreased intracellular drug level and thus limited 

efficacy (2). Such a phenomenon is termed multidrug resistance, or MDR. ATP-binding 

cassette (ABC) transporters have been well studied as one of the major factors that 

mediate MDR in cancer, since many members in the ABC transporter superfamily are 

responsible for the efflux of structurally distinct anticancer drugs (7). Among all ABC 

transporters, the ABCC subfamilies have 13 members (ABCC1 to ABCC13), 9 of which 

were characterized as MRPs (Table 1).(8).  

 

Table 1. Summary of information about MRPs. 
 

Synonyms Gene 
name 

Genomic 
location 

Sequence 
Length 

MW. 
(kDa) 

Classificati
on 

Subcellular 
localization 

MRP
1 

ABCC1 ABCC1 chr16 p13.11 1531 190 Long MRP Basolateral 

MRP
2 

cMOAT, 
ABCC2 

ABCC2 chr10 q24.2 1545 190 Long MRP Apical, basolateral 

MRP
3 

MOAT-D, 
ABCC3 

ABCC3 chr17 q21.33 1527 170 Long MRP Basolateral 

MRP
4 

MOAT-B, 
ABCC4 

ABCC4 chr13 q32.1 1325 170 Short MRP Apical, basolateral 

MRP
5 

MOAT-C, 
ABCC5 

ABCC5 chr3 q27.1 1437 165 Short MRP Basolateral 

MRP
6 

MOAT-E, 
ABCC6 

ABCC6 chr16 p13.11 1503 165 Long MRP Basolateral 

MRP
7 

ABCC10 ABCC10 chr6 p21.1 1492 171 Long MRP Not clear 
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MRP
8 

ABCC11 ABCC11 chr16 q12.1 1382 170 Short MRP Apical, basolateral 

MRP
9 

ABCC12 ABCC12 chr16 q12.1 1356 100 Short MRP Not clear 

 

Structurally, MRPs share structural features including multiple transmembrane 

domains (TMDs, also referred to as “membrane spanning domains” or “MSDs”) and 

nucleotide binding domains (NBDs) for ATP binding and hydrolysis. The number of 

TMDs may differ between MRPs: MRPs 4, 5, 8 and 9 are relatively shorter MRPs since 

they lack the additional N-terminal TMD0, while the other members (MRPs 1, 2, 3, 6 and 

7) are “long” MRPs with TMD0. As a feature found uniquely in only 5 MRPs, the 

function of TMD0 remains unclear.  

Although MRPs have different structures and amino acid compositions, they 

share a similar mechanism of transport driven by ATP hydrolysis. Unlike P-gp, which 

extrudes mostly xenobiotics, MRPs are responsible for the extrusion of both endo- and 

xenobiotics, indicating its important role in regulating physiological processes as well as 

cancer MDR (2,9). Table 2 summarizes the substrate specificities of MRPs. In a recent 

structural study of MRP1, the authors revealed the potential transport mechanism and 

how substrate binding promotes the transport cycle (10). The cryo-EM structure of 

bovine MRP1 supported a unique substrate recruitment mechanism which is different 

from P-gp. In brief, substrates of MRP1 are likely to be recruited directly from the 

cytoplasm, whereas P-gp binds substrates from the inner leaflet of the lipid bilayer 

(11,12). 

Multidrug resistance protein 7 (MRP7/ABCC10) 
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In 2001, multidrug-resistant protein 7 (MRP7), also known as ABCC10, was 

discovered as a new member of the ABCC subfamily (13). MRP7, with a mass of 171-

kDa, contains three TMDs and two NBDs. MRP7 lacks a conserved N-linked 

glycosylation site at the N-terminus compared to MRP1-MRP3, and MRP6 which have a 

similar structural architecture to MRP7 (14). The expression of the MRP7 gene is strong 

in a variety of tissues, including pancreas, kidneys, brain, lung, ovary, testis, prostate, 

colon, leukocytes and skin (15).  

MRP7 is a lipophilic anion transporter involved in detoxification, transporting 

GSH conjugates and glucuronate conjugates (16). Previous reports revealed that MRP7 is 

a drug resistance factor for various anti-cancer drugs including paclitaxel, docetaxel, 

vincristine, and vinorelbine (17–20). MRP7 also confers resistance to nucleoside-based 

agents such as gemcitabine, fluoropyrimidines, and a novel class of natural product 

agents known as epothilone B (21).   

Numerous studies showed that MRP7 expression levels can be a valuable 

prediction biomarker for the outcome of a variety of cancers. The Hopper-Borge’s group 

determined that MRP7 is highly expressed in HER2+ and ER+ human breast cancer cell 

lines BT474, MCF7, and T47D, while the triple-negative breast cancer cell lines BT549, 

HS578T, and MDAMB-231 expressed the lowest levels of MRP7 (22). Moreover, higher 

expression of MRP7 was detected in HER2+ and ER+ breast cancer tumor specimens 

(22). It was found that tumors grew more quickly in Abcc10-/- mice  harboring tumor 

xenografts than wild-type mice; however, in the Abcc10+/+ mice, the tumors displayed 

increased apoptosis, blood vessel formation, and lung metastasis (22). The results 

indicated that cell lines derived from Abcc10+/+ mice showed active migration compared 
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to cell lines derived from Abcc10-/- tumors. A previous study showed that the expression 

of the MRP7 protein is significantly associated with overall survival of colorectal cancer 

patients undergoing 5-FU-based chemotherapy  (23). A low level of MRP7 protein 

expression was observed in colorectal cancer patients with shorter overall survival. This 

indicated that low MRP7 expression is predictive of a poor prognosis in colorectal cancer 

and MRP7 expression is worthy of future validation for its prognostic value. Zhu et al., 

determined the prognostic significance of ABCC subfamily members in gastric cancer 

using KaplanMeier survival analysis (24). The results showed that MRP7 was 

significantly associated with both negative and positive HER2 status. High expression of 

MRP7 indicated a poor prognosis. Thus, MRP7 may be a significant potential prognosis 

biomarker for gastric cancer (24). The association of MRP7 expression with paclitaxel 

sensitivity was tested in non-small cell lung cancer (NSCLC) cells. The results revealed 

that high expression levels of MRP7 led to a significantly lower paclitaxel sensitivity in 

17 human NSCLC cell lines (25). Thus, MRP7 expression is a predictive biomarker for 

paclitaxel resistance in NSCLC. Apart from the association with cancer, a recent study 

indicated that MRP7 expression is primarily correlated with regular growth of the cell 

population instead of cell cycle progression (26). Overall, it is very important to deepen 

our understanding in overcoming MRP7-mediated cancer drug resistance.   

Machine learning and drug discovery 

 Before the significant advancement of machine learning and deep learning 

algorithms, researchers have been implementing ligand-based and structure-based models 

for high-throughput screening of drug candidates. Discovering ABC transporter 

modulators was also one of the major tasks in this field. Conventional methods include 
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Hansch analysis, pharmacophore modeling, linear and non-linear regression. Later, with 

the development of machine learning techniques, supervised and unsupervised artificial 

neural networks have been widely applied in ABC transporter ligand prediction (27). In 

this section, several most popular machine learning algorithms used in drug design and 

discovery were introduced.  

Support vector machine (SVM) 

Support vector machine (SVM) is one of the most popular supervised non-linear 

classification models in machine learning. It was first proposed by Vapnik in 1992, used 

a supervised machine learning approach based on a statistical learning theory called 

Vapnik Chervonenkis Theory. In brief, SVM is a marginal classifier, which works by 

finding the optimal hyperplane to separate data with different labels at maximum margin 

(28). Different from fundamental marginal classifiers, SVM innovatively involved the 

kernel functions (such as linear, polynomial and radial basis function kernel) to transform 

original data into higher dimensional spaces, so that it has non-linear classification 

capabilities (29). The term “support vector” stands for a set of data points that locates on 

the margins. Given a labelled dataset: 

(𝑥!, 𝑦!), … , (𝑥", 𝑦"), 𝑥# ∈ ℝ	𝑎𝑛𝑑	𝑦# ∈ {−1, 1} 

where xi is a feature vector and yi is the class label. Here the label was set 1 and -1 for 

reasons explained below. Then the optimal hyperplane is defined as: 

𝐷(𝑥) = 𝑤𝑥$ + 𝑏	 

where w is the learnable weight vector and b is the learnable bias that SVM will learn via 

the training process. Then the margin could be expressed as a minimal 𝜏 that holds: 

𝑦#𝐷(𝑥#)
||𝑤|| ≥ 𝜏 
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Then we can apply a constraint 𝜏9|𝑤|9 = 1. Here, maximizing the margin 𝜏 is equivalent 

to minimizing ||𝑤||. To simplify the calculation, we can convert the problem to minimize 

𝜂(𝑤) = %|'|%
!

(
, which subject to constraints: 

|𝑦#|	(𝑤𝑥#$ + 𝑏) ≥ 1 

This problem could be solved by introducing the Lagrange multipliers: 

𝑄(𝑤, 𝑏, 𝛼) =
1
2 9
|𝑤|9( −>𝛼#[𝑦#(𝑤𝑥#$ + 𝑏) − 1]

"

#)!

 

Here 𝛼#′𝑠 are Lagrange multipliers. By differentiating and substituting w, we get  

max 	𝑄(𝛼) =>𝛼# −
1
2 > 𝛼#𝛼*𝑦#𝑦*(𝑥#𝑥*)

"

#,*)!

"

#)!

 

subject to ∑ 𝑦#𝛼# = 0, 𝛼# ≥ 0, 𝑖 = 1,…𝑛	"
#)!  

To enable the soft margin, the optimization could be reformulated as 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒	𝜂(𝑤) =

%|'|%
!

(
+ 𝐶∑ 𝜉## , 𝑤ℎ𝑒𝑟𝑒	𝑦#(𝑤𝑥#$ + 𝑏) ≥ 1 − 𝜉# . Here when 𝜉#′𝑠 are not zero, vectors are 

allowed to locate within the margins. C is the penalty factor, a tunable parameter of 

SVM. 
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Figure 1. SVM illustration. Positive and negative were displayed as blue circles and red 

squares, respectively. Support vectors were represented as solid shapes. The hyperplane 

was represented as green solid line. 

 

Figure 1 showed an illustration of SVM classifier. The reason why SVM could 

solve non-linear problems is the introduction of kernel functions (30). The main idea of 

kernel functions is to add additional dimensions to the training data and convert the 

problem to a linear problem in higher dimensional space. The most common kernel 

functions include linear kernel, Gaussian kernel and polynomial kernel. The 

representation of each kernel is given below: 

𝐾,#"-./(𝒙𝟏, 𝒙𝟐) =< 𝒙𝟏, 𝒙𝟐 > 

𝐾2.344#."(𝒙𝟏, 𝒙𝟐) = exp	(−𝛾9|𝒙𝟏 − 𝒙𝟐|9
() 

𝐾56,7"68#.,(𝒙𝟏, 𝒙𝟐) = (< 𝒙𝟏, 𝒙𝟐 > +1)9 
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Linear kernel is the standard scaler product. The Gaussian kernel is also known as RBF 

kernel, where 𝛾 is the inverse-width parameter which is related to the number of support 

vectors. In polynomial kernel, the parameter d is the degree of polynomial function (31). 

 Various SVM models for drug discovery has been developed over the past 

decade, and SMV has shown promising performance in compound activity prediction and 

non-linear structure-activity relationship modeling (32). However, intuitive accessibility 

is one of the major shortcomings of SVM which makes it hard to illustrate the chemical 

terms (33).  

 Random forest 

 Random forest is another supervised learning algorithm that could be applied to 

classification and regression (34). In brief, it is a combination of decision tree predictors 

where each tree predicts based on a random independent vector derived from the feature 

vectors (35). Random forest has been widely used in different fields including drug 

discovery (Figure 2) (36).  

 

Figure 2. An illustration of random forest method. 
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 Random forest is composed of B decision trees {𝑇!(𝑋), … , 𝑇:(𝑋)} where 𝑋 =

{𝑥!, … , 𝑥8}, an m-dimension vector of features (molecular descriptors, fingerprints, or 

other quantitative properties). Then the forest outputs B independent predictions {𝑌![ =

𝑇!(𝑋), … , 𝑌:\ = 𝑇:(𝑋)}. Outputs of the forest are the aggregated prediction of all trees. In 

classification problems, the final output is produced by the majority of trees (voting); in 

regression problems, the final output is the average of individual tree predictions (37). 

The first step of the training procedure is drawing a bootstrap sample (i.e. random 

sampling, with replacement, n batches) from the training data. Then for each bootstrap 

batch, grow a decision tree based on a random subset of the whole feature vector. Here 

the maximum size of subsets is a tunable parameter. Trees are grown till the maximum 

size is reached (no splits are available) and leave without pruning. The training stops until 

B trees were successfully generated. If we use all features to grow each tree, the 

algorithm is then same as bagging (38). The reasons why random forest is efficient are: 1) 

the feature subset could be very small, thus each tree could be quickly split and grown; 2) 

there is no pruning for individual trees in random forest (39).  

Boosting and the out-of-bag performance estimation 

Boosting is another ensemble learning algorithm based on decision trees (40). In 

brief, boosting is a sequence of trees, and each tree is trained on all training data. In 

classification problems, data weight will be altered based on whether previous trees 

misclassified the data. In regression problems, trees were grown based on the residual of 

previous trees (41). The final prediction is given by weighted voting or average for 

classification or regression, respectively.  
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In practice, obtaining labeled data could be expensive and time-consuming. Thus 

people use different methods of cross-validation to improve the performance (42). 

Random forest performs cross-validation in a parallel manner with training using the Out-

out-bag (OOB) samples (43). The OOB samples are generated from the sampling 

procedure, where bootstrapping samples were performed where part of the training data 

will not be selected to construct trees. As a result, each tree will have a collection of “left-

out” data—the so-called OOB samples. We can then calculate the error rate (ER, for 

classification) or mean square error (MSE, for regression) from the ensemble prediction 
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It has been shown that the OOB estimation works reasonably well as k-fold cross-

validation. As a result, random forest does not require additional cross-validation (44).  

Supervised learning approaches in drug discovery 

We have introduced the most commonly used supervised learning methods in 

previous sections. Here, we briefly introduce some of the state-of-the-art implementations 

of supervised machine learning algorithms in drug discovery.  

Machine learning models have been heavily involved in the whole drug discovery 

pipelines including target identification and validation, compound screening and lead 

discovery, preclinical development as well as clinical development. Virtual screening 

(VS) is a key step in the process of drug development. Over the past decades, VS has 

evolved from traditional similarity searching to data mining and machine learning 
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approaches, which require large amount of training data. In the past few years, machine 

learning methods have been proved to boost the drug discovery techniques such as 

docking analysis. For example, Sato et al. showed SVM and RF models outperformed 

GlideScore when at least 5 crystal structures were used for model building (45). Abdo et 

al. proposed a similarity-based VS approach using Bayesian inference network (46). 

Most recently, with the wide availability of graphical processing units (GPUs) that 

greatly accelerate the parallel processing, more complex models, such as deep neural 

network models, were enabled and proved enormous increase in different types of tasks 

(47). Costa et al. built a tree-based classifier to predict genes associated with morbidity 

and druggability. The classifier is trained on protein topology network, metabolic and 

transcriptional interactions (48). In 2017, Pande et al. constructed a large benchmarking 

dataset name MoleculeNet, which contains properties of over 700,000 compounds, which 

has been widely used for benchmarking ML algorithms (49). Recently, researchers at 

AstraZeneca used generative RNNs to design compounds with optimal physiochemical 

properties, which greatly expanded the chemical space (49). In summary, there is a 

tendency to implementat machine learning models in drug-target interaction prediction, 

including inhibitors or substrates of ABC transporters.  
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CHAPTER 1 

 In this chapter, we mainly discussed our work in establishing a homology MRP7 

protein model. Some essential background knowledge about homology modeling is 

introduced. The computational methods are described in detail. Overall, we built a MRP7 

homology model and performed molecular docking to validate the structure. We also 

performed molecular dynamics simulation in order to get some insights on the protein 

structural dynamics and functions.  

1.1 Introduction  

 ABCC10/MRP7 was first discovered in about 20 years ago from expressed 

sequence tag databases mining (13) and its transport properties were determined 

subsequently (16). MRP7 was proved to be able to transport multiple types of substrates 

including amphipathic anions such as 17b-estradiol 17-(b-D-glucuronide) (E217bG), 

natural product and derivatives including vinca alkaloids such as vincristine and taxanes 

such as paclitaxel (13,50). In vitro and in vivo studies have suggested that MRP7 was 

responsible for mediating MDR in cancer cells (55–57) and down-regulated MRP7 

expression by targeting its gene expression could enhance cellular sensitivity to 

chemotherapeutic drugs (58). Besides, our group has discovered that MRP7 could be 

functionally regulated by tyrosine kinase inhibitors, phosphodiesterase inhibitors, Raf 

kinase inhibitors, fibroblast growth factor inhibitors and other small molecule drugs, 

leading to reversed MDR in resistant cancer cells (59–64).  

Clinically, MRP7 has been reported to play important roles in acquired MDR and 

the prognosis of certain cancers (51,65). Additionally, MRP7 participates in FOXM-

induced 5-FU resistance in colorectal cancer patients based on the strong correlation 
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between mRNA levels of MRP7 and FOXM in tumor tissues. Furthermore, MRP7 also 

contributes to alteration in intracellular permeation of nevirapine, a non-nucleoside 

reverse transcriptase inhibitor for HIV-1 (66). As a result, further understanding the 

structural features and transportation mechanisms of MRP7 is crucial in increasing the 

survival rate of patients with limited response to chemotherapy due to acquired MDR, as 

well as developing and discovering substrates/modulators to overcome MRP7-mediated 

MDR or decreasing unexpected synergistic toxicity in combinational chemotherapies. 

However, due to the difficulty and cost in obtaining crystal structure of membrane 

protein, no high-resolution structure of human MRP7 is available so far. Previously, the 

cryo-EM structure of bovine MRP1 was reported at 3.1-3.5 Å with inward- and outward-

facing conformations (10,67). Although there are significant differences between MRP1 

and MRP7 in length, size, amino acid sequence and transportation pattern, it still provides 

possibility to construct high-quality homology models of MRP7 via computational 

strategies. Here, we present the homology models of MRP7 combining current 

knowledge of the transporter and the homology modeling methods based on the cryo-EM 

structure of MRP1 in order to: 1) provide a functionally validated human MRP7 

homology model; 2) assess the structural dynamics to identify potential conformational 

changes associated with efflux mechanism; 3) evaluate the behavior of reported 

substrates and modulators of MRP7 by analyzing ligand-protein interactions. Also, extra 

docking simulations were performed using template MRP1 and our homology model to 

further validate that the MRP7 model was not biased towards its templates.  Our study 

will provide rational insights in the drug development or repurposing of MRP7 

modulators. 
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1.2 Computational methods 

Homology modeling of human MRP7 and structure refinement 

Human MRP7 sequence (validated in vitro) was obtained from the publication by 

Hopper et al., where human MRP7 was first discovered and expressed (13). Before 

modeling, a BLAST (basic local alignment search tool) search was performed on PDB by 

using MRP7 protein sequence to find suitable templates. Bovine MRP1 proteins (5UJA) 

were selected as templates considering the identity and resolution.  

A common homology modeling procedure include template alignment, alignment 

adjustment, backbone establishment, loop/side chain prediction and model refinement 

(68). In this study, we used the homology modeling tool Prime provided by Schrodinger 

Suite and visualized in Maestro 11 (Schrödinger, NY). The TMD0 region of MRP7 was 

eliminated before alignment. For each conformation, we created 50 initial models (totally 

100) followed by loop refinement provided in Schrodinger Prime and subjected to quality 

assessment.  

Protein structure assessment 

Generated homology models were evaluated for structure integrity to select the 

one with best quality as judged by Ramachandran favored residues, main chain (M/c) 

bond lengths and bond angles (69), peptide bond planarity (70) and zDOPE (normalized 

Discrete Optimized Protein Energy) score (71). Models with zDOPE score closer to -1.0 

have better quality. The Ramachandran plots, M/c bond lengths/angles and peptide bond 

planarity scores were calculated using PROCHECK (72). Furthermore, the 

QMEANBrane (73) function was applied to better assess transmembrane protein model 

quality. Moreover, QMEAN Z-score (74), ERRAT (75) and MolProbity (76) scores were 
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also calculated. In brief, 1) QMEAN Z-score evaluates how a protein model is in 

agreement with one would expect from experimental structures of similar size. The Z-

score is an integration of global (QMEAN4) and local (QMEAN6) estimates of protein 

quality. Scores closer to zero indicates good structural quality (74). 2) ERRAT scores 

describe the overall quality of a protein model, and higher score indicates better quality. 

The normally accepted range for ERRAT score is > 50 (75). 3) MolProbity score is a 

combined protein quality score which indicates the expected resolution of a possible 

crystal structure of similar quality with tested protein model. Thus lower MolProbity 

score means better quality (76).  

Membrane system and molecular dynamics simulations 

Molecular dynamics simulation was set up and performed as previously described 

with modifications (77). MD simulation system was built using the system builder tool 

provided in Desmond (D.E. Shaw Research, NY). The membrane systems for inward-

facing MRP7 were built separately. A POPC membrane with a predefined TIP3P solvent 

model was established for simulation run. Na+ and Cl- ions were added to neutralize the 

overall charge of the system. The MD simulation was performed in periodic boundary 

conditions (PBC). After a default relaxation protocol, the simulation was performed as 

NpT runs used Nose–Hoover thermostat (78) and Martyna–Tobias–Klein barostat (79) 

methods with isotropic coupling under temperature 300K and pressure 1 bar for 100 ns. 

All MD runs for substructure dynamics analysis were performed independently for 3 

times with different random seeds. All simulations were performed in Ubuntu 18.04 

system with an NVIDIA Tesla P100 GPU. In total 1000 frames were generated and 

subjected to a principal component analysis (PCA) for protein motion pattern prediction 
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using ProDy (80) with in-house python (3.6) scripts and visualized through the NMWiz 

plugin in VMD (81).  

Binding sites identification 

Inward-facing human MRP7 homology model was prepared for binding site 

search as previously described (82,83). In brief, the protein model was preprocessed 

using the Protein Preparation Wizard provided in Schrodinger Suite. Preprocessing steps 

including adding hydrogen atoms, assign bond orders and remove water molecules.  

Binding pockets were identified using SiteMap in Schrodinger Suite and visualized in 

Maestro 11 (Schrödinger, NY).  

Molecular docking 

Docking simulations were performed using AutoDock Vina (1.1.2) (84). The 

protein model and the ligands were modified by adding hydrogen atoms and partial 

charges in AutoDockTools (1.5.4). Docking grid center and size were determined 

according to the binding pocket surrounded by TMDs of MRP7 as well as MRP1 (MRP1 

binding pocket was determined by co-crystalized ligand). Specifically, the docking grid 

was determined by the center coordinates of the predicted binding region. The size of the 

grid box is 30 Å • 30 Å • 30 Å. Each docking run generated 10 poses with the highest 

docking score. All other parameters were set as default. The ligands with highest affinity 

score were exported for visualization and further analysis. The 2D interaction diagram 

was generated by Maestro provided by Schrodinger. The 3D ligand-protein figure was 

generated using UCSF Chimera (v. 1.14). Protein surface was colored by electrostatic 

potential which was calculated by the Coulombic Surface Coloring module. 

Binding pocket characterization 
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Volume of the MRP1 and MRP7 drug binding pockets were calculated using 

SiteMap provided by Schrodinger. For hydrophobicity, we randomly sampled 50-60 

amino acids with docked/crystalized ligands in the center. We used Kyte-Doolittle amino 

acid hydrophobicity scale (KD hydrophobicity score) to calculate the overall 

hydrophobicity of the pockets. Weighted hydrophobicity scores were calculated by: 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑	ℎ𝑦𝑑𝑟𝑜𝑝ℎ𝑜𝑏𝑖𝑐𝑖𝑡𝑦

=
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑	𝑟𝑒𝑠𝑖𝑑𝑢𝑒
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑠𝑎𝑚𝑝𝑙𝑒𝑑	𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠 × 	𝐾𝐷	ℎ𝑦𝑑𝑟𝑜𝑝ℎ𝑜𝑏𝑖𝑐𝑖𝑡𝑦	𝑠𝑐𝑜𝑟𝑒 

Statistical analysis 

In this study, we performed statistical analysis to evaluate the difference of 1) 

Molecular dynamics (MD) simulations for sub-structural dynamics analysis; 2) 

comparing the overall RMSD of MRP7 with or without linker 2; 3) Compare the 

hydrophobicity of MRP1 and MRP7 binding pockets. Only trajectories after equilibration 

(50 ns) were considered for statistical analysis. In vitro MTT assay in this study was 

generated from at least three independent triplicated experiments. Results were presented 

as mean ± SD. All pair-wise comparison were performed used one-way ANOVA 

followed by post hoc analysis.  

1.3 Results 

MRP7 homology modeling and structure refinement 

A proper template is determined by multiple factors including sequence identity, 

resolution, functional similarity and sequence alignment, which are essential for 

identifying conserved regions, ligand binding sites as well as structural domains (85). 

Here, the bovine MRP1 (MRP1) with inward-facing (PDB ID: 5UJA) (10) conformations 
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was chosen as modeling template according to the high identity rate among top 

alignments shown in Table 2. The resolution of 5UJA is 3.34 Å.  

Table. 2. Top alignments of MRP7 

PDB 
ID 

Title Length Identity 
(%) 

Gaps E 
value 

Resolution 
(Å) 

6BHU Chain A, Multidrug resistance-
associated protein 1 [Bos taurus] 

1659 34.80% 9.13% 0.0 3.14 

5UJA Chain A, Multidrug resistance-
associated protein 1 [Bos taurus] 

1460 34.88% 9.13% 0.0 3.34 

6C3O Chain E, ATP-binding cassette sub-
family C member 8 [Homo sapiens] 

1581 28.88% 12.88% 0.0 3.90 

5WUA Chain E, SUR1 [Mesocricetus auratus] 1582 30.89% 11.89% 0.0 5.60 

5YKE Chain B, ATP-binding cassette sub-
family C member 8 isoform X2 
[Mesocricetus auratus] 

1582 30.89% 11.89% 0.0 4.11 

5TWV Chain B, ATP-binding cassette sub-
family C member 8 [Cricetus cricetus] 

1590 30.74% 11.89% 0.0 6.30 

 

The final model was shown in Figure 3A. In this study, TMD0 was not included 

in our homology model because the TMD0’s in the templates were not completely 

resolved. Furthermore, previous studies have shown that removal of TMD0 did not affect 

the function of MRP1 protein (86).  According to the sequence alignment, MRP1 and 

MRP7 share similar structural domains including transmembrane domains (TMDs), 

Lasso (L0 linker) and nucleotide-binding domains (NBDs) (Figure 3B-F). The alignment 

contains conserved region of NBDs shared by multiple ABCC members including the 

Walker A, Signature and Walker B (13) (Figure 3D, F). The consensus ATPase sites are 

used for establishing the Mg-ATP system (10).   
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Figure 3. Sequence alignment of MRP1 and MRP7. A) Homology model of 

human MRP7. Key domains were colored as Lasso/Linker 1/Linker 2/Linker 3: green; 

TMD1: blue; TMD2: yellow; NBD1: pink; BND2: red. B) Topological structure of 

human MRP7. Key domains were colored and labeled. C-F) Top: Predicted TMD1 (C) / 

NBD1 (D) / TMD2 (E) / NBD2 (F) structures of human MRP7. Amino acids with high 

identity to template were colored red. Conserved region of NBDs including Walker A/B 

and signature were labelled.  Bottom: Sequence alignment of human MRP7 and bovine 

MRP1. The alignment map was generated using ESPript server (87). 

 Initial models were subjected to a loop refinement procedure provided by 

Schrodinger Prime module. Refined MRP7 models were subjected to a series of 

structural assessment to determine the best model for further studies. Additionally, cryo-
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EM structures of MRP1 were also evaluated with same functions. Top results were 

shown in Table 3. From the results, we found the homology model of MRP7 maintained 

high percentage of residues in Ramachandran favored regions (91.5% for pre-MD and 

91.2% for post-MD). Also, the structures got the most favored main chain layouts 

indicated by the three PROCHECK scores (M/c bond lengths, bond angles and planar 

groups). For both pre-MD and post-MD, most of the residue main chain bond lengths 

(99.5% for pre-MD and 99.1% for post-MD), main chain bond angles (99.4% for pre-MD 

and 98.9% for post-MD) and planar groups (96.4% for pre-MD and 96.0% for post-MD) 

fall in reasonable range. Both crystal structures also got acceptable zDOPE, ERRAT, 

MolProbity and QMEAN Z-scores. The best models were selected and used for MD 

production runs. 

 

Table 3. Structure assessment of top models  

 Ramachandran 
favored [up to 
100%] 

M/c 
bond 
lengths 
[up to 
100%] 
1 

M/c 
bond 
angles 
[up to 
100%] 
2 

Planar 
groups 
[up to 
100%]3 

zDOPE 
[down 
to -1] 

ERRAT 
[up to 
100] 

MolProbity 
[down to 
0]  

QMEAN 
Z-score 
[up to 0] 

Inward-facing models 

Pre-MD 91.5% 99.5% 99.4% 96.4% -0.64 89.33 3.85 -1.65 

Post-MD 91.2% 99.1% 98.9% 96.0%  -0.79 77.72 3.26 -1.96 

1 : percentage of main chain bonds within the allowed range 
2 : percentage of main chain angles within the allowed range 
3 : percentage of peptide bonds within the allowed planarity range 

 

Domains of MRP7 were determined according to the secondary structure of 

homology models as well as previous reports (13). Although MRP7 belongs to the “long” 
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class of ABCC family, our model does not contain TMD0 domain due to the 

incompleteness of TMD0 structure in both templates (54). Similar to MRP1, TMD1 and 

TMD2 are the major transmembrane domains of MRP7 which forms the binding pocket 

for substrates as well as responsible for the transportation mediated by conformational 

change. The two cytosolic NBDs are responsible for ATP binding and triggering the 

conformational change of the protein.  

When considering the final refined structure after 100 ns MD runs, the 

Ramachandran plots of MRP7 were shown in Figure 4. The overall structure of MRP7 is 

maintained with 91.2% (inward-facing) residues in most favored region (Figure 4). These 

results indicated that the final remained similar quality compared with the initial model 

after 100 ns MD run. The following results and discussion will be based on the MD-

refined model unless otherwise stated.  

 
Figure 4. Ramachandran plots of template crystal structure 5UJA (A), initial model (B), 

MRP7 at the end of 100 ns MD run (C).  

 

 The structure deviation of each MRP7 domain was analyzed separately from the 

MD run using the root mean square deviation (RMSD). The results were displayed in 

Figure 5. Overall, RMSD value of the whole MRP7 model increased in the first 50 ns, 
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reaching a plateau of ~5 Å until the end of the simulation. For RMSDs of separate 

domains, we found that the linker regions (linker 1 between TMD1 and NBD1 and linker 

2 between NBD1 and TMD2) are the major contributors to the total RMSD with final 

RMSD at around 6 Å and relatively higher variation compared to other substructures. 

Linker 3 (Between TMD2 and NBD2) also showed higher equilibrated RMSD compared 

to TMDs and NBDs, but significantly less than linker 1 and 2. TMDs and NBDs 

remained stable eventually at 2.5 – 3.0 Å.  
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Figure 5. Structure deviation of MRP7 substructures in the 100 ns run. A) The RMSDs 

of MRP7 substructures were plotted against time (ns). B) RMSD of MRP7 with linker 
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(black) or without linker (red) in 100 ns MD run. C) RMSF of residues with linker 

(black) or without linker (red) in 100 ns MD run. Residue numbers were shown in x-axis 

and segmented by domains: Red: TMD1; yellow: NBD1; green: TMD2; purple: NBD2. 

Shadow regions indicate standard deviation of 3 independent MD runs. **p < 0.01 via 

one-way ANOVA test compared with non-linker structures. 

 

The cryo-EM structure of MRP1 lacks the linker 2 structure between NBD1 and 

TMD2 probably due to its unstable conformation as well as flexibility. Here, we analyzed 

the role of the de novo linker 2 structure in MRP7. Results showed that linker 2 in MRP7 

contributes positively to the overall stability of the protein (Figure 5B) since the 

equilibrated RMSD of MRP7 without linker 2 is significantly higher than the one with 

linker, although its structure showed intense fluctuation and flexibility according to our 

RMSD data (Figure 5A). Furthermore, in the full system containing POPC membrane, 

missing linker resulted in increased fluctuation of residues (Figure 5C).  

Protein global motions  

The protein global motion was analyzed by PCA function provided in ProDy (80). 

The major motion of protein backbone along specific directions was represented by 

eigenvectors derived from the covariance matrix calculated from consecutive MD 

trajectories (88). In inward-facing MRP7, the NBDs showed higher mobility and a 

pendular motion parallel to the cytoplasm plane and approach each other. Also, the linker 

2 structure showed opposite motion direction in upper and lower segment. Specifically, 

the upper segment which connects to TMD2 moved to the same direction as NBD2, 

while the lower segment moved to the same direction as NBD1. Thus, we infer that the 
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linker absorbs forces generated in intensive movements and caused lagged equilibration 

and less residue fluctuation compared to when no linker 2 was present (Figure 6). The 

TMDs did not show as significant motions as NBDs, but slight oscillatory movements 

along with connected NBDs were observed. Although such movements of TMDs did not 

disturb the arrangement of transmembrane helices, such trend revealed the mechanism of 

initial motions before ATP-binding-triggered ligand affinity change. TMDs were 

connected to NBD1 and NBD2 by linker 1 and linker 3 respectively, which seemed to 

play a similar role in signal propagation between NBDs and TMDs as the SP domains in 

ABCG2 (53).  

 

Figure 6. Global motion pattern of inward-facing MRP7. Red arrows indicate potential 

domain motion direction and distance by PCA analysis. Motions below 1.5 Å were 

hidden. 

 

Binding pockets identification and validation 

To validate the function of our MRP7 model, potential binding pockets were 

identified (Figure 7) for docking analysis (inward-facing). Five potential binding pockets 
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were identified. According to Figure 7A, the yellow pocket embedded in the TMDs was 

the one we are interested in, since its position is consistent with the general binding 

pockets of ABC transporters such as ABCB1 and ABCG2, which also have functional 

binding pockets buried in TMDs. Other binding pockets locate either in TMDs or around 

NBDs. Figure 7B and 7C showed the electrostatic potential of the binding pocket as well 

as the shape. The volume of this pocket is around 1170 Å3, with the Leu549 stands out in 

the center and separates the pocket into two “chambers”.   

 

Figure 7. Predicted binding pockets of inward-facing MRP7. A) All predicted binding 

pockets were displayed with colored solid surface. The pocket marked by the red square 

was the selected binding pockets for docking analysis. B-C) Cytoplasmic (B) and front 
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(C) view of the marked binding pockets. Molecular surface was colored by residue 

electrostatic potential (red: negative; blue: positive). 

 

 Investigations of the transport properties of MRP7 revealed its ability to efflux 

conjugates such as 17b-estradiol-( b-D-glucuronide) (E217 b G) and leukotriene C4 

(LTC4) (16). Also, MRP7 is responsible for mediating the efflux of structurally-distinct 

chemotherapeutic agents including doxorubicin, vincristine, docetaxel, paclitaxel, 

vinblastine (89) and vinorelbine (90). Moreover, our lab has previously discovered 

several small-molecule drugs being MRP7 modulators including nilotinib (61), lapatinib 

(62), cepharanthine (91), sildenafil (92), tariquidar (93), epothilone B and sulfinpyrazone 

(90), which could sensitize MRP7-overexpressing resistant cells to substrate anticancer 

drugs. We also included several drugs that does not show significant interaction with 

MRP7 such as cAMP (16),  siphonellinol D (94), glucuronic acid (16), WHIP-154, SN-

38, 6-MP, 6-TG, 5-FU (89), probenecid (16) and methotrexate (13). Thus, it is 

particularly interesting to investigate the interactions between MRP7 and those drugs. 

Figure 8A showed the docking results of known MRP7 substrates, inhibitors and those do 

not interact with MRP7. The results indicated that our model could reasonably 

distinguish MRP7 modulators (substrates/inhibitors) and non-modulators since the 

modulators (red and blue) have significantly stronger predicted affinity than non-

modulators (grey). 

As mentioned above, it would be important to understand the interaction between 

MRP7 and its modulators. Thus, we first analyzed the docking site by clustering all 

docked ligands. Four separate binding clefts were predicted via EPOSBP software using 
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the docked ligands and predicted binding sites. Mean hydrophobicity was calculated 

based on the residue properties (Figure 8B). The best docking poses of substrates and 

inhibitors formed two clusters which was roughly separated by the Leu549. As shown in 

Figure 8, MRP7 substrates (Figure 8D) tends to bind at the hydrophilic side (yellow 

cluster in Figure 8D) surrounded by Gly299, Gln341, Glu400, Gln407, Leu494, Arg545, 

Pro550, Asn552, Asn553, Arg985, Asp1152, Thr1195, Gln1156 and Gly1196. The 

exceptions were LTC4 and doxorubicin, which have higher binding affinity in different 

sites. For LTC4, the binding pattern is consistent with its bipartite characteristic. The 

polar GSH moiety was stabilized by hydrogen bonds formed with Arg545, Asn552, 

Asn553 and Arg985; while the hydrophobic tail was stabilized by non-polar interactions 

with Leu298, Pro303, Leu1192 and Gly1196 (data not shown). The binding pattern of 

LTC4 with our homology model is similar to that in bovine MRP1, where LTC4 was also 

stabilized in a bipartite pockets (PDB ID: 5UJA). After summarizing the docked ligands, 

we proposed the key amino acids of the binding pocket displayed in Figure 8C. These 

key residues played crucial rules in stabilizing multiple ligands. For example, Lys292 

was responsible for forming hydrogen bonds with docetaxel, doxorubicin, vinorelbine, 

vincristine, E217bG and cepharanthine; Leu549 was involved in stabilizing all docked 

ligands via hydrophobic interactions. Additionally, we found that MRP7 inhibitors tend 

to occupy the hydrophobic cleft (Figure 8E). Among the modulators we analyzed, 

cepharanthine, an herbal extract from Stephania cepharantha, unlike other modulators, 

binds at the polar site. This could be explained by the similarity in the chemical structures 

of cepharanthine as Vinca alkaloid, such as vincristine, which also binds to the polar site.  
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Figure 8. Functional validation of the MRP7 homology model by docking with 

experimentally validated drugs. A) Docking scores of substrates/inhibitors/non-

modulators. Red columns indicate known MRP7 substrates; blue columns indicate known 

MRP7 inhibitors; grey columns indicate drugs that are not interacting with MRP7. *** p 

< 0.005 via one way ANOVA by comparing substrates/inhibitors and negative drugs. 

Docking scores × (-1) were labeled within columns. B) Properties of predicted MRP7 

binding pocket. Blue indicates hydrophobic and red indicates polar. Numbers indicate 

mean hydrophobicity of predicted binding clefts. C) Key residues of predicted binding 

pocket were labeled. Red indicates polar amino acid, blue indicates hydrophobic amino 

acids. Glycine is colored yellow. D) Docked poses of MRP7 substrates in the binding 

pocket. LTC4 and doxorubicin bind to different positions as other substrates. LTC4 was 

colored orange; doxorubicin was colored grey. E) Docked poses of MRP7 inhibitors 
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(displayed as green sticks) in the binding pocket. Inhibitor cepharanthine was colored 

yellow. MRP7 protein surfaces were colored by electrostatic potential (red: negative; 

blue: positive). Abbreviations: LTC: LTC4; TQR: tariquidar; PTX: paclitaxel; VCR: 

vincristine; VNB: vinorelbine; DOC: docetaxel; DOX: doxorubicin; VBL: vinblastine; 

EST: E217bG; LAP: lapatinib; NIL: nilotinib; SUL: sulfinpyrazone; VEM: vemurafenib; 

EPB: epothilone B; CEP: cepharanthine; SIPD: siphonellinol D; GA: glucuronic acid; 

WHIP: WHIP-154; SN: SN-38; PRO: probenecid; MTX: methotrexate. 

 

Comparative analysis with bovine MRP1 

Next, we performed a series of docking simulations to compare the ligand-binding 

patterns of MRP7 and MRP1. Multiple anticancer drugs have been identified as MRP1 

substrates (such as vincristine and methotrexate) or inhibitors (such as probenecid and 

MK571). Previous studies have demonstrated that methotrexate is a substrate of MRP1 

but not MRP7 (13,95). Similarly, paclitaxel is a good substrate of MRP7 but it cannot be 

transported by MRP1 (13,96). In this section, we firstly performed docking analysis using 

LTC4-bound bovine MRP1 structure. Results were shown in Figure 9. In Figure 9A, we 

found that the drug binding pocket of MRP1 was also buried in TMDs. Details of the 

binding pocket were given in Figure 9C. Different from MRP7, MRP1 has a relatively 

smaller binding pockets with volume of around 743 Å3. Figure 9B showed the results of 

docking simulations using known MRP1 substrates/inhibitors and non-modulators. The 

results are consistent with previous in vitro studies, with substrates and inhibitors 

showing higher scores than non-substrate paclitaxel. 
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Figure 9. MRP1-substrate anticancer drugs and modulators docked into MRP1 binding 

pocket. A) Overview of the bovine MRP1 substrate binding pocket. B) Docking scores of 

known MRP1 substrates, inhibitors and negative control drugs. Docking scores × (-1) 

were labeled within columns. Column colors indicate different types (red: substrates; 

blue: inhibitors; grey: negative drugs). Abbreviations: LTC: LTC4; PTX: paclitaxel; 

VCR: vincristine; MTX: methotrexate; PRO: probenecid; MK: MK571. C) Docked poses 

of MRP1 substrates LTC4, vincristine, modulators probenecid, MK571 (yellow sticks). 

Non-substrate paclitaxel was displayed as green sticks. All surfaces were colored by 

electrostatic potential (red: negative; blue: positive). 

 

From Figure 9C, we found that the best docked pose of paclitaxel was actually on 

the edge of the pocket and close to the open end form by TMDs of MRP1. Detailed 

docking complex was shown in Figure 10C and 7D. For MRP7, the paclitaxel was 

stabilized by both polar and hydrophobic interactions. From Figure 10B, we could see 

that 4 hydrogen bonds were formed between paclitaxel and Glu400, Gln407, Asn553, 

Gln1156. The benzene rings were stabilized via hydrophobic interactions with 

Ala334/338, Gly333/337, Gly1196 and Leu1197. For MRP1, in Figure 10D, we could 
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see that paclitaxel was stabilized via two hydrogen bonds with Gln1088 and Tyr440. No 

strong hydrophobic interaction in MRP1 was observed to stabilize the molecule. Thus, it 

is reasonable that paclitaxel has weak or no interaction with MRP1 in actual biological 

systems. 

 The predicted binding poses of methotrexate in MRP1/MRP7 binding pockets 

were shown in Figure 10. In Figure 10E and 7F, the best docking poses of methotrexate 

locates majorly in the two hydrophobic clefts of MRP7, thus less likely to form hydrogen 

bonds with polar residues to stabilize the carboxyl groups as in MRP1 (Figure 10G and 

7H). According to the cryo-EM structure of bovine MRP1, its binding pocket is actually 

composed of a “P-pocket” (polar, formed majorly by Lys332, His335, Leu381, Arg1196, 

Arg1248, Asn1244 and aromatic residues Phe594, Tyr440, Phe385) and an “H-pocket” 

(hydrophobic, formed majorly by Trp1245, Trp553, Met1092, Thr550 and aromatic 

residue Tyr1242) based on the binding pattern of LTC4 (10). Our docking results of 

methotrexate stays consistent with the proposed MRP1 binding pocket. Similar to LTC4, 

methotrexate was stabilized by both polar and hydrophobic interactions. The carboxyl 

groups formed 3 hydrogen bonds with a salt bridge with Arg1196. Moreover, Trp1245 

formed a pi-pi stacking interaction with the ring structure of methotrexate. Although 

several studies have confirmed methotrexate being a good substrate of MRP1 but not 

MRP7, we validated such conclusion in this study to further demonstrate the reliability of 

our homology model. 
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Figure 10. Paclitaxel/methotrexate docked with MRP7 and MRP1 binding pockets. A) 

Paclitaxel docked with the MRP7 binding pocket. Protein surface was colored by 

electrostatic potential. Paclitaxel was displayed as yellow sticks. B) 2-D diagram of 

paclitaxel-MRP7 interactions. Amino acids within 3 Å to paclitaxel were displayed as 

colored bubbles (cyan: polar; green: hydrophobic; red: negatively charged; blue: 

positively charged). Purple lines with arrow indicate hydrogen bonds. Grey circles 

indicate solvent exposure. C) Paclitaxel docked with the MRP1 binding pocket. D) 2-D 

diagram of paclitaxel-MRP1 interactions. E) Methotrexate docked with the MRP7 

binding pocket. Protein surface was colored by electrostatic potential. Methotrexate was 

displayed as purple sticks. F) 2-D diagram of methotrexate-MRP7 interactions. G) 

Methotrexate docked with the MRP1 binding pocket. Methotrexate was displayed as 

magenta sticks H) 2-D diagram of methotrexate-MRP1 interactions. Purple solid lines 

with arrow indicate hydrogen bonds. Purple solid line without arrow indicates salt bridge. 

Green solid line without arrow indicates pi-pi interaction. 

1.4 Discussion 
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Since functional modulation of the ABC transporters is considered a major 

solution in overcoming MDR in cancers (97), understanding the structure-function 

relationship is thus important in the development of novel ABC transporters modulators. 

Moreover, information in drug binding and recognition based on structural analysis is 

necessary in the discovery of potential ABC transporters substrates (98,99)  which will 

provide valuable references for clinicians.  

Considering the lack of MRP7 crystal structure, we constructed two 

conformations of human MRP7 models using homology modeling tools and equilibrated 

by a 100 ns MD run.  Subsequently, the structural dynamics was analyzed based on the 

MD simulation, where we found that linker structures, especially linker 1 and linker 2, 

were the major contributors to the overall structural deviation. In the most recent crystal 

structures of ABC transporters these linker domains were unable to fully determined by 

crystallography (10,67,101), which is collaborated with the flexibility of these particular 

regions in our MD run.  

The structure of the longest linker 2 which connects TMD2 and NBD1, often 

lacks accurate 3D structure in ABC transporter crystal structures. In this study, we 

constructed de novo linker structure and evaluated the role it plays in the structural 

dynamics in MRP7 via RMSD and RMSF analysis. Our results indicated that the linker 

structure stabilized the protein structure by connecting the two functional complex 

(TMD1-NBD1 and TMD2-NBD2) as a “spring” in order to maintain the protein structure 

and transmit domain motions. Similarly, in other ABC transporter structures such as 

ABCB1, the linker structure also lacks accurate crystal structure (102). The linker 

structure of ABCB1 was found by a homology modeling and MD simulation study to 
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stabilize the transporter in membrane system (103). The MD results in Figure 5A that 

TMD2 and NBD1 having higher equilibrated RMSD could be explained by direct 

connection with linker 2. The fluctuation of linker 2 will be transmitted to domains that 

are directly linked more easily. And with the distance to linker 2 increases, its influence 

in structural stability will become attenuated. 

Being an ATP-dependent efflux pump, analysis of the potential motion pattern of 

MRP7 will boost the understanding of the transportation mechanism. The PCA analysis 

revealed the potential motions of MRP7 at substrate-binding or ATP-binding states. 

Several studies on other ABC transporters have described essential mechanism of action 

related to the NBD dimerization after substrates and ATP-binding (67,102,104). For 

MRP1, the cryo-EM structures of inward- and outward-facing indicate that the ATP-

binding induces NBD closure which consequently triggers helices rotation and side chain 

movement as well as decreased substrate affinity (67).  

Subsequently, we performed binding site search as well as docking analysis to 

characterize the binding pockets of MRP7, where the major drug binding pocket buried in 

TMDs was focused. The binding pockets of MRP1 and MRP7 were also compared and 

analyzed. Unlike ABCB1, where the binding sites are characterized by a large number of 

aromatic (M site) and polar (R/H site) residues (105), and ABCG2, where the binding 

sites are majorly composed of hydrophobic residues (53), both MRP7 and MRP1 showed 

bipartite binding pockets with the existence of both polar and non-polar region. Although 

sharing the similar components, MRP7 and MRP1 still have different substrate/inhibitor 

spectrum, for example, multiple studies have shown that MRP1 is not able to mediate the 

transportation of paclitaxel (106,107) which is a substrate of MRP7 (108). Or the case of 
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methotrexate, which is a substrate of MRP1 but not MRP7. Such difference could be 

explained by the characteristics of the pockets such as volume and hydrophobicity. We 

found that paclitaxel had lower binding affinity to MRP1 is possibly due to the size of the 

pocket and distribution of polar residues. As a result, paclitaxel could only find the best 

docking site on the edge of the pocket, which has polar residues and larger volume. It is 

worth noting that although the different physiochemical properties of amino acids which 

form the binding pocket of MRP7 and MRP1 are one of the key factors that determined 

the transport pattern of paclitaxel, paclitaxel sensitivity is also determined by other 

intracellular macro-factors as well as metabolism pathways.   

Investigations of the transport properties of MRP7 revealed its ability to efflux 

conjugates such as E217bG and LTC4, indicating the existence of bipartite substrate 

binding pocket for anionic and hydrophobic moieties. In this study, we identified 4 

potential binding clefts with different hydrophobicity in MRP7 binding pockets, which 

were separated by a leucine in the center. The docking analysis of several previously 

validated MRP7 substrates provided more details of the binding pocket. More docking 

analysis was performed using more MRP7 substrates and modulators, from which we 

further confirmed the existence of binding clefts. Additionally, we found that MRP7 

modulators tend to occupy the hydrophobic cleft while substrates tend to occupy the 

polar cleft. Among the modulators we analyzed, cepharanthine, an herbal extract from 

Stephania cepharantha, unlike other modulators, binds at the polar site. This could be 

explained by the similarity in the chemical structures of cepharanthine as Vinca alkaloid, 

such as vincristine, which also binds to the polar site.  



 38 

In summary, we performed a series of structure-function analysis using MD 

simulations and docking on homology models built from MRP1 crystal structures. Our 

findings provide new and valuable information for better understanding the structural 

dynamics and transport mechanism of human MRP7, as well as the potential drug-

binding sites within the TMDs of MRP7. Our model was also validated by docking 

analysis using known MRP7 substrates and inhibitors, as well as non-modulators. This 

MRP7 model could be a good starting point for future MRP7 studies regarding amino 

acid mutations in cancer patients to evaluate potential alterations of substrates/inhibitors 

binding pattern and pharmacokinetics. Moreover, our model would theoretically enable 

the development of MRP7 modulators as well as high-throughput virtual screening.  
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CHAPTER 2 

 The homology model of human MRP7 protein is critical in developing and 

understanding MRP7-mediated MDR in cancer cells. In this chapter, we majorly focused 

on the discovery of two synthesized compounds as potent MRP7 modulators where the 

homology model of human MRP7 was used in the docking simulations. 

2.1 Introduction 

Previously, a series of 1,2,3-triazole-pyrimidine hybrids and were synthesized. 

Among them, the compound CMP25 showed potent reversal activity against P-

glycoprotein (P-gp/ABCB1)-mediated MDR, which is 7-fold more potent than verapamil 

(109). Additionally, in a previously synthesized series of 5-cyano-6-phenylpyrimidin 

derivatives,  a compound named CP55 showed potent reversal activity against ABCB1-

mediated MDR in vitro and in mouse xenograft models (110). However, their interactions 

with MRP7 was not tested. In this chapter, we investigated the characteristics of CMP25 

and CP55 to reverse MRP7-mediated MDR. We found that both CMP25 and CP55 could 

significantly increase the cellular sensitivity to MRP7 substrates in MRP7-overexpressing 

cells by increasing the intracellular accumulation of MRP7-substrate chemotherapeutic 

drugs in vitro. 

2.2 Materials and methods 

Materials 

The 5-cyano-6-phenylpyrimidin derivative CP55 and 1,2,3-triazole-pyrimidine 

hybrids CMP25 were synthesized as previously described (110). Cell culture: Dulbecco's 
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modified Eagle's Medium (DMEM), fetal bovine serum (FBS), penicillin/streptomycin 

and trypsin were purchased from Hyclone (Pittsburgh, PA). 

Cell lines and cell culture 

In this study we used HEK293/pcDNA3.1 and MRP7-transfected HEK293/MRP7 

cells. HEK293pcDNA3.1 and HEK293/MRP7 was established by transfecting empty 

vector pcDNA3.1 or MRP7-expressing recombinant vector as previously described (100). 

Cells were maintained and cultured in DMEM with 10% FBS, 100 units/mL 

penicillin/streptomycin and 2 mg/mL G418. At least one week prior to experiment, we 

transfer cells to DMEM without G418. 

Cytotoxicity assay 

Cytotoxicity of CMP25 and CP55 in HEK293/pcDNA3.1 and HEK293/MRP7 

cells was evaluated using MTT colorimetric assay as previously described (111). To be 

brief, the HEK293/pcDNA3.1 and HEK293/MRP7 cells were seeded in 96-well plates at 

5,000-7,000 cells per well. Cells were cultured overnight before addition of 0 – 100 𝜇M 

CMP25 and CP55 for toxicity assay. Different concentrations of MRP7 modulators 

cepharanthine or CMP25 and CP55 were preincubated with cells for 2 h before different 

concentrations of paclitaxel/vincristine/vinblastine/cisplatin were added, after which 

plates were cultured for 68 h. Then MTT was added to each well to a final concentration 

of 0.4 mg/ml and incubated for additional 4 h (72 h in total). Then medium was removed, 

and the formazan crystal was dissolved in DMSO. Absorbance at 570 nm was determined 

by a spectrophotometer. IC50 was calculated using modified Bliss method (112). 

Resistance fold (RF) was the ratio of IC50 in HEK293/MRP7 and HEK293/pcDNA3.1 
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cells. Cepharanthine was used as a positive reversal agent of MRP7. Cisplatin, a non-

substrate of MRP7, was used as a negative control drug.  

Western blotting 

Western blotting was performed as previously described with modifications (113). 

Briefly, HEK293/pcDNA3.1 and HEK293/MRP7 cells were seeded in T-25 flasks with 

equal amount. For concentration-dependent study, CMP25 or CP55 was added to cells in 

different concentrations (1 or 3 𝜇M) and incubated for 72 h. For time-dependent study, 

cells were incubated with the same concentration (3 𝜇M) of CMP25 or CP55 for 

0/24/48/72 h. On the day of cell lysis, cells were first rinsed with ice-cold PBS twice 

before adding lysis buffer. Cells were scraped down from flasks and lysates were 

incubated for 30 min on ice. Then cell lysate was centrifuged at 12,000 rpm at 4 °C for 

20 min. Supernatant was collected for further analysis. Protein concentration was 

determined by bicinchoninic-acid-based protein assay (BCA). Subsequently, equal 

amount of total protein (20-30 𝜇g) was separated by SDS-PAGE (sodium dodecyl sulfate 

polyacrylamide gel electrophoresis) and transferred onto PVDF (polyvinylidene 

difluoride) membranes. The membranes were incubated in blocking solution (5% skim 

milk in TBST) at room temperature for 2 h, followed by incubation with anti-MRP7 

(1:1000) and anti-GAPDH (1:1000) primary antibody at 4 °C overnight. Afterwards, 

membranes were rinsed with TBST and incubated with HRP-conjugated secondary 

antibody (1:1000) at room temperature for 2 h. MRP7 and GAPDH protein was detected 

using enhanced photodope TM-HRP detection kit (Cell Signaling Technology) and 

exposed to films. The resulting protein bands were analyzed by grayscale value using 

Image J. 
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Immunofluorescence assay 

Immunofluorescence was performed following the protocol described previously 

with slight modifications (114). Cells (1 × 105 per well) were seeded into 6-well plates. In 

order to prevent cells from detaching, poly-lysine-processed cover slips were set at the 

bottom of each well. For time-dependent study, cells were treated for 0/24/48/72 hours 

with 3 𝜇M CMP25 or CP55; for concentration-dependent study, cells were treated 72 

hours with 1 or 3 𝜇M CMP25 or CP55. Next, cells were fixed with 4% formaldehyde in 

37 °C for 15 min. Then 0.1% Triton X-100 was added for permeabilization and then 6% 

BSA for blocking for 2 h in 37 °C. Subsequently, cells were incubated with MRP7 

monoclonal antibody (1:1000) at 4 °C overnight followed by incubation with Alexa Fluor 

594 conjugated secondary antibody (1:1000) for 1 h at 37 °C. PI (propidium iodide) was 

used to dye the nuclei. Before imaging, cover slips were transferred to a microslide and 

mounted with glycerol. Images were taken using a fluorescence microscope. 

 [3H]-labeled MRP7 substrate accumulation assay 

[3H]-paclitaxel and [3H]-vincristine accumulation were determined as previously 

described with slight modifications (115).  

 [3H]-labeled MRP7 substrate efflux assay 

Efflux assay was performed as previously described with slight modification 

(116).  

Docking analysis 

The CMP25 or CP55 structure was prepared for docking simulation as previously 

described (77). Human MRP7 homology model bound with paclitaxel was established in 
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our lab (117). The protein model was inward-facing. Docking calculations were 

performed in AutoDock Vina (v 1.1.2) (118).  

2.3 Results 

Cytotoxicity of CMP25/CP55 in HEK293/pcDNA3.1 and HEK293/MRP7 

cells 

Cytotoxicity assay was performed for two goals: a) compare the cytotoxicity 

(IC50) of CMP25 or CP55 in parental and MRP7-mediated resistant cells to determine 

whether CMP25 or CP55 is a potential MRP7 substrate; b) determine the non-toxic 

concentration (at least 80% cells survive) of CMP25 or CP55 for reversal study. The 

results of cytotoxicity assay were presented in Figure 11 (CMP25) and 12 (CP55). 

Results showed that there is no significant difference in the IC50’s of CMP25 or CP55 in 

parental and MRP7-transfected cells. Therefore, we chose two non-toxic concentrations 

(1 and 3 𝜇M) for reversal study. 

 

Figure 11. Chemical structure and cytotoxicity of CMP25. A) 2D chemical structure of 

CMP25. B) Cytotoxicity of CMP25 in HEK293/pcDNA3.1 and MRP7. 80% and 50% 

cell viability were marked by grey dash lines. 
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Figure 12. Chemical structure and cytotoxicity of CP55. A) 2D chemical structure of 

CP55. B) Cytotoxicity of CP55 in HEK293/pcDNA3.1 and HEK293/MRP7 cells. 

 

 

Reversal effects of CMP25/CP55 in HEK293/MRP7 cells 

Results of reversal study were shown in Figure 13 (CMP25) and 14 (CP55). In the 

reversal study, we used 1 and 3 𝜇M of CMP25/CP55. The results showed that in both 

concentrations co-treatment with CMP25/CP55 significantly decreased the IC50 of 

MRP7-substrate antineoplastic drugs, while 3 𝜇M of CMP25/CP55 showed stronger 

reversal effects than lower concentration. Results in Figure 13 and 14 showed that the 

HEK293/MRP7 concentration-viability curves of paclitaxel, vincristine and vinblastine 

shifted left when co-administered with CMP25/CP55 or cepharanthine compared with 

control group. For parental HEK293/pcDNA3.1 cell, no significant change was observed 

with CMP25/CP55 or cepharanthine. For cisplatin, which is not a substrate of MRP7, 

both MRP7-transfected and parental cells showed similar concentration-viability curves 

with similar IC50. 

MRP7 
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Figure 13. Reversal effects of CMP25 in MRP7-overexpressing cells. Concentration-

viability curves of A) paclitaxel; B) vincristine; C) vinblastine; D) cisplatin. Results of 

parental cells HEK293/pcDNA3.1 were displayed as dash lines; HEK293/MRP7 were 

displayed as solid lines. Results were expressed as mean ± SD, representative of three 

independent experiments in triplicate. 
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Figure 14. Reversal effects of CP55 in ABCC10-overexpressing cells. Concentration-

viability curves of A-B) paclitaxel; C-D) vincristine; E-F) vinblastine; G-H) cisplatin. 

Results of parental cells HEK293/pcDNA3.1 were displayed in A, C, E and G; 

HEK293/ABCC10 were displayed in B, D, F and H. Data are expressed as mean ± SD, 

representative of three independent experiments in triplicate. 

 

The effect of CMP25/CP55 on MRP7 protein expression 
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To verify whether the reversal effects was due to regulated MRP7 protein 

expression in HEK293/MRP7 cells, we treated both parental and resistant cells with 

CMP25/CP55 and determined the protein expression level via Western blot. First, we 

verified the expression of MRP7 in transfected cells. Specifically, cells were treated with 

a) 1 or 3 µM CMP25/CP55 for 72 h or b) 3 µM CMP25/CP55 for 0, 24, 48 or 72 h. 

Figure 15 and 16 confirmed the expression of MRP7 protein in transfected 

HEK293/MRP7 cells and no MRP7 was detected in parental HEK293/pcDNA3.1 cell. 

Figure 15 and 16 showed that treatment with CMP25/CP55 did not significantly alter the 

protein expression level of MRP7. Thus, we drew the conclusion that the reversal effects 

on MRP7 was not due to regulating the expression level of MRP7 protein. 

 

Figure 15. Effect of CMP25 on the MRP7 protein expression. (A) MRP7 expression in 

HEK293/pcDNA3.1 and HEK293/MRP7 cells. GAPDH was used as a loading control. 

(B) HEK293/MRP7 cells treated with 1 or 3 µM CMP25 for 72 h. (C) HEK293/MRP7 

cells treated with 3 µM CMP25 for 0/24/48/72 h. Columns with error bars represent mean 

± SD from 3 independent triplicate experiments. Asterisks (*) indicate p < 0.05 versus 

parental group (HEK293/pcDNA3.1). 
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Figure 16. Effect of CP55 on the MRP7 protein expression. (A) MRP7 expression in 

HEK293/pcDNA3.1 and HEK293/MRP7 cells. GAPDH was used as a loading control. 

(B) Protein expression quantification. Columns with error bars represent mean ± SD from 

3 independent triplicate experiments. Asteroid (*) indicate p < 0.05 versus parental group 

(HEK293/pcDNA3.1). 

 

 The effect of CMP25/CP55 on the intracellular accumulation of MRP7-

substrate anticancer drugs 

The above results demonstrated the reversal effect of CMP25/CP55 in 

HEK293/MRP7 cells, and such effect was not due to altered protein expression level. To 

MRP7 

HEK293/MRP7 
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obtain more insight into the mechanism of action, intracellular MRP7 substrate 

accumulation was measured in parental and MRP7-overexpressing cell lines. As shown 

in Figure 17 and 18, CMP25/CP55 significantly increased the intracellular accumulation 

of [3H]-paclitaxel in HEK293/MRP7 cells, without significant changes in parental 

HEK293/pcDNA3.1 cell. The intracellular accumulation in HEK293/MRP7 cells treated 

by CMP25/CP55 is comparable to that treated with positive modulator cepharanthine. 

Similar results were also observed in the accumulation of [3H]-vincristine. Resistant cells 

treated with CMP25/CP55 showed higher intracellular accumulation level when 

comparing to control group without modulators. 

 

Figure 17. Effect of CMP25 on the intracellular accumulation of [3H]-paclitaxel and 

[3H]-vincristine in parental and MRP7-transfected cells. (A) Effect of CMP25 on [3H]-

paclitaxel accumulation in HEK293/pcDNA3.1 and HEK293/MRP7 cells. (B) Effect of 

CMP25 on [3H]-vincristine accumulation in HEK293/pcDNA3.1 and HEK293/MRP7 

cells. Columns with error bars represent mean ± SD from three independent duplicate 

experiments. Asterisks (*) indicate p < 0.05 versus control group (untreated resistant 

cells). 
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Figure 18. Effect of CP55 on the intracellular accumulation of [3H]-paclitaxel and [3H]-

vincristine in parental and MRP7-transfected cells. (A) Effect of CP55 on [3H]-paclitaxel 

accumulation in HEK293/pcDNA3.1 and HEK293/ MRP7 cells. (A) Effect of CP55 on 

[3H]-vincristine accumulation in HEK293/pcDNA3.1 and HEK293/ MRP7 cells. 

Columns with error bars represent mean ± SD from three independent duplicate 

experiments. Asteroids (*) indicate p < 0.05 versus control group (untreated resistant 

cells). 

 

The effect of CMP25/CP55 on efflux of MRP7-substrate anticancer drugs 

To further confirm whether the elevated intracellular accumulation of paclitaxel 

or vincristine was due to the blockage of the MRP7 efflux function, we observed the 

MRP7 

MRP7 
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efflux of [3H]-paclitaxel or [3H]-vincristine in parental and resistant cells. In Figure 19 

and 20, the remaining intracellular amount of [3H]-paclitaxel or [3H]-vincristine in 

MRP7-overexpresing cells was significantly lower than that of HEK293/pcDNA3.1 and 

in the absence of CMP25/CP55. Treatment with 3 µM CMP25/CP55 significantly 

decreased the efflux of [3H]-paclitaxel or [3H]-vincristine in MRP7-overexpressing cells. 

Furthermore, the results in HEK293/MRP7 were comparable to that of the positive 

control inhibitor cepharanthine. 

 

Figure 19. Effects of CMP25 on the efflux of [3H]-paclitaxel and [3H]-vincristine in 

parental and MRP7-transfected cells. X-axis represents time course (0/30/60/120 min). 

Y-axis represents the percentage of remaining intracellular of [3H]-paclitaxel or [3H]-

vincristine. (A) [3H]-paclitaxel efflux in HEK293/pcDNA3.1, (B) [3H]-paclitaxel efflux 

in HEK293/MRP7, (C) [3H]-vincristine efflux in HEK293/pcDNA3.1, (D) [3H]-
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vincristine efflux in HEK293/MRP7. Points with error bars represent mean ± SD from 3 

independent duplicate experiments. Asterisks (*) indicate p < 0.05 versus control group 

(untreated resistant cells). 

 

 

Figure 20. Effects of CP55 on the efflux of [3H]-paclitaxel and [3H]-vincristine in 

parental and MRP7-transfected cells. Time course versus the percentage of remaining 

intracellular of [3H]-paclitaxel or [3H]-vincristine was plotted to illustrate the effect of 

CP55 on [3H]-paclitaxel efflux in (A) HEK293/pcDNA3.1, (B) HEK293/MRP7or [3H]-

paclitaxel efflux in (C) HEK293/pcDNA3.1, (D) HEK293/MRP7. Points with error bars 

represent mean ± SD from 3 independent duplicate experiments. Asterisks (*) indicate p 

< 0.05 versus control group (untreated resistant cells). 
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The effect of CMP25/CP55 on the subcellular localization of MRP7 

Another potential mechanism of the antagonization of CMP25/CP55 on MRP7 is 

the alteration of sub-cellular localization. Thus, we performed immunofluorescence assay 

to determine whether CMP25/CP55 could alter the subcellular localization of MRP7 

transporters. As shown in Figures 21 and 22, MRP7 located on the membrane of 

HEK293/MRP7 cells. After incubating for 24, 48, and 72 h, CMP25/CP55 did not 

significantly alter the localization of MRP7. Incubating with different concentrations of 

CMP25/CP55 also did not alter the localization of MRP7. Above results indicate 

CMP25/CP55 did not affect the subcellular localization of MRP7. 

 

Figure 21. The effect of CMP25 on subcellular localization of MRP7 transporters. Left 

two columns: the expression and localization of MRP7 expression in HEK293/MRP7 

cells (0 h). 3rd and 4th columns: sub-cellular localization of MRP7 expression in 

HEK293/MRP7 cells incubated with 1 or 3 µM of CMP25 for 72 h. 5th, 6th and 7th 

columns: Sub-cellular localization of MRP7 expression in HEK293/MRP7 cells 

incubated with 3 µM of CMP25 for 24, 48, and 72 h. Red: MRP7. Blue: DAPI 

counterstains the nuclei. Scale bar: 50 µM. 

HEK/MRP7 
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Figure 22. The effect of CP55 on subcellular localization of MRP7 transporters. Sub-

cellular localization of MRP7 expression in HEK293/MRP7 cells incubated with 0.5, 1 or 

3 µM of CP55 for 72 h; or 3 µM of CP55 for 0, 24, 48, and 72 h. Red: ABCC10. Blue: 

DAPI counterstains the nuclei. Scale bar: 50 µm. 

 

Molecular docking and molecular dynamics simulation 

To better understand the potential interaction between CMP25/CP55 and MRP7 

protein, we performed molecular docking simulation and molecular dynamics simulation. 

Compound CMP25 has a high docking score of -8.974 kcal/mol in the predicted substrate 

binding pocket of MRP7. The docked complex showed that CMP25 was stabilized by 

both polar and hydrophobic interactions. The compound CMP25 was stabilized by a 

hydrogen bond, as well as a π-cation interaction with Arg985. Additionally, CMP25 was 

stabilized in the hydrophobic pocket formed by Ala542, Met546, Ile548, Leu549, 

Ile1045, Ala1048 and Asn1049. Docked complex with highest docking score was 

subjected to a 10 ns molecular dynamics simulation. The results in Figure 23 showed that 

the structures of both protein and ligand reached equilibrium after the first 5 ns. CMP25 
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had an overall displacement of 4 Å and MRP7 (protein) was stable with a root mean 

square deviation (RMSD) of around 6 Å, indicating only small internal fluctuation inside 

the drug-binding site of the protein. Compound CP55 has a high docking score of -9.023 

kcal/mol in the predicted binding pocket of MRP7. The docked complex showed that 

CP55 was stabilized by both polar and hydrophobic interactions (Figure 24). The 

compound CP55 was stabilized by hydrogen bonds formed with residue Asn1049 and 

Leu1192, as well as a salt bridge interaction with Arg545. Additionally, CP55 was 

stabilized in the hydrophobic pocket formed by Trp510, Ala511, Pro514, Val515, 

Leu549, Met546, Leu1192, Ser1193, Thr1195, Gly1196, Leu1197 and Gly1200. 
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Figure 23. Interaction between CMP25 and MRP7 protein by docking simulation and 

molecular dynamics. A) An overview of the docked complex. Compound CMP25 

molecule was displayed as balls marked by black square. B) Interaction between CMP25 

and MRP7 protein. Top: MRP7 binding pocket was displayed as grey meshes. Down: 

Docked position of CMP25 within the binding pocket of MRP7. CMP25 was showed as 

colored sticks. Carbon: orange, nitrogen: blue, white: polar hydrogen, green: chloride, 

yellow: sulfur. C) Root mean square deviation (RMSD) of MRP7 (blue) and CMP25 

(red) versus reference time (ns). D) 2D interaction diagram of CMP25-MRP7. The amino 
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acids within 3 Å are shown as colored bubbles, cyan indicates polar residues, and green 

indicates hydrophobic residues. The purple arrow indicates hydrogen bond and red line 

shows π-cation interaction. 

 

 

Figure 24. Interaction between CP55 and MRP7 protein by docking analysis. A) An 

overview of the docked complex. Compound CP55 molecule was displayed as balls 

marked by black square. B) Interaction between CP55 and MRP7 protein. MRP7 binding 
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pocket was displayed as grey meshes. C) Docked position of CP55 within the binding 

pocket of MRP7. CP55 was showed as colored sticks. Carbon: green, nitrogen: blue, 

white: polar hydrogen, dark green: chloride, yellow: sulfur, red: oxygen. D) 2D 

interaction diagram of CP55-MRP7. The amino acids within 3 Å are shown as colored 

bubbles, cyan indicates polar residues, and green indicates hydrophobic residues. The 

purple arrows indicate hydrogen bonds. 

 

2.4 Discussion 

Till now only a few studies reported MRP7 modulators since it’s relatively new. 

Considering the important biological role that MRP7 plays in cancers, it is of great value 

to develop novel MRP7 inhibitors for both research and clinical purpose. Previously, we 

reported for the first time that CMP25 and CP55 potently reverse ABCB1-mediated 

MDR by inhibiting the efflux function of ABCB1 hence increasing the intracellular 

accumulation of chemotherapeutic agents such as paclitaxel in vitro. However, the effects 

of CMP25/CP55 on MRP7 was not determined yet. Here, we examined the potential 

inhibitory effects of CP55 and CMP25 on MRP7 by using HEK293/pcDNA3.1 and 

HEK293/ MRP7 cells.  

Generally speaking, modulators of ABC transporters were composed of 

substrates, which are delivered by ABC transporters across membranes and usually 

stimulate the ATPase activity locates in the nucleotide binding domains, and inhibitors, 

which inhibits the transportation of substrates with different mechanisms (6). We first 

examined whether CMP25 or CP55 is a substrate of MRP7. The cytotoxicity assay 

showed that there is no significant difference in the IC50 values of parental and MRP7-
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overexpressing cells for both drugs. Since MRP7 substrates will have higher IC50 due to 

the detoxification (efflux) function of MRP7, our results indicated that CMP25 or CP55 

is not an MRP7 substrate. Meanwhile, we obtained the non-toxic concentration of CP55 

and performed reversal study via MTT assay. Our results showed that CP55 at 1 or 3 µM 

significantly reversed the resistance of paclitaxel, vincristine and vinblastine in 

HEK293/MRP7 cells while not affecting their cytotoxicity in parental cells 

HEK293/pcDNA3.1. Also, there was no significant effect on the IC50 of cisplatin, which 

is not an MRP7 substrate. Altogether, our results indicate that CP55 antagonizes the 

MDR mediated by MRP7.  

Altered MRP7 protein level could be one of the underlying mechanisms of 

reversed MRP7-mediated MDR. For example, the ABC transporter inhibitor poziotinib 

down-regulated the expression level of ABCG2 and conferred reversal effects on 

ABCG2-mediated MDR (116). The Western blotting results measured the protein 

expression level after treating cells with CMP25 and CP55. Our results confirmed that the 

MRP7 expression level was not significantly altered after treatment CMP25 or CP55. 

Thus, the reversal effect of CP55 on MRP7-mediated MDR was not due to alteration in 

MRP7 expression.  

Functional MRP7 locates majorly on the cytoplasm membrane (119). As a 

membrane protein, altered subcellular localization of MRP7 could also lead to 

deteriorated transport function. Here, we determined the subcellular localization using 

immunofluorescence assay. The results showed that HEK293/MRP7 cells treated with 

CMP25 or CP55 did not show altered localization of MRP7.  
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The [3H]-paclitaxel and [3H]-vincristine accumulation assay showed that CP55 

significantly enhanced the intracellular accumulation of paclitaxel and vincristine in 

HEK293/MRP7 cells. Subsequently, a time course of efflux study was performed to 

further confirm the accumulation results. Our results showed that the efflux of 

intracellular paclitaxel or vincristine was significantly inhibited by CMP25 or CP55 in 

the HEK293/MRP7 cells, while resistant cells without adding CMP25 or CP55 showed 

significantly lower intracellular accumulation. Besides, the blockage of efflux by CMP25 

or CP55 is comparable to the known MRP7 inhibitor cepharanthine. Hence, the above 

results along with cytotoxicity data indicate that both CMP25 and CP55 are potent MRP7 

inhibitors which block the efflux function of MRP7 protein. 

Furthermore, we performed docking analysis using an MRP7 homology model 

(117). The docking score of both compounds in MRP7 binding pocket are high. 

Moreover, both compounds potentially bind at the predicted “inhibitor site” formed by 

amino acids Trp510, Ala511, Val515, Arg545, Leu549, Arg985, Ala1048 and Asn1049. 

Based on our study, molecules bound in the inhibitor site exhibit properties as MRP7 

inhibitors such as efficiently reversing MRP7-mediated MDR. 

Clinically, MRP7 has been reported to play important roles in acquired MDR and 

the prognosis of certain cancers (51,120). Also, MRP7 contributes to alteration in 

intracellular permeation of nevirapine, a non-nucleoside reverse transcriptase inhibitor for 

HIV-1 (121). Thus, development of MRP7 inhibitors is crucial in cancer treatment to 

overcome MRP7-mediated drug resistance. Here we reported two novel synthetic small 

molecules CMP25 and CP55 as potent MRP7 inhibitors, which could be potential 

adjuvant chemotherapeutic agents. 
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CHAPTER 3 

 In this chapter, we describe the establishment of an MRP7-overexpression ovarian 

cancer cell line.  

3.1 Introduction 

Here, we successfully established an MRP7-overexpressing SKOV3/MRP7 cell 

line by transfecting recombinant pcDNA3.1/MRP7 plasmids. The MRP7 expression and 

subcellular localization was confirmed by Western blotting and immunofluorescence 

assay respectively, indicating functional MRP7 transporter was produced. Moreover, the 

SKOV3/MRP7 cell line showed MDR to multiple chemotherapeutic drugs including 

paclitaxel, docetaxel, vincristine, vinorelbine, vinblastine but not to doxorubicin and 

cisplatin. Additionally, the MDR in SKOV3/MRP7 cells could be reversed by a known 

MRP7 inhibitor cepharanthine. In conclusion, overexpression of MRP7 in ovarian cancer 

could be an important factor in acquiring drug resistance to several commonly used 

chemotherapeutic drugs. 

3.2 Materials and methods 

Chemicals and reagents 

Chemotherapeutic drugs and reagents used in this study were purchased from 

Sigma Chemical Co if otherwise stated (St. Louis, MO) including paclitaxel, docetaxel, 

vincristine, vinorelbine, vinblastine, doxorubicin, formaldehyde, Triton X-100, 3-(4, 5-

dimethylthiazol-yl)-2, 5-diphenyltetrazolium bromide (MTT). Cisplatin, geneticin (G418) 

were purchased from Enzo Life Sciences (Farmingdale, NY). Recombinant MRP7 

plasmid was prepared as previously described (122). Anti-MRP7 antibody (HPA041607) 
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produced in rabbit was purchased from Sigma-Aldrich, Inc. (St. Louis, MO). The [3H]-

paclitaxel was purchased from Moravek Biochemicals, Inc (Brea, CA). Fetal bovine 

serum (FBS), Dulbecco’s modified Eagle’s medium (DMEM), and 0.25% trypsin-EDTA 

were ordered from Corning Inc. (New York, NY). Phosphate buffer saline (PBS), 

dimethyl sulphoxide (DMSO), the Alexa Fluor 488-labeled secondary antibody (anti-

mouse), 4,6-diamidino-2-phenylindole (DAPI) were ordered from Thermo Fisher 

Scientific Inc. (Rockford, IL). 

Cell lines and cell culture 

The human ovary adenocarcinoma cell line SKOV3 was purchased from ATCC 

(Manassas, VA). The HEK293 and HEK293/MRP7 cell lines were established and 

maintained as previously described (119). Both transfected cell lines were selected and 

cultured in DMEM with 10% FBS and 2 mg/mL G418 in a 5% CO2 incubator at 37°C.  

Recombinant MRP7 plasmid transfection 

The recombinant expression vector of MRP7 was established based on pcDNA3.1 

plasmid as previously described (122). Transfection of the empty or recombinant vector 

into SKOV3 was performed using Fugene6 transfection agent (Promega, Madison, WI) 

following the manufacturer’s instructions. In brief, SKOV3 cells were seeded in 6-well 

plates with 100,000 to 200,000 cells per well with DMEM with 10% FBS. Then 100ml 

mixture of plasmid DNA and Fugene6 reagent (1:3 DNA:Fugene6 ratio) was prepared 

and incubated at room temperature for 30 min. Then the mixture was added into cell 

culture medium and incubated with cells for 2 days. When incubation ends, cell culture 

medium with transfection reagent was removed and transfected cells were rinsed with 

PBS. Selection medium (DMEM, 10% FBS and 2 mg/ml G418) was added and incubated 
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with cells for at least 14 days. Survived cells that formed single colonies were collected 

and cultured separately. The expression of MRP7 was further verified by Western 

blotting and immunofluorescence assay. In this paper, we use “SKOV3” to represent 

empty-vector-transfected “SKOV3/pcDNA3.1” unless otherwise stated. 

Cell viability assay 

The cell viability was measured by modified MTT assay as previously described 

with slight modifications (111). In brief, cells were seeded at a density of 6,000-8,000 

cells/well in 96-well plates 24 h prior to adding drugs. Then cells were treated with 

different concentration of chemotherapeutic drugs for 72 h. For reversal study, MRP7 

inhibitor cepharanthine were added to the 96-well plates 2 h before adding 

chemotherapeutic drugs. At the end of the treatment, cell viability was determined by 

MTT assay. Resistance fold was determined as fold relative to parental control groups. 

The half maximal inhibitory concentrations (IC50) were calculated using the regression 

algorithm provided in GraphPad Prism 8. 

Western blotting 

Western blotting was performed as previously described with slight modifications 

(114). The previously established HEK293/MRP7 cell line was used as a positive control 

of MRP7. The whole protein in cell lysate was separated using SDS-polyacrylamide gel 

electrophoresis (SDS-PAGE) and electro-transferred to a polyvinylidene difluoride 

(PVDF) membrane. Then the membrane was blocked by 5% non-fat milk for 2 h at room 

temperature. The primary antibodies (1:1000 dilution) of MRP7 (HPA041607) and 

GAPDH were incubated with the blocked membrane at 4°C overnight. After rinsed with 

TBST for 3 times (15 min each), the membrane was incubated in the secondary HRP-
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linked antibody (1:1,000 dilution) for 2 h at room temperature. Blotted protein bands 

were visualized using an enhanced ECL kit (Thermo Fisher Scientific Inc., Waltham, 

MA). 

Immunofluorescence assay 

In brief, SKOV3 and SKOV3/MRP7 cells were seeded in 24-well plates at a 

density of 50,000 cells/well and cultured overnight. Immunofluorescence assay was 

performed as previously described with slight modifications (99). In brief, cells were 

processed with 4% formaldehyde (37°C for 15 min) and 0.1% Triton X-100 (37°C for 15 

min). Cells were rinsed with cold PBS between each step. Next, cells were incubated 

with primary anti-MRP7 (1:200) at 4°C overnight followed by incubation with Alexa 

Fluor 488 conjugated secondary antibody (1:1,000) for 2 h at 37 °C. DAPI was used to 

visualize the nuclei. Images were taken using a fluorescence microscope. 

Accumulation and efflux assay  

Accumulation and efflux assay were performed as previously described with 

slight modifications (123). In brief, Cell were seeded 10,000 cells/well into 24-well plates 

and cultured overnight. Then cells were incubated in culture medium containing 10 nM 

[3H]-paclitaxel at 37°C for 2 h. After incubation, cells were rinsed with cold PBS and 

incubated in [3H]-free medium for 0, 0.5, 1 and 2 h. At each time point, cells were 

detached and transferred into 5 ml scintillation fluid. The radioactivity was measured 

using a Tri-Carb liquid scintillation counter (Packard Instrument Inc., Chicago, IL). The 

[3H]-paclitaxel level at 0 h was used to represent the intracellular accumulation within 2 h 

incubation. The change in [3H]-paclitaxel levels at following time points were used to 

measure the efflux activity. 
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Statistical analysis 

Comparison of differences among groups were performed using one-way 

ANOVA. The statistical criteria p < 0.05 was considered as statistically significant. All 

data were represented as mean ± SD from at least three independent experiments. 

3.3 Results 

Verification of the MRP7 expression and paclitaxel resistance in G418-

selected SKOV3/MRP7 colonies 

After culturing with selection medium containing 2 mg/ml G418 for 14 days, 

three colonies were collected and cultured for 1 week. Western blotting was performed 

when cells were 80% confluent. Results were shown in Figure 1. From the results in 

Figure 25, we can see that colony 1 exhibited the highest MRP7 expression. Moreover, it 

is worth noting that endogenous MRP7 expression was also detected in parental SKOV3 

cells, even though the expression level was low. Furthermore, we examined the 

cytotoxicity of paclitaxel, a known substrate of MRP7, to see if the selected cell lines 

become resistant. Based on the results in Figure 25, only colony 1 showed significantly 

increased paclitaxel IC50, indicating the acquired resistance from MRP7 overexpression. 

To further analyze the resistance profile of the new SKOV3/MRP7 cell line, we chose 

colony 1 for following steps. 
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Figure 25. MRP7 expression and paclitaxel cytotoxicity in SKOV3/MRP7 cells. 

HEK293/MRP7 and SKOV3 were used as positive and negative controls, respectively. 

A) Western blotting results showing MRP7 expression of selected colonies and 

positive/negative controls. B) Cytotoxicity of paclitaxel in selected colonies and 

positive/negative controls. C) Qualitative analysis of MRP7 protein expression showed in 

A). D) Paclitaxel IC50 in selected colonies and positive/negative controls. * p < 0.05 

versus the negative control group. 

Subcellular localization of MRP7 

Similar to other ABC transporters, MRP7 requires membrane localization for 

efflux function. Therefore, we examined the subcellular localization of SKOV3/MRP7 

cells via immunofluorescence assay. In parental SKOV3 cells, no detectable green 

fluorescence was observed under the same parameters, which was consistent with the low 

expression level of endogenous MRP7 in SKOV3 cells. Strong green fluorescence was 
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observed on the membrane of SKOV3/MRP7 cells, suggesting that the overexpressed 

MRP7 transporter is localized on the cell membrane. 

Intracellular accumulation of [3H]-paclitaxel in SKOV3 and SKOV3/MRP7 

We measured the intracellular accumulation of [3H]-paclitaxel in SKOV3 and 

SKOV3/MRP7 after incubation in [3H]-paclitaxel-containing culture medium for 2 h. The 

results in Figure 26 showed significant different levels of intracellular accumulation of 

paclitaxel in SKOV3 and SKOV3/MRP7 cells. Specifically, SKOV3/MRP7 showed 

lower intracellular accumulation of paclitaxel than SKOV3. Moreover, in SKOV3/MRP7, 

the reduced paclitaxel accumulation was significantly reversed by MRP7 inhibitor 

cepharanthine. Above findings are consistent with previous MTT results that 

SKOV3/MRP7 was less sensitive to paclitaxel due to the overexpression of MRP7 

protein. 

Efflux of [3H]-paclitaxel in SKOV3 and SKOV3/MRP7 

In the previous section, we found SKOV3/MRP7 cells showed lower paclitaxel 

intracellular accumulation, which could be significantly antagonized by MRP7 inhibitor 

cepharanthine. We then determined the efflux of paclitaxel by measuring the decreased 

intracellular amount at 0, 0.5, 1 and 2 h. Results in Figure 26 showed that by the end of 

the 2-hour incubation, the intracellular concentration of paclitaxel was decreased by 

approximately 15% in SKOV3 cells. While in SKOV3/MRP7, intracellular paclitaxel 

concentration was decreased by approximately 40%, indicating strong efflux of paclitaxel 

mediated by MRP7 transporter. The efflux function of MRP7 was inhibited by 

cepharanthine effectively as the final intracellular paclitaxel level was restored. 
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Figure 26. Immunofluorescence assay and accumulation-efflux assay. A) Subcellular 

localization of MRP7 transporter in SKOV3 and SKOV3/MRP7 cells. B) The 

intracellular accumulation of [3H]-paclitaxel in SKOV3 and SKOV3/MRP7 cells. C) The 

efflux of [3H]-paclitaxel in SKOV3 cells. D) The efflux of [3H]-paclitaxel in 

SKOV3/MRP7 cells. Data in B-D are expressed as mean ± SD derived from three 

independent experiments. *p < 0.05 versus the control groups. 

The drug resistance profile of MTP7-overexpressing ovarian cancer cell line 

In previous sections, we have confirmed the successful establishment of an 

MRP7-overexpressing SKOV3 cell line. MTT assay and accumulation-efflux assay have 

confirmed the expression and biological function of the MRP7 protein. To further 

understand the drug resistance profile of the MRP7-overexpression ovarian cancer cell 
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line, we performed MTT assay to test the sensitivity to commonly used chemotherapeutic 

drugs. Results were displayed in Table 4. Specifically, SKOV3/MRP7 showed significant 

resistance to paclitaxel (10.43-fold resistance), docetaxel (3.82-fold resistance), 

vincristine (5.09-fold resistance), vinorelbine (6.86-fold resistance) and vinblastine (5.34-

fold resistance). Moreover, SKOV3/MRP7 showed no significant resistance to P-

gp/BCRP substrate doxorubicin. Also, SKOV3/MRP7 was not resistant to non-ABC-

transporter-substrate cisplatin. Overall, the resistance profile of SKOV3/MRP7 was 

consistent with HEK293/MRP7 based on previous reports (90,119,124). 

 

Table 4. The cytotoxicity of chemotherapeutic drugs in SKOV3 and SKOV3/MRP7 cell 

lines 

Drugs 
IC50 value ± SD (nM)  

SKOV3  SKOV3/MRP7 Resistance fold a 

Paclitaxel 4.483 ± 0.163 46.76 ± 4.565 10.43* 

Docetaxel 3.645 ± 0.201 13.92 ± 1.715 3.82* 

Vincristine 3.355 ± 0.527 17.08 ± 2.033 5.09* 

Vinorelbine 5.272 ± 0.523 36.16 ± 5.558 6.86* 

Vinblastine 2.640 ± 0.463 14.12 ± 2.847 5.34* 

Doxorubicin 0.184 ± 0.012 (µM) 0.169 ± 0.012 (µM) 0.92 

Cisplatin 4.342 ± 1.014 (µM) 5.200 ± 0.918 (µM) 1.20 

a Resistance fold was calculated by dividing the IC50 values of the SKOV3/MRP7 cells 

by the IC50 of SKOV3 cells 

* p < 0.05 versus the control group 
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MRP7 inhibitor cepharanthine antagonizes the drug resistance phenotype of 

SKOV3/MRP7 cells 

To further confirm that the overexpression of MRP7 is the major contributing 

factor of drug resistance, we performed MTT assay with co-treatment of 

chemotherapeutic drugs and MRP7 inhibitor cepharanthine. As shown in Figure 27, cell 

viability curves of SKOV3/MRP7 showed left-shifting when adding cepharanthine, 

indicating resistance to known MRP7-substrate drugs were reversed in SKOV3/MRP7 by 

cepharanthine. Specifically, significant changes were observed in the IC50 of paclitaxel 

(from 33.76 nM to 7.61 nM), docetaxel (18.92 nM to 7.00 nM), vincristine (17.01 nM to 

6.10 nM), vinblastine (14.12 nM to 4.23 nM) and vinorelbine (30.24 nM to 10.39 nM). 

The cell viability of parental SKOV3 cells were not significantly affected by 

cepharanthine. Cisplatin was used as a negative control since it is not a substrate of major 

ABC transporters. Cell viability of both SKOV3 and SKOV3/MRP7 cells were not 

altered.  
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Figure 27. Reversal of MRP7-mediated drug resistance using cepharanthine in SKOV3 

and SKOV3/MRP7 cells. Chemotherapeutic drug versus cell viability was plotted. A) 

paclitaxel; B) vinorelbine; C) docetaxel; D) vinblastine; E) vincristine; F) cisplatin. Green 

solid lines represent SKOV3, green dashed lines represent SKOV3 + 3 µM 

cepharanthine, red solid lines represent SKOV3/MRP7, red dashed lines represent 

SKOV3/MRP7 + 3 µM cepharanthine. CEP: cepharanthine. Data are expressed as 

mean ± SD derived from three independent experiments. 

3.4 Discussion 
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Overall, our results suggest that overexpression of MRP7 could be a critical factor 

of acquired MDR in ovarian cancer cells. We first selected three transfected cell colonies 

which survived from G418 medium for at least 14 days. Then, we performed Western 

blotting and MTT assay to verify the MRP7 expression and paclitaxel resistance 

mediated by MRP7, respectively. Results showed that colony 1 exhibited the highest 

MRP7 expression level, which was comparable to the positive control HEK293/MRP7 

cells. MTT assay further demonstrated that colony 1 was resistant to paclitaxel treatment 

compared to SKOV3 cells. As a membrane transporter, subcellular localization of MRP7 

is crucial for its biological function (125). Thus, we performed immunofluorescence 

assay to determine the subcellular localization of MRP7 in SKOV3/MRP7 cells. Results 

showed that the MRP7 protein was mainly localized on cell membrane, which indicate 

functional MRP7 transporters (106). Subsequently, we performed accumulation-efflux 

assay to further verify the MRP7 efflux function in SKOV3/MRP7 cells. The results 

showed that intracellular paclitaxel concentration was significantly decreased in 

SKOV3/MRP7 cells and restored by MRP7 inhibitor cepharanthine (126).   

In summary, here we for the first time showed that overexpression of MRP7 may 

be an important mechanism in acquired resistance to paclitaxel and other 

chemotherapeutic agents in ovarian cancer. Although the MDR mechanism in ovarian 

cancer might be more complex, our finding emphasized the importance of MRP7 in the 

development of ovarian cancer drug resistance. Therefore, MRP7 level could potentially 

serve as a biomarker for MDR during chemotherapy. Additionally, establishment of this 

MRP7-overexpressing ovarian cancer cell line may facilitate the discovery of novel 
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modulators to overcome acquired MDR in ovarian cancer and improve the therapeutic 

efficacy in cancer patients. 
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CHAPTER 4 

4.1 Introduction 

Here, we present Mrp7Pred, an online MRP7 substrate and MRP7 inhibitor 

prediction server based on machine learning techniques, which is freely available at 

http://www.mrp7pred.com. The web application has a friendly user interface and is very 

easy to use even if the user has no computational chemistry background. Therefore, 

Mrp7Pred can be used for virtual drug screening in order to discover novel MRP7 

substrates and/or inhibitors. 

4.2 Materials and methods 

Dataset establishment and curation 

The training and validation data used in this task is a manually curated non-

redundant MRP7 substrate/inhibitor/non-interactor dataset composed of experimentally 

validated substrates and inhibitors (54) and non-interactors (64). The size of our dataset is 

small due to the limited available studies regarding MRP7. Due to the fact that various 

experimental methods were used to identify MRP7 substrates or inhibitors in vitro. As a 

result, we need to determine the criteria to clearly define positive or negative data in this 

project. Here, we defined several rules to determine if a drug is an MRP7 substrate, an 

inhibitor or a non-interactor. Substrates will show reduced cytotoxicity in MRP7 

overexpressing cells, which can be reversed by MRP7 inhibitors. Examples are 

paclitaxel, vincristine and docetaxel. Inhibitors could potently reverse MRP7-mediated 

drug resistance, while not showing significant difference in IC50 values in parental and 

MRP7-overexpressing cells. Given some studies did not focus on chemotherapeutic drugs 
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but some biomolecules like LTC4, inhibiting the transportation of such molecules via 

MRP7 is also an evidence of an inhibitor, although ambiguous since substrates may also 

interfere the transportation of other substrates. For non-interactors, we chose molecules 

that do not exhibit any of the above evidence in vitro. Part of the MRP7 substrates data 

were extracted from (127). The original dataset contains 1429 anticancer drugs tested 

against 49 ABC transporters. Drug properties were represented by the correlation 

between ABC transporter mRNA expression level and sensitivity in respective cells. As 

shown in Figure 28, negative r value indicates the substrate property because the cells 

became less sensitive if there are more ABC transporter expression. The MRP7 substrates 

were then selected by r < -0.25 following a previous study (128).  

 

 

Figure 28. Sample data snippet for ABCB1 from Szakács et al., 2004.  

Model training and validation 

 The best model was trained via an automated pipeline composed of featurization, 

feature selection and parameter grid search. The compounds were represented as SMILE 

strings which were standardized by python package RDKit. Features include 1D and 2D 
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features generated by RDKit and ChemoPy (129). 1D features include constitutional 

descriptors such as molecular weight and atom counts. 2D features include connectivity 

descriptors, topology descriptors, Basak descriptors, Kappa descriptors, Burden 

descriptors, E-state descriptors, Moran autocorrelation descriptors, Geary autocorrelation 

descriptors, Moreau-Broto autocorrelation descriptors and MOE-type descriptors (129). 

Features were selected in a filter-based method. Specifically, feature pairs with high 

Pearson’s correlation were removed (Figure 29). 

 

Figure 29. Pairwise feature selection. Features with high correlation (i.e. Pearson’s 

correlation) provides similar information of the input data. Features were first converted 

into a correlation matrix then an undirected graph to remove highly correlated pairs. 
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 The validated model was then benchmarked against docking using our homology 

model. Docking results were represented in a binary pattern by setting different 

thresholds to separate interactors and non-interactors. Common metrics including 

precision, recall, F1, accuracy and ROC-AUC were then applied to compare the machine 

learning model and docking analysis results.  

In silico and in vitro validation of FDA-approved drugs as MRP7 substrates 

or modulators 

We collected 70 FDA-approved drugs (except 17 pre-clinical drugs) under 

clinical trial or on market. Both Mrp7Pred and docking analysis were implemented for 

the initial prediction. Candidates with high scores were subjected to in vitro validation 

using MTT cell viability assay in HEK293, HEK293/MRP7, SKOV3 and SKOV3/MRP7 

cells.  

Setting up online server for Mrp7Pred 

 The online web application for Mrp7Pred was deployed based on Python, Flask 

and Nginx. The backend was hosted and setup on a Digital Ocean droplet. The web 

server is freely accessible for academic use at http://www.mrp7pred.com. Currently the 

function is only available for internal use due to the pending publications. 

4.3 Results 

Model training and validation 

The pairwise feature selection results were shown in Figure 30. Dark red and 

green indicate strong feature correlation. The results showed that features with high 

correlation have been effectively removed.  
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Figure 30. Feature selection results. Left: Pearson’s correlation of all features before 

selection. Right: Pearson’s correlation of all features after selection. Red: Pearson’s 

correlation larger than zero. Green: Pearson’s correlation smaller than zero. 

 

 Best models were then obtained by a linear grid search over all combinations of 

model parameters. We use ROC-AUC as the major matric to determine model 

performance. Eventually, one MRP7 inhibitor prediction model and one MRP7 substrate 

prediction model was successfully established. The model performance was also 

compared with docking analysis. Results were given in Figure 31. According to the 

results, docking simulation achieved the best performance when the threshold was set to -

7.0 kcal/mol, which means if the compound got docking energy lower than -7.0 kcal/mol, 

we will consider it being an MRP7 interactor. In out held-oust test dataset, 14 interactor 

sand 21 non-interactors. Overall, both modes got reasonable results, while machine 

learning models generally need lower execution time and computational resources. 

Moreover, for the performance metrics, our Mrp7Pred model showed higher recall, F1 
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and ROC-AUC. Overall, the Mrp7Pred model showed good prediction accuracy in held-

out test data.  

 

 

 

Figure 31. Model performance and benchmark with docking analysis. Confusion matrix, 

ROC-AUC, precision, recall, F1 score and accuracy were displayed. In the middle bar 

graph, docking results were represented as dark green, green, light green, grey and white 

columns for affinity score threshold -8.0 kcal/mol, -7.5 kcal/mol, -7.0 kcal/mol,  

-6.5 kcal/mol, -6.0 kcal/mol, respectively.  
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Implement Mrp7Pred to FDA-approved drugs for MRP7 interactor 

discovery 

 Next, we implement Mrp7Pred to a series of FDA-approved anticancer drugs, in 

order to see if we could identify novel MRP7 substrates or inhibitors. We used Mrp7Pred 

for pre-screen on 70 drugs. In the end, we found 10 drugs with high substrate score and 

27 drugs with high inhibitor score (Table 5). In the subsequent in vitro test, 2 out of 10 

drugs were identified as MRP7 substrates and 4 out of 27 were identified as MRP7 

inhibitors (Figure 32, 33). MTT results of non-substrates and non-inhibitors were not 

shown here. The overall hit rate is 17.5%.  

 

Table 5. Drugs with high substrate score or inhibitor score. 

Drug Name Substrate Score 

Disulfiram 0.869 

Ixazomib Citrate 0.960 

 

Drug Name Inhibitor Score 

Selonsertib 0.557 

Berzosertib 0.610 

IWR-1-endo 0.581 

Vatalanib 0.531 

 

Figure 32 showed the MTT results of disulfiram and ixazomib citrate in two 

MRP7-overexpression cell lines as well as their parental cell lines. Results showed that 
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both disulfiram and ixazomib citrate showed higher IC50 in MRP7-overexpressing cells 

than in parental cells. Specifically, disulfiram had resistance fold of 1.92 in HEK cells 

and 2.44 in SKOV3 cells, while ixazomib citrate had resistance fold of 8.35 in HEK cells 

and 9.64 in SKOV3 cells. Additionally, the resistance in MRP7-overexpressing cells 

could be at least partially reversed by a known MRP7 inhibitor tariquidar at 0.3 µM. In 

summary, we successfully identified two MRP7 substrates, disulfiram and ixazomib 

citrate, using Mrp7Pred. 

 

Figure 32. Cell viability assay results of disulfiram and ixazomib citrate in HEK, 

HEK/MRP7, SKOV3 and SKOV3/MRP7 cells. Solid red lines: parental cells only, red 

dashed lines: parental cells + TQR, solid green lines: MRP7-overexpressing cells only, 

green dashed lines: MRP7-overexpressing cells + TQR. RF: resistance fold, calculated by 

the IC50 in resistant cells divided by IC50 in parental cells. TQR: tariquidar. Data are 

expressed as mean ± SD derived from three independent experiments.  
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 Figure 33 showed the MTT results of predicted MRP7 inhibitors in SKOV3 and 

SKOV3/MRP7 cells. To validate predicted inhibitors, we treated cells with a combination 

of one of the four predicted drugs and paclitaxel. Based on Figure 33, the four predicted 

inhibitors could at least partially reverse MRP7-mediated paclitaxel-resistance in 

SKOV3/MRP7 cells. Specifically, 10 µM selonsertib reduced the resistance fold from 8.8 

to 3.7, vatalinib reduced the resistance fold from 8.8 to 3.9, IWR-1-endo reduced the 

resistance fold from 8.8 to 5.7, berzosertib reduced the resistance fold from 8.8 to 5.7. 

Till now, we have confirmed the predictability of our Mrp7Pred model.  

 

Figure 33. Validating predicted MRP7 inhibitors. Cell viability was represented in 

percentage. Red solid line: SKOV3, blue solid line: SKOV3/MRP7, red dashed line: 

SKOV3 + predicted inhibitor, blue dashed line: SKOV3/MRP7 + predicted inhibitor. RF: 

resistance fold, calculated by the IC50 in resistant cells divided by IC50 in parental cells. 

Data are expressed as mean ± SD derived from three independent experiments. 

 

Mrp7Pred online web server 
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To extend the usability of our Mrp7Pred model, we deployed the substrate and 

inhibitor model to a web server for users, which is freely available at 

http://www.mrp7pred.com. Figure 34 displayed an overview workflow of the web server. 

In brief, the user could upload their own compound dataset which was formatted based 

on our instruction.  

 

Figure 34. An overview of the workflow of the Mrp7Pred web server. 

 

The graphic user interface is straightforward and easy to use. There are 5 sections, 

and we will be briefly introducing each section here.  

Figure 35 showed the title page and side navigation bar. From here, user could be 

directly guided to the prediction section or to view other sections. Figure 36 showed the 

section where basic information of MRP7 was introduced to the users.  Figure 37 showed 

the instruction page, where users can find guidance in data preparation, model 

implementation and result interpretation. Figure 38 showed the section of sample data, 

where users can download our sample data to test the server. Figure 39 showed the 

section where users can upload their prepared data and run the prediction. Once the users 

click “run”, a waiting page will pop up and models start running. The model will first 
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featurize all compounds then make prediction. The execution time varies depend on the 

complexity of chemical structures and data size. On average, the execution time is 10-15 

seconds per compound. Once the prediction finishes, the users will see a result page 

similar to Figure 41. The compound name, 2D chemical structure, SMILES string, 

molecular weight, substrate score and inhibitor score will be displayed. Compounds 

failed in featurization will not appear in the report. Users can then click “Save as PDF” to 

download the PDF version of the report. 

 

Figure 35. Section 1: the title section of Mrp7Pred web server and the side navigation 

bar. 
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Figure 36. Section 2:basic information of MRP7. 

 

 

Figure 37. Section 3: user instruction for data preparation, model implementation and 

results interpretation. 
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Figure 38. Section 4: sample data. Modulator and non-modulator sample data were 

provided. 

 

 

Figure 39. Section 5: start prediction.  
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Figure 40. Waiting page and backend information. 
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Figure 41. Prediction report.  

 

4.4 Discussion 

 Here, we for the first time established a machine learning model for MRP7 

substrate and inhibitor prediction, which we believe will be beneficial to the field of 

cancer drug resistance. By using Mrp7Pred, researchers could accelerate the progress of 

MRP7 inhibitor discovery and lower the cost. It is worth noting that although the 

machine learning model could quickly provide predictions for MRP7 inhibitors and 

substrates, the interpretability of this model still needs improvement. Unlike docking 

analysis, where the potential molecular interactions that may contribute to the binding are 
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clearly illustrated, our model cannot provide information regarding factors that may 

contribute to a positive prediction. Although we can use more complex model, such as 

attention-based sequential models to show important groups or structures, it is more 

feasible to deploy a simpler model as an online server considering the computational 

resources.  

LIMITATIONS 

 Identifying drug target interactions greatly reduced the candidates for the search of 

potential medications (130). As a result, drug-target interaction screening is always the 

first step in drug discovery (131). Based on the “no free lunch theorem”, a successful 

machine learning model needs reasonable data to make reasonable predictions (132). 

Moreover, in drug-target interaction prediction, the acquisition of negative data can be 

challenging since it is hard to determine if a drug is not interacting with the protein of 

interest. Currently, a large number of supervised models regard unlabeled data or those 

without experimental results as negative, which could be erroneous (133). In this study, 

we carefully picked our negative data. Instead of using those without clear results, we 

chose compounds that particularly tested for MRP7 interaction but got negative results. 

For example, a negative compound would have similar cytotoxicity in both parental and 

resistant cell lines. Additionally, negative compounds will not significantly alter the drug 

resistance profile of resistant cells. Our negative data is more reliable than simply 

unlabeled data, however, considering the complexity of cell system, there might be 

multiple pathways including MRP7 overexpression that affect the drug resistance (134). 

Moreover, researchers from different research groups may have different criteria in 

defining MDR in cancer cells, which could lead to inconsistency in drug-target 
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interactions. As a result, it is necessary to unify the criteria for defining the multidrug 

resistance in cancer cells so that more meaningful discoveries could be obtained via in 

silico, in vitro or in vivo approaches.  

 Since MRP7 was first discovered in 2001 and is one of the most recent discovered 

ABC transporters. Due to the limitation of proper cell models, not so many studies are 

available regarding the modulation of MRP7-mediated drug resistance. As a result, we 

are not able to obtain much data to train a machine learning model. Since the 

performance of a machine learning model heavily relies on the quality of data, less data 

may cause the model to underfit all of the parameters which will deteriorate the 

prediction accuracy (135). This is also an important factor when selecting proper models. 

In this study, we decided to use simpler models with fewer parameters given the limited 

amount of data. Finally, small size data may lead to bias since we cannot guarantee that 

our training data accurately represent the population. Thus, it is crucial to expand the 

dataset size. 

 Currently, our online webserver performs featurization and prediction once 

received the input data prepared by users. However, the featurization is time-consuming. 

To accelerate the whole process, it is important for us to further optimize the algorithm to 

improve the prediction efficiency. We do provide users with an alternative: by using the 

local version which needs users to build the Mrp7Pred from scratch. The local version 

avoids Internet traffic and the limitation in computational resources of the web server. In 

the future, we could implement the model using compound embeddings which could be 

accelerated by pre-training (136).  
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FUTURE PERSPECTIVES 

Since the discovery of P-glycoprotein and its role in cancer drug resistance, 

extensive studies have been made to design potent reversal agents in order to overcome 

drug resistance and increase the therapeutic efficacy (137). However, after the failure of 

several ABC transporter inhibitors in clinical trials, such as tariquidar, researchers are 

now turning to different directions in this field (20) including developing high-throughput 

methods to reduce the cost of pre-screening so that we could find candidates from a 

larger pool (138). Computational models were boosted thanks to the bloom of modern 

machine learning techniques. Nowadays, researchers have more and more choice in 

performed computational compound screening such as traditional structure-based or 

ligand-based pharmacophore screening (139), probability-based Bayesian models (140), 

conventional supervised models (28) or more complex neural network-based deep 

learning models (141). In this work, we focused more on traditional supervised learning 

models including SVM, random forest, gradient boost or simply neural networks. In 

future works, more complex and interpretable models could be implemented in order to 

expand the predictability of our model as well as extend the use cases (142).  

Cancer is still one of the worldwide leading cause of death, and the drug 

resistance in recurring cancer further reduced the patients’ survival rate (143). As a result, 

it is still of great importance to develop potent and selective inhibitors to overcome 

cancer drug resistance by targeting ABC transporters especially MRP7, which has been 

found to mediate the resistance of taxanes and vinca alkaloids. Our work not only expand 

our understanding in MRP7-mediated cancer drug resistance, but also provided an 

accessible method to predict novel MRP7 substrates or inhibitors, which could then be 
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validated in our ovarian cancer MRP7 cell line. In summary, this work greatly extends 

the study regarding MRP7-mediated cancer drug resistance, and hopefully could provide 

valuable insights in overcoming cancer drug resistance in the future. 
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