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     ABSTRACT  

ANTICANCER EFFECT OF INDANONE-BASED THIAZOLYL HYDRAZONE 

DERIVATIVE ON P53 MUTANT COLON CANCER CELL LINES: IN VITRO 

AND IN VIVO STUDY 

  SILPA NARAYANAN 

Colorectal cancer is the third leading cause of cancer related deaths in the United States. 

Currently, irinotecan, a topoisomerase I inhibitor, is an important anticancer drug approved 

for patients with advanced or recurrent colorectal cancer. Considering the low response 

rate and the events of high toxicity caused by irinotecan, we evaluated a series of thirteen 

thiazolyl hydrazone derivatives of 1-indanone for their potential antineoplastic activity and 

four compounds showed promising anticancer activity against most of the tested colon 

cancer cell lines with IC50 values ranging from 0.41 ± 0.19 to 6.85 ± 1.44 μM. It is 

noteworthy that the compound, N-Indan-1-ylidene-N'-(4-Biphenyl-4-yl-thiazol-2-yl)-

hydrazine (ITH-6) is found to be more effective than irinotecan against p53 mutant colon 

cancer cells, HT-29, COLO 205, and KM 12 than p53 wild-type colon cancer cell line such 

as HCT 116. Mechanistic studies reveal that ITH-6 arrests these cancer cell lines in G2/M 

phase of the cell cycle, induces apoptosis, and causes an increase in ROS level with a 

significant reduction in the GSH level. The cell cycle arrest is related to the inhibition of 

tubulin polymerization in the mitotic phase. Moreover, ITH-6 inhibits the expression of 

NF-kB p65 and Bcl-2, which proves its cytotoxic action. The downregulation of NF-kB 

p65 can be further proved by immunofluorescence. Moreover, CRISPR/Cas9 was applied 

to establish NF-kB p65 gene knockout HT-29 cell model to validate the target of ITH-6. 



 
 

In addition, ITH-6 significantly decreased tumor size, growth rate and tumor volume in 

mice bearing HT-29 and KM 12 tumor xenografts. Overall, the results suggest that ITH-6 

could be a potential anticancer drug candidate for p53 mutant colon cancers. 
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CHAPTER 1. Introduction 

Cancer remains the most intriguing disease of human populations in terms of its types, 

progression and treatment(1–3). Despite of the advances in the field of cancer research and 

translational medicine, which has indeed resulted in higher cure rates for various tumor 

types, cancer remains the second leading health challenge, after heart related disorders in 

both developing and developed countries(4,5). Among malignancies, colorectal cancer 

(CRC) is the third most commonly diagnosed malignancy and the fourth leading cause of 

cancer related deaths globally(6). CRC is considered to be an environmental disease, 

affected by cultural, social and lifestyle practices(7). Studies done in the past have shown 

that endocrine factors and obesity are the two major contributors to an increase in the risk 

of CRC(8). Moreover, weight gain during the middle age and metabolic dysfunctions can 

predispose to abdominal obesity which positively correlates with CRC(9). It has also been 

found that the dietary habits influence the risk of CRC. The dietary fat especially from 

animal sources has earlier been demonstrated to be metabolized into a carcinogen by 

colonic flora(10). Moreover, the genetic makeup of individuals also plays an important role 

in its genesis and mutations in chromosome 18q have resulted in errors in DNA replication 

which account for 15–20% of sporadic colon cancer(11,12). According to the American 

Cancer Society, around 104,610 CRC cases were diagnosed in 2020 in the United States 

with around 53,200 deaths estimated from the disease(13). Studies have shown that 

approximately 30% of CRC cases are hereditary in nature(14). The etiology remains 

unknown for around 75% cases of CRC and the remaining small percentage of cases are 

due to familial incidences or inflammatory bowel disease. Around 33% of  familial cases 

have a genetic basis(15). Surgery is the primary treatment option for most cases of 
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CRC(16). The current pharmacological management of primary CRC is based on the drug 

regimens such as FOLFOX and FOLFIRI for metastatic CRC. Though therapeutically 

efficacious, these anticancer agents bear several side effects such as nausea, vomiting, 

diarrhea, neurotoxicity, and infections which frequently reach to the level of causing a halt 

of the treatment(17,18). Targeted specific drugs such as regorafenib, cetuximab, and 

bevacizumab have now been approved as alternatives for the treatment of CRC(19,20). 

Although these drugs are effective and increase the overall survival, the existence of drug 

resistance mechanisms and toxicity remain serious concerns(21,22). Since previous studies 

have established that the indanone ring exerts anticancer activity (23–26), here we 

investigate the anticancer effects of a series of indanone-based thiazolyl hydrazones on 

different human cancer cell lines.  

1.1 Biological activities of indanones and related compounds 

Indanones and related compounds are important bioactive molecules. These compounds 

have been studied for various biological activities including cancer and Alzheimer’s type 

of diseases(27). Indanone and its analogues are being developed to combat drug-resistant 

malignancies(28).  Another indanone analogue, donepezil hydrochloride has been 

approved by US-FDA for the treatment of mild to moderate Alzheimer’s disease . This drug 

acts as an acetylcholinesterase inhibitor and some other indanones have been isolated from 

natural products(29). Being such a useful moiety, several synthetic strategies have also 

been developed for their synthesis. Extensive studies on bioactivity of indanone derivatives 

open up more and more new possibilities of their applications as antiviral and antibacterial 

agents(30), anticancer drugs(31), pharmaceuticals used in the Alzheimer’s disease 

treatment(32), cardiovascular drugs(32), insecticides, fungicides, herbicides(33) and non-
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nucleoside, low molecular drugs for the hepatitis C treatment, which inhibit HCV 

replication(34,35). Moreover, the derivatives of indanone are being developed to treat 

drug-resistant malignancies in some cell lines i.e., KB403 (oral and mouth cancer cells), 

WRL68 (liver cancer cells), CaCO2 (colon cancer cells), HepG2 (liver cells) and MCF7 

(hormone-dependent breast cancer cells)(36). 

1.2 Overview of NF-kB signaling pathway 
 

The nuclear factor-kappa B (NF-kB)  is a key regulator of inflammation and has been 

associated with carcinogenesis(37). The NF-kB family is comprised of 5 subunits,  RelA 

(p65), RelB, NF-kB1 (p50 and its precursor p105), NF-kB2 (p52 and its precursor p100), 

and c-Rel(38). There are two pathways for NF-kB activation, canonical and non-canonical 

pathway. The canonical activation of the NF-kB signaling pathway by cytokines, such as 

interleukin-1(IL-1) and tumor necrosis factor (TNF) stimulate the IkB kinase (IKK) 

complex which causes the degradation of Inhibitor of Kappa Light Chain Gene Enhancer 

in B Cells, Alpha (IkBα) by ubiquitin proteasome system and release the NF-kB subunits 

into the nucleus where they become active and induce gene expression. The modulators 

involved in the canonical pathway are IKKs including IKKα, IKKβ and IKKγ or NEMO. 

The alternative pathway (non-canonical pathway) includes B-cell activation factor (BAFF-

R), lymphotoxin β-receptor (LTβR), and CF40 receptor activator for nuclear factor-kappa 

B (RANK) which in turn activate adaptor protein NF-kB-inducing kinase (NIK) which 

activates IKKα(39).  

As indicated above, in unstimulated cells, NF-kB dimers are localized in the cytoplasm 

through their association with IkB proteins. However, it has been reported that the complex 

constituted by IkBα and the p50/p65 dimer can shuttle between the cytoplasm and the 



 

4 
 

nucleus, although it remains transcriptionally inactive. Indeed, only after degradation of 

IkB proteins, this dimer localizes to the nucleus and binds to DNA(40,41). Several IkB 

proteins have been identified, including IkBα, IkBβ, IkBε, IkBκ, and B-cell lymphoma 3 

(Bcl-3) (40,42). IkBα and IkBβ are the best known members of the IkB family, as they are 

expressed in almost all tissues; conversely, the expression of IkBε, IkBζ, and Bcl-3 is 

restricted to hematopoietic cells(41,42). The primary target of IkBα is the dimer p50/p65, 

whereas IkBβ is associated mainly with p65/c-Rel dimers.  

 It has been reported that NF-kB activation in the intestinal epithelial cells has a key role 

in tumor formation. NF-kB is a transcription factor which can regulate over 200 genes 

those are involved in cell survival and inflammation(38). There is strong relation between 

that inflammation and occurrence of CRC. NF-kB activation has  a pro-inflammatory and 

pro-tumorigenic roles (43).  

 
1.3 Role of NF-kB in cancer 

  

NF-kB signaling is involved in cellular immunity, inflammation, and stress, as well as 

regulation of cell differentiation, proliferation, and apoptosis(44–48). The NF-kB pathway 

is often altered in both solid and hematopoietic malignancies, promoting tumor-cell 

proliferation and survival(49,50). Prolonged chronic inflammation may cause tissue 

damage, degenerative diseases, and cancers of multiple types by inducing cellular stress, 

recruiting inflammatory factors, and DNA damage. Moreover, chronic inflammation also 

results in tumorigenesis by genetic mutations and epigenesis. (51). Inflammation increases 

the risk of tumor formation by disabling the immune system from attacking tumor cells 

and by inducing the cell proliferation and genetic instability that leads to oncogenic 
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mutations. NF-kB is the regulator of inflammation and cancer. In cancerous cells with 

elevated NF-kB activity, the accumulation of proinflammatory cytokines at the tumor site 

promotes the pro-tumorigenic microenvironment. In patients with inflammatory bowel 

disease (IBD), pro-tumorigenic cytokines such as TNF-α, IL-1, and IL-17 elevate NF-kB 

activity which may increase the risk of colon cancer(52). Chronic inflammation can lead 

to genomic instability and genetic mutations may favor tumor initiation and 

development(53,54). At the site of inflammation, reactive oxygen species (ROS) are 

released by neutrophils and macrophages and cause DNA damage which can activate the 

NF-kB pathway and form a positive feedback loop to enhance NF-kB activity in different 

types of cells at the site of inflammation. Furthermore, NF-kB induces the expression of 

anti-apoptotic genes such as the caspase-8 inhibitor FLIP and members of the B-cell 

lymphoma 2 (Bcl-2) family of apoptosis regulators. These evidences support the facts that 

tumor cells may also depend on the NF-kB pathway to escape from apoptosis, which has 

been identified as one of the essential hallmarks of cancer(51). Based on the results, it is 

possible that the role of NF-kB in certain types of cancer and at certain stages of cancer 

development is mainly through promoting cell proliferation rather than inhibiting 

apoptosis.  

1.4 p53 status and NF-kB 

Regulation of cellular metabolism by NF-kB depends on the status of tumor suppressor 

gene, p53, in the cells. This is one of the many aspects of the crucial crosstalk between NF-

kB and p53. Many oncogenic mutations, such as those in epidermal growth factor receptor 

(EGFR), Ras, phosphoinositide 3-kinase (PI3K) and p53, contribute to NF-kB activation 

in tumor cells. Kras and p53 mutations have been found in 20-25% and in ~50% of all 
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cancers, respectively, and the mutation rates are especially high in pancreatic, CRC and 

lung cancers(55). The crosstalk between p53 and NF-kB has drawn much attention in the 

cancer research community. As described above, wild-type p53 antagonizes NF-kB 

function and suppresses tumorigenesis; about 50% of human cancers acquire p53 mutations 

(or lose the wild-type allele) and thus activate the NF-kB pathway during tumor 

development. The binding of transcription co-factor CBP to p53 or NF-kB decides a cell's 

fate for apoptosis or survival(56). Furthermore, the NF-kB pathway is also involved in the 

transcription of mouse double minute 2 (Mdm2), a key ubiquitin E3 ligase of p53, thus 

indirectly regulating p53 protein stability(57). On the other hand, wild-type p53 may 

suppress glucose intake and glycolysis by reducing glucose transporter 3 (GLUT3) 

expression on the cell membrane(58). This may be one of the mechanisms by which wild-

type p53 suppresses the NF-kB pathway to a basal level in untransformed cells. In other 

words, p53 mutations prolong NF-kB activation in the presence of inflammatory stimuli. 

For example, a recent study examined the correlation between nuclear p65 staining and 

p53 mutation status in multiple head and neck squamous cell carcinomas and non-small 

cell lung cancers (NSCLC). They found that mutant p53 overexpression correlates with 

increased NF-kB activity and reduced apoptosis, while tumors harboring wild-type p53 

have much less nuclear p65 staining(59). Furthermore, mice harboring a germline p53 

mutation develop more severe chronic inflammation and persistent tissue damage in the 

dextran sulfate sodium (DSS)-induced mouse colon cancer model. These mice are much 

more prone to inflammation-associated colon cancer when compared to their p53 wild-type 

counterparts(59). 
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Moreover, in this study we explored the mechanisms of action of most active derivative 

which caused the inhibition of colon cancer cells’ proliferation, produced cell cycle arrest, 

and induced apoptosis, downregulate NF-kB p65 and Bcl-2. The effects of this derivative 

on tubulin polymerization, production of reactive oxygen species (ROS), glutathione 

depletion and anticancer activity in vivo were also determined. 

1.5 NF-kB and Bcl-2 

The Bcl-2 family of cell death regulators is critical for determining cell fate in the apoptotic 

pathway. Bcl-2 and its mammalian homologs Bcl-xL, Bfl-1 (also called A1), and Mcl-1 

block cell death, while Bax, Bcl-xS, Nbk (also called Bik), Bak, and Bad promote 

apoptosis(60). Each of these factors influences the cleavage-mediated activation of 

caspases, which act as the ultimate downstream effectors of the suicide program. Bcl-2-

related proteins were shown to block apoptosis in lymphoid cells under conditions in which 

NF-kB activity was inhibited(61). This raised the possibility that some of these factors may 

lie downstream of NF-kB in the survival cascade. The pro-survival Bcl-2 homolog Bfl-1 

is transcriptionally controlled by Rel/NF-kB is consistent with these results(62–65).  

Overexpression of members of the Bcl-2 family, such as A1 or Bfl1 and Bcl-xL, inhibit 

the activation of caspase 9 or proapoptotic Bcl-2 family members produced by inducers of 

the intrinsic pathway. Inducers of the intrinsic pathway include agents that cause DNA 

damage or oxidative stress. On the other hand, overexpression of the cellular inhibitors of 

apoptosis (CIAPs) and Fas-associated death domain-like IL-1β-converting enzyme 

inhibitor protein (FLIP) modulates the activation of caspase 8 produced by induction of 

TNF receptor family members. Finally, NF-kB regulates the activation of caspases, 

including caspases 3 and 7, which result from activation of both apoptotic pathways. 
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A variety of different NF-kB pathway inhibitors have been developed and are undergoing 

clinical studies in lymphomas and other malignancies. These include agents that block IKK 

activity, IkB degradation, NF-kB nuclear targeting, or NF-kB target gene activity(66). The 

current work provides further understanding of the relative contribution of NF-kB pathway 

in cancer and its downstream target genes on the activation of each apoptotic pathway, 

which is important for the design and assessment of novel targeted anticancer agents. 

Graphical Abstract: NF-kB pathway in cancer and mechanism of anticancer activity 

of ITH-6 
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CHAPTER 2. Materials and methods 

2.1 Chemicals and equipment 

All thiazolyl hydrazone derivatives were synthesized at the University of Karachi, Pakistan 

(Figure 2). Regorafenib was obtained from Bayer HealthCare Pharmaceuticals Inc. 

(Whippany, NJ) and irinotecan hydrochloride from Alfa Aesar (Haverhill, MA). Stock 

solutions (10 mM) of all the compounds in DMSO were prepared and a series of dilutions 

were made. Figure 3A shows the chemical structure of ITH-6. Dulbecco’s modified 

Eagle’s Medium (DMEM, IX), fetal bovine serum (FBS), Phosphate Buffer Saline (PBS), 

10,000 IU/ml penicillin and 10,000 µg/ml streptomycin, and trypsin 0.25% were purchased 

from Hyclone (Waltham, MA). 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium 

bromide) (MTT), Dimethyl Sulfoxide (DMSO), and other chemicals were obtained from 

Sigma-Aldrich Chemical Co (St. Louis, MO). Propidium Iodide (PI)/RNase staining buffer 

was purchased from BD biosciences (SanJose, CA) and the apoptosis k it were purchased 

from Biotium (Hayward, CA). 5-(and-6)-chloromethyl-20,7'-dichlorodihydrofluorescein 

diacetate, acetyl ester (CM-H2DCFDA) was purchased from Molecular probes™ (Eugene, 

OR). GSH kit from Abcam (Cambridge, MA) and HTS-Tubulin Polymerization Assay 

Biochem Kit from Cytoskeleton (Denver, CO). Monoclonal antibodies D97JR (selective 

against ALDH1A1), E7K2Y (against CD44), D14E12 (against NF-kB p65), E4Z1Q 

(against topoisomerase I), D3R6Y (against procaspase-3), 44D4 (against IkBα) and 16H1 

(against GAPDH), D5C9H (against TBP) and secondary anti-rabbit/mouse HRP linked 

antibody were obtained from Cell Signaling (Danvers, MA). Alexa flour conjugated 

secondary antibody was obtained from Molecular Probes (Eugene, OR). Trizol reagent was 

obtained from Invitrogen Life Technologies (Carlsbad, CA). The NF-kB p65, IL-6, Bcl-2 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/trizol
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and 18 S TaqMan gene expression kits and superscript IV reverse transcription kit were 

obtained from Fisher Scientific (Waltham, MA).  

 

2.2 Cell lines and cell culture 

HEK293 (human embryonic kidney cell line), NIH/3T3 (mouse fibroblast  cell line) and 

human colon cancer cell lines (COLO 205, HCT-15, SW620, KM 12, HT-29, S1), SNB-

19 (human glioblastoma cell line), PC-3 (human prostate cancer cell line), NCI-H460 

(human non-small lung cancer cell line), IGROV-1and SK-OV-3 (human ovarian cancer 

cell lines), ABCB1-overexpressing cancer cell line, SW620/AD300, ABCG2-

overexpressing cancer cell line, S1-M1-80 and K-562 (human chronic myeloid leukemia 

cell line) were used in this study. S1-M1-80 cells were grown in the DMEM medium which 

has the anticancer drug, mitoxantrone, gradually increasing its concentration up to 80 

µg/ml, inducing the overexpression of the ABCG2 transporter(67). SW620/AD300 cells 

were maintained in complete medium with 300 ng/ml of doxorubicin(68). SW620, 

SW620/AD300 and S1, S1-M1-80 cell lines were obtained from Dr. Susan E. Bates 

(Columbia University, New York). All other cell lines were purchased from American 

Type Culture Collection (ATCC) (Manassas, VA). The cell lines were cultured at 37°C, 

5% CO2 with DMEM containing 10% FBS and 1% penicillin/streptomycin. 

2.3 Experimental animals 

Male athymic NCR (nu/nu) nude mice (age 5–6 weeks) were purchased from Taconic 

Farms (Albany, NY) and were used for the animal study. The animals were kept under 

alternate light/dark cycles, provided with food and water, and kept in polycarbonate cages 

(4 mice/cage). The mice were housed at the St. John’s University Animal Care Center and 



 

11 
 

were regularly watched for tumor growth by measuring the size using Vernier calipers. The 

animal protocol was approved by the St. John’s University’s Institutional Animal Care & 

Use Committee (IACUC). The research was carried out in compliance with the Animal 

Welfare Act and the U.S. Health Service. 

2.4 Cell proliferation assay 

The anticancer effects of ITH-6, regorafenib and irinotecan were determined by a 3-(4,5-

dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide (MTT) calorimetric assay. Cells 

were cultured, counted, and seeded onto 96 well plates with a cell density of 6×10 3 cells 

per well. Following 24 h incubation, the cells were treated with different drugs (ranging 

from a concentration of 0-30 µM). After 68 h, 20 µl of 4 mg/ml MTT, was added to each 

well and the plates were further incubated 37˚C for 4 h. Subsequently, the MTT was 

removed from all wells and 100 µl of DMSO was added to dissolve the formazan crystals 

formed by the reduction of MTT in the mitochondria of the viable cells. The optical density 

(OD) was measured at 570 nm by an Opsys microplate reader (Dynex technologies, VA).  

2.5 Cell cycle analysis 

Based on the cytotoxic effects of ITH-6, the cell cycle analysis was carried out on colon 

cancer cell lines HT-29, COLO 205, and KM 12. The cells were treated with ITH-6 at three 

different concentrations (0.3, 1 and 3 µM) for 24 h and the cell cycle analysis was 

performed as described previously. In brief, the cells were harvested and centrifuged at 800 

rpm for 5 min. The supernatant was removed and the cell pellet was washed with 1X PBS. 

The cells were fixed overnight in ice cold 70% ethanol at 4˚C. The fixed cells were stained 

with 50 µg/ml PI and 100 µg/ml of RNase at 37˚C for 30 min in the dark. The flow 
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cytometric analysis was performed and the percentage of cells in different phases of cell 

cycle were determined (G0/G1, S, G2/M).  

2.6 Tubulin polymerization assay 

The action of the test compound, ITH-6 on the tubulin polymerization was assessed by 

tubulin polymerization kit. The preparation of samples and assay protocol was carried out 

as per manufacturer’s instructions. ITH-6 (100 µM) was used a test compound while 

paclitaxel and colchicine (10 µM) were used as controls.  

2.7 Apoptosis analysis 

The cells were incubated with ITH-6 for 24 h at concentrations of 0.3, 1 and 3 µM. After 

24 h, the cells were washed, harvested, and stained with FITC-labeled annexin-V and PI at 

37˚C for 30 min. The degree of apoptosis was measured at FL-1 and FL-2 of the flow 

cytometer. 

2.8 Intracellular ROS measurement 

In order to investigate the effects of ITH-6 on the intracellular levels of ROS, the cells were 

treated with ITH-6 at different concentrations ranging from 0 to 3 µM for 24 h. After 24 h, 

the cells were washed and harvested. Subsequently, 10 µM of CM-H2DCFDA was added. 

The CM-H2DCFDA dye enters into the cells, gets converted into the fluorescent (5-

chloromethyl-20-7’-dichlorofluorescein (DCF)) product by the action of intracellular 

peroxides. The cells were incubated in dark at 37˚C for 30 min. Intracellular ROS levels 

were measured using the flow cytometer. 
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2.9 Intracellular GSH assay 

In order to better understand the inverse relation between oxidative stress and GSH, the 

colon cancer cell lines were treated with ITH-6 at different concentrations 0.3, 1, and 3 

µM for 24 h. The intracellular GSH was measured using GSH assay kit and the protocol 

was carried out as per manufacturer’s instructions. The samples were prepared and 

analyzed as per manufacturer’s protocol using FL-1 of flow cytometer. 

2.10 Western blot analysis 

Western blot analysis was performed to detect the expression level of Aldehyde 

Dehydrogenase 1 Family Member A1 (ALDH1A1), a cell surface adhesion receptor 

protein (CD44), a subunit of nuclear factor kappa light chain enhancer of activated B cells 

(NF-kB p65) (nuclear and cytoplasmic), procaspase-3, topoisomerase I (TOP 1) and IkBα 

(nuclear and cytoplasmic) proteins after incubating HT-29, COLO 205 and KM 12 cells 

with different concentrations, 0.3, 1 and 3 µM of ITH-6 for 72 h. Cell lysates were prepared 

by adding lysis buffer (25 mM Tris-HCl (pH 7.6), 150 mM NaCl, 1% Triton X-100, 1% 

sodium deoxycholate, 0.1% SDS) to all the three different cell lines. The nuclear and 

cytoplasmic proteins were separated using NE_PER Nuclear and Cytoplasmic Extraction 

Reagent Kit (Fisher Scientific). Protein (40 µg) was then resolved by sodium dodecyl 

sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and transferred onto 

polyvinylidene fluoride (PVDF) membranes through electrophoresis. Subsequently , PVDF 

membranes were blocked with 5% non-fat milk dissolved in TBST buffer (10 mmol·L−1 

Tris-HCL, 150 mmol·L−1 NaCl and 0.1% Tween20 pH 8.0) for 2 h at room temperature. 

The samples were incubated with primary antibodies against NF-kB p65 (nuclear and 
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cytoplasmic), ALDHA1, CD44, IkBα (nuclear and cytoplasmic), procaspase-3, TOP I 

protein (1:1000) and housekeeping genes, GAPDH and TBP (1:1000) overnight at 4°C and 

then incubated with peroxidase-conjugated secondary antibodies (1:1000) for 2 h at room 

temperature. The reaction was visualized by means of enhanced chemiluminescence 

detection reagents (Amersham, NJ) using the manufacturer’s protocol(19). The resulting 

protein bands were analyzed using Image J software. 

2.11 mRNA expression 

HT-29, COLO 205 and KM 12 cancer cells were incubated with 0.3, 1 and 3 M of ITH-

6 for 72 h and total RNA was extracted using the RNA extraction trizol reagent as 

previously described(69). RNA was quantified using Nanodrop and RNA samples with a 

A260/280 ratio in the range of 1.8 to 2.0 were chosen. These samples were subjected to 

reverse transcription and the cDNAs formed (by superscript IV reverse transcription kit) 

were used for quantitative PCR. This analysis was performed using the NF-kB p65, Bcl-2, 

IL-6 and 18S TaqMan gene expression assay kits. The PCR data were quantitated using 

the ∆∆Ct method and presented as relative - fold of mRNA expression. 

2.12 Immunofluorescence 

The immunofluorescence assay was performed as previously described(19). Briefly, after 

being cultured overnight in 24-well plates, cells (2 ×104/well) were treated with ITH-6 (0.3, 

1 and 3 µM) for 72 h. Then, cells were fixed in 4% paraformaldehyde for 10 min and 

permeabilized by 0.1% Triton X-100 for 10 min before being blocked with 6% BSA at 

37°C for 1 h. The presence of NF-kB p65 was determined using monoclonal antibody 

(dilution 1:1000) for incubation at 4°C overnight. Cells were washed with iced PBS after 

each incubation time. Alexa Fluor 594 (Ex = 561 nm, Em = 617 nm) conjugated secondary 
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antibody (1:1000) was used after washing with ice cold PBS. DAPI (Ex = 345 nm, Em = 

455 nm) was used to counterstain the nuclei. The cells were washed with ice -cold PBS 

before being imaged. Immunofluorescence images were collected using an EVOS FL Auto 

fluorescence microscope from Life Technologies Corporation (Gaithersburg, MD). 

 

2.13 Cytotoxicity of ITH-6 on ABCB1 and ABCG2 overexpressing cell lines. 

 The cytotoxicity assay was conducted in a 96 well plate using parental (SW620 and S1) 

and drug-resistant (SW620/AD300 and S1-M1-80) cell lines that were seeded at a density 

of 6×103 cells/well. Following 24 h incubation, the cells were treated with ITH-6 (ranging 

from a concentration of 0-100 µM). After 68 h, the absorbance was measured at 570 nm 

using spectrophotometer as previously described(70,71) and IC50 values were calculated. 

2.14 Knockout of NF-kB p65 gene in HT-29 cells 
 

A CRISPR/Cas9 system was used to construct the NF-kB p65 gene knockout subline of 

HT-29 cells. The custom-designed mammalian CRISPR vector was obtained from Vector 

Builder Inc. (Chicago, IL). The transfection of the NF-kB p65 targeting vector into HT-29 

cells was conducted using Fugene6 transfection reagent (Promega, Madison, WI) 

according to the manufacturer's instructions. Briefly, HT-29 cells were seeded in 100 mm 

dishes with 1 × 106 cells per dish and cultured overnight in DMEM with 10% FBS without 

antibiotics. Then, 10 μg of plasmid DNA was prepared in 376 μl of Opti-MEM medium 

and mixed with 24 μl of Fugene 6 reagent. Followed by a 30  min incubation at room 

temperature, the complex was mixed into the cell culture medium and incubated with the 

cells in a culture incubator for 48 h. At the end of incubation, the transfected cells were 

rinsed with PBS then incubated with the selection medium containing 2 mg/ml G418 for 3 
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days. Non-transfected cells were used as negative controls for the selection process. Single 

colonies of survived cells were obtained and expanded for further study. The knockout of 

NF-kB p65 was further verified by measuring protein expression using Western blotting 

and by cell viability study using MTT. 

2.15 Molecular modeling 

Macintosh Operating System (OS Sierra) with Mac Pro 6-core Intel Xenon E5 processor 

system was used to perform docking experiments using the Maestro v12. 3. 012 software 

(Schrödinger, LLC, New York, NY, USA, 2019) software. Lig-prep was used for ITH-6 

ligand preparation(72). The heterodimer protein model was imported from the Protein data 

bank. ‘Protein Preparation Wizard’ was used for protein preparation. The grid generation 

was done by selecting residues at 20 Å distance from bound inhibitors in the model protein 

(1IKN)(73,74). The residues selected were: 26, 28, 29, 30, 49, 50, 181, 222, 224, 225, 236, 

237, 238, 239, 241, 258, 259, 260, 261, 275. Extra Precision docking was performed with 

maximum 10 poses(75).  

2.16 Nude mouse MDR xenograft model 

 The colon cancer cells, HT-29 and KM 12 xenograft mouse models were established as 

previously reported(76). The cells were implanted subcutaneously into 

immunocompromised mice under the left and right armpit regions, respectively. When the 

tumors reached a diameter of around 0.5 cm (day 0) after one week, the mice were 

randomized into four treatment groups consisting of 6 mice per group as follows: (a) 

polyethylene glycol 300 as the vehicle which was given orally (q3d × 7), (b) irinotecan (30 

mg/kg, q3d × 7) was given intraperitoneally (i.p.), dissolved in normal saline(77) (c) ITH-

6 (3 mg/kg) was diluted in PEG 300 and given orally (q3d × 7), and (d) ITH-6 (6 mg/kg)   
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group was diluted in PEG 300 and given orally (q3d × 7). The treatment was given for 

twenty-one days and the body weights were recorded every third day to calculate the drug 

dosage. Tumor volumes (calculated using the two diameters of tumors, termed A and B) 

were calculated  every third day using vernier calipers and calculated using the following 

formula, V=π/6(A+B/2)3  (78,79). The blood was taken via submandibular puncture on the 

last treatment day and white blood cells (WBC) and platelets counts were determined in all 

four groups.  

 At the end of the treatment regimen, the mice were euthanized, and the tumors were 

removed and weighed. 

2.17 Collection of plasma and tumor tissues 

 In separate experiments, mice bearing HT-29 and KM 12 tumors were separated into three 

groups: (i) mice receiving 3 mg/kg ITH-6 orally (ii) 6 mg/kg ITH-6 orally and (iii) 30 

mg/kg i.p. irinotecan. Animals were anesthetized with 3 % isoflurane and 50 µL of blood 

was collected 5, 30, 60, 120,180 and 240 min after the appropriate treatment, by 

submandibular puncture into heparinized tubes. In addition, the tumors were excised, 

weighed, and stored at - 80°C for further study. 

2.18 HPLC protocol for plasma sample collection 

To the collected plasma samples 500 ml methanol: TFA (10:1) mixture was added and it 

was incubated on ice for 30 min to allow protein precipitation. It was then centrifuged at 

15000 rpm at 4⁰ C for 20 min. The supernatant was collected and filtered through 0.2 mm 

filter into HPLC vials and then the samples were analyzed using HPLC. 
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2.19 HPLC protocol for tumor sample collection 

The tumors were homogenized in 10 ml PBS. The homogenized mixture was extracted 

using 10 ml diethyl ether. The mixture was centrifuged at 4⁰ C at 1,500 rpm for 10 min 

and then the diethyl ether layer was collected. The solvent was evaporated, and the 

residue was redissolved in 500 ml methanol: TFA (10:1) mixture. It was incubated on ice 

for 30 min to allow protein precipitation. It was then centrifuged at 15,000 rpm at 4⁰C for 

20 min. The supernatant was collected and filtered through 0.2 mm filter into HPLC vials 

and then the samples were analyzed using HPLC. 

2.20 HPLC method.  

The Agilent 1260 infinity series was used to analyze the samples. The ACE C18 column 

with dimensions 5 mm x 250 x 4.6 mm was used. The solvent system used was A= water 

(with 0.1% formic acid) and B= methanol (with 0.1% formic acid). The injection volume 

used was 100 µl and the detector wavelength used was 254 nm.  

Method for Irinotecan: Flow rate: 0.5 ml/min 

Time (min) Solvent A percentage Solvent B percentage 

0 60 40 
10 98 2 

12 98 2 

15 60 40 

 

Method for ITH-6: Flow rate: 0.5 ml/min 

Time (min) Solvent A percentage Solvent B percentage 

0 60 40 

20 98 2 

22 98 2 
25 60 40 

 

The tR (retention time) for irinotecan was 6.2 min and tR for ITH-6 was 17.5 min.  
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The standard curve was created based on dosage. Irinotecan (2 mg/ml, 1mg/ml, 0.5 

mg/ml, 0.25 mg/ml, 0.125 mg/ml, 0.625 mg/ml) and ITH-6 (1mg/ml, 0.5 mg/ml, 0.25 

mg/ml, 0.125 mg/ml, 0.625 mg/ml, 0.313 mg/ml). 

 

2.21 Statistical analysis 

All experiments were repeated at least three times and the differences were determined 

using a one-way analysis of variance (ANOVA). The statistical significance was 

determined at p < 0.05. The post hoc analysis was performed using Tukey’s test. The data 

were analyzed using GraphPad Prism, version 6.  
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CHAPTER 3. Results 

3.1 Non-cytotoxic effect of ITH-6 on normal cell lines. 

To determine the cytotoxic effect of ITH-6 on normal healthy cell lines, MTT was carried 

against human embryonic kidney cell line, HEK293 and mouse fibroblast cell,  NIH/3T3. 

ITH-6 did not show any cytotoxicity on these cell lines and IC50 values were more than 30 

µM (Table 1). 

3.2 ITH-6 inhibits cell proliferation in colon cancer cell lines 

In order to determine the cytotoxicity of synthesized compounds on colon cancer cell 

lines, MTT assay was performed against different cancer cell lines (as mentioned in cell 

lines and cell culture). The IC50 values were >10 µM against all cancer cell lines other 

than colon cancer cell lines (Table 2). Among all compounds, four compounds exhibited 

remarkable cytotoxic activities against most of the tested colon cell lines (Table 3). For 

the five types of tested human colorectal adenocarcinoma cells, SW620, COLO 205, KM 

12 and HT-29 cells, ITH-1 had cytotoxic effects, with IC50 values of >10 µM, 1.37 µM, 

2.50 µM, and 0.86 µM, respectively. Also, ITH-3 had cytotoxicity on the same colon 

cancer cell lines with IC50 value of >10 µM, 2.64 µM, 2.91 µM, and 1.99 µM, 

respectively. The IC50 of ITH-6 on HT-29, COLO 205, and KM 12 cell lines (Figure 3B) 

were 0.40, 0.98 and 0.41 µM, respectively. The IC50 was more than 10 µM on HCT-15 

cell line. For ITH-12, IC50 of 2.14 µM on COLO 205, 2.90 µM on KM 12 and 1.17 µM 

on HT-29 cells were exhibited. IC50 values of regorafenib on HT-29, COLO 205 and KM 

12 were 22.7 µM, 9.43 µM and 5.02 µM, respectively (Figure 3C). Irinotecan has IC50 

values of 8.49 µM, 22.84 µM and 23.15 µM on HT-29, COLO 205, and KM 12 cells 

(Figure 3D). These results indicate that ITH-6 has a significant effect on the cell viability 
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of HT-29, COLO 205 and KM 12 cells compared to the other cell lines, suggesting that 

the drug is more potent to p53 mutant colon cancer cells and chosen for the detailed study 

of its possible mechanism. 

3.3 ITH-6 arrests the colon cancer cells in the G2/M phase of the cell cycle. 

In order to investigate the mechanisms by which ITH-6 inhibits the proliferation of colon 

cancer cells, its effects on the progression of cell cycle were studied. On treatment with 

ITH-6 (0.3, 1, and 3 µM), a concentration dependent increase in the percentage of cells in 

G2/M phase of the cell cycle of all the three cell lines was observed. The concentrations 

were selected based on the IC50 values. ITH-6 increased the percentage of cells from 37.5% 

to 72.1% in HT-29 (Figure 4A), 15.1% to 33.4% in COLO 205 (Figure 4B), and 24.1% to 

77.8% in KM 12 cells (Figure 4C). These results suggest that ITH-6 arrests the cells in 

G2/M phase with negligible effect on other phases of cell cycle in all the three cell lines.  

3.4 ITH-6 inhibits tubulin polymerization in the mitotic phase  

To further elucidate the mechanisms by which ITH-6 arrests the colon cancer cells in 

G2/M phase of the cell cycle, tubulin polymerization assay was performed according to 

the manufacturer's protocol. The test drug (ITH-6) was compared against control drugs, 

paclitaxel, and colchicine. Our results indicated that paclitaxel (10 µM) stabilizes the 

microtubule by enhancing the tubulin polymerization for a period of 1 h while colchicine 

(10 µM) acted as a tubulin polymerization inhibitor. Interestingly, ITH-6 at 100 µM 

inhibited the tubulin polymerization, thus suggesting that ITH-6 acted on the G2/M phase 

of the cell cycle by inhibiting the tubulin polymerization activity, an effect like 

colchicine, however, less potent than colchicine (Figure 5). 
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3.5 ITH-6 induces apoptosis in colon cancer cells  

To understand the apoptotic effects of ITH-6 on colon cancer cell lines, the cells were 

treated at different concentrations (0.3, 1, and 3 µM) of ITH-6 for 24 h. In all the three cell 

lines, most of the cells were viable in the control group and no apoptosis was observed. 

ITH-6 exhibited a concentration dependent increase in the early and late apoptosis of HT-

29 (Figure 6A), COLO 205 (Figure 6B), and KM 12 (Figure 6C) cells. 

3.6 ITH-6 elevates ROS production in colon cancer cells 

Since an increase in intracellular ROS is a measure of induction in apoptosis, we 

investigated the effects of ITH-6 on the intracellular ROS production. The cells were 

treated at the indicated concentrations for 24 h and the intracellular ROS levels were 

measured using the flow cytometer. As shown in the Figure 7A, ROS percentage increased 

from 5.98% (control) to 66.30% (ITH-6 at 3 µM) in HT-29, 1.88% (control) to 71.70% 

(ITH-6 at 3 µM) in COLO 205 (Figure 7B), and 4.26% (control) to 69.57% (ITH-6 at 3 

µM) in KM 12 (Figure 7C) cells. These results suggested that ITH-6 elevates intracellular 

ROS levels and causes apoptosis in colon cancer cells. 

3.7 ITH-6 inhibits GSH levels in colon cancer cells 

Since a decrease in GSH levels is known to induce ROS and in turn induce apoptosis, the 

effects of ITH- 6 on the intracellular GSH levels were determined at the indicated 

concentrations. Our results showed that ITH-6 exhibited a concentration-dependent 

decrease in intracellular GSH levels. As shown in Figure 8A, the GSH percentage 

decreased from 93.80% (control) to 23.70% (ITH-6 at 3 µM) in HT-29, from 96.80% 
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(control) to 34.90% (ITH-6 at 3 µM) in COLO 205 (Figure 8B), and from 91.30% (control) 

to 7.81% (ITH-6 at 3 µM) in KM 12 cells (Figure 8C). 

3.8 The effect of ITH-6 on the expression level of different targets associated with 

apoptosis of colon cancer cells. 

To figure out the mechanism of the cytotoxicity of the test compound ITH-6, we performed 

the Western blotting experiment on various proteins. The proteins selected were 

ALDH1A1, CD44, NF-kB p65 (nuclear and cytoplasmic), procaspase-3, TOP 1 and IkBα 

(nuclear and cytoplasm) as they are important prognostic markers in colon cancer cells. 

HT-29, COLO 205 and KM 12 cells were incubated with 0.3, 1 and 3 µM of ITH-6 for 72 

h. At a concentration of 3 µM, ITH-6 downregulated the nuclear NF-kB p65 expression in 

HT-29 (Figure 10A and C) and COLO 205 (Figure 11A and C) cells compared to the 

control whereas in KM 12 cells, the test compound at concentrations of 0.3, 1 and 3 µM 

significantly decreased the nuclear NF-kB p65 expression level compared to the positive 

control, resveratrol (20 µM) and KM 12 cells are more sensitive to NF-kB p65 

downregulation following the treatment with ITH 6 (Figure 12A and C). There was no 

change in the cytoplasmic NF-kB p65 protein expression in all cell lines treated with ITH-

6 (Figure 10, 11 and 12B, D). 

Moreover, there was no change in the expression of ALDH1A1 and CD44 (Figure 9), TOP 

1 (Figure 13, 14 and 15 C and E) and IkBα (cytoplasmic) levels (Figure 13, 14 and 15 B 

and D). There was a concentration-dependent decrease in the procaspase-3 expression in 

COLO 205 and KM 12 (Figure 14 and 15C and F) cells treated with ITH-6 at 3 different 

concentrations, 0.3, 1 and 3 µM for 72 h whereas in HT-29, there was no change in the 

expression of procaspase-3 after incubating with ITH-6 (Figure 13C and F). Hence, we can 
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summarize that the possible mechanism behind ITH-6 induced cytotoxicity in these colon 

cancer cells results from downregulating nuclear NF-kB p65 protein expression.  

3.9 The effect of ITH-6 on the mRNA level of NF-kB p65, IL-6 and Bcl-2 in colon 

cancer cell lines. 

The incubation of HT-29, COLO 205, and KM 12 cancer cell lines with 0.3, 1 and 3 µM 

of ITH-6 for 72 h remarkably decreased the NF-kB p65 protein expression compared to 

cells incubated with vehicle. Furthermore, quantitative real-time PCR (RT-PCR) 

experiments demonstrated that the treatment of these cells with the ITH-6 for 72 h 

remarkably decreased NF-kB p65 mRNA expression (Figure 16A, B and C).  

It was previously indicated that NF-kB p65 transcriptionally regulates IL-6 and Bcl-2, anti-

apoptotic proteins(80). Hence, RT-PCR was performed to evaluate the effect of ITH-6 on 

IL-6 (Figure 17A, B and C) and Bcl-2 (Figure 18A, B and C) mRNA levels and showed 

that treatment with ITH-6 downregulated the Bcl-2 expression thereby further proving the 

role of ITH-6 on the apoptosis of these colon cancer cell lines.  

 

3.10 Immunofluorescence 

Immunofluorescence experiment was conducted to find out if ITH-6 can downregulate 

the expression of nuclear NF-kB p65 in HT-29 (Figure 19), COLO 205 (Figure 20), and 

KM 12 (Figure 21) cells when they are treated with ITH-6 for a period of 72 h. Our results 

indicated that incubating these colon cancer cells with ITH-6 decreased NF-kB p65 

expression which is consistent with the Western blot and RT-PCR results. 
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3.11 Interaction analysis of ITH-6-NF-kB p65 docked complex 

The previously reported IkBα/NF-kB crystal model (PDB code: 1IKN) was used for 

docking analysis. Stimulation between ITH-6 and the heterodimer complex was 

performed using induced fit docking. The docking position of ITH-6 showed XP docking 

score of -5.7 kcal mol-1, which shows good binding affinity. Figure 22A depicts the 

docking pose and interaction between ITH-6 and the IkBα/NF-kB heterodimer protein. 

Figure 22B shows H- bonding between the thiazolidine hydrogen and the carbonyl 

oxygen of GLY259. The biphenyl ring resides in the pocked formed by amino acids: 

GLN 26, LYS 28, GLN 29, ARG 30, whereas the indene ring sits in the pocked made by 

amino acids: ARG 236, GLY 237, SER 238, PHE 239, GLN 241. 

3.12 ITH-6 is not susceptible to ABCB1- and ABCG2-mediated drug resistance 

An MTT assay was performed to examine the susceptibility of ITH-6 to MDR mediated 

by ABCB1 and ABCG2 transporters. Herein, resistance fold (RF) was used to evaluate if 

there is any degree of change in the resistance to ITH-6 resulting from the presence of 

ABCB1or ABCG2. Based on the results, there was no significant difference in the IC50 

values of ITH-6 in the ABCB1 overexpressing SW620/AD300 cell line (Figure 23A) and 

ABCG2 overexpressing S1-M1-80 cell line (Figure 23B) relative to their corresponding 

parental cell lines. 

3.13 Knockout of NF-kB p65 gene in HT-29 cells 

The knockout of NF-kB p65 gene in HT-29-NF-kB p65ko cells was verified by the NF-

kB p65 protein expression using Western blotting (Figure 24A). The expression level of 

NF-kB p65 in HT-29-NF-kB p65ko cells was remarkably low compared to that of HT-29 

cells (Figure 24B). 
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To further verify the change in gene expression by targeting NF-kB p65 using the 

CRISPR/Cas9 system in HT-29-NF-kB p65ko cells, MTT assay was performed. 

Resistance fold (RF) was used to evaluate if there is any degree of change in the IC50 

values resulting from the absence of NF-KB p65 expression. Based on the results, the 

IC50 value in HT-29-NF-kB p65ko cells is around 180-fold higher than that of the 

corresponding HT-29 cell lines (Figure 24C).  

3.14 The effect of ITH-6 and irinotecan in mice with HT-29 and KM 12 tumor 

xenografts  

The colon cancer cell lines, HT-29 and KM 12 were implanted subcutaneously and over a 

period of 7 to 10 days, the mice developed visible tumors and subsequently, the treatment 

regimen was started. The mice implanted with HT-29 and KM 12 cells had a significant 

reduction in volume (Figure 24 and 25B) and weight (Figure 24 and 25C) of the tumor 

after treatment with an oral dose of ITH-6 6 mg/kg compared to the positive control, 30 

mg/kg irinotecan which was given intraperitoneally (Figure 24 and 25A). Importantly, the 

doses that we administered suggested that the treatment did not produce significant overt 

toxicity as there was no mortality or a significant decrease in body weight (Figure 26A) 

and no significant change in blood cell count (Figure. 26B and C).  

3.15 Concentration of ITH-6 and irinotecan in the tumor and plasma 

The plasma level of irinotecan (intraperitoneally) was gradually decreasing as time 

increases (Figure 27B) and for ITH-6 (given orally), plasma concentration was gradually 

increasing and reached a peak at 60 min and then decreased (Figure 27A). However, the 

tumor concentration of irinotecan (30 mg/kg) was less compared to ITH-6 (6 mg/kg) 

(Figure 28). 



 

27 
 

Table 1. The effect of ITH-6 on normal cell lines 

Compound                  HEK 293                  NIH/3T3 

                                           IC50 (µM) 

ITH-6       >30         >30 

μM-Micromole.  

The cytotoxic effects of the test compounds on HEK293 (human embryonic kidney cells) 

and NIH/3T3 (mouse fibroblast cells).  

Values in Table 1 are representative of at least three independent experiments performed 

in triplicates.  

IC50: concentration that inhibits cell survival by 50% (mean ± SD). 
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Table 2: The effect of synthesized compounds on different cancer cell lines.  

CELL LINES 

 
Compounds Code 

SNB-
19 PC-3 NCI-

H460 
IGRO

V-1 
 SK-
OV-3 K-562 

IC50 (µM) 

N-Indan-1-ylidene-N'-[4-(4-methoxy-
phenyl)-thiazol-2-yl]-hydrazine  ITH-1 > 10 > 10 > 10 > 10 > 10 > 10 

N-Indan-1-ylidene-N'-[4-(3, 5-

Dichloro-phenyl)-thiazol-2-yl]-
hydrazine 

ITH-2 
> 10 > 10 > 10 > 10 > 10 > 10 

N-Indan-1-ylidene-N'-[4-(4-Bromo-
phenyl)-thiazol-2-yl]-hydrazine 

 

 
ITH-3 > 10 > 10 > 10 > 10 > 10 > 10 

N-Indan-1-ylidene-N'-[4-(4-Chloro-
phenyl)-thiazol-2-yl]-hydrazine 

ITH-4 
> 10 > 10 > 10 > 10 > 10 > 10 

N-Indan-1-ylidene-N'-[4-(3-nitro-
phenyl)-thiazol-2-yl]-hydrazine 

ITH-5 
> 10 > 10 > 10 > 10 > 10 > 10 

N-Indan-1-ylidene-N'-(4-Biphenyl-4-

yl-thiazol-2-yl)-hydrazine 

ITH-6 
> 10 > 10 > 10 > 10 > 10 > 10 

N-Indan-1-ylidene-N'-(4-phenyl-
thiazol-2-yl)-hydrazine 

ITH-7 
> 10 > 10 > 10 > 10 > 10 > 10 

N-Indan-1-ylidene-N'-[4-(3-Bromo-
phenyl)-thiazol-2-yl]-hydrazine 

ITH-8 
> 10 > 10 > 10 > 10 > 10 > 10 

N-Indan-1-ylidene-N'-[4-(4-nitro-phenyl)-

thiazol-2-yl]-hydrazine 

ITH-9 
> 10 > 10 > 10 > 10 > 10 > 10 

N-Indan-1-ylidene-N'-[4-(2-hydroxy-
phenyl)-thiazol-2-yl]-hydrazine 

ITH-10 
> 10 > 10 > 10 > 10 > 10 > 10 

N-Indan-1-ylidene-N'-[4-(2,4-Dichloro-
phenyl)-thiazol-2-yl]-hydrazine 

ITH-11 
> 10 > 10 > 10 > 10 > 10 > 10 

N-Indan-1-ylidene-N'-[4-(4-methyl-

phenyl)-thiazol-2-yl]-hydrazine 

ITH-12 
> 10 > 10 > 10 > 10 > 10 > 10 

N-Indan-1-ylidene-N'-[4-(3-Fluoro-
phenyl)-thiazol-2-yl]-hydrazine 

ITH-13 
> 10 > 10 > 10 > 10 > 10 > 10 

µM-Micromole 

IC50: concentration of the drug that inhibits cell survival by 50% 

The cytotoxic effects of test compounds on SNB-19 (human glioblastoma cell line), PC-3 

(human prostate cancer cell line), NCI-H460 (human lung cancer cell line), IGROV-1 

(human ovarian cancer cell line), SK-OV-3 (human ovarian cancer cell line), and K-562 

(human chronic myeloid leukemia cell line).  

Values in Table 2 are representative of at least three independent experiments performed 

in triplicates. 
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Table 3: The effect of synthesized compounds on colon cancer cell lines. 

 
 

Compou
nds 

 
Code 

 

CELL LINES 

HCT 116 COLO 
205 

HCT-
15 SW620 KM 12 HT-29 

IC50 (µM) 

ITH-1 5.04±1.06 1.37±0.29 >10 >10 2.50±0.30 0.86±0.17 

ITH-2 
 

>10 

 

>10 

 

>10 

 

>10 

 

>10 

 

>10 

ITH-3 1.25±0.02 2.64±0.35 
 

>10 

 

>10 
2.91±0.17 1.99±0.29 

ITH-4 
 

>10 
 

>10 
 

>10 
 

>10 
 

>10 
 

>10 

ITH-5 
 

>10 
 

>10 
 

>10 
 

>10 
 

>10 
 

>10 

ITH-6 5.04±0.20 0.98±0.06 >10 6.85±1.44 0.41±0.19 0.44±0.06 

ITH-7 
 

>10 
 

>10 
 

>10 
 

>10 
 

>10 
 

>10 

ITH-8 
 

>10 
 

>10 
 

>10 
 

>10 
 

>10 
 

>10 

ITH-9 
 

>10 
 

>10 
 

>10 
 

>10 
 

>10 
 

>10 

ITH-10 
 

>10 
 

>10 
 

>10 
 

>10 
 

>10 
 

>10 

ITH-11 
 

>10 

 

>10 

 

>10 

 

>10 

 

>10 

 

>10 

ITH-12 >10 2.14±0.36 >10 >10 2.90±0.06 1.17±0.27 

ITH-13 
 

>10 

 

>10 

 

>10 

 

>10 

 

>10 

 

>10 

µM-Micromole 

IC50: concentration of drug that inhibits cell survival by 50% (mean ± SD). 

The cytotoxic effects of the test compounds on HCT 116, COLO 205, HCT-15, SW620, 

KM 12, and HT-29 (human colon cancer cell lines). 

Values in Table 3 are representative of at least three independent experiments performed 

in triplicates. 
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Figure 1 NF-kb pathway 

(Adapted from NF-kB in Cancer: A Matter of Life and Death. Aggarwal and Sung. Cancer 

Discovery, 2011). 
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Figure 2 

 

 

 

Figure 2. The schematic representation of ITH-6 synthesis from the parent 

compound, 1-indanone. 
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Figure 3 

 

 

Figure 3. Chemical structure of N-Indan-1-ylidene-N'-(4-Biphenyl-4-yl-thiazol-2-yl)-

hydrazine (ITH-6) and cytotoxicity of ITH-6, Regorafenib and Irinotecan in HT-29, 

COLO 205, and KM 12 cell lines. (A)The chemical structure of ITH-6 was drawn using 

Chem Draw. Survival fraction (%) was measured after treatment with (B) ITH-6, (C) 

Regorafenib and (D) Irinotecan for 72 h in HT-29 (orange), COLO 205 (blue), and KM 

12 (grey) cell lines. Points with error bars represent the mean ± SD for independent 

determinations in triplicates. The figure 3B, 3C and 3D are representative of three 

independent experiments. 
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Figure 4 

 

 

Figure 4. Effect of ITH-6 on the cell cycle of HT-29, COLO 205, and KM 12 cell 

lines. (A) HT-29, (B) COLO 205, and (C) KM 12 cells were treated with ITH-6 (24 h) in 

a concentration-dependent manner, stained with propidium iodide (PI), and analyzed by 

flow cytometer. Quantification of the PI staining data is presented as the percentage of 

distribution through stages of the cell cycle: blue-G0/G1; red- S; green- G2/M. Points 

with error bars represent the mean ± SD for independent determinations in triplicates. 

The figures are representative of three independent experiments. * p < 0.05, ** p < 0.01, 

*** p < 0.001,  and **** p < 0.0001 compared to the control group. 
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Figure 5 

       

 

 

 

Figure 5. Effect of ITH-6 on the tubulin polymerization. The tubulin polymerization 

assay was performed as per manufacturer’s protocol. The change in optical density (OD) 

at 340 nm was plotted against time in min for ITH-6 at 100 μM (green) was compared with 

control (blue), paclitaxel at 10 μM (orange), and colchicine at 10 μM (yellow). Points with 

error bars represent the mean ± SD for independent determinations in triplicates. The figure 

is a representative of three independent experiments. 
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Figure 6 

 

Figure 6. Effect of ITH-6 on the apoptosis of HT-29, COLO 205, and KM 12 cell lines. 

(A) HT-29, (B) COLO 205, and (C) KM 12 cells were treated with ITH-6 (24 h) in a 

concentration-dependent manner, stained with Annexin-V and PI, and analyzed by flow 

cytometer. The apoptotic cell population was quantified by flow cytometry. Bar graphs in 

blue represents live cells, in red represents cells undergoing apoptosis, and in green 

represents cell undergoing necrosis. Bar graphs represents average cell population of three 

independent experiments and error bars represents SD for independent determinations in 

triplicates. ** p < 0.01, *** p < 0.001, **** p < 0.0001 compared to the control group. 
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Figure 7 

 

 

Figure 7. Effect of ITH-6 on the ROS production in HT-29, COLO 205, and KM 12 

cell lines. (A) HT-29, (B) COLO 205, and (C) KM 12 cells were treated with ITH-6 (24 

h) in a concentration-dependent manner as mentioned in “Materials and methods”. Points 

with error bars represent the mean ± SD for independent determinations in triplicates. The 

figures are representative of three independent experiments.* p < 0.05, ** p < 0.01 and *** 

p < 0.001 compared to the control group. 
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Figure 8 

 

 

Figure 8. Effect of ITH-6 on the GSH levels of HT-29, COLO 205, and KM 12 cell 

lines. The GSH assay was performed as per manufacturer’s protocol. (A) HT-29, (B) 

COLO 205, and (C) KM 12 cells were treated with ITH-6 (24 h) in a concentration-

dependent manner as mentioned in “Materials and methods”. Points with error bars 

represent the mean ± SD for independent determinations in triplicates. The figures are 

representative of three independent experiments. * p < 0.05, ** p < 0.01, *** p < 0.001 

and **** p < 0.0001 compared to the control group. 
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Figure 9   

 

 

Figure 9. Effect of ITH-6 on the expression of ALD1HA1 and CD44: The effect of 

ITH-6 on the expression of ALDHA1 and CD44 on (A) HT-29 (B) COLO 205 and (C) 

KM 12 cells were tested after the cells were treated with 0.3, 1 and 3 µM of ITH-6 for 72 

h. Relative quantification of the effect of ITH-6 on (D) CD44 in HT-29 and ALDH1A1 in 

(E) COLO 205 and (F) KM 12 cells. The expression levels of the target proteins were 

normalized to GAPDH. Equal amounts of total cell lysates were used for each sample 

and a Western blot analysis was performed. The figures are representative of three 

independent experiments. 
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Figure 10                                                                                  

       

 

 

Figure 10. Effect of ITH-6 on the expression of (A)nuclear and (B) cytoplasmic 

fraction of NF-kB p65 protein on HT-29 cells. The effect of ITH-6 on the expression of 

nuclear and cytoplasmic fraction of NF-kB p65 protein was tested after the cells were 

treated with 0.3, 1 and 3 μM of ITH-6 for 72 h. Relative quantification of the effect of ITH-

6 on (C) nuclear and (D) cytoplasmic fraction of NF-kB p65 in HT-29 cells. The expression 

level of NF-kB p65 protein was normalized to TBP (nucleus) and GAPDH (cytoplasm). 

Equal amounts of total cell lysates were used for each sample and a Western blot analysis 

was performed. The figures are representative of three independent experiments. * p < 0.05 

compared to the control group 
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Figure 11      

 

 

Figure 11. Effect of ITH-6 on the expression of (A) nuclear and (B) cytoplasmic 

fraction of NF-kB p65 protein on COLO 205 cells. The effect of ITH-6 on the 

expression of nuclear and cytoplasmic fraction of NF-kB p65 protein was tested after the 

cells were treated with 0.3, 1 and 3 μM of ITH-6 for 72 h. Relative quantification of the 

effect of ITH-6 on (C) nuclear and (D) cytoplasmic fraction of NF-kB p65 in COLO 205 

cells. The expression level of NF-kB p65 protein was normalized to TBP (nucleus) and 

GAPDH (cytoplasm). Equal amounts of total cell lysates were used for each sample and a 

Western blot analysis was performed. The figures are representative of three independent 

experiments. * p < 0.05 compared to the control group. 

Figure 12 
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Figure 12. Effect of ITH-6 on the expression of (A) nuclear and (B) cytoplasmic 

fraction of NF-kB p65 protein on KM 12 cells. The effect of ITH-6 on the expression of 

nuclear and cytoplasmic fraction of NF-kB p65 protein was tested after the cells were 

treated with 0.3, 1 and 3 μM of ITH-6 for 72 h. Relative quantification of the effect of ITH-

6 on (C) nuclear and (D) cytoplasmic fraction of NF-kB p65 in KM 12 cells. The 

expression level of NF-kB p65 protein was normalized to TBP (nucleus) and GAPDH 

(cytoplasm). Equal amounts of total cell lysates were used for each sample and a Western 

blot analysis was performed. The figures are representative of three independent 

experiments. * p < 0.05, ** p < 0.01 and *** p < 0.001 compared to the control group. 
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Figure 13 

    

 

Figure 13. Effect of ITH-6 on the expression of (C) Topoisomerase I and 

Procaspase-3 and (A) nuclear and (B) cytoplasmic expression of IkBα on HT-29 

cells. The effect of ITH-6 on the expression of Topoisomerase I, Procaspase-3 and IkBα 

(nuclear and cytoplasmic) was tested after the cells were treated with 0.3, 1 and 3 μM of 

ITH-6 for 72 h. Relative quantification of the effect of ITH-6 on (D) cytoplasmic IkBα, 

(E) Topoisomerase I and (F) Procaspase-3 in HT-29 cells. The expression levels of the 

target proteins were normalized to TBP (nucleus) and GAPDH (cytoplasm). Equal 

amounts of total cell lysates were used for each sample and a Western blot analysis was 

performed. The figures are representative of three independent experiments. 
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Figure 14 

    

Figure 14. Effect of ITH-6 on the expression of (C) Topoisomerase I and 

Procaspase-3 and (A) nuclear and (B) cytoplasmic expression of IkBα on COLO 205 

cells. The effect of ITH-6 on the expression of Topoisomerase I, Procaspase-3 and IkBα 

(nuclear and cytoplasmic) was tested after the cells were treated with 0.3, 1 and 3 μM of 

ITH-6 for 72 h. Relative quantification of the effect of ITH-6 on (D) cytoplasmic IkBα, 

(E) Topoisomerase I and (F) Procaspase-3 in COLO 205 cells. The expression levels of 

the target proteins were normalized to TBP (nucleus) and GAPDH (cytoplasm). Equal 

amounts of total cell lysates were used for each sample and a Western blot analysis was 

performed. The figures are representative of three independent experiments. 
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Figure 15 

 

 

 

Figure 15. Effect of ITH-6 on the expression of (C) Topoisomerase I and 

Procaspase-3 and (A) nuclear and (B) cytoplasmic expression of IkBα on KM 12 

cells. The effect of ITH-6 on the expression of Topoisomerase I, Procaspase-3 and IkBα 

(nuclear and cytoplasmic) was tested after the cells were treated with 0.3, 1 and 3 μM of 

ITH-6 for 72 h. Relative quantification of the effect of ITH-6 on (D) cytoplasmic IkBα, 

(E) Topoisomerase I and (F) Procaspase-3 in KM 12 cells. The expression levels of the 

target proteins were normalized to TBP (nucleus) and GAPDH (cytoplasm). Equal 

amounts of total cell lysates were used for each sample and a Western blot analysis was 

performed. The figures are representative of three independent experiments. * p < 0.05 

compared to the control group. 
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Figure 16  

  

Figure 16. Effect of ITH-6 on NF-kB p65 expression at mRNA level on (A) HT-29, 

(B) COLO 205, and (C) KM 12 cells. The effect of ITH-6 on NF-kB p65 mRNA 

expression was tested after the cells were treated with 0.3, 1 and 3 µM of ITH-6 different 

concentrations for 72 h. Points with error bars represent the mean ± SD for independent 

determinations in triplicates. The figures are representative of three independent 

experiments. * p < 0.05 and ** p < 0.01 compared to the control group. 
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Figure 17 

    

 

Figure 17. Effect of ITH-6 on IL-6 expression at mRNA level on (A) HT-29, (B) 

COLO 205, and (C) KM 12 cells. The effect of ITH-6 on IL-6 mRNA expression was 

tested after the cells were treated with 0.3, 1 and 3 µM of ITH-6 different concentrations, 

for 72 h. Points with error bars represent the mean ± SD for independent determinations 

in triplicates. The figures are representative of three independent experiments. * p < 0.05 

compared to the control group. 
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Figure 18 

    

 

Figure 18. Effect of ITH-6 on Bcl-2 expression at mRNA level on (A) HT-29, (B) 

COLO 205, and (C) KM 12 cells. The effect of ITH-6 on Bcl-2 mRNA expression was 

tested after the cells were treated with 0.3, 1 and 3 µM of ITH-6 different concentrations, 

for 72 h. Points with error bars represent the mean ± SD for independent determinations 

in triplicates. The figures are representative of three independent experiments. ** p < 

0.01, *** p < 0.001 and **** p < 0.0001 compared to the control group. 
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Figure 19 

 

 

Figure 19. Immunofluorescence experiment on NF-kB p65 expression on HT-29 cells 

followed by treatment with ITH-6. HT-29 cells were incubated for 72 h with 0.3, 1 and 

3 µM of ITH-6. The red color represents the presents of NF-kB p65 and the blue color 

represents the nucleus. 
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Figure 20 

  

Figure 20. Immunofluorescence experiment on NF-kB p65 expression on COLO 205 

cells followed by treatment with ITH-6. COLO 205 cells were incubated for 72 h with 

0.3, 1 and 3 µM of ITH-6. The red color represents the presents of NF-kB p65 and the blue 

color represents the nucleus. 
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Figure 21 

  

 

 

Figure 21. Immunofluorescence experiment on NF-kB p65 expression on KM 12 cells 

followed by treatment with ITH-6. KM 12 cells were incubated for 72 h with 0.3, 1 and 

3 µM of ITH-6. The red color represents the presents of NF-kB p65 and the blue color 

represents the nucleus. 
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Figure 22.  

  

 

 

Figure 22. Molecular interaction of ITH-6 with the human NF-kB model. (A) 

Docking pose of ITH-6 within the binding pocket of IkBα/NF-kB heterodimer. The 

protein is represented as multicolored ribbons. Amino acid residues are shown as follows: 

nitrogen in blue, hydrogen in white, carbon in gray, and oxygen in red. The ligand is 

represented by the ball and stick model with carbon atoms are represented in carbon in 

green, nitrogen in blue, hydrogen in white and sulfur in yellow. the yellow dashes 

represent the hydrogen bonding. (B) 2-D ligand interaction between ITH-6 and IkBα/NF-
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kB heterodimer. Magenta arrow represents hydrogen bonding with amino acid residues 

within 5 Å of the ligand. 

 

 

 

Figure 23 

 

 

 

Figure 23. Cytotoxicity of ITH-6 on ABCB1- and ABCG2-overexpressing cell lines. 

Survival fraction (%) was measured after treatment with ITH-6 (µM) for 72 h on (A) 

SW620, SW620/AD300 and (B) S1, S1-M1-80 cell lines. Points with error bars represent 

the mean ± SD for independent determinations in triplicates. The figures are 

representative of three independent experiments. 
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Figure 24 

 

Figure 24. NF-kB p65 gene knockout in HT-29 cells (A)Western blotting result of NF-

kB p65 protein expression level and (B) relative quantification of NF-kB p65 in HT-29 

and HT-29-NF-kB p65ko cells. The expression level of the target protein was normalized 

to GAPDH. (C) Survival fraction (%) was measured after treatment with ITH-6 (µM) for 

72 h on HT-29 and HT-29-NF-kB p65ko cells. Points with error bars represent the mean 
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± SD for independent determinations in triplicates. The figures are representative of three 

independent experiments. ** p < 0.01 compared to the control group. 

 
 

 

Figure 25  

 

 

 

Figure 25. ITH-6 inhibits HT-29 tumor growth, volume, and weight in xenograft 

mouse model. NCR nude mice were inoculated with subcutaneous implantation of HT-29 

cells. During a 21 days treatment period, ITH-6 (6 mg/kg) significantly inhibited the (A) 

growth, (B) volume and (C) weight of HT-29 tumor xenografts compared to the vehicle 

control and irinotecan group. Values represent the median ± SD of 6 animals per group. 

Similar results were obtained in 2 independent experiments. * p < 0.05 and ** p < 0.01 

compared to the control group. 
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Figure 26 

 

 

 

Figure 26. ITH-6 inhibits KM 12 tumor growth, volume, and weight in xenograft 

mouse model. NCR nude mice were inoculated with subcutaneous implantation of KM 12 

cells. During a 21 days treatment period, ITH-6 (6 mg/kg) significantly inhibited the (A) 

growth (B) volume and (C) weight of KM 12 tumor xenografts compared to the vehicle 

control and irinotecan group. Values represent the median ± SD of 6 animals per group. 

Similar results were obtained in 2 independent experiments. * p < 0.05 and ** p < 0.01 

compared to the control group. 
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Figure 27 

 

 Figure 27. (A) Changes in mean body weight before and after treatment for xenograft 

model are shown. (B) The changes in mean white blood cells in nude mice (n = 6) at the 

end of the 21-day treatment period and (C) the changes in mean platelets in nude mice (n 

= 6) at the end of the 21-day treatment period.  
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Figure 28 

                                                                                             

  

 

Figure 28. Plasma irinotecan and ITH-6 concentrations in xenograft mouse model 

 The plasma concentrations at different time points, 5, 30, 60-, 120-, 180- and 240-min 

following administration of (A) ITH-6 (3 and 6 mg/kg) given orally and (B) irinotecan (30 

mg/kg) given intraperitoneally. 
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Figure 29 

 

 

Figure 29. Intratumoral concentrations of irinotecan and ITH-6 in KM 12 (n=6) and 

HT-29 tumors (n=6). Points with error bars represent the mean ± SD. 
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CHAPTER 4. Discussion 

Despite of the advances in chemotherapy, the mortality rate of CRC is quite alarming. 

Patients with CRC fall into two categories; ones in which the disease is confined to the 

primary site of origin (Dukes’A and B) and the other where it spreads to the regional lymph 

nodes (Dukes’C and D). The first category of patients can be surgically cured while for the 

later ones, surgery has is only palliative role and survival rate is less than 30%(81). The 

drugs already approved and being used for the treatment of colon cancer include irinotecan, 

oxaliplatin, capecitabine and the targeted drugs include bevacizumab, ramucirumab etc. 

Irinotecan, approved by the USFDA in 1996, is a prodrug which is converted into its active 

metabolite, SN-38 inside the body. It has long been used as the first line therapy for patients 

with recurrent and metastatic CRC however, the dose related toxicities such as vomiting, 

dehydration, myelosuppression, alopecia, and diarrhea are a serious concern(82). 

Bevacizumab, a humanized monoclinal antibody was approved by the USFDA in 2004 for 

the treatment of patients with advanced CRC. Bevacizumab exhibits some rare serious 

adverse effects such as bowel perforation, arterial embolic events, and 

leukoencephalopathy (83–85). 

In the present study, we find that the compound ITH-6 has lower IC50 values on the colon 

cancer cell lines, HT-29, COLO 205, and KM 12 as compared to the conventional 

anticancer drug, irinotecan. Indanone and its derivatives are well known for their wide 

range of biological activity(28). Studies done in the past have shown that the indanone 

derivative are potent anti-inflammatory, analgesic, antimicrobial, anticholinergic, 

anticancer, and antimalarial agents. 3-aryl substituted indanone analog was found 

significantly active against the HeLa and K562 cell lines(86). The other derivatives, gallic 
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acid based indanone analogs are cytotoxic (IC50 of 0.01 µM) on breast cancer cell lines 

MCF-7 and MDA-MB-231(36). In addition, 2-substituted indanone analogs are active 

against non-small lung cancer cell line(87) and 5,6-dimethoxy-1-indanonederivative is 

significantly cytotoxic on multidrug resistant cell lines, MCF-7/ADR, MES-SA/DX5 and 

HL-60/ADR(28). The present indanone derivative, ITH-6 exhibited IC50 values of 0.44 

µM, 0.98 µM, and 0.41 µM on HT-29, COLO 205, and KM 12 cell lines respectively. The 

IC50 of regorafenib and irinotecan on HT-29, COLO 205, and KM 12 cell lines (22.7 µM, 

9.43 µM and 5.02 µM for regorafenib and 8.49 µM, 22.84 µM and 23.15 µM for irinotecan) 

has shown that ITH-6 exhibited lower IC50 as compared to the newer drugs, regorafenib 

and irinotecan. The difference in response to different colon cancer cell lines are due to 

their establishment from different origin and p53 mutation status. Inhibition of the cell 

proliferation has long been known to be associated with the changes in the cell cycle (88). 

The alterations in the cell cycle progression cause tumor growth and proliferation. It has 

been stated that anticancer drugs can arrest the cells in various phases of cell cycle and 

inhibit the tumor growth(89). Our cell cycle results indicate that ITH-6 arrest the cells in 

G2/M phase and the maximum effect is at high concentration (3 µM) and there is no 

significant effect on other phases of cell cycle. These cell cycle results show that the test 

compound is G2/M phase specific. This instigated the idea to investigate the effects of 

ITH-6 on tubulin polymerization and mitotic spindle formation, two processes that take 

place in G2/M phases of cell cycle. The tubulin polymerization assay results show that  

ITH-6 at 100 µM inhibits tubulin polymerization for 1 h. Paclitaxel (Taxol), a well-known 

anticancer drug, stabilizes the microtubule against depolymerization, and is hence known 

as polymerization enhancer(90). Colchicine on the other hand, inhibits the microtubule 
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polymerization and is thus known as a polymerization inhibitor(91). We compared the 

tubulin polymerization effects of ITH-6 to that of paclitaxel and colchicine and found that, 

like colchicine, ITH-6 inhibited the tubulin polymerization. However, the extent of 

inhibition was not significantly comparable.  

Since the cell cycle arrest is related to apoptosis, an apoptotic analysis was carried out using 

HT-29, COLO 205, and KM 12 cell lines. In all the three cell lines, a substantial number 

of apoptotic cells were observed in the lower and upper right quadrants, which are the 

representatives of early and late apoptosis. The results showed an increase in early and late 

apoptosis in these cell lines with maximum apoptosis seen at the highest concentration of 

3 µM. Cellular studies have shown that an increase in the level of ROS causes an oxidative 

stress which results in oxidative damage to the cellular components(92). It enters into the 

cells, gets converted into the fluorescent (5-chloromethyl-20-7’-dichlorofluorescein 

(DCF)) product by the action of intracellular peroxides, hence, the ROS analysis is 

conducted in all the cell lines(93,94). We found that ITH-6 at the highest concentration (3 

µM) induced intracellular ROS production in HT-29, COLO 205, and KM 12 cell lines. 

The mitochondrial GSH maintains the integrity of mitochondrial proteins and lipids and 

modulates ROS production. Oxidative damage is associated with an increase in 

mitochondrial ROS production and a decrease in GSH which in turn triggers apoptosis(95). 

Therefore, intracellular GSH assay was performed in all the three colon cancer cell lines. 

A significant decrease in GSH levels was also observed with compound ITH-6 in all the 

three cell lines with the maximum decrease at the highest concentration of 3 µM. Given 

that the cytotoxicity on colon cancer cells could have resulted from an inhibition of some 

specific proteins related to the apoptotic pathway, we conducted Western blotting and RT- 
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PCR experiments to determine the mechanism of ITH-6. One of the targeted proteins, NF-

kB p65 is a key mediator in inflammation and cancer. Many indanone derivatives which 

are anticancer agents are proven to downregulate the expression of NF-kB p65 protein. Our 

results indicated that the incubation of the HT-29, COLO 205, and KM 12 cancer cells with 

3 µM of ITH-6 for 72 h significantly decreased the expression of the nuclear fraction of 

NF-kB p65 protein compared to cells incubated with vehicle and the downregulation is 

more predominant compared to 20 µM of the positive control, resveratrol. There was no 

significant change in the cytoplasmic level of NF-kB p65 protein (inactive form which is 

bound to IkBα). The NF-kB p65 subunit exists in an inactive state in the cytoplasm(96–98) 

and when stimulated by molecules such as TNFα, or other cell stressors, leads 

phosphorylation of IkBα, and subsequently results in IkB ubiquitination and degradation. 

Once degraded, the remaining NF-kB p65 translocates to the nucleus, where it binds to the 

DNA sequence of various target genes which regulate cell proliferation(99). ITH-6 acts 

only on the nuclear fraction of NF-kB p65 thus proving it is downregulating the active form 

of NF-kB p65 protein which plays a role in the cytotoxicity of ITH-6 on these cell lines. 

Moreover, there was no significant change in the levels of ALDH1A1, CD44, IkBα 

(nuclear and cytoplasmic), TOP I protein upon treatment with ITH-6.  

The effect of ITH-6 may be either on transcriptional or translational level. The incubation 

of HT-29, COLO 205, and KM 12 cancer cells at various concentrations of ITH-6 for 72 h 

remarkably decreased the mRNA level of NF-kB p65 compared to cells incubated with 

vehicle. There was a significant reduction in the mRNA expression of Bcl-2, which is an 

anti-apoptotic protein and a downstream molecule of NF-kB pathway and overexpression 

of Bcl-2 is common in a variety of cancers and has been shown to confer resistance to the 
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apoptotic effect of chemo- and radiotherapy(100). Consequently, we performed in vitro 

immunofluorescent experiments after treating the cells with the test compound, ITH-6 for 

a period of 72 h. Our results showed that incubation with ITH-6 for a time point of 72 h 

decreased NF-kB p65 expression which is consistent with the Western blot and mRNA 

expression results. Furthermore, cytotoxicity assays on ABCB1- and ABCG2- 

overexpressing cell lines showed that there was no significant difference in the IC 50 

values of ITH-6 and it proved that it is not a substrate of ABCB1 or ABCG2 transporter.  

The results from the gene knockout studies suggested that the NF-kB p65 gene knockout 

in HT-29-NF-kB p65ko cell line can be useful in investigating whether ITH-6 induced 

cytotoxicity is related to the downregulation of the target, NF-KB p65 which is highly 

expressed in p53 mutant colon cancers. 

Finally, based on our in vitro results, we conducted preclinical studies to determine the 

effect of the anticancer effect of ITH-6 on tumor growth in athymic nude mice implanted 

with HT-29 and KM 12 cells. The oral administration of 6 mg/kg of ITH-6 remarkably 

attenuated the tumor growth in mice compared to mice treated with irinotecan (30 mg/kg 

i.p.). Meanwhile, there was no notable change in body weight, WBC, and platelets count, 

suggesting that ITH-6 can be tolerated at this dose and may be a promising candidate for 

treating p53 mutant colon cancers. Furthermore, the anticancer efficacy of ITH-6 is better 

than the positive control, irinotecan which can be further proved by its increased tumor 

concentration compared to irinotecan. Our in vivo results suggest that ITH-6 has a 

significant anticancer activity in mice with HT-29/KM 12 cancer cell xenografts at a dose 

that does not produce significant toxic effects. 
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CHAPTER 5. Conclusion 

Anticancer drug discovery and development are considered as the grand challenges for 

the pharmaceutical industry. Extremely dynamic mitotic-spindle microtubules indeed 

remain the most successful and promising targets for anticancer therapy.  Microtubule-

stabilizing agents are continually playing an important role in anticancer drug discovery 

and development. In this study, we have shown that ITH-6 is an effective cytotoxic agent 

against p53 mutant colon cancer cells and exhibits a better cytotoxic effect compared to 

other drugs approved for colon cancer. Mechanistically, ITH-6 inhibits tubulin 

polymerization, alters the cell cycle progression, and induces apoptosis by elevating the 

intra cellular ROS and decreasing the intracellular GSH levels. It also downregulates the 

expression of the NF-kB p65 and Bcl-2 in these cell lines which further proves its role in 

the cytotoxicity of colon cancer cell lines. ITH-6 at a dose of 6 mg/kg p.o., did not produce 

any observable toxic effects in the in vivo tumor xenografted mice during the treatment 

period. It significantly decreased tumor size, growth rate and tumor volume in mice bearing 

HT-29 and KM 12 tumor xenografts, compared to irinotecan. Together with its mechanism 

of action, ITH-6 could be a potential anticancer drug candidate for p53 mutant CRC 

treatment.  
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