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ABSTRACT 

DOUBLE-COATED BIODEGRADABLE POLY(BUTYL CYANOACRYLATE) 

NANOPARTICULATE DELIVERY SYSTEMS FOR BRAIN TARGETING OF 

DOXORUBICIN VIA ORAL ADMINISTRATION 

                                                                                  Neeraj Kaushal 

 

 Primary brain cancer cells grow within the brain or cancer cells can metastasis 

from different site of the body into brain. The major hurdle in the treatment of brain 

cancer is the presence of blood-brain barrier (BBB). Additionally, acquired multidrug-

resistant (MDR) impedes the success of long-term chemotherapy. Therefore, the 

objective of this investigation is to evaluate the brain targeting potential of orally 

administered poly(butyl cyanoacrylate) nanoparticulate delivery systems (PBCA-NPDS), 

double-coated with Tween 80 and polyethylene glycol (PEG) 20000 for brain delivery of 

doxorubicin, that does not cross the BBB by itself. And, evaluate the MDR reversal 

potential of PBCA-NPDS. Doxorubicin-loaded PBCA-NPDS were prepared by the 

anionic polymerization method and were successively double-coated with Tween 80 and 

PEG 20000 in varied concentrations. Brain uptake study of double-coated doxorubicin-

loaded PBCA-NPDS using bEnd.3 cell line suggested the role of clathrin-mediated 

endocytosis in the uptake of double coated doxorubicin-loaded PBCA-NPDS. When 

Transwell® permeable supports were used, significant transport of doxorubicin across the 

cell monolayer was observed by the double-coated formulations, in comparison to 

doxorubicin solution (p<0.05). Significant accumulation of doxorubicin in brain was 

achieved after oral administration of double-coated doxorubicin-loaded PBCA-NPDS in 

rats (p<0.05). Furthermore, simultaneously analyzing the pharmacokinetic data obtained 

after intravenous and oral administrations, revealed the role of lymphatics in absorption 



 
 

of double-coated doxorubicin-loaded PBCA-NPDS. When MDR reversal potential of 

PBCA-NPDS was evaluated by cell uptake in P-gp overexpressing cell line, significant 

uptake of doxorubicin was mediated by double-coated doxorubicin-loaded PBCA-NPDS 

(p<0.05). These results were verified by MTT assay in P-gp or BCRP overexpressing cell 

lines. MTT assays revealed that double-coated doxorubicin-loaded PBCA-NPDS 

significantly potentiated the sensitivity of doxorubicin in P-gp overexpressing cells, in 

comparison to doxorubicin solution, single-, and un-coated doxorubicin-loaded PBCA-

NPDS (p<0.05 in all case), respectively. Further increase in concentration of Tween 80, 

significantly enhanced the sensitivity of doxorubicin in BCRP overexpressing cell line, in 

comparison to single- and double-coated doxorubicin-loaded PBCA-NPDS (with lower 

concentration of Tween 80) (p<0.05 in all case). Hence, it could be concluded that 

double-coated doxorubicin loaded PBCA-NPDS could be used for brain targeting of 

doxorubicin administered orally and overcome MDR. 
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1. Introduction 

Malignant primary brain tumors are cancers that originate in the brain, 

which typically grow faster than benign tumors and aggressively invade the 

surrounding tissue. Although significant advances in terms of treatment using 

operative techniques, radiotherapy, and adjuvant chemotherapy have been made, 

the prognosis remains unfavorable. Even the adjuvant chemotherapy considered 

to be effective for treatments of these malignant tumors, such as temozolomide, 

the survival time of patients increases only marginally. In addition to this, such 

treatment regimen poses intense adverse effects to healthy cells. Hence, there is a 

need and opportunity for the growth of brain-targeted chemotherapy. However, 

achieving drug delivery to the brain, remains a challenging task, due to the 

presence of epithelia-like tight junction lining the brain capillary endothelium 

referred to as the blood-brain barrier (BBB) (2).  

To facilitate drug delivery across the BBB, number of approaches such as, 

hyperosmotic disruption of the BBB (3), carrier systems like targeted antibodies 

(4), prodrugs (Temodar®), liposomes (5), and nanoparticles (6–8) have been 

explored. Among these approaches, surfactant coated nanoparticles have been 

reported successfully to deliver drug across the BBB (6,8–12). The nanoparticles 

coated with polysorbate 80 lead to the adsorption of apolipoprotein E from blood 

plasma on the surface of nanoparticles, which then seem to mimic low-density 

lipoprotein (LDL) which interacts with LDL receptor leading to their uptake by 

the endothelial cells lining the BBB (13,14). 
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2. Literature review 

 2.1. Brain tumors and doxorubicin 

Brain tumors is a growth of tumor cells which occurs in the brain and can 

be very heterogenous groups of tumors. Upon their diagnosis, subsequent 

treatments such as radiation therapy or chemotherapy is initiated. Most of the 

chemotherapeutics are administered via intravenous bolus leading to initial rapid 

increase and subsequent decay of drug plasma concentrations (15). Tissue toxicity 

as well as poor biopharmaceutical properties (i.e., protein binding, first-pass 

metabolism, etc.) of these chemotherapeutic agents has led to number of attempts 

to develop more rational formulations for chemotherapy (16).  

As described previously, poor oral bioavailability of doxorubicin can be 

partly attributed to over expression of the multidrug efflux transporter P-gp 

(13,14) specifically of the intestinal lumen. The general approach to resolve this 

problem would be to use P-gp inhibitors (i.e., cyclosporine A) to suppress 

elimination process. However, these inhibitors suppress body’s immune system 

and may lead to drug-drug interaction ultimately leading to medical 

complications. Furthermore, these inhibitors are known to have their own side-

effects making it more difficult to incorporate in the drug delivery systems along 

with chemotherapeutic agents (19). Recently, other approaches like advanced 

targeted drug delivery systems have been studied extensively offering potential 

alternatives to circumvent the aforementioned issues. Among which 

biodegradable polymeric nanoparticles with brain targeting efficiency seems to be 

one of the promising approaches for the development of oral chemotherapy with 
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high patient compliance as well as improved therapeutic efficacy and reduced 

adverse effects (7).  

Among many properties of polymeric nanoparticles, the properties to 

control drug release at a desired rate and to allow the provision of surface 

modification with a homing device can be employed for desired drug release rate 

and targeting to the brain. Covalent attachment apolipoprotein AI and B-100 to 

albumin nanoparticles have shown to transport drug to the brain from systemic 

circulation. Nevertheless, these surface modified nanoparticles takes an advantage 

of the biochemical transport systems that are present in the BBB (20,21). Among 

these systems, the LDL-receptor and the transferrin transcytosis systems may be 

employed in the delivery of drugs.  

 2.2. Oral absorption of surface modified nanoparticles 

Gastrointestinal (GI) tract, including oral cavity, the stomach, the small 

intestine and the large intestine, is essentially a muscular tube lined by mucus 

membrane. The stomach is primarily a secretory organ and its gastric acid 

secretion and gastric emptying affect the drug absorption (22). However, these 

aspects of gastric physiology have little relevance when considering uptake of 

nanoparticulate delivery systems, owing to their size and specialized mechanism 

for their uptake. In contrast, when considering the absorption of nanoparticles 

from the intestine, specifically the small intestine, it is crucial to address the 

mechanism in ileum (23,24). A specialized mechanism for the absorption of solid 

lipid nutrients has been reported by Peyer. This absorption mechanism is related 

to gut-associated lymphoid tissue (GALT) in the ileum, which is known as the 



4 
 

Peyer’s patches. Due to the similarity between solid lipid and nanoparticles, 

targeting nanoparticles to Peyer’s patches as a port of entry of nanoparticles in the 

lymphatic circulation resulting in improved oral absorption. Schematic 

representation of the mechanisms of gastrointestinal uptake of surface modified 

nanoparticles [i.e., surface modified poly(butyl cyanoacrylate) nanoparticles] is 

shown in Figure 1. Furthermore, accumulation in Peyer’s patches has been 

reported to be govern by nanoparticle surface properties and size. Wherein, the 

penetration being favored by nanoparticles with hydrophobic surfaces (25), and 

particle size less than about 300 nm as in the case of polystyrene particles after 

oral administration to rats (26). 

Despite that three possibilities for uptake of nanoparticles have been 

suggested (Figure 1). the simultaneous occurrence of more than one pathway has 

been reported (27–30). The rapid appearance of orally administered nanoparticles 

in the circulation (10 minutes post-dosing) can only be explained by the 

paracellular pathway (28,31). Aprahamian et.al. (28) reported the presence of 

nanoparticles in intercellular spaces (especially in larger defects of mucosa) 

between 10-15 minutes after intraluminal injection into the intestine of 

anesthetized Beagle dogs. After 15 minutes, the nanoparticles were already 

observable in the lamina propria in proximity of the basal membrane of the 

enterocytes. After 30 minutes, the nanoparticles were quite numerous at the 

internal surface of the vascular epithelium where they generally formed clusters 

and were noted to be in close contact with red cells. After 1 hour, very few 
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nanoparticles were found in the capillaries. Nanoparticles, although small in 

numbers, were also present in the lymph ducts in the core of the villus.  

In one of the reported work, Sanders and Ashworth observed polystyrene 

nanoparticles of size of 220 nm within the epithelial cells of jejunum 1 hour after 

administration of these particles by oral gavage in rats, and after 2-4 hours the 

nanoparticles were observed in the interstices of the lamina propria and the 

lymphatics of mucosa (32). The observation of uptake of nanoparticles by the 

lining of the cells of the intestinal mucosa was also supported by the electron 

microscopic autoradiographic investigation by Kreuter et.al. (33). This 

intracellular uptake suggests an endocytic uptake mechanism, which was also 

proposed by Jani et. al. (29) as a secondary pathway for intestinal uptake 

polystyrene particle of diameter 100 nm. 

M-Cells are classified as specialized epithelial cells which are generally 

found on the follicle-associated epithelium overlying Peyer’s patches. 

Microscopically, the epithelial overlying these patches contain a small number of 

goblet cells, as a result, mucus secretion is reduced rendering M cell’s surface as 

more conductive to antigen binding. For these reasons, M-cells may also be more 

easily accessible for nanoparticles (34). This can be validated by the observation 

by Jani et. al. (29) wherein they observed the uptake of polystyrol nanoparticles 

exhibiting fluorescent and ranging from a size range of 100 nm and 1µm by the 

Peyer’s patches following oral gavage to mice daily for 10 days. The 

nanoparticles were found to be concentrated in the serosal side of the Peyer’s 

patches and following a histological investigation revealed the translocation of 
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particles of size 1 µm and smaller from the Peyer’s patches to the mesenteric 

lymph nodes leading to the lymphatic system. In a comparison of radiolabeled 

(125I) labeled particles of sizes 100 nm and 1 µm, smaller sized particles showed a 

higher uptake, with smaller particle being observed in liver and spleen, with no 

evidence for uptake of particles of sizes 3 µm and higher by the gut (35). 

As illustrated above, evidence for all three pathways exists. However, 

many researches have reported the simultaneous occurrence of more than one 

pathway for the uptake of nanoparticles by the GI tract (28–30,32). For example, 

Damgé et. al. (27) reported a preferential uptake of lipiodol-loaded nanoparticles 

via intercellular spaces between the enterocytes in the jejunum 10-15 minutes 

following oral administration to canine and rats. Wherein large quantities of 

particles passed through the M-cells of the ileum and were found to be in the 

intercellular spaces around the lymph nodes simultaneously. In addition to this, 

Scherer et. al. (36), in their in vitro diffusion experiment, observed by using laser 

confocal microscopy that fluorescence appeared in localized patches when 

fluorescein isothiocyanide (FITC) labeled nanoparticles were applied onto either 

porcine or rabbit small intestine, as compared to homogenous distribution over 

this tissue when FITC or FITC labeled dextran solution was applied. In the same 

study, if 14C-labelled poly(butyl cyanoacrylate) nanoparticles were placed into the 

chamber facing the brush border side of the porcine intestinal tissue in a two-

chamber side-by-side diffusion cell, no radioactivity translocated to the acceptor 

chamber within 4 hours, if the mounted tissue came from the upper part of the 

small intestine. On the other hand, a significant amount of radioactivity was 
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observed in the acceptor chamber, when lower part of small intestine that 

possessed a considerable number of M-cells and Peyer’s patches was mounted. 

Further evidence to prove the importance of Peyer`s patches for the intestinal 

uptake of nanoparticles has been provided by Jani et. al. (26,29,37), who observed 

that uptake of nanoparticles into the Peyer’s patches and passage via the 

mesentery lymph supply, leading to general circulation, in rats, increased with 

decrease in particle size. The surface properties of the nanoparticles may also 

have some influence on the uptake mechanism. Jani et. al. (29) observed that 

carboxylated polystyrene nanoparticles as compared to non-ionized polystyrene 

particles of similar particle size were taken up to a considerably lower degree.  

It appears, therefore, that the major uptake pathway is via the M-cells and 

Peyer’s patches in the gut attributed to the reduced amount of mucus. 

Additionally, particle size and surface properties of the nanoparticles play a 

crucial role in intestinal uptake of orally administered nanoparticles. However, it 

also suggests that major uptake pathway may be different in different regions of 

the small intestine (35).  

As illustrated above, no uncertainty exists that absorbed nanoparticles 

appears in the blood stream. One such pathway of transportation is via lymphatic 

uptake and entry into the general circulation via the thoracic duct (Figure 1) (35). 

Another such pathway is the direct delivery of the nanoparticles from the 

intestinal wall into the blood capillaries, which involves crossing of two types of 

barrier upon their inter-epithelial or transcellular uptake (Figure 2) (28): the 

basement membrane (38,39) and the wall of the capillaries (35). Additionally, 
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occurrence of channels formed by fenestral diaphragms of variable sizes in the 

epithelial cells based on their location and surrounding physiological conditions 

(40), could permit nanoparticles to pass through the endothelium subsequently 

reaching to the capillaries (28). 

In terms of kinetics, Volkheimer (31) reported an interesting observation: 

that the appearance of the particles in the blood does not represent a simple first-

order process (absence of single blood level maximum). But rather, 2-3 maxima: 

first being very rapid (after few minutes), and a lag time of about 100 and 210 

minutes between the second and third maxima respectively following oral 

administration. These multiple maxima thus indicate the possibility of different 

uptake mechanism as discussed earlier. 

 2.3. Brain targeting of surface modified nanoparticles 

As discussed in previous section, that the BBB represents an 

insurmountable barrier for the delivery of substantial number of drugs to the 

brain. One of the possibilities to tackle this challenge is by using surface modified 

nanoparticles for achieving drug delivery to the brain. Various drugs, such as 

loperamide, tubocurarine, doxorubicin, dipeptide kytorphin (41) and hexapeptide 

dalargin (6), were loaded on the surface modified nanoparticles and administered 

via either intravenous injections or peroral administration. Amongst these drugs, 

the most encouraging results were obtained with doxorubicin for the treatment of 

brain tumors. Intravenous injection of polysorbate80-coated nanoparticles loaded 

with doxorubicin (5 mg/kg) in rats achieved high brain levels of 6 µg/g of brain 

tissue as compared to controls (including the solution of polysorbate 80 
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containing doxorubicin along with uncoated nanoparticles) (41). The possible 

mechanism of the doxorubicin transport across the BBB has been postulated to be 

via endocytic uptake by the brain capillary endothelial cells followed either by 

release of the drugs in these cells and diffusion into the brain or by transcytosis. 

Additionally, the injected nanoparticles adsorb apolipoprotein E (apo E) or apo B 

in the systemic circulation to facilitate the interaction with the low-density 

lipoprotein receptor in the brain followed by endocytic uptake, representing the 

uptake of naturally occurring lipoproteins. This hypothesis was well supported by 

the achievement of antinociceptive effect using dalargin-loaded poly(butyl 

cyanoacrylate) nanoparticles with surface adsorbed apo E or loperamide-loaded 

albumin nanoparticles with apo E as a covalently attached homing device (41). 

In one such study to demonstrate the uptake of dalargin loaded 

biodegradable poly(butyl cyanoacrylate) nanoparticles as a result of overcoating 

with surfactants such as polysorbate 80 and polyethylene glycol (PEG) 20000, 

Das and Lin (6) reported a significant dose- and time- dependent pharmacological 

effects in the CNS following oral administration into mice, whereas all controls, 

did not achieve dalargin-induced analgesia. The results clearly indicates that the 

drugs loaded on double-coated poly(butyl cyanoacrylate) indeed crossed the GI 

barrier and after oral administration and were transported across the BBB (6). 

Similar results were obtained by over coating of biodegradable nanoparticles 

when administered orally (11). Additionally, these nanoparticles also retained 

their targeting potential when coated with polysorbate 20, 40 and 60 contraries to 

this, large number of other surfactants were not able to achieve delivery across the 
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BBB (42). Give these in vivo observations demonstrating nanoparticle mediated 

drug uptake by the BBB, important questions need to be addressed. These 

includes: 1) mechanism of nanoparticle–mediated drug uptake by the BBB, 2) 

influence of surface properties in targeting efficiency, 3) quantification of drug at 

target site transported via this pathway to achieve significant pharmacological 

effects with reduced toxicity to the healthy cells (7) 

Two major possibilities were reported by Kreuter. J (7) to elucidate the 

mechanism of nanoparticle-mediated uptake of drugs into the brain: 1) 

endocytosis by the endothelial cells with subsequent release of the drugs within 

these cells and delivery to brain, 2) transcytosis through the endothelial cell layer 

(43). This mechanism has been demonstrated by in vitro studies of nanoparticles 

over coated by polysorbate 80 into several primary endothelial cell lines including 

mice (44), rat (45) as well as primary bovine (46,47) and human endothelial cells 

(47). Additionally, in vitro studies also demonstrated the surface adsorption of 

apolipoproteins E or A-I (apo E or apo A-I) of nanoparticles coated with 

polysorbate 80 upon their incubation in blood plasma (48). 

For this reason, in vivo experiments were performed (49), which 

concluded that polysorbate 80 specifically mimics as an anchor for the 

apolipoprotein which interact with low density lipoprotein (LDL) receptors on the 

brain capillary endothelial cells (50–52). This hypothesis was then challenged by 

Michaelis et. al. (53) and wherein pronounced antinociceptive effects was 

achieved when human serum albumin nanoparticles covalently bound to apo-E 

instead of cyanoacrylate nanoparticles with polysorbate 80 overcoat was used. 
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Later, comparable results were obtained by Kreuter et. al. (54) by covalently 

attaching apo A-I or apo B-100 to serum albumin nanoparticles. Apo A-I can 

interact with the scavenger receptor class B type I (SR-BI) (55,56) whereas, apo E 

and B with the LDL receptor. Therefore, interaction with these receptors, 

followed by endocytosis and transcytosis across the brain capillary endothelial 

cells appears to be the underlying mechanism for surfactant-coated nanoparticle 

mediated drug delivery, or albumin nanoparticles with adsorbed or covalently 

linked homing device such as the apolipoprotein A-I, B and E. The nanoparticle 

thus would mimic lipoprotein particles and act as trojan horses for LDL receptors 

(7). 

 2.4. Fabrication of nanoparticles 

A major requirement for nanoparticulate mediated uptake of drugs to brain 

is the biodegradable property of nanoparticles. Non-biodegradable nanoparticles 

such as fullerenes, metal particles, and toxic systems such as quantum dots, or 

potential risky needle-shaped delivery system such as carbon nanotubes, might 

have hazardous effects like asbestos. Therefore, non-biodegradable nanoparticles 

might not be useful for drug delivery (57). 

For this reason, three major types of biodegradable nanoparticulate 

materials like poly (alkyl cyanoacrylates) (PACAs) such as poly (butyl 

cyanoacrylate), poly(lactic acid) or its copolymer poly(lactide-co-glycolide) 

(PLGA), and human serum albumin have been the material of choice (57). Of 

these material, poly (butyl cyanoacrylate) has comparatively faster 

biodegradation, but it was not employed as polymers until the early 1980s (58). 
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However, the corresponding monomers, alkyl cyanoacrylates, have been used 

since 1966 for their excellent adhesive properties, resulting from the bonds of 

high strength they are able to form with most polar substrates, including living 

tissues and the skin (59). Therefore, these monomers have been extensively used 

as tissue adhesives for skin wound closure (60–62), as embolic material for 

endovascular surgery and as surgical glue (63). Many researches have also 

reported the successful use of PACA as nanoparticulate carriers (64–67). 

Moreover, the use of PACA as drug nanoparticulate carriers has gained increasing 

interest in therapeutics, especially in case for cancer treatments (68). Today, 

PACA nanoparticles are considered as one of the most promising polymeric 

nanoparticulate carrier system and are already in clinical development for its 

potential use in cancer therapy (12,69). They can be prepared by four major 

methods, such as emulsion polymerization, polymerization in a continuous 

aqueous phase, emulsion polymerization in a continuous organic phase, and 

interfacial polymerization (70,71). Among which, emulsion polymerization has 

been widely employed for fabrication of nanoparticles, and hence will be 

reviewed in detail, while others will be shortly reviewed. 

Emulsion polymerization is amongst the most popular approach used to 

synthesize polymer colloids with matrix structure. The polymerization medium is 

generally aqueous making the process less hazardous. The cyanoacrylate 

monomers can be added in concentration between 0.05-7% (72). An anionic 

polymerization mechanism has been proposed, which is initiated by bases present 

in the aqueous polymerization medium. The cyanoacrylates are mainly initiated 
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by the hydroxy (OH-) ions either resulting from the dissociation of water or in 

some cases basic drugs. This hydroxyl ion induced polymerization is rapid and for 

this reason the pH of the aqueous medium is kept below 3.5 and with some drugs 

even below 1.0, to enable the formation of nanoparticles. Concomitantly, this 

polymerization generates hydrogen (H+) ions, wherein the hydrogen ion 

terminates the reaction. As a result of this termination, the molecular weights after 

the polymerization is very low and has been observed to be inversely related to 

change in pH (72,73). Due to low molecular weights, the nanoparticles are prone 

to agglomeration. And for this reason, stabilizers (e.g., high molecular weights 

dextran) are added to the system, which also significantly influences particle size 

and molecular weights (74,75). However, the influence of pH on particle size is 

somewhat different: particle size minimum exists around a pH of 2, whereas 

polydispersity falls with increasing pH, until a plateau is reached at pH 2.5 and 

above. Other factors contributing to the particle size of the nanoparticles includes 

monomer concentration and the stirring speed. Wherein a slight particle size 

minimum observed at monomer concentration of about 2% (74) and slight 

increase in particle size with increasing stirring speed. 

Emulsion polymerization in a continuous organic phase was one of the 

first process employed to produce nanoparticles (76–78). PACA nanoparticles 

were obtained by adding the cyanoacrylate monomer to continuous organic phase 

due to its high solubility in organic solvent. Consequently, small percentage of 

nanoparticles with a shell-like wall (nanocapsules) along with solid, monolithic 

nanoparticles were obtained (79). The formation of PACA nanoparticles by 
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employing interfacial polymerization in an aqueous surrounding phase was 

introduced by Al Khouri Fallouh et.al. (80). Wherein the cyanoacrylate monomer 

as well as the oil-soluble drug were dissolved in a mixture of oil and ethanol in 

ratio of about 1:10 to 1:200. The organic solution containing the drug and the 

monomer was then added slowly through a tube or needle into water or buffer 

solution (pH 3-9) containing surfactant such as poloxamer 188 or 407 or 

phospholipids, which resulted in the spontaneous formation of nanocapsules 

consisting of an internal oil droplet surrounded by polymeric wall (81). 

 2.5. Fabrication of oral double-coated nanoparticles for brain delivery 

In designing of oral drug delivery systems, the stability of the loaded drug 

within the polymeric carrier matrix upon its contact with GI fluids plays a crucial 

role. This consideration is especially important, if the loaded drugs is acid-labile 

and if the polymeric carrier is biodegradable. One of the proposed strategies for 

protecting biodegradable polymers and the entrapped labile drug from the effects 

of the GI fluids can be obtained by application of polymeric coating such as 

poly(ethylene) glycol (PEG) and the process referred as PEGylation (82–85). 

In the event of any ‘foreign’ particulate reaching the circulation following 

oral absorption, there lies an obvious problem of clearance by the reticulo-

endocytic system (RES). So, for any nanoparticle increase of circulation half-life 

is an essential for it to stay in the blood for an extended period while retaining its 

targeting potential. Such a long circulating effect can be achieved by employing 

‘stealth’ or sterically stabilized properties by PEG coat over nanoparticles  

(86,87). Generally, the assumed mechanism is the formation of, hydrophilic 
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coating, to avoid opsonization by the plasma proteins and due to the dynamic 

structure of PEG, the immune system experiences difficulties in modelling an 

antibody around it (88). It is generally agreed, that only if a polymer chain 

possesses both hydrophilicity and flexibility properties (to enable a high number 

of possible chain conformations) can serve as an effective protecting coat for 

particles against opsonization (89). Additionally, it has been proposed that both 

reduction of adsorption of opsonin and selective adsorption of certain components 

of plasma (dyopsosins) prevent the recognition as well as uptake of nanoparticles 

by the macrophages. Researches on the usage of PEG over coat for ‘stealth’ 

properties, now agree that PEG is termed as a ‘dysphonic’ polymer which by 

virtue of its selectivity in adsorption of two serum components (one with 

molecular weight below 30,000 Dalton (Da) and the other with a molecular 

weight higher than 100,000 Da) leads in a dysphonic action (90). 

Thus, for nanoparticles that could survive oral administration and still 

retain targeting properties to brain, a ‘double coat’ of PEG and polysorbate 80 can 

be hypothesized. PEG as discussed above is well known for its protective action 

in the GI environment along with its ability to enhance the circulation half-life of 

nanoparticles. On the other hand, requirement of polysorbate 80 coating for apo E 

mediated brain targeting of nanoparticles has been discussed in earlier sections. In 

addition to the use of PEG to impart stealth properties, polysorbate 80 over coat 

might also be useful in GI uptake of particulate by fluidizing action on the mucus 

barrier, one of the factors that can be exploited in attempts to improve GI uptake 

of the particulates (91,92). 
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If nanoparticles are coated with an appropriate surfactant, then the extent 

of particulate aggregation or entrapment in mucus can be reduced and uptake can 

be enhanced (93). Therefore, in order to facilitate the uptake of nanoparticles by 

the GI tract and subsequent delivery to brain via oral route, a ‘double-coating’ of 

polymeric nanoparticles with high molecular weight PEG and polysorbate 80 has 

been hypothesized. However, its success would depend on the stability of such 

double coat in the biological systems. It is also to be appreciated that the choice of 

PEG and polysorbate 80 as coating agents is dictated by number of physiological 

factors, which can impart targeting and protective properties to nanoparticles.  

 2.6. Characterization of nanoparticles 

 2.6.1. Physicochemical characterization 

Several physiochemical methods (Table 1) exists for the characterization 

of nanoparticles. Among which particle size plays a crucial role and is most 

eminent feature of nanoparticles. However, other parameters, such as density, 

molecular weight, and crystallinity, largely influences the drug release and 

degradation. Whereas surface properties, such as the surface charge, 

hydrophilicity and hydrophobicity, significantly influence the interaction of these 

particles with the biological environment and the resulting bio-distribution. 

One of the fastest and routinely applied method for size measurements are 

dynamic light scattering or photon correlation spectroscopy (94). Photon 

correlation spectroscopy determines the hydrodynamic diameter of the 

nanoparticles via Brownian motion. Therefore, the particle size analysis 

measurements are influenced by the interaction of these particles with the 
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surrounding medium. Consequently, the exact viscosity of the medium should be 

known. Another method of size determination employs microscopic evaluation 

and scanning electron microscopes (SEM) as well as transmission electron 

microscope (TEM) are frequently used for this purpose. In addition to size 

determination, SEM and TEM are used for analysis of morphological properties 

of the particles (for example: porosity of the particles). 

The molecular weights of polymeric nanoparticles are mainly determined 

by dissolution of the particles in a suitable solvent followed by gel permeation 

chromatography. However, this method is limited in its applicability due to the 

lack of availability of polymer standards required to validate the results obtained 

(95–97), (72).  

Information about crystalline structure of nanoparticle may be obtained by 

x-ray diffraction (94), differential scanning calorimetry (DSC), differential 

thermal analysis (DTA), thermal gravimetric analysis (TGA), thermal mechanical 

analysis (TMA) and thermal optical analysis (TOA) (98,99). These methods can 

be quite useful in cases where small drug molecules are entrapped in the polymer 

network in the form of an amorphous solid solution (100).  

Hydrophobicity of the nanoparticles surface seems to have a much larger 

influence on bio-distribution after intravenous injection. Water contact angle 

measurements (101) and hydrophobic interaction chromatography (102) are two 

major methods for the determination of hydrophobicity, since contact angle 

measurements can be performed on the flat surfaces, and not on hydrated 

nanoparticles in their dispersion media. As a result, hydrophobic interaction 
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chromatography seems to be an efficient, although labor intensive method 

(102,103).  

 2.6.2. Degradation pathway of polymeric nanoparticles 

PACA are biodegradable polymers for which complete excretion of the 

polymer material will occur if the nanoparticles were designed using low-

molecular weight polymers. The degradation of poly(alkyl cyanoacrylate) is 

studied extensively, and two major degradation pathways has been described in 

the literature. Firstly, degradation of polymer by erosion of the polymeric 

backbone under formation of formaldehyde (104–106). Secondly, lysis of the 

ester bond leading to the formation of soluble polymer acid in vivo (107). 

Degradation product by this pathway results in the formation of an alkyl alcohol 

and poly(cyanoacrylic acid), which are soluble in water and readily eliminated via 

kidney filtration. This degradation has been shown to be catalyzed by esterases 

from serum, lysosomes and pancreatic juice (108). According to this mechanism, 

nanoparticles are usually degraded within a couple of hours depending on the 

alkyl side chain length of the PACA forming the nanoparticles (109). 

 2.6.3. Drug release 

Nanoparticle exhibit their special drug delivery effects (110) in most cases 

by direct interaction with biological environment. Subsequently, the drug release 

may occur by desorption of surface-bound drug, diffusion through polymeric 

matrix, nanoparticle matrix erosion, or a combined erosion and diffusion 

processes. 
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The release mechanism (matrix- type device), diffusion coefficient, 

biodegradation rate of the polymeric backbone are the three main factors 

controlling the drug release rate from the polymeric nanoparticles (111). 

Additionally, release of the drug is also greatly influenced by the biological 

environment, which is more pronounced as compared to conventional dosage 

forms (e.g., tablets and capsules) as nanoparticles may be coated by plasma 

proteins resulting in imparting an additional diffusional barrier leading to a 

retardation in drug release. In addition, nanoparticles may have enhanced 

interaction with biological or artificial membrane, leading to enhanced delivery of 

drugs through these membranes in comparison to a simple solution (110).  

An important point to consider is the quantification of the drug release 

form these nanoparticles is technically difficult to achieve. This can be attributed 

to the inability of the rapid and effective separation of the nanoparticle from the 

dissolved or released drug in the surrounding medium owing to very small size of 

the dosage form. At least five different methods for determination of in vitro drug 

release, such as side-by-side diffusion cells with artificial or biological membrane 

(110,112), dialysis bag diffusion (79,113,114), reverse dialysis sac (115), 

ultracentrifugation (by analyzing the supernatant at pre-determined time points) 

(116,117), ultrafiltration (79) have been reported.
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3. Research objectives and specific aims 

There are three principle objectives of this research study. The first 

objective is to fabricate double-coated doxorubicin-loaded poly(butyl 

cyanoacrylate) nanoparticles of less than 300 nm to facilitate lymphatic uptake 

and thereby by-pass the first-pass metabolism. The second major objective is to 

evaluate their brain targeting potential after oral administration in rats. The third 

major objective is to evaluate the potential of these double-coated doxorubicin 

loaded nanoparticles in reversing the multidrug resistance  

 Specific aims include: 

1. To fabricate double-coated doxorubicin-loaded biodegradable polymeric 

nanoparticles composed of poly(butyl cyanoacrylate) with double-coats with 

Tween 80 and PEG 20000 at various concentration level.  

2. To characterize the fabricated nanoparticles based on their particle size, zeta-

potential, entrapment efficiency, drug leakage in various simulated mediums 

(i.e., intestinal fluid and serum). 

3. To evaluate the brain distribution of double-coated doxorubicin loaded 

poly(butyl cyanoacrylate) nanoparticles after oral administration in Sprague 

Dawley rats and based on pharmacokinetic study evaluate the role of 

lymphatics in the oral absorption of double-coated doxorubicin loaded 

poly(butyl cyanoacrylate) nanoparticles. 

4. To investigate the potential of the fabricated double-coated doxorubicin 

nanoparticles in the reversal of multi-drug resistance by cell uptake study or 
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MTT assays using cell lines characterized for overexpression of P-gp and 

BCRP transporters.  

4. Materials and methods 

4.1. Materials  

The monomer n-2-butyl cyanoacrylate was purchased from Glustitch Inc 

(Delta, Canada). Doxorubicin hydrochloride (henceforth referred as doxorubicin) 

was purchased from BOCSCI Inc. (Shirley, New York). Dextran 70, sodium 

chloride, pepsin, monobasic potassium phosphate, pancreatin, sodium 

taurocholate, polyethylene glycol (PEG) 20000, 1% penicillin/streptomycin 

solution, Whatman® microfiber pre-filters (2.5, 0.6 and 0.3 µm), TritonX-100, 

sucrose, sodium azide, dynasore, and ammonium chloride were purchased from 

VWR International (Radnor, PA). 1X Dulbecco’s phosphate buffered saline 

(DPBS) and bovine serum (henceforth referred as serum) were purchased from 

HyCloneTM (Logan, UT). Super Refined™ polysorbate 80 (Tween 80) was a 

generous gift from Croda (Edison, NJ). The mouse brain endothelial (bEnd.3) 

cells, 0.25% trypsin,  and Dulbecco’s modified eagle medium (DMEM) (30-2002) 

were obtained from American Type Culture Collection (Manassas, VA). The 

human colon cancer cell line SW620 and its doxorubicin-selected P-gp-

overexpressing SW620/Ad300 cells (henceforth referred to as AD300), the 

NSCLC cell line NCI-H460 and its mitoxantrone-selected BCRP-overexpressing 

NCI-H460/MX20 cells (henceforth referred to as AD300), were used for P-gp and 

BCRP reversal study, respectively. Fetal bovine serum (non-heat activated) was 

obtained from Atlanta Biologicals (Flowery Branch, GA). All reagents were of 
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analytical grade and were used as received. Finally, previously published 

literatures were used for preparation of release medium (pH 4.8) (118), and fasted 

state simulated intestinal fluid (FaSSIF) (119). 

4.2. Analysis of doxorubicin 

4.2.1. UV-Vis spectroscopy method 

The doxorubicin content in samples obtained from in vitro performance 

studies was determined using UV-Vis Spectrophotometer (DU 700 series, 

Beckman Coulter Inc., Brea, CA). At a preset wavelength of 480 nm, a peak, 

characteristic of doxorubicin, has been reported (120). Serial dilutions of stock 

doxorubicin solution (1000 µg/ml) were made to obtain concentrations ranging 

from 0.1 to 50 µg/ml. Linear regression analysis was performed between the 

absorbance and the concentration of doxorubicin to establish the calibration curve 

using SigmaPlot 12.5 (Systat Software Inc., San Jose, CA). 

4.2.2. Fluorescence spectroscopy method (plate-reader method) 

The doxorubicin content from in vitro cell culture and in vivo studies was 

determined using SpectraMax M5e (Molecular Devices, Sunnyvale, CA) at 

λex=480 nm, λem=560 nm (121). For in vitro cell culture studies, serial dilutions of 

stock doxorubicin solution were made to obtain various concentrations (0.033 to 

3.33 µg/ml). Linear regression analysis was performed to establish the calibration 

curve using SigmaPlot 12.5. 

For in vivo samples, rat serum and tissue homogenates were spiked with 

standard doxorubicin solution to obtain final concentrations (0.001 to 200 µg/ml). 

Serum samples were then processed as described in the literature (122). Tissue 
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homogenates were subjected to an additional lysis step by 1% TritonX-100. The 

lysates were then extracted for determination of doxorubicin like serum samples. 

Serum and tissue homogenates samples were analyzed by fluorescence 

spectroscopy method and data was processed as described above. 

4.2.3. Fluorescent microscopy method 

The intracellular accumulation of doxorubicin was studied by using 

fluorescence microscopy reported in the literature (123). SW620 cells were 

chosen for their ability to take up doxorubicin readily. The images of the SW620 

cells after treatment (i.e., incubation with doxorubicin in solution for a 

predetermined period) along with the control (i.e., untreated cells) were collected 

using EVOS® FL Auto Imaging System (Model AMFAD1000) (Thermo Fisher 

Scientific, Fair Lawn, NJ). In order to take the images, the cells were visualized at 

a total magnification of 1200× (40× objective with an internal magnification of 

30×) using two different modes (i.e., phase contrast and fluorescence). Phase 

contrast was used to locate a region of cells free from any cellular debris and/or 

any overlapping cells. Fluorescence was used to determine doxorubicin 

accumulation within the cells, which was achieved by selecting the RFP filter 

(built-in the instrument) at a preset wavelength (excitation: 552 nm; emission: 585 

nm). For both phase contrast as well as fluorescence, images of cells were 

acquired using a monochrome camera also built-in the instrument. 
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4.3. Fabrication of double-coated doxorubicin-loaded poly(butyl 

cyanoacrylate) nanoparticles delivery systems (PBCA-NPDS) 

The fabrication process of these formulations is illustrated in Figure 3 

representing core (Figure 3A), and single- (Figure 3B) and double-coated 

formulations (Figure 3C). 

4.3.1. Doxorubicin-loaded PBCA-NPDS 

The doxorubicin-loaded PBCA-NPDS were prepared by an anionic 

polymerization method as reported, with modifications (124). Briefly, dextran 70 

(1.5% w/w) was added to 0.001 N HCl solution in Nanopure® water (pH 3.00) 

under constant magnetic stirring at low speed (500-800 rpm) with a Pyrex® 

Spinbar® (VWR International, Radnor, PA). Once dextran 70 was completely 

solubilized, butyl cyanoacrylate monomer solution (1% v/v) was added dropwise. 

After 40 minutes of polymerization, doxorubicin (0.4% w/v) was then added. 

Following 4 hours of polymerization, the dark red nanoparticle suspension was 

neutralized with sodium hydroxide (0.1 N) and further stirred for an additional 12 

hours to ensure complete neutralization. The nanoparticle suspension obtained 

was then subjected to sequential filtration step using 1.2 µm, and 0.7 µm filters 

with a vacuum filtration assembly. The filtered suspension was further subjected 

to ultracentrifugation for two cycles (10 minutes each at 40000 rpm and 4-6°C) 

using Optima XE ultracentrifuge, rotor Type 70 Ti (Beckman Coulter, 

Indianapolis, IN). After each centrifugation step, the supernatant was removed, 

and the nanoparticles were resuspended in the same amount of Nanopure® water 

using brief sonication. Finally, the pelleted nanoparticles were immediately frozen 
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using a freezing mixture of dry ice and alcohol. The frozen nanoparticles were 

then immediately lyophilized using a Freezone 4.5 lyophilizer (Labconco, Kansas 

City, MO). Lyophilization was carried out at -51°C and at a pressure of 0.018 

mbar in the presence of 4% trehalose as a cryoprotectant overnight and then 

stored at 2-8°C until further use. 

When adding the doxorubicin during the polymerization, there remains an 

obvious challenge of any undesirable chemical interaction between the 

doxorubicin and nanoparticle backbone. This challenge intensifies, if the drug has 

a reactive functional group (i.e., amine in doxorubicin). And, the polymer (poly 

butyl cyanoacrylate group) has an ester group. Ester may covalently react with 

amine to form amides. However, such reaction require microwave irradiation 

(125), activated acid derivatives (126), or a catalyst (127). Since none of these 

procedures were used in this study, no interaction between doxorubicin and the 

monomer (butyl cyanoacrylate) has been hypothesized. To test this hypothesis, 

the lyophilized doxorubicin-loaded PBCA-NPDS were analyzed by 1H nuclear 

magenetic resonance (NMR) spectroscopy. This method is routinely used for 

structural characterization and verification of chemical compounds based on the 

bonding characteristics of the hydrogen atom. Briefly, samples were obtained by 

dissolving the doxorubicin-loaded nanoparticles and free doxorubicin (control), 

respectively, in deuterated-dimethyl sulfoxide (DMSO-d6). The solutions were 

then filled in NMR tubes and were analyzed using NMR instrument (Bruker, 

Billerica, MA). Samples were locked using an auto-shim mode, and spectrum 
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acquisition was performed using TopSpin mode and number of scans were fixed 

to 16 (default settings). 

It should be noted that these doxorubicin-loaded PBCA-NPDS were 

sequentially coated with either Tween 80 or PEG 20000 (single-coated) and with 

Tween 80 and PEG 20000 (double-coated) as described below. 

 4.3.2. Single-coating of doxorubicin-loaded PBCA-NPDS 

About half of the doxorubicin-loaded PBCA-NPDS obtained from the 

above step were coated with varying concentrations of up to 2% of Tween 80 

relative to the total suspension of nanoparticles in DPBS. Depending upon the 

amount of coating of Tween 80 used for formulation, T1 (1% Tween 80) or T2 

(2% Tween 80) was assigned as part of the formulation code. For each 

formulation, the required quantities of Tween 80 were added to the above 

suspension. This suspension was then kept in a water-shaker bath, maintained at 

25° ± 0.5° C and 100-120 cycles per minute for 90 minutes. 

About a quarter of doxorubicin-loaded PBCA-NPDS obtained were coated 

with 1% of PEG 20000 in the same way as described above. Since these 

formulations did not contain Tween 80, they were categorized under single-coated 

formulation. 

 4.3.3. Double-coating of doxorubicin-loaded PBCA-NPDS 

About half of Tween 80 overcoated doxorubicin-loaded PBCA-NPDS 

obtained from the above step was further overcoated with varying concentrations 

of up to 2% of PEG 20000 relative to the total suspension of nanoparticles in 

DPBS. Depending upon the amount of coating of PEG 20000 used for 



27 
 

formulation, P1 (1% PEG 20000) or P2 (2% PEG 20000) was assigned as part of 

the formulation code. For each formulation, the required quantities of PEG 20000 

was added to the above suspension. This suspension was then kept in a water-

shaker bath, maintained at 25° ± 0.5° C and 100-120 cycles per minute for 90 

minutes. Thereafter, the suspension of these double-coated doxorubicin-loaded 

PBCA-NPDS was further stirred for overnight to ensure complete equilibration of 

coating material (Tween 80 and PEG 20000) with doxorubicin-loaded PBCA-

NPDS. 

 4.4. In vitro evaluation of double-coated doxorubicin-loaded PBCA-NPDS 

All doxorubicin-loaded PBCA-NPDS (core, single- and double-coated) 

formulations were evaluated and characterized by their particle size, zeta 

potential, entrapment efficiency, drug release and drug leakage. 

 4.4.1. Particle size and zeta potential 

All formulations (5 mg) were suspended in 1 ml DPBS by brief 

sonication. This homogenous suspension was then transferred to a folded 

capillary cell (DTS1070) (Malvern Panalytical Inc. Westborough, MA). After a 

brief equilibration period inside the sample chamber, the mean hydrodynamic 

particle size (nm), the polydispersity of size distribution (PdI) and zeta potential 

were measured. For particle size analysis, dynamic light scattering along with 

Non-Invasive Back Scatter Technology built-in the Zetasizer Nano ZS (Malvern 

Panalytical Inc. Westborough, MA) was used. Zeta potential was measured using 

laser doppler micro-electrophoresis also built-in the Zetasizer Nano ZS. 
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 4.4.2. Entrapment efficiency 

The amount of drug entrapped was determined by completely dissolving 

the lyophilized doxorubicin-loaded PBCA-NPDS (5.50 mg) in 5 ml 

methanol:acetonitrile (50:50) solution. The resulting solution was centrifuged at 

13300 rpm for 10 minutes at 4° ± 0.5°C to pelletize any undissolved materials. 

The clear supernatant was analyzed for doxorubicin content by the UV-Vis 

spectroscopy method described previously. The entrapment efficiency of 

doxorubicin was then calculated as a ratio of the assayed doxorubicin in 

lyophilized doxorubicin-loaded PBCA-NPDS to the total doxorubicin (i.e., 400 

mg) used in the fabrication as reported in the literature and shown below (128) 

 𝐸𝑛𝑡𝑟𝑎𝑝𝑚𝑒𝑛𝑡 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (%) =
𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑑𝑟𝑢𝑔 𝑖𝑛 𝑛𝑎𝑛𝑜𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑑𝑟𝑢𝑔 𝑓𝑒𝑑 𝑖𝑛𝑖𝑡𝑎𝑙𝑙𝑦
× 100 Equation 1 

 4.4.3. In vitro drug release kinetics 

Among various methods to study the drug release from various nano-

formulations (liposomes, nanoparticles, etc.), usage of the dialysis membrane bag 

has been widely discussed in literatures (129–134). However, the selection criteria 

of a dialysis membrane bag over another is seldom reported (134,135). Therefore, 

the evaluation of various types of dialysis membrane bags and the effect of 

doxorubicin concentration on its diffusion rate through dialysis membrane bags 

were performed, prior to in vitro drug release study. 

 4.4.3.1. Screening of dialysis membrane bags 

The selective diffusion of drugs (based on molecular weight) across a 

semi-permeable dialysis membrane bags is the main principle to separate the drug 

released from nano-formulations and subsequently allow the sampling of drug 
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released. Four different Float-A-Lyzer G2 dialysis membrane bags (Repligen, 

Walthman, MA) of different MWCOs (i.e., 50, 100, 300, and 1000 KDa) were 

evaluated. Briefly, doxorubicin standard solution (1 mg/ml) was prepared by 

dissolving the desired amount of doxorubicin in the release medium and 1 ml of 

this standard solution was transferred to inside each of the hydrated dialysis 

membrane bags as per the user’s manual provided by the manufacturer. These 

sealed dialysis membrane bags were then placed into 50 ml polypropylene tubes 

having 20 ml release medium at 37° ± 0.5°C and 100-120 rpm using a water-

shaker bath. At pre-determined time intervals (i.e., 1, 2, 3, 4, 5, and 6 hours), 

aliquots (1 ml each) were withdrawn from the outside of the dialysis membrane 

bags and replaced by an equal volume of release medium. The aliquots were 

analyzed for doxorubicin content using the UV-Vis spectroscopy method 

described previously. 

 4.4.3.2. In vitro release study 

All lyophilized doxorubicin-loaded PBCA-NPDS formulations (equivalent 

to 5.60 mg of doxorubicin) were suspended in 5 ml of release medium, 

respectively. The resulting nanoparticle suspension were transferred to inside of 

the hydrated dialysis membrane bags. After seating the bags, they were then 

placed into flat bottom glass tubes (130 mm × 40 mm) having 100 ml release 

medium at 37° ± 0.5°C and 100-120 rpm. At pre-determined time intervals (i.e., 

1, 2, 3, 6, 9, 12, 24, 36, 48, 60, and 72 hours), aliquots (1 ml each) were 

withdrawn from the receiver and replaced by an equal volume of release medium. 
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The released doxorubicin in aliquots was determined by the UV-Vis spectroscopy 

method described previously. 

 4.4.4. Drug-leakage in various simulated mediums 

To maximize the payload of doxorubicin at the target site following oral 

administration, drug leakage from dosage forms in the gastrointestinal tract and 

serum was evaluated.  

 4.4.4.1. Fasted state simulated intestinal fluids (FaSSIF) 

Lyophilized doxorubicin-loaded PBCA-NPDS formulations (5.60 mg) 

were dispersed in 1 ml FaSSIF. The dispersions were then transferred into dialysis 

membrane bags (MWCOs: 1000 KDa) and dialysis was performed in tubes 

containing 30 ml FaSSIF at 37°C 100-120 rpm for 12 hours. Thereafter, an 

aliquot was withdrawn from the receiver and analyzed for doxorubicin content by 

the UV-Vis spectroscopy method described previously. 

 4.4.4.2. Serum 

The leakage study in serum was performed by dispersing lyophilized 

doxorubicin-loaded PBCA-NPDS formulations (5 mg) in 10 ml of serum at 37°C 

and 100-120 rpm for 3 hours. After this time, aliquots were subjected to protein 

precipitation and drug extraction using ice-cold methanol. The extracts were 

analyzed for doxorubicin content by the UV-Vis spectroscopy method described 

previously. 
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 4.5. In vitro model to elucidate the brain uptake mechanism 

4.5.1. Uptake mechanism elucidation using specific inhibitors as a  

pretreatment 

For uptake mechanism elucidation, we hypothesize that pretreating the 

bEnd.3 cells with inhibitors of transporters responsible for up taking nanoparticles 

would impact the uptake of doxorubicin within the same cells upon further 

incubation with formulation T2P2 or free doxorubicin in solution (control). Based 

on this hypothesis, bEnd.3 cells were pretreated with the growth media (no 

pretreatment) as a control group. In addition, cells were pretreated with an 

endocytosis inhibitor sodium azide (0.1%w/v) (136), and by incubation at 4°C. To 

evaluate the role of clathrin-mediated endocytosis, cells were pretreated with 

sucrose (0.45 M) (137). Since bEnd.3 cells also expresses LDL receptors (138), 

cells were pretreated with LDL receptor inhibitor dynasore (5 µM) (139). 

Furthermore, to evaluate the involvement of the endosomal/lysosomal 

compartments in the trafficking of nanoparticles pretreatment with 

lysosomotropic agent ammonium chloride (140) was performed. After initial 

pretreatment (i.e., 1 hours), the cells were washed with cold DPBS. Thereafter, 

pretreated cells were further incubated with formulation T2P2 or free doxorubicin 

in solution (control) for additional 3 hours, followed by cell lysis by mixture of 

0.1 ml of equimolar mixture of 1% TritonX-100 and 0.2 N sodium hydroxide, and 

0.4 ml of methanol and doxorubicin content determination by the fluorescence 

spectroscopy method described previously. Furthermore, any potential 
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cytotoxicity of inhibitors on bEnd.3 cells was investigated by modified MTT 

colorimetric assay (141), by incubating the cells for 4 hours with various 

inhibitors at concentration levels described above.  

 4.5.2. Permeability screening study 

Permeability screening study was performed on bEnd.3 cells monolayer 

by seeding 4 × 105 cells per Transwell® permeable support inserts (pore diameter: 

0.4 μm). The integrity of the cell monolayer was checked at the beginning and the 

end of experiments by measuring the transepithelial electrical resistance (TEER) 

using EVOM2 (World Precision Instrument, Sarasota, FL). Additionally, leakage 

of Lucifer yellow (paracellular marker) across the monolayer was determined at 

the end of experiment. Permeability study were conducted by incubating 

formulation T2P2 or free doxorubicin solution (control) on the apical or 

basolateral side, at 37°C and 5% CO2 for 2 hours. After this, the concentration of 

doxorubicin in the receptor compartment (i.e., basolateral or apical) was 

quantified by fluorescence spectrophotometric method described previously, and 

the apparent permeability coefficients (Papp) were calculated as shown in Equation 

2 (142). 

𝑃𝑎𝑝𝑝 (𝑐𝑚. 𝑠−1) =
𝑄

𝐴 × 𝐶 ×  𝑡
 

Equation 2 

Where, Q represents the total amount of permeated doxorubicin (μg), A is the 

surface area of the filter (cm2), C is the initial doxorubicin concentration in the 

donor compartment (μg.ml-1), and t is the incubation time (s). For all permeability 

experiments, bEnd.3 cells were used prior to passage 35 (143). 
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 4.6. In vivo performance of double-coated doxorubicin loaded PBCA-NPDS 

The in vivo performance studies were evaluated using Sprague-Dawley 

(SD) rats (225-250 g) (Taconic Biosciences, Germantown, NY). All experiments 

were conducted as per approved protocol by Institutional Animal Care and Use 

Committee. Rats were divided into 4 groups with 4 rats in each group. Groups 1, 

2, and 3 received formulation T2P2 at a dose equivalent to 27, 50, and 70 mg/kg 

of doxorubicin, respectively. Group 4 received free doxorubicin in solution at a 

dose of 70 mg/kg (control group). Two (2) routes of administration [i.e., 

intravenous- group 1, oral- group 2-4] were evaluated. 

 4.6.1. Biodistribution study 

For biodistribution study, two (2) rats from each group (described above) 

were euthanized at 1 and 2 hours for group 1, and, 1 and 3 hours for groups 2-4 by 

carbon dioxide asphyxiation, and brain, and liver tissues were collected. Isolated 

tissues were immediately wiped to remove blood, subsequently, they were 

weighed and placed on ice immediately. For analysis, tissues were homogenized 

at 5000 rpm using VirTis TEMPEST I.Q2 homogenizer (Tempest Inc., Cleveland, 

OH) and doxorubicin was extracted and determined as described previously. 

 4.6.2. Pharmacokinetic study 

Following the dose administration (i.e., intravenous via the saphenous vein 

and oral gavage), blood samples were collected via tail clipping at predetermined 

time intervals for up to 2 hours and 3 hours for group-1 and group 2-4, 

respectively. Blood samples were collected in serum separating tubes 
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(MiniCollect® Tube) (Greiner Bio-One, Kremsmünster, Austria). Serum was 

separated, and doxorubicin concentration was determined as described previously. 

 4.7. In vitro cell culture studies 

4.7.1. Intracellular accumulation study of various in doxorubicin-loaded 

PBCA-NPDS in SW620, AD300 and bEnd.3 cell lines 

SW620 and AD300 were seeded in their respective growth medium in 24-

well plate and cells were allowed to grow overnight at 37°C, 5% CO2. On the day 

of the experiment, cells were washed with DPBS (pH 7.4) three times. 

Subsequently, the cells were treated with 5 µM free doxorubicin in solution, all 

nanoparticles formulations (equivalent to 5 µM doxorubicin), and blank ( growth 

mediums). The treated cells were then incubated for 2 hours at 37°C, 5% CO2. 

Following the incubation period, the treatment (free drug, nanoparticles 

formulations, or growth medium) was aspirated. The cells were then gently 

washed with DPBS three times. And, then immediately examined the cells using 

the fluorescence microscopy method described previously. For this study, single-

coated formulations, free doxorubicin, and growth medium served as controls. 

Since it is difficult to estimate the amount of up taken doxorubicin from 

microscopic images. An empirical parameter [i.e., corrected total cell 

fluorescence (CTCF)], expressed as fluorescence intensity, was chosen for 

indirect quantification of doxorubicin within the cell (144). CTCF was obtained 

after subtracting the intensity of the blank cells (background), from cells 

exhibiting fluorescence. This was performed using ImageJ® software (National 
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Institutes of Health, Bethesda, MD). Higher fluorescence intensity was used as a 

surrogate for higher intracellular accumulation of doxorubicin. 

4.7.2. Cytotoxicity determination of various doxorubicin-loaded PBCA-

NPDS to evaluate their P-gp and BCRP efflux transporter inhibition 

potential 

The modified paraformaldehyde, 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyl-tetrazolium bromide (MTT) colorimetric assay was used to detect the 

sensitivity of cells to doxorubicin as well as double-coated doxorubicin-loaded 

PBCA-NPDS in vitro (141). Briefly, cells were loaded in 180 µl of complete 

growth medium in 96-well plates in triplicate at cell density of 5000-6000 

cells/well. After incubation at 37°C, 5% CO2 for 24 h, cells were treated with 

different concentrations of free doxorubicin or double-coated doxorubicin-loaded 

PBCA-NPDS (20 µl/well). After 72 h incubation at 37°C, 5% CO2, 20 µl of MTT 

solution (4 mg/ml) was added to each well. The plates were further incubated at 

37°C, 5% CO2 for 4 h, enabling viable cells to change the yellow-colored MTT 

into dark-blue formazan crystals. Subsequently, the MTT/medium was carefully 

aspirated from each well without disturbing the cell, and 100 µl of DMSO was 

added into each well. Plates were placed on shaking table to ensure thorough 

mixing of formazan into DMSO. Finally, the absorbance was determined at 570 

nm using microplate reader (ThermoFisher Scientific, Waltham, MA) and data 

acquisition was performed by SkanIt™ software (ThermoFisher Scientific). 

 4.8. Data analysis 

 4.8.1. Pharmacokinetic data analysis 
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To overcome the limitation of sparse data in animal studies, pooled 

analysis of serum doxorubicin concentration-time curves obtained were analyzed 

using compartmental analysis using WinNonlin® (Pharsight, Cary, NC). The 

parameter estimation during the model fitting analysis was performed using a 

Gauss-Newton algorithm with Levenberg-Hartley modification. The Akaike 

information criteria (AIC), lack of systemic deviations in the residuals was 

considered as goodness of fit criteria (145). Equation 3 and 4 was employed for 

simultaneous model fitting of serum concentration-time profiles obtained after 

intravenous and oral administration, respectively.  

 𝐶𝑝 = 𝐴𝑒−𝛼𝑡 +  𝐵𝑒−𝛽𝑡 Equation 3 

where, Cp is the plasma concentration of doxorubicin at time t, A is y-intercept of 

first-order rate process of distributive phase and B is y-intercept of first order 

process of elimination phase, α is hybrid rate constant for distributive phase and β 

is hybrid rate constant for elimination phase. 

 𝐶𝑝 =  𝐴𝑒−𝛼(𝑡−𝑡𝑙𝑎𝑔) +  𝐵𝑒−𝛽(𝑡−𝑡𝑙𝑎𝑔) + 𝐶𝑒−𝑘𝑎(𝑡−𝑡𝑙𝑎𝑔) Equation 4 

Where, A is y-intercept of first-order rate process of the absorption phase and B is 

y-intercept of first order process of distributive phase C is y-intercept of first-

order process of elimination phase, ka is first-order absorption rate constant, and 

tlag is the lag time associated with drug absorption. After obtaining the values of 

primary parameters (i.e., A, α, B, and β) from model fitting analysis (Equation 3), 

the values of secondary parameters such as volume of distribution (V), clearance 

(CL) were further calculated using the WinNonlin. Thereafter, the drug and 

animal related parameters [i.e., V, and CL] were treated as fixed parameter during 
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the simultaneous model fitting analysis. This assumed that clearance remains 

constant between two study occasions (i.e., intravenous, and oral administration). 

Thereafter, the dosage form related parameters (i.e., ka, and tlag) were estimated 

by model fitting. 

4.8.2. Statistical analysis 

All the acquired data were expressed as mean ± standard deviation (SD), 

and analyzed with SigmaStat 3.5 (Systat Software Inc., San Jose, CA). 

Differences between multiple groups were evaluated by one-way analysis of 

variance (ANOVA) followed by Holm-Sidak post-hoc analysis to determine the 

groups, which showed significant difference. Differences between two groups 

were evaluated by the student’s t-test. In each case, a p-value less than 0.05 was 

considered as a representation of significant difference. 

 5. Results and discussion 

 5.1. Analytical methodology 

The absorbance (Figure 4) and fluorescence intensity (Figure 5) were 

found to increase linearly with the concentration of doxorubicin within the 

measured concentration range with a regression coefficient (r2) value of more than 

0.995. These results indicated that both the UV-Vis and fluorescence 

spectroscopy method, adopted for the detection and quantification of doxorubicin, 

are reliable methods. Furthermore, an ease of visualization of the drug by 

fluorescent microscopy method (Figure 6) also indicates it suitability for its usage 

in determination of doxorubicin. 
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5.2. Fabrication and characterization of double-coated doxorubicin loaded 

PBCA-NPDS 

For convenience in terminology, all formulations were coded based on the 

level of Tween 80 and PEG 20000 coating. For example, formulation T2P2 

(representing 2% Tween 80 and 2% PEG 20000). The particle size, polydispersity 

index (PdI), zeta potential and entrapment efficiency of various non-coated and 

coated doxorubicin-loaded PBCA-NPDS formulations in comparison with blank 

PBCA-NPDS nanoparticles (placebo) are summarized in Table 2. And, 1H NMR 

spectrum to evaluate the interaction of the polymeric core with doxorubicin is 

shown in Figure 7.  

As expected, the mean particle size of doxorubicin-loaded PBCA-NPDS 

(formulation T0P0) increased due to doxorubicin loading as compared to that of 

blank PBCA-NPDS (154.5 nm vs. 109.4 nm). This increase in size could be 

attributed to interference in the surface deposition of dextran 70 (surfactant) 

chains caused by the presence of the doxorubicin during the polymerization step. 

As a result, their adsorption on PBCA-NPDS may have reduced, leading to an 

increase in the particle size (146). Further coating of doxorubicin-loaded PBCA-

NPDS with Tween 80 and PEG 20000 at 1%, respectively, the mean particle size 

of single-coated doxorubicin-loaded PBCA-NPDS increased to 182.6 nm 

(formulation T0P1) or remained similar size at 154.4 nm (formulation T1P0). 

This could be attributed to the high MW of PEGs (MW > 5000 Da) resulted in the 

formation of a layer-wise polymeric network on the surface of PBCA-NPDS 

(147). Furthermore, with a double coating with Tween 80 at 1% and PEG 20000 
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at either 1% or 2%, mean particle size of the double-coated formulations 

increased from 154.4 nm (formulation T1P0) to 203.6 nm (formulation T1P1) and 

256.9 nm (formulation T1P2). In addition, with double coating with Tween 80 at 

either 1% or 2% and PEG 20000 at 1%, mean particle size of the double-coated 

formulations increased from 182.6 nm (formulation T0P1) to 203.6 nm 

(formulation T1P1) and 221.0 nm (formulation T2P1). Finally, with double 

coating with Tween 80 and PEG 20000 up to 2%, mean particle size of the 

double-coated formulations increased from 154.5 nm (formulation T0P0) to 203.6 

nm (formulation T1P1) and 276.2 nm (formulation T2P2). This could be 

attributed to the presence of Tween 80 facilitating the hydrogen bond formation 

with incoming PEG 20000 as a double coating, forming a layer-wise coherent 

coating over doxorubicin-loaded PBCA-NPDS (148). On the other hand, the 

mean particle size slightly increased from 256.9 nm (formulation T1P2) to 276.2 

nm (formulation T2P2). Therefore, it can be concluded that an overcoating with 

high molecular weight of PEG may impact the particle size of doxorubicin-loaded 

PBCA-NPDS. Additionally, a low PdI value < 0.2 was observed for all 

formulations (Table 2). This could be attributed to serial filtration step employed 

during the preparation and isolation of nanoparticles from reaction medium. A 

low PdI (≤0.2) is generally deemed acceptable when selecting polymeric 

nanoparticles as a delivery system (149). 

The mean zeta potential of placebo was observed to be -3.09 mV and for 

different formulations zeta potential values varied from 2.72 to 5.29 mV (Table 

2). PBCA-NPDS have an inherent negative zeta potential, due to the resonance 
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stabilized negative charge formed during the polymerization step (150). 

Interestingly, the zeta potential of uncoated doxorubicin loaded PBCA-NPDS 

(formulation T0P0) showed a positive shift in zeta potential following the 

addition of doxorubicin as compared to the blank PBCA-NPDS (3.13 mV vs. -

3.09 mV). This shift in the zeta potential of formulations can be attributed to the 

predominant positive charge of doxorubicin (pKa = 8.2) at a pH of 3.00 used 

during the polymerization reaction. No significant change in zeta potential values 

were observed in the presence of single- or double-coating of doxorubicin-loaded 

PBCA-NPDS. This finding suggests that the coating did not impact the shear 

plane of the particle, which otherwise would have resulted in shifts in zeta 

potential values. 

As displayed in Table 2, the entrapment efficiency of doxorubicin within 

various doxorubicin-loaded PBCA-NPDS formulations varied from 86.5% 

(formulation T2P1) to 89.9% (formulation T0P0). A higher entrapment of 

doxorubicin (i.e., >86%) could be attributed to adding doxorubicin during the 

polymerization step. Doxorubicin when added during the polymerization step may 

act as a nucleophile and can form a part of the growing polymeric chain, yielding 

higher entrapment within the formed nanoparticles (151). 

Based on Figure 7, 1H NMR spectrum comparison reveals that the amine 

group of doxorubicin is unconjugated with the PBCA during the formation of 

nanoparticle. This is based on the observed multiplet splitting at a chemical shift 

of about 2 ppm for both doxorubicin-loaded PBCA-NPDS (Figure 7A) and 

doxorubicin (Figure 7B), respectively. As reported, a multiplet splitting of the 
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peak at 2 ppm is a characteristic of doxorubicin which represents protons of the 

amine group and aliphatic carbon atom (152). 

 5.3. In vitro drug release 

 5.3.1. Screening of dialysis membrane 

The diffusion profile of free doxorubicin in solution across dialysis 

membrane with different MWCOs is shown in Figure 8. The mean cumulative 

doxorubicin diffused was 94.503% across the membrane (1000 KDa) as 

compared to 91.093%, 86.543%, and 90.523% across the membrane with 50, 100, 

and 300 KDa, respectively. Among various methods to study the drug release 

from various nano-formulations (liposomes, nanoparticles, etc.), usage of the 

dialysis membrane bag has been reviewed in the literature (131). However, the 

selection criteria of a dialysis membrane bag over another is seldom reported. 

Therefore, the screening of various types of dialysis membrane bags and its 

impact on the diffusion rate of doxorubicin through the dialysis membrane bags 

was performed, prior to in vitro drug release study. Although maximum amount 

of doxorubicin diffused across the dialysis membrane bags (MWCO: 1000 KDa) 

over a period of 6 hours. These results indicate that there is a delay in drug 

diffusion involved when using dialysis membrane bags for drug release study. 

Furthermore, an incomplete diffusion (i.e., <100%) indicates that even using the 

highest MWCOs, which is generally assumed to facilitate diffusion of free drug, 

may lead to an underestimation of actual drug release from the nano-formulations. 

Since highest amount of drug diffused across the dialysis membrane with 

MWCOs 1000 KDa, it was chosen for all future experiments. 
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5.3.2. In vitro drug release study of various doxorubicin loaded PBCA-NPDS 

The in vitro drug release profile of all formulations is shown in Figure 9. 

All formulations showed characteristic biphasic release with an initial burst 

release followed by a second phase with a much slower rate of drug release. The 

initial burst release phase could be attributed to immediate desorption of 

doxorubicin from the surface of PBCA-NPDS. And, the next slow phase could be 

attributed to slow desorption of doxorubicin located in the interior of PBCA-

NPDS and/or erosion of PBCA-NPDS (153). The highest amount of drug release 

(i.e., 78.2%) at 72 h of release study was obtained from formulation T0P0. With 

2% coating of PEG 20000 (formulation T2P2), the release rate was lowest and 

was reduced to 35.7% over the same period of time. On the other hand, the release 

profile of doxorubicin was different for each formulation suggesting that 

doxorubicin had to diffuse through the polymer and surfactant coating employed 

on the doxorubicin-loaded PBCA-NPDS. A trend of decrease in release rate with 

the increase in Tween 80 or PEG 20000 coating concentration was observed. The 

amount of doxorubicin release decreased from 62.5% (formulation T1P0) to 

47.5% (formulation T1P1). Similarly, the amount of doxorubicin release 

decreased from 59.4% (formulation T0P1) to 47.5% (formulation T1P1). Based 

on this trend, it can be suspected that the outward release of entrapped 

doxorubicin could be a function of coating concentration of PEG 20000, and not 

so much with Tween 80. This action of high MW PEG (typically >5000 Da) 

could be due to the folding of long chains of PEG. And, such folding may result 

in unfavorable entropy changes, which further results in compression and stability 
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of the coating layer (82). An existence of a similar sort of “release barrier” caused 

by increased concentration of PEG 20000 which is impeding the drug release is 

suspected. However, further surface analysis of these doxorubicin loaded PBCA-

NPDS is needed to conform the existence of such a “release barrier”. 

5.4. Drug leakage study in FaSSIF and serum 

The drug leakage in FaSSIF and serum from various doxorubicin loaded 

PBCA-NPDS is shown in Figure 10. As shown in Figure 10A, the mean % 

doxorubicin leakage in FaSSIF after 12 hours of incubation from various 

doxorubicin loaded PBCA-NPDS formulations varied from 18.9-28.6%. A trend 

of reduction in drug leakage due to PEG 20000 overcoat was observed. Mean 

doxorubicin leakage reduced from 21.0% (formulation T0P0) to 18.9% 

(formulation T0P1). Similarly, mean doxorubicin leakage reduced from 26.8% 

(formulation T1P0) to 24.5% (formulation T1P1), and further reduced to 20.8% 

(formulation T1P2). Conversely, drug leakage increased with increase in coating 

with Tween 80. Mean doxorubicin leakage increased from 21.0% (formulation 

T0P0) to 26.8% (formulation T1P0). Similarly, mean doxorubicin leakage 

increased from 24.5% (formulation T1P1) to 28.7% (formulation T2P1). 

As shown in Figure 10B, the highest mean leakage of doxorubicin (i.e., 

3.5%) was observed in formulation T0P0. A trend of reduction in leakage with an 

overcoating with PEG 20000 was observed. The mean doxorubicin leakage 

reduced from 2.2% (formulation T1P0) to 0.3% (formulation T1P1). Further with 

an overcoat with Tween 80 (i.e., double-coated formulations) had a better 

protection efficacy towards unwanted drug leakage. A significant reduction (p < 
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0.001) in doxorubicin leakage was observed in formulation T2P2 in comparison 

to single- and un-coated formulations. 

The preventing of the drug leakage form double-coated doxorubicin-

loaded PBCA-NPDS was observed to be resulted from the overcoating with PEG 

20000. Such protective action is in line with previously published literature (154). 

Therefore, to maximize the protective efficacy of PEGs, and brain targeting 

potential with an overcoat with Tween 80, formulation T2P2, representing the 

highest amount of Tween 80 and PEG 20000 was selected for further exploration 

in in vitro cell culture model and for its biodistribution and pharmacokinetic 

studies in rats. 

 5.5. In vitro model to elucidate the brain uptake mechanism 

5.5.1. Uptake mechanism elucidation using specific inhibitors as a 

pretreatment 

Figure 11 illustrates the effect of various inhibitors on doxorubicin uptake 

from double-coated doxorubicin-loaded PBCA-NPDS (formulation T2P2) and 

doxorubicin solution (control). It can be observed that when bEnd.3 cells were 

pretreated with the growth media (no pretreatment), the mean amount of 

doxorubicin absorbed by cells treated with formulation T2P2 was found to be the 

highest (i.e., 2.6 µg). On the other hand, when the cells were pretreated with 

various inhibitors (i.e., sucrose, sodium azide, at 4°C, dynasore, and ammonium 

chloride) known to inhibit specific cell uptake processes, significant reduction (p 

< 0.001 in all cases) in absorption of doxorubicin by bEnd.3 cells was observed. 

There are distinct internalization mechanisms for nanoparticles to enter cells 
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(155). In general, they can be divided into active and passive mechanism. 

Generally nanoparticles are internalized by the cells via energy dependent 

endocytosis which is influenced by temperature (such as at 4°C) under in vitro 

condition (156). On the other hand, free drug is internalized via passive 

mechanism. Therefore, several specific endocytic inhibitors to identify the 

internalization pathways involved in the cellular uptake of formulation T2P2 by 

bEnd.3 cells was evaluated in this study. Based on Figure 11, it is possible to see 

the effect of each inhibitor on the doxorubicin internalization from formulation 

T2P2 in comparison to doxorubicin solution. The uptake of doxorubicin from 

formulation T2P2 was found to be inhibited at 4 °C and with pretreatment with 

sodium azide, suggesting that their uptake was mediated by endocytosis. More 

specifically, involvement of clathrin-mediated endocytosis was confirmed when 

reduction in cell uptake doxorubicin from formulation T2P2, after pretreatment of 

the cells with sucrose, was observed. A reduction in cell uptake of doxorubicin 

from formulation T2P2, after pretreatment of the cells with dynasore, further 

confirmed that Tween 80 coated PBCA-NPDS may mimic as low-density 

lipoprotein (LDL) particles. In contrast, amount of doxorubicin absorbed by the 

bEnd.3 cells remained relatively similar to that of without any pretreatment when 

the cells were treated with doxorubicin solution (3.03 µg vs. 2.89 µg, 3.01 µg, 

2.99 µg, 3.03 µg, and 2.49 µg, respectively), since the free drug is up taken by 

cells solely by passive absorption mechanism (157). Upon inhibiting the specific 

transporters, no significant reduction in the amount of doxorubicin absorbed by 

the cells was observed. Therefore, the main mechanism involved in the uptake of 
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formulation T2P2 by bEnd.3 cells was found to be LDL receptor-mediated 

endocytosis. In fact, LDL receptor was found to be associated with clathrin-

coated pits on the cell surface, which when bound to LDL mimicking particles 

form clathrin-coated vesicles in the cell (158). Finally, reduction in cell uptake of 

doxorubicin from formulation T2P2, after pretreating with ammonium chloride, 

suggests that formulation T2P2 may partially follow both lysosomal and 

endosomal trafficking inside bEnd.3 cells, which is important for drug delivery or 

drug transport through barriers (159). In fact, the lysosomal pathway is 

responsible for nanoparticle degradation and subsequently release of drug content 

inside cells, while the endosomal trafficking may be involved in the transport of 

intact drug-loaded nanoparticles across the cell barrier. Furthermore, no cellular 

toxicity (i.e., mean cell viability > 85%, n = 6) was observed when the cells were 

incubated with various inhibitors at concentration levels described previously. 

 5.5.2. Permeability screening study 

To verify the transcytosis of formulation T2P2 transport across the 

monolayer on Transwell® from apical to basolateral was evaluated. The Papp 

values obtained after transport experiment of formulation T2P2 in comparison to 

doxorubicin solution were shown in Figure 12. The Papp (apical to basolateral) of 

doxorubicin across the monolayer was significantly higher (p = 0.003), when the 

monolayer was incubated with formulation T2P2 vs. doxorubicin solution (9.6 × 

10-5 cm/sec vs. 6.6 × 10-5 cm/sec). This outcome probably happened from the 

interaction between ApoE adsorbed on the surface of formulation T2P2 and LDL 

receptors expressed on bEnd.3 cells. On the other hand, formulation T2P2 
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mediated transport of doxorubicin from basolateral to apical was lower (i.e., mean 

Papp of 5.9 × 10-5 cm/sec vs. 1.2 x 10-4 cm/sec) of doxorubicin solution. In general, 

efflux ratio [i.e., Papp (apical to basolateral)/Papp (basolateral to apical)] is used as a first 

indication of involvement of active processes. Efflux ratio obtained from the 

mean Papp values of formulation T2P2 and doxorubicin solution was observed to 

be 0.6 and 1.8, respectively. Furthermore, a 3-fold reduction in doxorubicin 

mediated efflux ratio was observed by formulation T2P2 from basolateral to 

apical side of the monolayer. This finding is in line with the inhibitory action of 

Tween 80 on efflux transporters reported elsewhere (160). 

 5.6. Biodistribution and pharmacokinetic studies in rats 

 5.6.1. Biodistribution studies 

As shown in Figure 13, significant amount (p = 0.017) of doxorubicin was 

available in the serum after 3 hours following oral administration of formulation 

T2P2 (Figure 13A) at a dose of 70 mg/kg (group 3). This could be due to the 

higher circulation time yielded by coating with PEGs. Higher circulation time 

may have resulted in increased drug available in the circulation from the 

formulation T2P2. Furthermore, no significant difference was observed in 

doxorubicin availability in serum among other groups. Comparing the mean 

values, it can be observed that the maximum amount of doxorubicin was available 

in serum after oral administration of doxorubicin solution (Figure 13A). Based on 

Figure 13B, significant brain accumulation of doxorubicin occurred after 1 hour 

following oral administration of formulation T2P2 at dose level of 70 mg/kg 

(group 3) in comparison to formulation T2P2 at dose level of 50 mg/kg (p = 



48 
 

0.005) (group 2) and doxorubicin solution at dose level of 70 mg/kg (p = 0.017) 

(group 4). These findings are in line with our previous studies, wherein the 

maximum anti-nociceptive effect was achieved with the highest dose of 

formulation T2P2 after 60 minutes of oral administration (6). Also, as expected, 

although insignificant, higher brain accumulation of doxorubicin occurred after 

intravenous administration and a trend of exposure-time relationship was 

observed. Based on Figure 13C, as expected, significant accumulation of 

doxorubicin occurred in liver after 1 hour following intravenous or oral 

administration of formulation T2P2 (p = 0.027) (groups 1-3) in comparison to 

doxorubicin solution (group 4). This situation can be summarized by suggesting 

that the liver acts as a reservoir of doxorubicin-loaded PBCA-NPDS, facilitating 

their rapid first-phase disappearance from the blood and their second-phase 

release in the body under degraded and/or excretable forms (151). Intrahepatic 

distribution studies demonstrate that Kupffer cells are the major liver site of 

accumulation of PACA nanoparticles (161). And, endocytosis plays a major role 

in the uptake process of these nanoparticles (162). Once up taken by the liver, 

nanoparticles may have metabolized with a sustained release of the drug from 

tissues, which is in agreement with previously published reports on PBCA-NPDS 

as drug carriers (163,164). Since this investigation using an in vitro cell culture 

model also demonstrated involvement of endocytosis mechanism. The same 

processes involved in the fate of the formulation T2P2 in liver was suspected. On 

the other hand, doxorubicin solution was rapidly degraded and eliminated from 
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the body, which further verify the findings from the pharmacokinetics studies to 

be described below. 

 5.6.2. Pharmacokinetic studies 

Figure 14 illustrates the observed and the fitted pooled serum doxorubicin 

concentration-time curves of formulation T2P2 obtained after simultaneous model 

fitting. As shown in Figure 14A and 14B, the serum doxorubicin concentration-

time profiles, after intravenous and oral administration of formulation T2P2, were 

adequately fitted by the 2-compartment model (Equations 3 and 4). On the other 

hand, 2-compartment model was not operative for describing the data obtained 

after oral administration of doxorubicin solution. This could be attributed to the 

faster clearance of the doxorubicin from the circulation as observed from the rapid 

decline of the serum concentration (Figure 14A). Comparison of the dosage-form 

related parameters (i.e., absorption rate and lag time of absorption), formulation 

T2P2 exhibited a higher absorption rate of 0.05 min-1 and 0.08 min-1 at 50 mg/kg 

and 70 mg/kg, respectively. On the other hand, the absorption rate of doxorubicin 

solution was found to be 0.003 min-1. This could be due to the absorption 

enhancement efficacy of the formulation T2P2. Furthermore, the lag time of 

absorption value of formulation T2P2 was higher (i.e., 3.3-fold) as compared to 

that of doxorubicin solution. A higher lag time of absorption value obtained by 

formulation T2P2 indicates a delayed absorption of the formulation. This can be 

attributed to an intrinsic delay in nanoparticles entry into the lymphatics (165). 

Reliability of the estimated parameters were determined by comparing the 

magnitude of the coefficient of variance associated with the parameters. Although 
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there are no magic cut-offs, a lower value of coefficient of variance is sought for 

determining the reliability of the parameter estimates. A comparatively higher 

coefficient of variance associated with doxorubicin solution could be due to the 

inability of the 2-compartment to explain the observed data. 

 5.7. In vitro cell culture studies 

To investigate the uptake of double-coated doxorubicin-loaded PBCA-

NPDS, intracellular accumulation of doxorubicin within SW620 cells, based on 

its characteristic red fluorescence, was determined, and shown in Figure 15. And, 

for the comparison of outcomes shown in Figure 15, the corresponding corrected 

total cell fluorescence values, are calculated and represented in Figure 16. 

As shown in Figure 15, doxorubicin-associated fluorescence occurred 

mainly in the nuclei of the SW620 cell line for all doxorubicin-loaded PBCA-

NPDS formulations (Figure 15a-g) and free doxorubicin (Figure 15h). Based on 

the calculated corrected total cell fluorescence values shown in Figure 16, a trend 

of increase in mean fluorescence intensity with an increase in the concentration of 

Tween 80 was observed. Formulation T2P2 significantly increased (p < 0.001) 

increased the accumulation of doxorubicin in comparison to formulations T1P1 

and T2P1. Furthermore, no significant difference was observed in the 

fluorescence intensity between formulation T2P2 and free doxorubicin solution. 

This finding could be attributed to the sensitivity of the cell line toward treatment 

with doxorubicin. Since SW620 cells do not overexpress P-gp transporters, 

doxorubicin could readily access the cells and the rate of drug efflux is also 

reduced. 
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In addition to the SW620 cell line, intracellular accumulation of various 

doxorubicin-loaded PBCA-NPs formulations were performed with the AD300 

cell line. The characteristic red fluorescence and corresponding corrected total 

cell fluorescence values are shown in Figure 17 and 18, respectively. Similarly, to 

SW620 cells, all doxorubicin-loaded PBCA-NPs formulations resulted in 

increased fluorescence intensity within AD300 cells (Figure 17a-g). On the other 

hand, as expected, no nuclei accumulation was observed, when cells were treated 

with free doxorubicin. Instead, the fluorescence signal was observed on the cell 

membranes (Figure 17h). This could be due to over-expressed P-gp on AD300 

cells, which did not allow doxorubicin accumulation in the nuclei (166). In 

comparison, the intracellular localization of doxorubicin in AD300 cells treated 

with formulations T2P1 (Figure 17f), and T2P2 (Figure 17g) exhibited the highest 

intensity. As shown in Figure 18, formulation T2P2 exhibited the significantly 

higher (p < 0.001) intensity as compared to formulations T0P1, T1P0, T1P1, 

T1P2 as well as free doxorubicin, indicating enhanced retention of doxorubicin 

within AD300 cells. These findings are in line with the inhibitory action of Tween 

80 on over-expressed P-gp receptors due to the higher drug retention within 

AD300 cells. 

The cytotoxicity profiles of doxorubicin-loaded PBCA-NPs formulations 

from MTT assays performed on SW620 and AD300 cell lines are illustrated in 

Figure 19 and 20, respectively. For the comparison of the cytotoxicity profiles, 

IC50 values (i.e., half-maximal inhibitory concentration) were calculated and 

displayed in Table 3. The IC50 values of free doxorubicin in SW620 and AD300 
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cell lines were 0.094 µM and 4.796 µM, respectively. Interestingly, it was 

observed that double-coated doxorubicin-loaded PBCA-NPs (specifically 

formulation T2P2) showed significantly higher (p < 0.001) cytotoxicity than free 

doxorubicin, single-coated (formulation T0P1) (p < 0.001), and un-coated 

(formulation T0P0) (p = 0.004) in AD300 cell line. These results suggest that 

double-coated PBCA-NPs, specifically, formulation T2P2 have improved 

anticancer property in doxorubicin resistant AD300 cells. A trend of higher 

cytotoxicity with increased concentration of coating with Tween 80 was observed. 

This trend could be attributed to inhibition of overexpressed p-glycoprotein 

transmembrane receptors by Tween 80 as previously reported. On the other hand, 

synergistic effect on cytotoxicity in AD300 cell line was observed with double-

coated doxorubicin-loaded PBCA-NPs with Tween 80 and PEG 20000. Trend 

analysis of the synergistic effect indicates that overcoating with PEG 20000 might 

aid in partial reversal of resistance, which could be attributed to folding of high 

molecular weight PEG (> 5000 Da) presenting a barrier comprising of 

conformationally random molecular chains to prevent drug efflux. This partial 

resistance reversal action of doxorubicin-loaded PBCA-NPs formulations was 

determined by calculating the resistance fold (i.e., ratio of IC50 values obtained in 

AD300 cells to those obtained in SW620 cells). As shown in Table 3, a reduction 

in doxorubicin mediated resistance on AD300 cell line treated with formulation 

T2P2 as compared to doxorubicin solution was identified (22.445-fold versus 

51.020-fold) indicating that double-coating with Tween 80 and PEG 20000 on 

PBCA-NPs may potentiate the sensitivity of the resistant cells towards 
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doxorubicin. However, no significant change in IC50 values was observed when 

SW620 cells were treated with free doxorubicin in solution or formulation T2P2. 

This is based on the assumption that, incorporating doxorubicin within the 

nanoparticle will not impact its efficacy. Since IC50 is a drug related parameter, 

we anticipate it to be similar. 

The cytotoxicity profiles of doxorubicin-loaded PBCA-NPs formulations 

from MTT assays performed on H460 and BCRP-overexpressed MX20 cells are 

shown in Figure 21 and 22, respectively. And, IC50 values were calculated and 

compared in Table 4. The IC50 values of free doxorubicin within H460 and MX20 

cell lines were 0.058 µM and 0.813 µM, respectively. It was observed that 

double-coated doxorubicin-loaded PBCA-NPs (formulation T1P1) showed 

significantly higher (p < 0.001) cytotoxicity (about 1-fold) than free doxorubicin 

in comparison to single-coated PBCA-NPs (formulation T0P1) resulting in partial 

reversal by about 3.5-fold. These results suggest that these double-coated PBCA-

NPs formulations might have improved anticancer property in mitoxantrone 

resistant MX20 cells. A similar trend (with respect to SW620 and AD300 cells) of 

higher cytotoxicity with increased concentration of overcoating with Tween 80 

was observed. Consequently, formulation T2P2, exhibited significantly higher 

cytotoxicity in comparison to formulation T1P1. This finding suggests that an 

overcoat of Tween 80 at 2% might be required for enhanced cytotoxicity of 

formulations in resistant cells. Further, this trend could be attributed to inhibition 

of overexpressed BCRP transmembrane transports by Tween 80 as previously 

reported (167). On the other hand, synergistic effect on cytotoxicity in MX20 cell 
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line was observed with double coating of doxorubicin-loaded PBCA-NPs 

formulations with Tween 80 and PEG 20000. Trend analysis of the synergistic 

effect indicates that overcoating with PEG 20000 may also aid in partial reversal 

of resistance, which could be attributed to folding of high molecular weight PEG 

(20000 Da in this case) is presenting a barrier comprising of conformationally 

random molecular chains to prevent drug efflux (168). Furthermore, based on the 

calculated resistance fold value (Table 4), it can be observed that formulation 

T2P2 is also able to potentiate the sensitivity of doxorubicin in the mitoxantrone 

mediated resistant cell line (i.e., MX20), wherein the reduction of resistance from 

13.943-fold (i.e., doxorubicin solution) to 4.851-fold was observed. However, 

contrary to their enhanced efficacy towards the resistant cell line, lower 

cytotoxicity (higher IC50 values) as compared to doxorubicin solution for all 

doxorubicin-loaded PBCA-NPs formulations was observed in H460 cell line, 

indicating the specificity of these formulations towards the resistant MX20 cell 

line. Furthermore, this difference could be attributed to variability in the 

availability of doxorubicin at the cellular level. For example, free doxorubicin is 

instantly available within the cells, whereas, with nanoparticles time dependent 

drug release also needs to be taken into consideration. 

6. Conclusion 

In has been reported that an overcoat with PEG 20000 coating enhanced 

the stability of this formulation in the gastrointestinal tract. And, a particle size of 

less than 300 nm could have influenced the M-cells mediated uptake of these 

formulation, and its subsequent transport into the systemic circulation. On the 
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other hand, Tween 80 coating facilitated the adsorption of ApoE from the 

circulation and subsequently facilitated the brain delivery of PBCA-NPDS by 

LDL receptor mediated endocytic uptake across the BBB. As a result, double-

coated doxorubicin PBCA-NPDS (formulation T2P2) was observed cross the 

gastrointestinal barrier after oral administration and still retain its targeting 

properties to the brain. Furthermore, under in vitro conditions Formulation T2P2, 

exhibited enhanced cytotoxicity and specificity towards the P-gp and BCRP 

overexpressing cell lines. Similar to in vivo studies the success of double-coated 

PBCA-NDs can be hypothesized due to interplay of a number of factors 

simultaneously. They could be (a) particle size less than 300 nm, and (b) double 

coats of Tween 80 and PEG 20000. The particle size of the formulation could 

have helped in endocytic uptake of the nanoparticles across the cell barrier. The 

action of double-coats of Tween and PEG are suspected to play the following 

roles. The role of Tween 80 and PEG 20000 coating had been the enhancement of 

accumulation of doxorubicin from double-coated PBCA-NPDS (formulation 

T2P2) in both P-gp and BCRP overexpressing cell lines. Hence, we can conclude 

that, the application of the double-coated PBCA-NPDS with overcoats of Tween 

80 and PEG 20000 could be feasible approach to deliver and target doxorubicin to 

brain via the oral route and aid in overcoming MDR. 
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7. Tables 

Table 1: Physiochemical characterization methods for nanoparticles 

 

 

 

 

 

 

 

 

Parameter Method 

Particle size Photon correlation spectroscopy, 

Transmission electron microscopy 

(TEM), Scanning electron 

microscopy (SEM) 

Surface charge  Electrophoresis, Laser doppler 

anemometry 

Crystallinity X-ray diffraction (XRD), 

Differential scanning calorimetry 

(DSC) 

Hydrophobicity Hydrophobic interaction 

chromatography, contact angle 

measurement 

Molecular weight determination Gel chromatography 
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Table 2: Formulation codes and characteristics of various doxorubicin-loaded 

PBCA-NPDS. Data presented as mean ± standard deviation, n = 3. 

* Placebo = PBCA-NPDS (blank nanoparticles)

Formulation  Codes Particle size 

(nm) 

PdI Zeta 

potential 

(mV) 

% 

Entrapment 

efficiency 

- Placebo* 109.4 ± 3.3 0.083 ± 0.022 -3.09 ± 0.97 Not 

applicable 

Core T0P0 154.5 ± 1.4 0.044 ± 0.039 3.13 ± 0.84 89.9 ± 0.1 

Single-

coated 

T0P1 182.6 ± 25.5 0.040 ± 0.019 2.72 ± 0.94 87.0 ± 0.1 

T1P0 154.4 ± 5.7 0.076 ± 0.028 4.19 ± 0.78 88.3 ± 0.3 

Double-

coated 

T1P1 203.6 ± 8.1 0.064 ± 0.046 5.29 ± 2.24 88.5 ± 0.1 

T1P2 256.9 ± 9.1 0.082 ± 0.017 3.95 ± 0.84 88.5 ± 0.4 

T2P1 221.0 ± 20.0 0.129 ± 0.116 3.08 ± 2.30 86.5 ± 0.2 

T2P2 276.2 ± 15.4 0.110 ± 0.062 2.75 ± 0.48 88.4 ± 0.3 



58 
 

Table 3: The cytotoxic effect of doxorubicin and double-coated doxorubicin-

loaded PBCA-NPDS on SW620 and AD300 cell lines. 

 

 

 

 

 

 

 

 

IC50: concentration that inhibited cell survival by 50%  

RF: Resistance fold was the ratio of IC50 value from AD300 cells over SW620 

cells, respectively for all treatments.*Statistically significant (p  < 0.001) in 

comparison to formulation T0P1, and #p = 0.004 in comparison to formulation 

T0P0. ##p  < 0.001 in comparison to free drug, and formulation T0P0 and T0P1. 

Treatment SW620                           AD300 

IC50 ± SDa (µM)     IC50 ± SDa (µM) RFb 

Free doxorubicin 0.094 ± 0.018 

0.061 ± 0.013 

0.068 ± 0.012 

0.073 ± 0.004 

0.044 ± 0.017 

0.081 ± 0.004 

0.067 ± 0.023 

0.074 ± 0.012 

4.796 ± 0.271 51.020 

T0P0 2.653 ± 0.125 43.491 

T0P1 2.700 ± 0.066 39.705 

T1P0 1.857 ± 0.464# 25.438 

T1P1 1.613 ± 0.161* 36.659 

T1P2 1.866 ± 0.082 23.037 

T2P1 1.775 ± 0.062 26.492 

T2P2 1.661 ± 0.142## 22.445 
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Table 4: The cytotoxic effect of doxorubicin and double-coated doxorubicin-

loaded PBCA-NPDS on H460 and MX20 cell lines. 

IC50: concentration that inhibited cell survival by 50%  

RF: Resistance fold was the ratio of IC50 value from MX20 cells over H460 cells, 

respectively for all treatments. *Significantly lower (p = <0.001) in comparison to 

formulation T1P2, and #p = <0.001 in comparison to formulation T0P1.  

  

Treatment H460                           MX20 

IC50 ± SDa (µM) IC50 ± SDa (µM) RFb 

Free doxorubicin 0.058 ± 0.002 

0.196 ± 0.012 

0.173 ± 0.012 

0.112 ± 0.024 

0.154 ± 0.016 

0.189 ± 0.045 

0.158 ± 0.002 

0.135 ± 0.023 

0.813 ± 0.014 13.943 

T0P0 1.574 ± 0.097 8.019 

T0P1 1.597 ± 0.067 9.225 

T1P0 0.626 ± 0.025 5.603 

T1P1 0.674 ± 0.013#  4.374 

T1P2 0.817 ± 0.030 4.313 

T2P1 0.637 ± 0.011 4.038 

T2P2 0.653 ± 0.005* 4.851 
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8. Figures 

 

 

Figure 1: Schematic representation of three possible mechanisms of 

gastrointestinal uptake of surface modified poly(butyl cyanoacrylate) 

nanoparticles (PBCA-NPDS).     Represents surface modified PBCA-NPDS: (a) 

intracellular uptake (via intra-epithelial lymphatics, IELs); (b) 

intracellular/paracellular uptake; (c) uptake via the M-cells and Peyer’s patches in 

the gut lumen. Adapted from reference (1) with modifications. 
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Figure 2: Schematic representation pathway of doxorubicin delivery to the brain 

facilitated by double-coated doxorubicin-loaded PBCA-NPDS after oral 

administration: (a) doxorubicin efflux in the lumen facilitated by the P-gp 

receptor in the duodenum following either intracellular and/or paracellular uptake 

by the duodenum, (b) uptake of double-coated doxorubicin-loaded PBCA-NPDS 

via the M-cells of the Peyer’s patches of the ileum, and (c) LDL-receptor 

mediated transcytosis of the double-coated doxorubicin-loaded PBCA-NPDS 

from blood lumen into the brain. 
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Figure 3: Schematic representation of nanoparticle formulation. (A) doxorubicin-

loaded PBCA-NPDS (core), (B) Tween 80 overcoated nanoparticles, and (C) 

Tween 80 and PEG 20000 overcoated nanoparticles. Adapted from reference (67) 

with modifications. 



63 
 

Concentration ( g/ml)

0 10 20 30 40 50 60

A
b
so

rb
a
n
c
e
 a

t 
4
8
0
 n

m

0.0

0.2

0.4

0.6

0.8

1.0

 

 

Figure 4: Calibration curve of doxorubicin assayed by the UV-Vis spectroscopy 

method (R2 = 0.9996, n = 6). 



64 
 

 

 

Figure 5: Calibration curve of doxorubicin assayed by the fluorescence 

spectroscopy (plate-reader method) spiked in various medium (R2 > 0.995 in each 

case , n = 6). 
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Figure 6: Fluorescence microscopy images of cells for method selection. A) cell 

nuclei stained DAPI, B) cells treated with free doxorubicin, exhibiting 

characteristic red fluorescence associated with doxorubicin within the cell, and C) 

merged image of the cells is depicted by an arrow. (Scale bar: 10 µm). 
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a) 

 

b) 

 

Figure 7: 1H NMR of spectrums of a) doxorubicin-loaded PBCA-NPDS, and b) 

free doxorubicin in DMSO-d6. Arrow shows a characteristics peak for the protons 

associated with amine and aliphatic carbon atom (boxed in the chemical 

structure). 
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Figure 8: Comparison of diffusion profiles of free doxorubicin using different 

MWCO dialysis membranes in the release medium at 37° ± 0.5°C, 100-120 rpm. 

(Data are presented as mean ± standard deviation, n = 3). 
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Figure 9: In vitro drug release profiles of various doxorubicin-loaded PBCA-

NPDS (Data presented as mean ± standard deviation, n = 3). 
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Figure 10: % Doxorubicin leakage from various doxorubicin-loaded PBCA-

NPDS after 12 hours incubation period in a) FaSSIF, and b) Serum at 37° ± 0.5°C 

and 100–120 rpm. (Data presented as mean ± standard deviation, n = 3). 

* 
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Figure 11: The in vitro model in which bEnd.3 cells were subjected to various 

inhibitors as pretreatments, and then followed with treatment of formulation T2P2 

or doxorubicin solution for additional 3 hours of cell incubation for elucidation of 

the brain uptake mechanism (data presented as mean ± standard deviation, n = 6).  

* Significantly (p < 0.001) reduced uptake of doxorubicin in bEnd.3 cells 

pretreated with various inhibitors.  
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Figure 12: Apparent permeability (Papp) after transport experiment of formulation 

T2P2 or doxorubicin solution across bEnd.3 cells monolayer after 2 hours 

incubation period (data presented as mean ± standard deviation, n = 3). *p = 0.003 

and #p = 0.004 of doxorubicin permeation (higher) and efflux (lower) mediated 

by formulation T2P2, from apical to basolateral and basolateral to apical side, 

respectively, in comparison to doxorubicin solution. 
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a) 

  

b)  

 

c)  

 

Figure 13: Biodistribution of doxorubicin in a) serum, b) brain, and c) liver from 

formulation T2P2 after intravenous administration (group 1) and oral 

administration (groups 2-3), in comparison to oral doxorubicin solution (data 

present mean ± standard deviation, n = 2). *p = 0.017 in comparison to 1 hour,  

#p = 0.005 in comparison to group 2 at 1 hour, ##p = 0.017 in comparison to 

group 4 at 1 hour, and ˠp = 0.027 in comparison to groups 1-3 after 3 hours. 
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a) 

 

 

b)  

 

 

c)  

 

Figure 14: Simultaneous model fitting of pooled doxorubicin serum 

concentration-time profiles after intravenous administration of formulation T2P2 

(27 mg/kg), respectively, with a) oral administration of T2P2 (50 mg/kg), b) oral 

administration of T2P2 (70 mg/kg), and c) oral administration of doxorubicin 

solution (70 mg/kg). 
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Figure 15: Fluorescence associated with intracellular accumulation of doxorubicin 

within human colon adenocarcinoma cell line SW620, following treatment with, 

(a) T0P0, (b) T0P1, (c) T1P0, (d) T1P1, (e) T1P2 (f) T2P1, (g) T2P2, (h) Free 

doxorubicin, and (i) No treatment. Note: Arrows represent the accumulation of 

doxorubicin in the nucleus. (Magnification: 40×, Scale bar: 10 µm). 
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Figure 16: The values of calculated corrected total cell fluorescence intensity 

within SW620 cells, based on the outcomes shown in Figure 15 (data presented as 

mean ± standard deviation, number of cells counted = 50, *p = < 0.001). 
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Figure 17: Fluorescence detection upon the intracellular accumulation of 

doxorubicin in doxorubicin-resistant human colon adenocarcinoma cell line 

AD300, following treatment with, (a) T0P0, (b) T0P1, (c) T1P0, (d) T1P1, (e) 

T1P2 (f) T2P1, (g) T2P2, (h) Free doxorubicin, and (i) No treatment. Arrows 

represent the accumulation of doxorubicin in the nucleus. (Magnification: 40×, 

Scale bar: 10 µm). 
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Figure 18: The values of calculated corrected total cell fluorescence intensity 

within AD300 cells, based on the outcomes shown in Figure 17 (data presented as 

mean ± standard deviation, number of cells counted = 30, *p = < 0.001). 
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Figure 19: Concentration dependent cytotoxicity profile obtained after treating 

SW620 cell lines with various doxorubicin-loaded PBCA-NPDS in comparison 

with free doxorubicin. Data presented as mean ± standard deviation, and 

representative of three independent experiments in triplicate are shown. 
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Figure 20: Concentration dependent cytotoxicity profile obtained after treating 

AD300 cell line with various doxorubicin-loaded PBCA-NPDS in comparison 

with free doxorubicin. Data presented as mean ± standard deviation, and 

representative of three independent experiments in triplicate are shown. 
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Figure 21: Concentration dependent cytotoxicity profile obtained after treating 

H460 cell line with various doxorubicin-loaded PBCA-NPDS in comparison with 

free doxorubicin. Data presented as mean ± standard deviation, and representative 

of three independent experiments in triplicate are shown. 
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Figure 22: Concentration dependent cytotoxicity profile obtained after treating 

MX20 cell line with various doxorubicin-loaded PBCA-NPDS in comparison with 

free doxorubicin. Data presented as mean ± standard deviation, and representative 

of three independent experiments in triplicate are shown. 
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