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ABSTRACT 
 

ALPHA-SYNUCLEIN MULTIMERIZATION IS DEPENDENT ON STRUCTURAL 
CHARACTERISTICS OF REPEATED KTKEGV REGIONS 

 
          Benjamin Ira Rosen 

 
 
 
 

Parkinson’s disease (PD) is the most common movement disorder and is characterized by 

neuronal loss and the presence of Lewy bodies in dopaminergic neurons of the substantia 

nigra pars compacta. PD is a chronic, progressive, and irreversible neurodegenerative 

disorder associated with the selective loss of dopaminergic neurons. Initially described in 

an Ayurvedic medical treatise and Galen’s writings, and later by James Parkinson in 1817, 

the most common symptoms of PD are resting tremors, abnormal posture and gait, and 

muscle rigidity. 

Approximately 1 million people are living with PD in the United States and 

worldwide estimates are between 7 and 10 million. Approximately 5-10% of PD cases are 

genetic, while the vast majority are sporadic and idiopathic. Mutations in genes such as 

SNCA, GBA, PRKN, PINK1, DJ-1 and LRRK2 along with environmental factors such as 

pesticides, gut-bacteria and metal toxicity have been associated with PD. The vast array of 

possible causes paired with the variance of appearance and rate of progression make the 

disease difficult to diagnose and study both at a clinical and molecular level.  

Perhaps the most studied protein in the field of PD is alpha-synuclein (a-syn). 

Indeed, the interest in the protein was sparked in 1997 by the finding that an alanine to 

threonine substitution (A53T) in a-syn co-segregated with PD subjects [1]. Both genetic 

lesions in a-syn and the intrinsic accumulation of the protein in neurons are associated with 



 
 

early- and late-onset PD [1, 2]. A neuropathological hallmark of PD is the presence of 

insoluble intra-neuronal protein aggregates called Lewy Bodies (LB) which are highly 

enriched in a-syn [3]. A-syn is an intrinsically disordered and natively unfolded protein 

with a theoretical size of 14 kDa, which has the propensity to form higher order multimers. 

Although the genetics of SNCA/a-syn are well known, the physiological function of a-syn 

is largely unknown as is its ability to influence neurodegeneration and cell death in PD.  

It has been suggested that a-syn may represent a prime target for future diagnostic 

and therapeutic intervention strategies. However, to further this notion, it will be important 

to understand the aggregation dynamics of a-syn and how intermediate a-syn multimers 

may indeed positively and/or negatively impact the death of neurons in PD. 
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1 Introduction 

1.1 Parkinson’s Disease 

Parkinson’s disease (PD), initially described in an Ayurvedic medical treatise and Galen’s 

writings, and later by James Parkinson in 1817 as “shaking Palsy”, is the most common 

movement disorder and the second-most common neurodegenerative disease [4]. 

Parkinson identified resting tremor, irregular posture and gait, and muscular weakness as 

motor symptoms of the disease (Parkinson 1817). In 1861, Jean-Martin Charcot coined the 

term “Parkinson’s Disease” and described slowness of movement, or bradykinesia, as a 

distinct cardinal symptom [5]. PD is a chronic, progressive, and irreversible 

neurodegenerative disorder associated with the selective loss of dopaminergic neurons of 

the substantia nigra pars compacta and the presence of neuronal inclusions called Lewy 

Bodies (LBs). It is this loss and dysfunction of dopaminergic neurons that leads to both 

motor and non-motor symptoms associated with PD. While the motor symptoms are more 

widely known, non-motor symptoms such as loss-of-smell, depression, cognitive decline, 

and sleep disorders are prevalent in patients [6]. In addition to its wide range of symptoms, 

PD is one of many neurodegenerative diseases, including Alzheimer’s Disease (AD), 

Huntington’s Disease (HD), Amyotrophic Lateral Sclerosis (ALS) and prion diseases, that 

has a complex set of intersecting risk factors: genetic, environmental, protein dysfunction, 

and aging [7].  

The pathological hallmark of PD is the LB. In 1912, Fritz Jakob Heinrich Lewy 

discovered the neuronal inclusion [8]. LBs are aggregates of mostly protein which are 

highly enriched in a-syn. LB composition and the presence of genetic PD-risk factors 
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within a-syn’s encoding gene, SNCA, have led to a-syn being the most studied PD-

associated protein. Indeed, a-syn may represent a valuable target for future therapeutic 

intervention strategies by either preventing its aggregation or promoting its destruction as 

it transitions through multimeric intermediates prior to aggregation formation. In addition, 

the ability to detect and define different a-syn states in PD may provide a possible 

diagnostic and prognostic roadmap improving disease management scenarios. To unlock 

this potential a more detailed understanding of a-syn is required, particularly the 

relationship between different a-syn structures and its aggregation potential. 

1.2 Epidemiology 

Inconsistencies in diagnostic practices and procedures has created difficulty in estimating 

the exact prevalence of PD, however, it is thought that over 6 million individuals in the 

world are living with PD [9]. Indeed, PD affects between 0.1-0.2% of the general 

population but the prevalence increases with age affecting approximately 1% of the 

population above 60 years of age and approximately 4% in individuals over 80 [10]. 

Interestingly, this number is thought to be on the rise due to the increasing lifespan of the 

global population and from1990 to 2015, the prevalence of PD more than doubled [9]. 

Using the Global Burden of Disease’s study of standard life expectancy, PD prevalence is 

conservatively projected to reach almost 13 million by 2040 [11].  

1.3 Symptoms 

PD is characterized by the loss of dopaminergic neurons, however there may also be 

neuronal loss in other neurons and the causes of neuronal loss vary broadly. Such broad 

pathology results in PD being quite heterogenous, making diagnosis based on symptoms 
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difficult. The four cardinal motor symptoms of PD are tremors, rigidity, bradykinesia, and 

postural instability which represent the primary basis for diagnosing patients [12]. 

However, many non-motor symptoms are also involved.  

Bradykinesia is generally defined as slow initiation of voluntary movement as well 

as progressive lessening of speed and amplitude of repeated actions [13, 14]. It can lead to 

the loss of facial expression and minute hand-writing [14]. Bradykinesia is present in all 

PD cases, and it is an essential requirement of the initial step of diagnosis [15]. 

Bradykinesia may be caused by muscle weakness, rigidity, tremor, movement variability, 

and slowness of thought [16]. 

Tremor is the most well-known symptom of PD, most likely due to its unavoidable 

outward manifestation at rest. Indeed, James Parkinson’s famous essay highlighted the 

“shaking” it caused. Tremors are often asymmetric and usually persist at a frequency of 4-

6 Hz and are most common in the hands and legs [14, 15]. Resting tremor is used as a 

positive diagnostic for PD, however action tremors are present in 92% of cases [17]. The 

outward manifestation of tremors often makes its psychosocial impact devastating to 

patients [18]. 

Rigidity of muscles is present in approximately 89% of PD patients [19]. It is 

defined by stiffness and increased resistance of muscles, making movement difficult and 

painful. Patients can experience axial or limb rigidity, but it is most common in the 

extremities. It often begins in the limbs of one side before spreading to trunk and 

subsequently the limbs of the other side of the body. A combination of rigidity and tremor 

may create a cogwheel phenomenon, where a joint is resistant to movement, but it moves 

with small jerks due to tremors.  
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Postural instability is the loss of control over maintaining an upright posture and 

the tendency to lose balance and fall. Patients find it difficult to turn or make sudden 

movements, probably due to the loss of the reflexes needed to maintain balance and 

reactivity [12]. Postural instability is especially dangerous combined with the advanced 

age of PD patients since falls might lead to more serious injury. Postural instability and 

rigidity often lead to Parkinsonian gait, characterized by short shuffling steps, flexed 

posture, lack of arm swinging, and festination [20].  

As PD progresses, non-motor symptoms typically emerge. Absence of any non-

motor symptoms after 5 years of PD is considered a red flag in diagnosing patients [15]. 

Common non-motor symptoms include sleep dysfunction, autonomic dysfunction, 

hyposmia or anosmia, and psychiatric dysfunction [15]. Loss of smell develops in 90% of 

patients and is one of the earliest signs of PD, a fact that supports the Braak hypothesis 

[21]. Autonomic, sleep, and psychiatric dysfunctions worsen with disease progression and 

may be affected by fluctuating dopamine levels resulting from treatments [22]. 

1.4 Treatment 

There is no treatment for PD, however, there are many medications that treat symptoms. 

The most common and most potent medication is Levodopa, a dopamine precursor that 

acts as dopamine replacement therapy. Chronic Levodopa treatment can result in 

dyskinesias and therapeutic response fluctuations, probably due to inconsistent plasma 

concentrations and the brain’s loss of capacity to store the drug [23]. It is commonly used 

in conjunction with Carbidopa, which prevents the conversion of Levodopa into dopamine 

until after it crosses the blood brain barrier [24]. Additionally, catechol-o-methyl 

transferase (COMT) inhibitors (such as tolcapone and entacapone) and monoamine oxidase 
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B (MAO-B) inhibitors (such as selegiline and rasagiline) can have a similar effect of 

preventing degradation of Levodopa, enabling higher concentrations to cross the blood 

brain barrier [25]. Dopamine agonists such as pramipexole and ropinirole are sometimes 

administered to delay Levodopa therapy, but side effects such as sleepiness and impulse-

control disorders have resulted in less common use of these drugs [26].  

1.5 Cellular proteostasis in Parkinson’s Disease 

There are many risk factors associated with developing and exacerbating PD and 

approximately 80% of PD cases are idiopathic, meaning the cause is unknown [27]. It is 

most likely that PD results from a combination of risk factors and in studying these risk 

factors, it is important keep in mind their effect on protein homeostasis (proteostasis), a-

syn, and the formation of pathological LBs. For instance, PD is an age-related disease, and 

its incidence rate dramatically increases in individuals over the age of 60 [28]. When 

considered through the lens of proteostasis, age-related weakening of neuronal repair 

systems might increase the risk that neurons are unable to recover from cellular 

perturbations to protein folding, post-translational modifications, endoplasmic reticulum, 

autophagy, and reactive oxygen species (ROS) clearance [28].  

Protein misfolding and aggregation is a common theme amongst many 

neurodegenerative diseases, therefore maintaining intracellular proteostasis by balancing 

protein folding and misfolding is vital in protecting the functionality of neurons [29]. 

Misfolded proteins are generally inactive, but their accumulation can cause stress responses 

in cells and in organelles. The endoplasmic reticulum (ER) is key in maintaining 

proteostasis as ER stress via protein accumulation triggers the unfolded protein response 

(UPR). The UPR diminishes ER protein level and promotes correct protein folding by 
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proteosomal degradation, translation mitigation and autophagy [30]. Further, autophagy 

plays a crucial role in maintaining proteostasis because it degrades protein aggregates that 

cannot be processed by the proteasome [31]. In fact, the autophagosome can degrade and 

recycle whole organelles to promote cell survival. Protein degradation by autophagy and 

the proteasome recruit target proteins through ubiquitination [32]. Ubiquitination along 

with other covalently bound groups, such as phosphorylation, SUMOylation, and oxidation 

regulate the proteome. Furthermore, Post-Translational Modifications (PTMs) of proteins 

have been shown to promote aggregation in many neurodegenerative diseases [33].  

A hallmark of neurodegenerative diseases is the accumulation and proteotoxicity 

of pathogenic proteins. Protein accumulation can lead to aggregation and inclusions, which 

may be either toxic or protective [34]. Proteotoxicity is especially problematic in post-

mitotic neurons, drawing a clear relationship between neurodegeneration and age. 

Similarly, mitochondrial proteostasis is also critical for cell survival. Its dysfunction can 

lead to the accumulation of ROS. ROS can hamper cellular processes by damaging 

macromolecules such as DNA, RNA, lipids, and proteins. The disturbance of 

mitochondrial proteostasis may lead to the irreversible induction of apoptosis. Apoptosis, 

or programmed cell death, is initiated in stressed cells to avoid the damaging of surrounding 

cells. While advantageous to organisms in most cases, apoptosis is detrimental to the 

nervous system because differentiated neurons cannot be reproduced. Although neuronal 

loss cannot be fully attributed to apoptosis, it is a common culprit in neurodegenerative 

diseases such as PD, AD, HD and ALS. 
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Figure 1. Altered proteostatic levels and protein conformations lead to hallmark 

pathological neurodegenerative pathways. Damaged and excessive protein directly 

causes ER stress and aggregation as well as mitochondrial dysfunction and oxidative stress 

indirectly. Additionally, feedback loops (I, II) highlight the destructive nature of damaged 

proteins propagating ER stress and mitochondrial dysfunction leading to loss of 

functionality further altering proteostasis. The cellular defense response to these pathways 

includes proteosome degradation, autophagy/mitophagy, and apoptosis. 
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1.5.1 A-syn aggregation 

The aggregation of a-syn primarily contributes to PD being a proteopathy (Figure 1). It is 

largely unknown whether a-syn aggregates are toxic or protective. It has been hypothesized 

that the collection of misfolded protein into aggregates is a defense mechanism to combat 

their toxicity and maintain proteostasis [35]. These inclusions, however, have themselves 

been considered toxic by the loss-of-function of aggregating proteins unable to carry out 

their physiological function and/or by the gain-of-function of a new mechanism which 

contributes to cell death [36]. 

 LBs contain aggregated a-syn in the form of beta-sheet rich insoluble structures 

called amyloid fibrils [37]. While it is known that protein misfolding leads to aggregation, 

the initiation and formation of amyloid fibrils is not well understood. Studying the 

formation of a-syn amyloid fibrils, their gain-of-function, loss-of-function and 

neuroprotectivity are critical to the advancement of understanding PD.  

Aggregation of a-syn correlates with dysregulation of its post-translational 

modifications, its accumulation, and its folding. In addition to a-syn, LBs contain but are 

not limited to PD-associated proteins (DJ-1, LRRK2, parkin, PINK-1, GBA and synphilin-

1), a-syn binding proteins, and components of the ubiquitin-proteosome pathway. This 

complex mixture implies that LBs acquire cytotoxicity by attracting various proteins and 

thus disturbing proteostasis. PD progression has also been attributed to the extracellular 

transmission of a-syn fibrils or non-fibrillar multimers, like prion disease, which can 

presumably accelerate the seeding step of LB formation [38, 39]. 

Although a-syn neurotoxicity has been attributed to LB formation and the formation 

of large, protein-magnet-like inclusion inside neurons another hypothesis is that soluble, 
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non-fibrillar, multimeric species of a-syn contribute even more to PD pathogenesis [40, 

41]. Evidence suggests that a-syn multimers interact with and damage cell membranes, 

which can inhibit axonal transport machinery [42]. If the aggregation of a-syn multimers 

hinders this toxic effect, LB formation can be described as neuroprotective rather than 

neurotoxic.  

As a-syn aggregates, its inability to perform its physiological role might cause a 

form of loss-of-function toxicity. A-syn has been implicated in many biological functions 

based on its localization and molecular interactions, however the physiological effects of 

those findings are not well understood [43]. A-syn interactions with lipids and 

phospholipases D1/2 suggest roles in the transport of fatty acids between the cytosol and 

membrane compartments [44], the inducement of membrane curvature [45], the cleavage 

of membrane lipids [46], and the packing of lipids [47]. The cleavage of membrane lipids 

and the packing of lipids in response to lipid-packing defects suggests that a-syn may be 

able to remodel membranes [43]. Additionally, a-syn has been shown to have a 

chaperoning function in the assembly of synaptic SNARE complexes in mice [48].  This 

function may be in addition to other chaperone activity, a hypothesis brought about by a-

syn’s homology with the 14-3-3 family of molecular chaperone proteins and suppression 

of the aggregation of thermally denatured proteins [49, 50]. A-syn has been shown to 

inhibit ER-Golgi trafficking, an effect that is amplified by clinical mutations in SNCA [51, 

52]. Most relevant to PD, a-syn reduces the phosphorylation of tyrosine hydroxylase and 

stabilizes its inactive state, thereby inhibiting dopamine synthesis [53]. Additionally, a-syn  

affects the vesicular transporter of dopamine, altering its homeostasis in vitro [54]. 

Proposed functions of a-syn also include regulation of glucose, suppression of apoptosis,  
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modulation of calmodulin activity, antioxidation, neuronal differentiation, and 

transcriptional regulation [55].  

 

 

 

 

 

  

Figure 2. Pathway of protein throughout the ER. Protein is synthesized in the rough 

ER by ribosomes. Native protein is predominantly exported, while some can aggregate. 

Misfolded protein aggregates are sent to proteasome for degradation. Misfolded protein and 

aggregates promote the UPR, which includes UPR associated gene regulation, ERAD 

pathway, chaperone response, and apoptosis to mitigate the effects of toxic aggregates. 
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1.5.2 Post-translational modifications 

Post-translational modifications (PTMs) play a key role in protein structure and function. 

They increase the diversity and complexity of protein function by shifting tertiary 

structures. PTMs involved in PD include, but are not limited to, ubiquitination, the 

attachment of ubiquitin that signals the proteasomal degradation pathway to target the 

tagged protein; phosphorylation, attaching a phosphate group that may alter the activity 

or structure of a protein; acetylation, the attachment of an acetyl group affects protein 

stability and localization; glycosylation, the attachment of a carbohydrate that affects 

protein folding and stability; NEDDylation, the attachment of the ubiquitin-like protein 

NEDD8 that inactivates proteins and tags them for degradation; and SUMOylation the 

attachment of small ubiquitin-like modifier proteins that affects protein stability, activity, 

and localization. They play a crucial role in many cellular functions and need to be tightly 

regulated. Any disruption in PTMs can lead to a cascade of pathological events that can 

disrupt cellular proteostasis [56].  

A-syn’s primary structure contains five phosphorylation sites, Ser87, Ser129, 

Tyr125, Tyr133, and Tyr 136, that can be phosphorylated by different protein kinases [57]. 

Phosphorylation of Ser129 occurs at a frequency of approximately 4% in normal 

physiological conditions, but several studies have shown that the Ser129 phosphorylated 

form of a-syn in LBs reaches approximately 90% [58]. This evidence has propelled the 

hypothesis that the hyper-phosphorylation of Ser129 has a strong connection with the 

aggregation of a-syn. Phosphorylation of the other residues also increases in PD patients 

with the exception of Tyr125, which shows lower phosphorylation in PD patients as 

compared to the healthy control individuals [59]. The phosphorylation of Ser129 has also 
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been shown to play a cytotoxic role by facilitating trafficking between the cytosol and the 

nucleus [60]. In the nucleus the Ser129-a-syn interacts with histones and interferes with 

histone deacetylase activity [60]. Increased histone acetylation has been associated with 

PD, however, there have been conflicting claims that indicate HDAC inhibitors are 

neuroprotective [61].  

Targeted protein degradation is necessary for maintaining cellular proteostasis. 

Ubiquitination is an enzymatically catalyzed PTM that targets and tags proteins for 

degradation [62]. Ubiquitination consists of three enzyme classes: Ub activating enzyme 

(E1), Ub conjugating enzyme (E2), and Ub ligase (E3) [63]. Proteins tagged for 

degradation can be mono-ubiquitinated or poly-ubiquitinated where the latter targets 

proteins to the 26S proteasome for degradation. Parkin, a protein associated with PD, is an 

E3 ubiquitin ligase that tags misfolded proteins. Further, PINK1 (PTEN induced putative 

kinase 1) is a mitochondrial Ser/Thr kinase that activates and recruits Parkin by 

phosphorylation. Studies have shown that PINK1 phosphorylates Parkin at serine 65 and 

recruits Parkin to the mitochondria so that it can ubiquitinate misfolded proteins [64, 65]. 

Parkin and PINK1 mutations or dysfunction occur in cases of early-onset familial PD, as 

well as in sporadic PD. This dysfunction can cause the accumulation of ROS in the 

mitochondria and hinder cellular proteostasis. Phosphorylation of Parkin at Tyr143 

inactivates its E3 function and has been reported in postmortem PD brain samples [66]. 

Parkin ubiquitinates p62, which regulates protein quality control by transporting 

polyubiquitinated proteins for proteasomal degradation and is a marker for aggregation 

[31, 67]. Dysfunction Parkin activity can result in unchecked ubiquitination of p62 and the 

accumulation of aggregated proteins. 
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Phosphorylation, nitration, and SUMOylation of a-syn are altered in PD and are 

potential biomarkers for the disease [68]. Tyrosine-125 phosphorylation and Y39 nitration 

have been shown to be significantly increased in PD patients compared to healthy 

individuals, whereas SUMO-1 was significantly down in PD patients [68]. Interestingly, 

SUMOylation reduces a-syn aggregation in vitro and in vivo [69]. This study presents an 

interesting application of PTMs as both biomarkers for PD. 

1.5.3 ER Stress 

PD pathology induces ER stress and inhibits its response mechanism, exacerbating the 

effect. Misfolded a-syn accumulates in various cell compartments including the ER lumen 

[70] and a-syn has been shown to inhibit the UPR and ERAD, resulting in apoptosis (Figure 

2) [71]. The ERAD exports targeted proteins to the ubiquitin proteosome system (UPS) in 

the cytosol and the ERAD E3-ligase, HRD1, is elevated in Parkinsonian brain tissue [72]. 

A-syn inhibits the ERAD pathway, promoting pathogenesis, in a similar and parallel 

manner as the PD protein, Parkin, inhibits the UPS. Cultured cells treated with Rotenone, 

an agent used to model PD conditions in vitro and in vivo, show increased phosphorylation 

of ER stress markers as well as upregulated UPR components and ER chaperones [73].  

1.5.4 Autophagy and mitophagy 

Autophagy involves the efficient and selective degradation of misfolded or aggregated 

proteins as well as damaged organelles [74]. Autophagy is a lysosomal-mediated 

degradation pathway that is activated under stress (Figure 3) [75]. This process begins with 

the formation of the double-membrane autophagosome, which engulfs and degrades 

damaged material [76]. The process is driven by a group of autophagy-related proteins 
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(ATGs) that are responsible for autophagosome formation, vesicle expansion, infusion 

with the lysosome, and cargo recruitment [77]. Defects in autophagy are associated with 

the pathogenesis of many neurodegenerative diseases [78]. It is evident that quality control 

of the autophagic pathway is vital to the maintenance of proteostasis since the alteration of 

various regulatory steps in autophagy may lead to global dysfunction in cells [79]. In 

neurodegenerative disorders, dysfunction in the autophagy pathway leads to accumulation 

of pathogenic proteins and damaged organelles (Figure 3).  

In PD, autophagy can be inhibited by A53T and A30P mutants of a-syn, which 

block the uptake of damaged material by the lysosome [80]. This inhibition is a key aspect 

in the pathogenesis and progression of PD. Similarly, mitophagy can be caused by elevated 

ROS levels and decreased lysosomal-autophagic degradation resulting from mutations in 

DJ-1, a PD-related protein involved protecting against oxidative stress [81]. Many PD 

related proteins such as Parkin, PINK1, and Htra2 (Park13) have been shown to be 

associated with mitochondrial dysfunction, which is exacerbated when the enlarged, 

damaged mitochondria cannot be removed by mitophagy [82] [64]. Recent therapeutic 

strategies have been focused on key autophagy-lysosomal pathways (ALP) as it has been 

suggested that defects in autophagy or mitophagy can be sufficient to cause PD [83]. 
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Figure 3 Neurodegenerative disorders alter specific steps in the autophagic pathway, 

which ultimately leads to neuronal cell death. The altered steps include reduced 

induction levels due to protein aggregation and defective mTOR inhibition; Defects in 

cargo recognition resulting in accumulation of toxic proteins; Mutation in VCP leads to 

inhibited transport of autophagic vesicle in ALS; Defects in lysosome/autophagosome 

fusion and acidification. All defective steps, leading to impairment of protein degradation 

by lysosomal degradation, ultimately leads to the release of cathepsin’s and apoptosis. 

Huntington’s Disease (HD); Alzheimer’s Disease (AD); Parkinson’s Disease (PD); 

Spinocerebellar ataxia (SCA); Spinal muscular atrophy (SMA); Dementia with Lewy 

Bodies (DLB); Amyotrophic lateral sclerosis (ALS); Valosin-containing protein (VCP) 
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1.5.5 Mitochondrial dysfunction and oxidative stress 

Mitochondrial proteostasis is critical to the proper functioning of the cells’ “powerhouses”. 

In highly metabolic post-mitotic neurons, mitochondrial function is key due to ATP 

demand and the organelle’s role in regulating apoptosis. The major source of mitochondrial 

dysfunction is oxidative stress via ROS, which are produced in the mitochondria, but are 

tightly regulated through antioxidant pathways. Dysfunctioning mitochondria either 

produce more ROS or are unable to sustain proper regulation. ROS, extremely reactive 

molecules containing one or more free or unpaired electrons, can damage lipids, DNA, and 

proteins. ROS toxicity provides a link between mitochondrial proteostasis, which regulates 

oxidative stress, to cellular proteostasis, which can be damaged and disrupted by ROS.  

 The consequences of oxidative stress are overarching and devastating to the cell. 

Due to its deleterious effects, oxidative stress is a key element in elucidating the link 

between neurodegenerative diseases and age [84]. In relation to neurodegenerative diseases 

and proteostasis, oxidative stress can alter the transcription and translation of pathogenic 

proteins by reacting with transcription factors or altering enzymes and their activities. ROS 

are also known to affect components of autophagy and proteosome degradation. A 

feedback loop is therefore obvious where these effects propagate the aggregation of disease 

proteins, which in turn have been shown to cause mitochondrial dysfunction, leading to 

oxidative stress and disease progression (Figure 1).  

 The PD associated proteins PINK1, PARK13, Parkin, DJ-1 and a-syn have been 

shown to regulate mitochondrial function. PINK1, along with its targets Parkin and Miro, 

regulate mitophagy in response to mitochondrial dysfunction. PARK13, also activated by 

PINK1, is a protease, which removes damaged mitochondrial proteins. PARK13mutations 
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have been associated with oxidative stress and PD phenotypes, while overexpression and 

knockout mouse models have shown both neuroprotection and PD phenotypes [85, 86]. 

DJ-1, a cytosolic antioxidant protein, can be recruited to damaged mitochondria and induce 

mitophagy [87]. The accumulation of a-syn on the outer and inner membranes of 

mitochondria in dopaminergic neurons decreased mitochondrial Complex I activity and 

induced oxidative stress by increased ROS [88]. Interestingly, under oxidative stress, a-syn 

upregulates PGC1-alpha, the “master” mitochondrial biogenesis regulator, which may 

represent a therapeutic target for neurodegenerative diseases [89]. 

1.6 Genetics 

Genetic lesions account for between 5% and 10% of PD cases [90]. Mutations in genes 

such as SNCA, LRRK2, PARK2, PINK1, and GBA, among others, are associated with both 

early- and late-onset PD [91]. However, monozygotic and dizygotic twin studies have 

estimated the heritability of PD to be approximately 30% [91]. This, combined with most 

cases being idiopathic, suggests that even in familial PD, genetics is just one of many risk 

factors. 

1.6.1 SNCA 

SNCA is one of the leading topics within the field PD since 1997, when the A53T mutation 

was identified as PD-related and a-syn was discovered as a major component of LBs 

(28,41). Interestingly, SNCA mutations can be divided into a hierarchy of age-related 

disease onset. The SNCA point mutations A53T, G51D and SNCA triplication events, are 

associated with the early-onset PD [2, 92]. SNCA gene duplication is associated with both 

early- and late-onset PD [2, 92]. The A30P, E46K, and H50Q point mutations are 
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associated with late-onset PD [2, 92]. Combined, these findings suggest that age-dependent 

disease onset and neuronal loss, is linked to a-syn levels within neurons and/or mutations 

that may alter a-syn characteristics.  

Although a-syn is the most widely studied PD-related protein, it is still unclear how 

SNCA perturbations affect PD pathology. Do SNCA mutations create neurotoxic forms of 

a-syn? What are those species? Does increased concentration of a-syn affect the cell by the 

same pathways as a-syn containing clinical mutations? By what means do neurons combat 

a-syn toxicity and how might that ability diminish over time? These are just some of the 

fundamental questions whose answers may lead to major breakthroughs in understanding, 

diagnosing, and treating PD.  

1.6.2 LRRK2 

LRRK2 encodes for leucine rich repeat kinase 2, a multi-functional cytosolic protein 

associated with endosomes, lysosomes, autophagosomes, mitochondria, Golgi, transport 

vesicles, and the plasma membrane [93]. Autosomal dominant missense mutations in 

LRRK2 have been shown to be involved in sporadic PD, while seven-point mutations have 

been shown in familial PD [94, 95].  Although the normal biological function of LRRK2 is 

not fully understood, its mutations impair chaperone-mediated autophagy, which results in 

the accumulation of its substrates, one of which is a-syn [96]. Additionally, the most 

common point mutation of LRRK2, G2019S, is observed in both sporadic and familial PD 

patients and increases LRRK2 catalytic activity which leads to neuronal toxicity and loss 

of dopaminergic neurons [97]. 
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1.6.3 PINK1 

PINK1 encodes for PTEN-induced putative kinase, a serine-threonine kinase. Mutations in 

PINK1 are the second most common cause of early-onset PD, with over 50 PD-related 

mutations reported [98, 99]. Mutations in PINK1 have been shown to result in 

mitochondrial dysfunction, a key PD hallmark [83, 100]. PINK1 phosphorylates and 

thereby increases the activity of Parkin, Miro and PARK13 which play important roles in 

protecting against mitochondrial dysfunction [101, 102]. In fact, several mutations in the 

neuroprotective PARK13 have been associated with familial PD [103]. The 

phosphorylation of Parkin and Miro by PINK1 causes the arrest of mitochondrial motion, 

thereby facilitating mitophagy [104]. The removal of the damaged mitochondria is 

extremely important for neurons and preventing PD pathogenesis [83].  

1.6.4 PARK2 

PARK2 encodes for Parkin, a cytosolic E3 ubiquitin ligase which targets mitochondrial 

proteins for proteosomal degradation and with over 170 mutations reported, it is the most 

common cause of early-onset familial PD [105]. Parkin induces AT5-dependent mitophagy 

by recruiting ubiquitin and p62 to the mitochondrial membrane, resulting in damaged 

mitochondria being taken up by the autophagosome [83, 100]. Mutations in PARK2 result 

in a failure of this mechanism to induce mitophagy. While the effects of the numerous 

mutations must vary, they may include enhanced aggregation, misfolding, dysfunctional 

activation, or ineffective binding to E2 co-enzymes, ubiquitin, or substrates [106]. 
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1.6.5 GBA 

GBA encodes for glucocerebrosidase, a 497-residue lysosomal hydrolase that catalyzes the 

metabolism of the glycolipid glucosylceramide to ceramide and glucose [107]. The 

autosomal recessive mutations found in the GBA gene were first linked to the lysosomal 

storage disorder Gaucher’s Disease (GD) [108]. The improper functioning of this enzyme 

may be linked to lysosomal dysfunction and its mutations have been shown to cause a-syn 

accumulation through autophagic inhibition [109]. Interestingly, PD-related genes SNCA 

and LRRK2 are also involved in the endolysosomal trafficking system and their mutations 

have been linked to the aggregation of a-syn and familial PD [110]. Similar to PD, 

Gaucher’s disease is highly variable and the spectrum of disease partially correlating with 

residual enzyme activity [111]. More than 200 GBA mutations, most resulting in a single 

amino acid change, have been reported in GD patients with N370S and L444P being the 

more common [108, 112]. Many clinical studies have found a trend of GD patients 

developing PD in later stages of prognosis. Furthermore, healthy relatives displayed an 

increase in frequency of Parkinsonism [113]. GBA can numerically be the most important 

genetic factor for the development of PD, evident from the fact that about 5%-10% of PD 

patients have GBA mutations [114]. However, the role of these mutations in PD 

pathogenesis is not fully understood. Protein aggregates, like those found in Lewy bodies, 

have been discovered in GD patients. Combined these findings lead to the hypothesis that 

mutations in GBA might constitute a genetic risk factor when it comes to developing PD.  
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1.7 Specific Aims 

The primary objective of this research was to study the relationship between 

primary structural variations of a-syn and its subcellular multimerization in vivo, its 

secondary and tertiary structures in silico, and its associated neurotoxicity.  

Additional collaborative projects included: (1) Elucidating the effect of clinical 

SNCA mutations on a-syn subcellular species distribution in vivo, (2) Discovering genetic 

targets of PD-associated miRNAs, and (3) Elucidating the possible effects of SARS-CoV2 

on PD-associated molecular and cellular mechanisms and ultimately the effect of the 

COVID-19 pandemic on PD patients. 



22 
 

2 Materials and Methods 

2.1 Buffers 

Universal buffers and their composition used in various protocols are listed below. Specific 

buffers are mentioned together with the specific protocols. 

2.1.1 Lysis buffer 

RIPA buffer (Radio Immuno Precipitation Assay buffer) 

150mM NaCl, 1% NP-40, 50mM Tris at pH 8.0, 0.5% Sodium deoxycholate, and 0.1% 

Sodium dodecyl sulfate (SDS). 

2.1.2 Western blot analysis buffers 

The recipes for buffers used for western blot analysis including buffers required for pouring 

polyacrylamide gels are listed here. 

 

SDS Polyacrylamide gel 

Component Stacking gel Resolving gel 

4% 12% 
Deionized water (DIW) 6.15ml 3.4ml 
30% Acrylamide solution 1.25ml 4ml 
1.5M Tris buffer pH 8.8 - 2.5ml 
0.5M Tris buffer 6.8 2.5ml - 
10% SDS 100µl 100µl 
10% APS (Ammonium persulfate) 50µl 50µl 

TEMED 10µl 5µl 
 

30% Acrylamide solution is 29.2% acrylamide and 0.8% N’,N’-bis-methylene-acrylamide.  
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Tris Buffer (1.5M at pH 8.8, 0.5M at pH 6.8) 

Tris base 54.46g and 18.15g was dissolved in DIW; pH was adjusted with 6N HCl to 8.8 

and 6.8 respectively to make up the volume to 300ml with DIW. 

 

Running Buffer (10X) and Transfer Buffer (10X) 

Stock solutions (10X) for running and transfer buffers were prepared with 3.84M Glycine 

and 0.5M tris base. For running buffer 2% was added. 

 

Tris Buffer Saline (TBS) (10X) 

TBS stock solution (10X) was prepared by dissolving 160.1g NaCl and 48.45g tris-HCl; 

pH was adjusted to 7.6 with HCl to make 2L stock buffer. 

For TBS-T: 100ml of TBS (10X) + 900ml ultra-pure water + 1ml Tween-20 

 

Laemmli Loading buffer 

50mM Tris buffer at pH 6.8, 2% SDS, 10% Glycerol, 0.2% Bromophenol Blue, and 5% ß-

mercaptoethanol (BME).  

 

2.2 Bacteriological techniques 

2.2.1 Bacterial strains 

E. coli DH5a; (F-/endA1 hsdR17(rk-mk+), supE44, thi1, recA1, gyrA(Nalr), gyrA96(Nalr), 

relA1, Δ(lacZYA=argF) U169, deoR (Φ80dlac Δ(lacZ) M15)) was used for propagation 

and preparation of plasmid DNA. 
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2.2.2 List of vectors 

pJET 1.2/blunt (Appendix) (Thermo Fisher Scientific) was used for routine subcloning 

and DNA manipulations. 

 

pcDNA3TM (Appendix) (Thermo Fisher Scientific) was used for heterologous protein 

expression and stable cell line generation in mammalian cells. 

 

2.2.3 Growth media and growth conditions 

Bacteria were grown using Lysogeny broth (LB – 1% Tryptone, 0.5% Yeast extract, and 

1% NaCl) in liquid cultures or LB-agar (1.5% agar added to LB) as colonies. Super optimal 

broth with catabolite repression (SOC – 2% Tryptone, 0.5% Yeast extract, 0.02% KCl, 

0.25% MgSO4, 0.06% NaCl, and 0.36% Glucose; pH 7.0) was used during transformation 

for recovery of transformants. Liquid cultures for DH5a were grown in a shaking incubator 

at 270 rpm at 37°C. Colonies were grown on LB-agar plates incubated overnight in an 

incubator at 37°C. Colonies were picked using sterile pipette tips and added to culture tubes 

for growing liquid cultures with Ampicillin (100µg/ml) selection. 
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2.3 Cloning 

2.3.1 Primers 

Primers used for various cloning experiments are listed below. Restriction endonuclease 

(RE) sites are underlined and in italics.  

Name of the primer (RE site) Sequence with RE site 
pcDNA3 forward CGCAAATGGGCGGTAGGCGTGTACG 
pcDNA3 reverse TGGCACCTTCCAGGGTCAAGGAAGG 
pJET1.2 forward CGACTCACTATAGGGAGAGCGGC 
pJET1.2 reverse AAGAACATCGATTTTCCATGGCAG 
SNCA forward (KpnI) ATGGTACCATGGATGTATTCATGAAAGG 
SNCA reverse (XhoI) ATCTCGAGTTAGGCTTCAGGTTCGTAGTCTTG 

 

2.3.2 Polymerase Chain Reaction (PCR) 

PCR was performed to screen for colonies of positive transformants by colony PCR. Taq 

PCR Master mix kit (Qiagen, Inc.) was used to perform colony PCR for screening 

positive transformants. Colonies grown on LB-agar were picked using sterile pipette tips 

and added to culture tubes with LB media with Ampicillin (100µg/ml). Cultures were 

grown overnight at 37°C in an incubator. 1µl of liquid culture was used as a template in 

each PCR. Specific primer pairs were used to confirm the presence and/or orientation of 

the gene product. The reactions were set up as follows: 

 

Component per reaction (µl) 
PCR Master Mix (2X) 10 
Forward primer 1 
Reverse primer 1 
Template 1 
DDW 7 
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Reactions were set up with the program on the following page 

Step Temperature (°C) Time 
1 95 2 min. 
2 94 1 min. 
3 58 1 min. 
4 72 1 min. 
5 Go to step 2, 34 times 
6 72 5 min. 
7 4 Until removed 

 

2.3.3 Nucleic acid isolations 

All DNA isolations were performed using commercial kits following the manufacturer’s 

protocol. GeneJET plasmid miniprep kit (Thermo Fisher Scientific) was used for isolation 

of plasmid DNA to be used for mammalian cell transfection. GeneJET Gel Extraction kit 

(Thermo Fisher Scientific) was used to isolate purified DNA from restriction endonuclease 

digestions for ligation into pcDNA3 vector. 

 

2.3.4 Nucleic acid measurement 

Plasmid DNA and digested DNA concentrations were determined by using a NanoDrop 

2000 Fluorospectrometer (Thermo Fisher Scientific) for pcDNA3 ligation and mammalian 

transfection. 
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2.3.5 Nucleic acid manipulation 

2.3.5.1 pJET cloning 

GeneArt Strings DNA Fragments (Thermo Fisher Scientific) were cloned by blunt end 

cloning into pJET 1.2 vector using the CloneJET PCR cloning kit (Thermo Fisher 

Scientific) according to the manufacturer’s instructions. Ligated products were 

transformed into E. coli DH5a cells. Colonies were grown under Ampicillin (100µg/ml) 

selection and screened for positive transformants. 

2.3.5.2 Restriction endonuclease digestions 

Restriction endonuclease digests of isolated (2.3.3) DNA were performed as follows:  

Component µl per reaction 
Water (Nuclease-free) 3 
10X CutSmart Buffer (New England 
Biolabs) 

1 

DNA 5 
KpnI-HF (New England Biolabs) 0.5 
XhoI (New England Biolabs) 0.5 

 

Digestions were carried out for 30 minutes to confirm positive transformants or up to 2 

hours for purification and ligation into pcDNA3. 

2.3.5.3 Ligations 

Ligation reactions were setup as follows: 

Component µl per reaction 
Digested insert 8 
Digested pcDNA3 vector (10-50ng) 0.5 
T4 DNA ligase (New England Biolabs) 0.5 
T4 DNA ligase buffer (10X) (New 
England Biolabs) 

1 

 

Ligations were carried out for 1 hour at room temperature and used for transformation. 
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2.3.6 Bacterial transformations 

DH5α cells were thawed on ice and 5µl of ligation reaction was added to the cells. The 

transformation mix was incubated on ice for 30 minutes. The cells were then heat shocked 

at 42°C for 45 seconds immediately followed by 2 minutes on ice. 900µl SOC media was 

then added to the cells, which were then incubated at 37°C for 1 hour with shaking. Cells 

were spread onto LB-agar plates with Ampicillin (100µg/ml) and incubated at 37°C for 16-

20 hours. Colonies were first screened by colony PCR (2.3.2). 1-3 positive clones were 

used for DNA isolation (2.3.3) followed by restriction endonuclease digestion (2.3.5.2). 

Digestions were analyzed by agarose gel electrophoresis to verify the expected DNA 

fragment size. Confirmed transformants were verified by DNA sequencing at the Yale 

DNA analysis facility. 

2.3.7 Agarose gel electrophoresis 

DNA was analyzed by 1% agarose gel electrophoresis. The DNA was mixed with loading 

buffer (6X loading buffer: 30% glycerol, 0.25% bromophenol blue) and ethidium bromide 

to visualize the DNA fragments on a UV transilluminator. Tris-acetate-EDTA buffer 

(TAE: 40mM Tris-base, 20mM glacial acetic acid, 1mM EDTA at pH 8.0) was used to 

make the gels and as the running buffer. The gels were prepared by melting the agarose 

into 1X TAE buffer by microwave oven. Ethidium bromide was then added, and the gel 

solidified in a gel cassette. HiLo DNA marker (Minnesota Molecular) was used as a size 

reference (Appendix B-1). 
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2.3.8 List of constructs generated 

Wild-type (WT) SNCA was cloned into pcDNA3 by previous laboratory members. 

pcDNA3 was a generous gift from Dr. Laura Schramm, Department of Biological 

Sciences, St. John’s University. 

 

Name of clone (flanking RE sites) Application 
pJET GTK (KpnI/XhoI) cloning 
pJET KLK (KpnI/XhoI) cloning 
pJET KGV (KpnI/XhoI) cloning 
pJET EGR (KpnI/XhoI) cloning 
pcDNA3 GTK (KpnI/XhoI) mammalian cell transfection 
pcDNA3 KLK (KpnI/XhoI) mammalian cell transfection 
pcDNA3 KGV (KpnI/XhoI) mammalian cell transfection 
pcDNA3 EGR (KpnI/XhoI) mammalian cell transfection 
pJET 5’-3’NLS SNCA cloning 
pJET 5’-3’ NLC SNCA cloning 
pJET 5’ NLS SNCA cloning 
pJET 5’ NLC SNCA cloning 
pJET 3’ NLS SNCA cloning 
pJET 3’ NLC SNCA cloning 
pcDNA3 5’-3’ NLS SNCA mammalian cell transfection 
pcDNA3 5’-3’ NLC SNCA mammalian cell transfection 
pcDNA3 5’ NLS SNCA mammalian cell transfection 
pcDNA3 5’ NLC SNCA mammalian cell transfection 
pcDNA3 3’ NLS SNCA mammalian cell transfection 
pcDNA3 3’ NLC SNCA mammalian cell transfection 
pJET His-EK-G51D SNCA Dr. Rashed Abdullah’s thesis project 
pJET His-EK-H50Q SNCA Dr. Rashed Abdullah’s thesis project 
pcDNA3 His-EK-G51D SNCA Dr. Rashed Abdullah’s thesis project 
pcDNA3 His-EK-G51D SNCA  Dr. Rashed Abdullah’s thesis project 

 

2.4 RNA processing and analysis 

All RNA samples were quantified and quality controlled by Nanodrop 2000 (Thermo 

Fisher Scientific).  
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2.4.1 RNA isolation 

RNA isolations from mammalian cells were performed 24 hours post-transfection or from 

stable cell lines in triplicate. Total RNA was extracted by following the manufacturer’s 

instructions of GeneJET RNA purification kit.  

2.4.2 cDNA synthesis 

RNA samples were treated with 1 unit of DNase I/µg of RNA (Thermo Fisher Scientific) 

for 30 minutes at 37°C followed by 10 minutes at 65°C with 50mM EDTA. cDNA was 

synthesized by RevertAid First Strand cDNA Synthesis kit and an oligo dT primer (Thermo 

Fisher Scientific) by following the manufacturer’s instructions.  

2.4.3 Real-time qPCR 

All qRT-PCR were done with PerfeCTa SYBR GREEN Supermix for IQ containing 

AccuStart Taq DNA Polymerase (Quanta Biosciences) for 45 cycles followed by 

dissociation steps with MyiQ Single color Real-Time PCR Detection System (Bio-Rad). 

Reactions were done using 1µM gene-specific primers. GAPDH was used to normalize Cq 

values in calculating relative expression. The qRT-PCR protocol included initial 

denaturation at 95°C for 2 minutes followed by 35 denaturation cycles at 95°C for 15 

seconds, annealing at 60°C for 45 seconds, extension at 72°C for 40 seconds, and finally 

dissociation steps of in increments of 0.5°C. 
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2.5 Tissue culture and processing 

2.5.1 Cell culture and stock information 

BE(2)-M17 human neuroblastoma cells (ATCC CRL-2267) and SH-SY5Y human 

neuroblastoma cells (ATCC CRL-2266) were cultured in a base medium (Thermo Fisher 

Scientific) supplemented with 2mM GlutaMax (Thermo Fisher Scientific), 1 mM sodium 

pyruvate (Thermo Fisher Scientific), 100 µM Non-essential amino acids solution (Thermo 

Fisher Scientific), and 10% fetal bovine serum (Gemini Bio-Products) in a 5% CO2 

incubator at 37°C. Cells were sub-cultured every 4-5 days. Cells were cryopreserved in full 

medium with 5% DMSO.  

2.5.2 Transfections 

Transfections were performed at 90% confluency one day after seeding cells in six-well 

plates at 5x105 cells per well or in 10cm plates with 3x106 cells per plate. For each six-well 

transfection, 1 µg plasmid DNA was mixed with 50µl Opti-MEM (Thermo Fisher 

Scientific), and, separately, 1.25µl Lipfectamine-2000 (Invitrogen) was mixed with 50µl 

Opti-MEM. For transfections in 10 cm plates, 4 µg plasmid DNA was used, and all other 

quantities were increased proportionally. After 5 minutes incubating at RT, both solutions 

were mixed and incubated for 15 minutes at RT. The transfection mix was diluted with 2ml 

Opti-MEM and added to cells for transfection. Cells were incubated at 37°C in 5% CO2 

for 4-6 hours before transfection media was replaced with full media. The cells were 

harvested 48 hours after transfection for further experimentation. 
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2.5.3 Stable cell line generation 

To create stable cell lines, cells were exposed to antibiotic selection beginning one day 

after transfection. Antibiotic concentration was determined by a kill curve assay and added 

to complete medium. Cells were passaged after 7 days for 4 weeks and 8 vials per passage 

were frozen in liquid nitrogen. An aliquot of cells was analyzed at each passage to observe 

protein expression by western blot. 

Cell line Selection Passages 
pcDNA3 empty vector in M17D cells G418 4 
pcDNA3 WT-SNCA in M17D cells G418 4 
pcDNA3 GTK in M17D cells G418 4 
pcDNA3 KLK in M17D cells G418 4 
pcDNA3 KGV in M17D cells G418 4 
pcDNA3 EGR in M17D cells G418 4 
pcDNA3 empty vector in SH-SY5Y cells G418 4 
pcDNA3 WT-SNCA in SH-SY5Y cells G418 4 
pcDNA3 GTK in SH-SY5Y cells G418 4 
pcDNA3 KLK in SH-SY5Y cells G418 4 
pcDNA3 KGV in SH-SY5Y cells G418 4 
pcDNA3 EGR in SH-SY5Y cells G418 4 
pcDNA3 His-EK G51D in SH-SY5Y cells G418 4 
pcDNA3 His-EK H50Q in SH-SY5Y cells G418 4 

 

2.5.4 Crosslinking of cells 

Prior to cells being lysed or fractionated for western blot analysis, 80-90% confluent cells 

were trypsinized, washed in ice-cold PBS and pelleted by centrifugation at 500xg at 4°C. 

Supernatant was discarded. Cells were resuspended in 8ml ice-cold PBS and placed onto 

fresh 10 cm tissue culture dish. The cells were exposed to 150 mJ of energy by UV 

crosslinker (VWR) and removed to be collected by centrifugation.  
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2.5.5 Whole cell lysate preparation 

Whole cell lysates were prepared with RIPA lysis buffer with Halt Protease Inhibitor 

Cocktail (Thermo Fisher Scientific) and EDTA. Cells were vortexed with lysis buffer 

(400µl/10-12x106 cells) and incubated for 10 minutes on ice. The mixture was centrifuged 

at 16,000xg at 4°C for 5 minutes and the supernatant was collected. 

2.5.6 Subcellular protein fractionation  

The following protocol was performed using the Subcellular Protein Fractionation Kit for 

Cultured Cells (Thermo Fisher Scientific). Buffer volume used varied proportionally to 

cell pellet volume: 

Cell pellet volume (µl) CEB MEB NEB NEB+CaCl2+MNase PEB 
10 100 100 50 50 50 
20 200 200 100 100 100 
50 500 500 250 250 250 
100 1000 1000 500 500 500 

 

The cell pellet was gently resuspended in ice-cold cytoplasmic extraction buffer (CEB) 

containing protease inhibitors and incubated at 4°C for 10 minutes. The tube was 

centrifuged at 500xg at 4°C for 5 minutes and the supernatant (cytoplasmic extract) was 

collected on ice. The pellet was resuspended in ice-cold membrane extraction buffer 

(MEB) containing protease inhibitors and incubated at 4°C for 10 minutes. The tube was 

centrifuged at 3,000xg at 4°C for 5 minutes and the supernatant (membrane extract) was 

collected on ice. The pellet was resuspended in ice-cold nuclear extraction buffer (NEB) 

containing protease inhibitors and incubated at 4°C for 30 minutes. The tube was 

centrifuged at 5,000xg for 5 minutes. The supernatant (nuclear soluble extract) was 

collected on ice. The pellet was resuspended in RT NEB containing protease inhibitors, 
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CaCl2 (5µl 100mM per 100µl NEB), and micrococcal nuclease (MNase, 3µl per 100µl 

NEB) and incubated at RT for 20 minutes with gentle mixing. The tube was centrifuged at 

16,000xg for 5 minutes. The supernatant (chromatin bound) was collected on ice. The 

pellet was resuspended in RT pellet extraction buffer (PEB) containing protease inhibitors 

and incubated at RT for 10 minutes. The tube was centrifuged at 16,000xg for 5 minutes. 

The supernatant (cytoskeletal extract) was collected. Fractions were kept on ice for same-

day use or stored at -80°C for long-term storage. 

2.6 Western blot analysis 

Sample preparation: Freshly isolated whole-cell lysate, fractions or thawed samples were 

mixed with 5X reduced dye and boiled at 95°C for 5 minutes. Samples were chilled on ice 

for 1 minute and quickly centrifuged.  

 

SDS-PAGE and Blotting: Samples were run on 12% polyacrylamide resolving gels 

alongside PageRuler Unstained Broad Range Protein Ladder (Bio-Rad) at 100V for 80 

minutes using the Mini-Protean Tetra system (Bio-Rad) in running buffer. The proteins 

were transferred to PVDF membranes (Thermo Fisher Scientific) using the Trans-Blot SD 

Semi-Dry Transfer Cell (Bio-Rad) at 20V for 42 minutes in transfer buffer. Membranes 

were then blocked by shaking in 5% non-fat dry milk and TBS-T for 1 hour at RT. After 

washing with TBS-T, the membranes were incubated at 4°C overnight in 2.5% nonfat dry 

milk and TBS-T containing the appropriate primary antibody at the appropriate dilution. 

The membranes were then washed with TBS-T three times for 10 minutes and incubated 

for 1 hour at RT with the appropriate secondary antibody at the appropriate dilution. The 

membranes were washed with TBS-T three times for 10 minutes each. The membrane was 
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developed with Pierce ECL Western Blot Substrate (Thermo Fisher Scientific) and the 

signal was detected by the Molecular Imager Chemi Doc XRS1 imaging system (Bio-Rad). 

ImageJ software (NIH) was used to analyze Western blot images.  

 

Primary Antibody (1:10,000) Manufacturer 
Rabbit polyclonal anti-SNCA Abcam 
Goat polyclonal anti-LDH Fitzgerald Industries 
Rabbit polyclonal anti-EGFR Cell Signaling 
Rabbit monoclonal anti-SP1 Cell Signaling 
Rabbit polyclonal anti-Histone H3 Cell Signaling  
Goat polyclonal anti-Tim23 Santa Cruz Biotechnology 
Rabbit polyclonal anti-GAPDH Santa Cruz Biotechnology 
Secondary Antibody (1:5,000) Manufacturer 
Goat anti-Rabbit IgG (H+L)-HRP  Jackson Immunoresearch 
Donkey anti-Goat IgG (H+L)-HRP  Jackson Immunoresearch 
Precision Protein StrepTactin-HRP  Bio-Rad 

 

2.7 Assays 

2.7.1 Cell viability assay 

The neutral red uptake assay was used to measure cell viability beginning 48 hours post 

transfection. Cells were washed with PBS and incubated for 2 hours in 100µl neutral red 

working solution (40µg/ml). Cells were washed with PBS and neutral red was extracted 

with 150µl destain solution (50% ethanol, 1% glacial acetic acid, 49% deionized water) by 

shaking for 10 minutes. Absorbance was measured at 540nm using a microplate reader.  
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2.7.2 Kill curve assay for antibiotic selection 

M17D and SH-SY5Y cells were seeded in 24-well plates with 2.5x105 cells per well. One 

day after seeding, cells were treated in triplicate with serial diluted concentrations of 

Geneticin (Invitrogen) (0.13, 0.25, 0.5, 1, 2, 4, 8 mg/ml) or puromycin (Invitrogen) (12.5, 

25, 50, 100, 200, 400, 800 µg/ml). 

2.7.3 Bradford assay 

Protein concentrations of samples to be used for western blots were measured using Protein 

Assay Kit II and DC Protein Assay Kit (Bio-Rad). Bovine serum albumin was used to 

prepare standard solutions from 0.05 to 1.0 mg/ml and samples were diluted from 1:10 to 

1:100. Assays were measured by Epoch microplate spectrophotometer (BioTeck) on 96-

well plates.  

2.8 Molecular dynamics simulations  

All molecular dynamics simulations were performed by Dr. Francisco Vazquez, 

Department of Chemistry, St. John’s University, on the full WT, KGV, and GTK a-syn 

proteins. Gaussian accelerated molecular dynamics (GAMD CITE) were used to sample 

the folding landscape of the protein. The simulations were performed with Amber 16 CITE 

using the CHARMM 36 force field CITE. The time step for all simulations was 4fs with 

hydrogen mass repartitioning. Initial protein structures were prepared by the following: (1) 

collapsing fully extended polypeptide chains in vacuo using energy minimization, (2) 

equilibrating the collapsed chains at 700K in vacuo, (3) solvating the chains with a 20 Å 

layer of TIP3P water and neutralizing the solution with NaCl to 0.15M, and (4) heating the 
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system from 298K to 600K and equilibrating at high temperature for 300ns.The resulting 

structure was used to begin the GAMD simulation. Coordinates were recorded every 1ps 

with the first 500ns of each simulation discarded. Analysis was performed on the 

trajectories using the Pytraj library. Secondary structure was analyzed using DSSP CITE. 

Clusters were analyzed using the K-means method within Pytraj CITE. Molecular 

structures were visualized and rendered using VMD. 

(http://www.ks.uiuc.edu/Research/vmd/). 

 

  

http://www.ks.uiuc.edu/Research/vmd/
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3 A-syn Multimerization is Dependent on Structural 

Characteristics of Repeated KTKEGV Regions 

3.1 Introduction 

A-syn is an intrinsically disordered neuronal protein (~14 kDa) involved in various 

neurodegenerative diseases including PD. The monomeric, native form of a-syn can be 

defined by three domains: (1) The N-terminal region contains a six-time repeated motif of 

the residues KTKEGV, forming an amphipathic alpha-helix, (2) The Non-Amyloid 

Component (NAC) region is largely hydrophobic and aggregation prone, and (3) The C-

terminal domain is an acidic, unstructured sequence which has been attributed many 

biological roles including sites of post-translational modifications and protein interactions.  

Although a-syn may be involved in vesicle trafficking, chaperone activity, and is 

essential to the correct functioning of neurons, its biology is still largely unknown [71]. 

The majority of a-syn´s involvement in the pathogenesis of PD has been linked both to its 

insoluble aggregation and soluble multimerization [41, 70]. Because it has been 

conclusively shown that a-syn is at the core of LBs and that certain a-syn conformations 

can “seed” or allow a site for initiation of LB-like inclusions, much research has been 

focused on a-syn self-interaction and self-aggregation. Soluble multimers of a-syn have 

repeatedly been shown to exist across several PD model systems. The characterization of 

these multimers has indeed become a popular topic within a-syn research programs as their 

repeatable and distinct molecular sizes suggest a certain level of stability and possibly 

distinct oligomeric-specific functions. Many extrinsic factors such as post-translational 

modifications, oxidative stress and metal binding have been shown to affect 

multimerization [58, 59]. Pertaining to the structure and sequence of a-syn, most forms of 
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familial cases of PD are associated with a mutation in the gene SNCA which encodes a-syn 

[92]. Mutations in SNCA have been shown to affect both the formation of insoluble fibrils 

and soluble multimers in PD models.  

Although there are still many questions outstanding in terms of the functionality of 

a-syn multimers and aggregates, some recent studies, using both clinical and non-clinical 

a-syn variants, have demonstrated a clear cause and effect relationship in terms of 

multimeric shifting, ultimately leading to neurotoxicity. For example, some a-syn clinical 

missense mutations, including A53T and E46K, have been shown to shift the native 64 

kDa tetramers towards monomeric states as a possible mechanism for disease initiation, 

neurotoxicity, and increased aggregation [115]. Interestingly, the repeated KTKEGV motif 

has been implicated as critical to neurotoxicity and the presence of multimers or exclusive 

presence of monomers in neuroblastoma cells [116].Targeting the KTKEGV repeats is an 

appropriate approach to studying the critical components of a-syn proteostasis simply due 

to its prevalence throughout the protein. This study aims to both clarify the importance of 

the repeats sequence to a-syn multimerization and aggregation in neurons as well as within 

subcellular compartments of neurons.  

 

3.2 Hypothesis 

We hypothesized that a-syn multimerization can be studied by utilizing mutations in a 

repeated motif throughout the N-terminus of the protein. The primary objective of this 

research is to further understand the importance of the distinct repeated motif, KTKEGV, 

to the multimerization and function of a-syn in neurons to gain a deeper understanding of 

one of the earliest events in the pathogenesis of PD.  
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3.3 Results and Discussion 

3.3.1 KTKEGV repeat regions affect a-syn multimerization 

In order to change the nature of KTKEGV repeat regions of a-syn we selected four a-syn 

mutant sequences (Figure 4A), as previously described [116]: 1) GTK replaced a large 

basic residue with a small, simple glycine, 2) KLK replaces a hydroxyl-containing R-group 

with a hydrocarbon, 3) KGV replaces an acidic residue with a basic one, and 4) EGR 

replaces a hydrocarbon with a basic residue. The mutated variants were generated by as 

GeneArt Strings DNA Fragments (Thermo Fisher Scientific), cloned into pJET1.2 blunt 

vector, and finally subcloned into the pcDNA3 mammalian expression vector. 

M17D human neuroblastoma cells were transfected with the pcDNA3 constructs 

containing WT SNCA and the mutated variants GTK, KLK, KGV, and EGR in independent 

transfection experiments. Stable cell lines were generated by Geneticin G418 selection and 

SNCA expression amongst the cell lines was confirmed by a SYBR Green-based 

quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) assay. The qRT-

PCR results confirmed that the overexpression of SNCA was not significantly different 

between the cell lines (Figure 4B). Having established similar expression of SNCA in the 

different transfection experiments, we measured cell viability while monitoring the cells’ 

morphology to assess an overall effect of the mutations. Cellular morphology was 

monitored by microscope and was indistinguishable amongst cell lines (data not shown). 

Cell viability of the stable cell lines was then measured by neutral red uptake assay, with 

the GTK mutant showing significantly less viability than control cells, suggesting a 

possible neurotoxic effect [117].  
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Figure 4 Stable overexpression of WT and KTKEGV-repeat mutant SNCA in M17D 

cells. (A) Amino acid sequences of WT, GTK, KLK, KGV, EGR a-syn. (B) Expression of 

SNCA in M17D cells transfected with pcDNA3 containing SNCA variants. (C) Neutral Red 

Assay of mutant a-syn expressing M17D cells (n=3, *p<0.05, **p<0.01, t-test) 
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We next aimed to observe the repeat mutant a-syn variants in the cell lines to assess 

how altering the primary structure of the protein affects its multimerization and how altered 

multimerization might relate to the decrease in viability of the GTK mutant cells. SDS-

polyacrylamide gel electrophoresis (SDS-PAGE) and western blotting was used to observe 

a-syn multimeric distributions in whole-cell extracts. Prominent bands representing a-syn 

multimers of sizes 17 kDa, 37 kDa, 50 kDa, 100 kDa and 150 kDa are present in all 

transfected cell lines (Figure 5A). A 21 kDa species of a-syn is present in the KLK mutant 

cells, indicating highly modified monomer (Figure 5A). Interestingly, while expression of 

SNCA is not significantly different among these cell lines (Figure 4B), monomeric a-syn is 

significantly lower in repeat mutant SNCA cells compared to WT SNCA transfected cells 

(Figure 5B). We hypothesize that the decreased monomer can be explained in one of two 

ways: (1) the monomeric a-syn formed higher level species but that did not show 

significance either due to varied size or through some means of processing and analysis or 

(2) the repeat mutant monomers or multimers were degraded at an increased rate due to 

altered structure. Finally, there were no other observable significant differences of the 

neurotoxic GTK a-syn as compared to WT transfected cells.  

3.3.2 KTKEGV mutants are distributed throughout subcellular compartments  

Subcellular fractionations of the a-syn repeat mutant cell lines were used to identify where 

the prevalence of a-syn multimer differ subcellularly with the additional aim to increase 

the resolution of possible changes in multimers among the a-syn repeat mutants that were 

not observable in the whole cell lysates (Figure 5). Cells were fractionated using the 

Subcellular Protein Fraction Kit for Cultured Cells (Thermo Fisher Scientific) by a 

stepwise lysis and 
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Figure 5 Whole cell a-syn levels vary in transfected M17D cells. (A) Western blot 

probing whole cell extracts for a-syn. (B) Quantified fold change a-syn monomer (~17 

kDa) (n=3, *p<0.05) 
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centrifugation protocol. A subcellular fractionation into cytosol, membrane bound, nuclear 

soluble, and chromatin-bound compartments of control, empty pcDNA3 transfected M17D 

cells is shown by western blot (Figure 6A). The integrity of the fractions was confirmed by 

probing for fraction-specific markers and showing little to no contamination between 

fractions (Figure 6B). The distribution of a-syn multimers is not altered by the fractionation 

protocol as the multimers in each fraction add up to equal the whole cell profile [40]. While 

the “distinct a-syn profile” of SHSY-5Y neuroblastoma cells has been previously 

described, we have established with these data that this characteristic is cell-type specific. 

While not surprising, this emphasizes the importance of the model system and suggests 

techniques such as dopaminergic differentiation through retinoic acid treatment should be 

considered in future experiments [118].  

Our additional work aiming to knockout SNCA to create a system with exclusively 

exogenous mutant a-syn was motivated by the results reported above. Out of five prevalent 

a-syn species shown in M17D cells, monomer, 70 kDa and 150 kDa are observed only in 

the cytosolic and membrane bound fractions, and the 50 kDa multimer is present in all 

fractions where a-syn is observed (Figure 6A). Interestingly, a shift to lower size and 

presumably a less modified form of tetrameric a-syn is seen in the nuclear soluble fraction 

(Figure 6A). The distribution of a-syn throughout the cell suggests that its biological 

functions vary in different subcellular compartments. Indeed, a-syn, often described as a 

cytosolic protein, has been implicated as a molecular chaperone, including chaperone 

activity of the SNARE complex triggered by membrane binding and subsequent 

multimerization [119, 120]. Additionally, a-syn has been shown to act as a transcriptional 



45 
 

regulator of a master mitochondrial co-activator as well as a modulator of histone 

modification [89, 121, 122].  

 

 
 

Figure 6. Subcellular a-syn in M17D cells. (A) A-syn multimeric distribution in 

subcellular compartments of M17D cells transfected with empty pcDNA3 vector. (B) 

LDH, EGFR, SP1, and Histone H3 were used as quality controls for cytosolic, membrane 

bound, nuclear soluble, and chromatin bound fractions respectively  
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A-syn of repeat mutant cells were compared by western blotting of each subcellular 

compartment and the presence of each multimeric species is mostly consistent (Figure 7), 

however, the size of monomeric a-syn varies. Doublets, suggesting some form of PTMs, 

are observed in WT a-syn monomer in every compartment as well as in the membrane and 

nuclear soluble fractions of KLK cells (Figure 7). A-syn is subject to various PTMs and 

further experimentation identifying the specific PTMs present throughout the subcellular 

compartments in WT and KLK cells is a logical next step [123]. All four mutants had less 

monomer in the cytosolic fractions, mimicking the pattern found in whole cell lysates 

(Figures 5, 7A, 7D). Significantly less monomer was found in the membrane-bound 

fractions of GTK and KGV mutant cells when compared to WT (Figure 7B, 7E). 

Interestingly, KLK expressing cells, only, showed 36 and 21 kDa species in the membrane-

bound fraction (Figure 7B). This suggests that future work should focus on the role of the 

KTKEGV motif on the relationship between multimerization and membrane binding, a 

relationship that has been previously studied [120].  

All the mutant cell lines had significantly less monomer in the nuclear soluble 

fraction than WT cells, while KGV and EGR showed increased levels of the 50 kDa species 

(Figure 7C, 7F, 7I). There is significantly less 50 kDa bound to chromatin in GTK, KLK 

and KGV mutant cells, and interestingly, only GTK cells showed an absence of monomer 

in the chromatin-bound fraction (Figure 7G-H).  These results show that modifying the 

KTKEGV motif alters the abundance of monomeric a-syn at the cellular and subcellular 

levels, as well as the abundance of the 50 kDa species subcellularly (Figures 4-7). 

Interestingly, the KGV mutant shows a significant difference compared to the WT 

for every band we analyzed (Figure 7). This result, in addition to the observed neurotoxicity 
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of the GTK mutant, led us to focus our in silico molecular dynamics simulations on WT, 

GTK, and KGV forms of a-syn.  

 

 

 
 

Figure 7. Subcellular fraction comparison of a-syn in M17D cells stably 

overexpressing repeat mutant SNCA. (A, D) Cytosolic (B, E Membrane bound (C, F, I) 

Nuclear soluble (G, H) Chromatin bound (n=3, *p<0.05, **p<0.01, ***p<0.001) 
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3.3.3 Molecular Simulations of Repeat Mutants 

To understand how the introduction of repeat mutants into the a-syn sequence may lead to 

aggregation, we used molecular dynamics (MD) simulations to determine how the 

mutations affect the intermolecular interactions that lead to aggregation. We simulated the 

GTK and KGV mutants along with the WT variant to quantify how the repeat mutants 

change the sampling of secondary structure and inter-domain interactions. We used all-

atom MD, in which every atom is modeled as a single particle and Newton’s classical 

equations of motion are used to propagate the system forward in time and generate a 

trajectory of molecular structures [124]. Standard, unbiased molecular dynamics 

simulations are generally unable to sample many different structures, and this limits their 

ability to study intrinsically disordered proteins (IDPs) such as a-syn. Because of this, some 

sort of enhanced sampling method is required to study IDPs to correctly sample the many 

structures adopted by a disordered protein. Specifically, we used Gaussian accelerated 

molecular dynamics (GAMD) to enhance the sampling of our simulations [125, 126]. The 

benefit of this method is that it can correctly reproduce the shape of the potential landscape 

while still allowing the protein to sample the entire folding landscape. It should be noted 

that the GAMD does not preserve the exact relative frequency of sampling, but distribution 

minima and maxima can be determined to understand which structures are most sampled 

[127, 128].  

3.3.4 KGV and GTK change the behavior of the C-terminal Domain 

The simulations of the GTK and KGV repeat mutant variants can form significantly 

different structures than the WT protein in silico. Figure 8 shows the representative 
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structure of the largest structural cluster sampled by each protein variant. The clustering 

analysis was done by using the K-means method [129]. 

The structures sampled by the WT do not have much secondary structure and show 

that the C-domain is interacting with both the N-terminal and the NAC domain (Figure 

8A). Specifically, the C-domain is interacting with both the N-terminal and the NAC 

domains in a way that keeps them from interacting with each other.  In this way, the C-

terminal may be serving a protective role by mediating the interactions between the N-

terminal and NAC domain. It has been shown that removal of the C-terminal domain leads 

to an increase in aggregation of the monomer [130, 131], and a recent study has shown that 

the human appendix, even in healthy patients, contains truncated a-syn monomers and 

various forms of oligomers [132].  This suggests that the C-terminus protects against the 

aggregation of a-syn monomers. The protective properties of the C-terminal domain may 

be due to its ability to mediate the interactions between the other domains by forming a 

correct number of contacts with both the N-terminal and NAC domains. 

The GTK mutation seem to perturb the interactions between the C-terminal domain 

and N-terminal and NAC domains almost completely, leading to a fully extended C-

terminal domain in the structure (Figure 8C). The GTK mutant structure is especially 

interesting because it appears to behave like a C-terminal domain deletion mutant, which 

are known to form toxic aggregates [130, 131].  Comparison of the radius of gyration, 𝑅𝑔 

(Figure 9A), and the end-to-end distance, 𝑅𝑒𝑒 (Figure 9B) shows that GTK mutant can 

sample structures that are much more elongated than either the WT or KGV protein 

variants. The elongation of the C-terminus may lead to an increase in toxicity that could 

explain why the GTK mutant cells were less viable than the control cells. An analysis of 
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the contacts between the N-terminal and C-terminal domains (Figure 10A), the NAC and 

C-terminal domains (Figure 10B), and the N-terminal and NAC domains (Figure 10C) also 

shows that the GTK mutation significantly disrupts the number of contacts between the C-

terminus and either the N-terminal or NAC domains. Interestingly, in the distribution of 

contacts between the N-terminal and NAC terminal domains, the GTK and WT distribution 

curves show similar shapes, except for the regions with very few contacts and the tail with 

many contacts.  

In the case of the KGV mutant, the C-terminal domain still interacts with the other 

domains, but its ability to reduce the interactions between the N-terminal and NAC 

domains is diminished. The distributions of 𝑅𝑔 and 𝑅𝑒𝑒  also show that the KGV mutant 

samples structures that are more compact than the WT protein, due to increases in inter-

domain contacts and an increase in the sampling of -sheet motifs. Compared to the WT, 

the KGV mutation leads to an increase in the number of contacts between the C-terminal 

and the N-terminal domains and the number of contacts between the N-terminal and NAC 

domains. It appears that by mutating the WT protein to the KGV variant, the interaction 

between the C-terminal domain and the N-terminal domain is changed in a way that 

disrupts its ability to reduce the interactions between the N-terminal and NAC domains. 

This disruption also seems to lead to a significant increase in the sampling of -sheet rich 

structures for the KGV mutant (Figure 11). The figure shows the distribution of the number 

of residues that have a -sheet configuration according to the DSSP method [133]. 

Mutation of the protein to the KGV variant leads to large enhancement of -rich structure. 

Structures with many -sheet motifs are generally associated with protein aggregation and 
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increased toxicity and this may explain why fewer KGV monomers were found in the 

cytosolic region of the cells. 

From our simulations, it appears that both the KGV and GTK mutations may lead 

to aggregation or toxicity prone monomeric behavior, but through two quite different 

pathways caused by a perturbation to C-terminal domain behavior. Too many or too few 

contacts between C-terminal and N-terminal domains appear to result in structures that 

may be prone to aggregation.  
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Figure 8. The representative structures determined by clustering analysis for the WT 

(a), KGV (b), and GTK (b) a-syn variants. The New Cartoon representation is shown on 

the top and the Solvent Accessible Surface is shown on the bottom for each variant. The 

N-terminal, NAC, and C-terminal domains are shown in green, orange, and violet, 

respectively. The structures show how in the WT protein the C-terminal domain interacts 

with the other two domains in a way the reduces their contacts. The KGV mutant changes 

leads to more interaction between the N-terminal and NAC domains, along with more beta-

sheet rich structures. The GTK mutation disrupts the interacts between the C-terminal 

domain and other N-terminal and NAC domains. 
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Figure 9. Radius of gyration and end-to-end distance measurements for WT, KGV, 

and GTK a-syn variants. Comparison of the radius of gyration, 𝑅𝑔 (a), and the end-to-

end distance, 𝑅𝑒𝑒 (b) for the WT, KGV, and GTK protein variants shows that the GTK 

mutant can sample much more elongated structures than the either the WT or KGV 

variants, due to the decrease in interactions between the C-domain and the rest of the 

protein. The KGV mutant, on the other hand, samples structures that are more compact, 

due to increased contacts between the N-terminal and NAC domain and increased sampling 

of beta sheet rich structures.  
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Figure 10. Inter-domain contacts in WT, KGV, and GTK a-syn variants. The 

distribution of inter-domain contacts between the N-terminal and C-terminal domains (a), 

the NAC and C-terminal domains (b), and the N-terminal and NAC domains (c) shows that 

the GTK mutations leads to significantly reduced interactions between the C-terminal 

domain and the other two domains. The contact distributions also show that that the KGV 

mutations leads to a large increase in the number of contacts between the N-terminal and 

NAC domains.  
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Figure 11. Beta-sheet content of WT, KGV, and GTK a-syn variants. The distribution 

plots of the number of residues found to have a beta-sheet configuration in each frame of 

the trajectory shows that the KGV mutant samples much more beta-sheet content than the 

either the WT or the GTK protein variants. 
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4 The Intersection of Parkinson’s Disease, Viral Infections, 

and COVID-19 

4.1 Introduction 

Parkinson’s Disease is the most common neurodegenerative movement disorder that 

primarily affects dopaminergic neurons in the substantia nigra [134]. Although, this 

disorder mainly pertains to motor complication, PD patients also experience many non-

motor symptoms such as neuropsychiatric (depression, dementia, apathy, anxiety) 

autonomic (constipation, urinary incontinence, excessive sweating) sleep disorders and 

sensory abnormalities (loss of smell, pain and paresthesia) [134]. The exact causes of 

sporadic PD are largely unknown, but both environmental and genetic factors play a role. 

Indeed, the Braak hypothesis suggests that sporadic PD originates from an external 

pathogen that enters the body through the nasal cavity, which then migrates via the vagus 

nerve to the gut, causing complications such as changes in the gut microbiome and the 

advancement of Lewy Body (LB) pathology in the gut and in the nose  similar to that of a 

viral infection [135, 136].  

The novel SARS-CoV-2 coronavirus (COVID-19) pandemic was a result of a virus 

outbreak originating in Wuhan, China which quickly spread throughout the world. Whilst 

flu-like symptoms such as a fever, cough and difficulty breathing appeared to be the 

predominant early warning signs of a COVID-19 infection a large number of patients 

admitted to hospitals experienced a host of neurological symptoms including, dizziness, 

loss of smell and taste, seizures, difficulty concentrating, decreased alertness and brain 

inflammation [137]. In addition, complications in the gut microbiomes have also been 

noted as a result of COVID-19 [138].  
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Strikingly, a number of the neurological symptoms seen in COVID-19 patients, as 

well as the alterations in the gut microbiome, are also prevalent in patients with PD. 

Moreover, several biochemical pathways, including oxidative stress, inflammation, and 

protein aggregation, show similarities between PD and COVID-19. In this review we 

describe the many intersections between neurodegeneration in PD and viral infections, with 

an emphasis on the novel SARS-CoV-2.   

 

 

 

Figure 12. Common factors in Parkinson’s Disease and RNA virus infection. PD 

contributing factors including heavy metals, inflammation, reactive oxygen species, and 

alpha-synuclein are elevated in response to RNA virus infection illustrating commonalities 

between neurodegeneration and viral infections. 
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4.2 PD, a-syn and RNA viruses 

The pathological hallmark of PD is the presence of LBs, neuronal inclusions constituted of 

aggregate protein [32]. The formation of LBs is seeded by the aggregation of its major 

component, the protein a-syn. A-syn is an intrinsically disordered protein mainly found in 

neurons at the presynaptic terminals but a-syn is also found in other tissues such as kidney, 

heart and muscle cells [43]. While the physiological function of a-syn is not fully 

understood, a-syn has been implicated as a pre-synaptic protein that mediates 

neurotransmitter release  [139, 140]. Duplications, triplications, and mutations of the a-syn 

encoding gene SNCA are linked to familial PD suggesting that an increase in a-syn and or 

the expression of mutational variants contributes to neurodegeneration (Figure 12) [141]. 

Many extrinsic factors such as post-translational modifications, oxidative stress and metal 

binding have also been shown to affect multimerization and aggregation of a-syn and due 

to its central effect on LB pathology, factors which affect the behavior or prevalence of a-

syn are generally thought to be associated with PD [58, 59]. 

RNA-viruses are linked to PD by their effect on a-syn (Table 1). For example, a-

syn expression is up-regulated in response to neurons infected by RNA viruses (Figure 12) 

[142, 143]. It has been shown that a-syn supports expression of anti-viral interferon-

stimulated genes [142]. In fact, a-syn restricts RNA viral replication, protecting the central 

nervous system (CNS) in infected mice [144]. Interestingly, a-syn expression also increases 

in enteric neurons of the gastrointestinal tract in response to infections with the single-

stranded RNA norovirus followed by an inflammatory immune response [145, 146]. While 

the prevention of RNA virus progression is of immediate and primary concern to an 
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individual’s health, elevated a-syn levels and prolonged inflammation are both linked to 

LB pathology and increased risk for PD [143].  

The protective function of a-syn against RNA viruses has obvious implications to the 

novel coronavirus SARS-CoV-2, especially in individuals with PD. Elevated a-syn 

expression may indeed serve as a protective mechanism against this RNA-virus, however, 

it is unlikely that aggregated a-syn contained within LBs will be affective in restricting 

RNA viral replication. In addition to viral replication, a-syn can also inhibit RNA virus 

transmission from the peripheral nervous system (PNS) to the CNS [147]. When 

peripherally injected with a non-neuroinvasive RNA virus, the brains of a-syn knockout 

mice showed a much higher viral load than the brains of heterozygous a-syn expressing 

mice [144, 147]. Additionally, the same difference was not observed when inoculation was 

done intracerebrally or done on brain slice cultures [144, 147]. Since COVID-19 can 

manifest itself in both the CNS and PNS, its replication and its spread may be inhibited by 

elevated a-syn in individuals living with PD or possibly other synucleinopathies [148].  

4.3 Viral infections and neurotransmitters 

With regards to viral infections, it has been noted that there is a link between viruses, 

neurotransmitters, and neurotransmitter protein pathways.  The acetylcholine (ACh) and 

dopaminergic pathways are obstructed during PD, as a result of degeneration of the 

substantia nigra and motor neurons [149]. However, in the case of viral infections, it has 

been shown that acetylcholine levels are affected throughout the progression of the virus. 

In the early stages of infection, acetylcholine levels seem to remain constant. However, 

ACh levels seem to rise around the peak point of the immune response. In addition, 

cholinergic lymphocytes, which make direct contact with macrophages in the lungs, appear 
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as ACh levels increase which may be present because of the SARS-CoV-2 virus [150]. 

These lymphocytes, however, are also known to regulate pulmonary inflammation, a 

common symptom of COVID-19 [151]. In addition, it has also been shown that viruses lead 

to production of ACh via choline acetyltransferase (CHAT) enzyme activation [152]. With 

regards to recovery, however, the role of ACh is still unknown [151]. In addition to ACh, it has 

also been shown that viral infections play a role in the dopaminergic pathway. Theiler’s 

virus, a type of encephalomyelitis RNA virus, has been known to destroy the substantia 

nigra, which is the site of dopamine production [153]. In an additional study involving 

mice, the presence of viral RNA was observed, and the viral RNA was present in the 

substantia nigra within three days of infection and spread further throughout the brain 

within ten days. However, three weeks later, the viral RNA was no longer detected [153]. 

As a result, it could be argued that these interactions between the substantia nigra and viral 

pathogens may support the PD Braak hypothesis. Furthermore, the interactions between 

neurotransmitter pathways and viral infections may lead to further research regarding the 

intersection of viral infections such as COVID-19 and PD.  

4.4 Oxidative stress 

Oxidative stress plays an important role PD and reactive oxygen species (ROS) and their 

extensive production in the brain play an important role in dopaminergic neuronal cell loss 

death involving dopamine metabolism and high levels of iron and calcium (Figure 12) 

[154]. ROS are naturally occurring in cells and are a necessary component of cellular 

homeostasis. Despite the importance of ROS in normal physiology, failure in ROS 

regulation by antioxidant proteins, such as superoxide dismutase (SOD1) and glutathione 

(GSH), can lead to oxidative stress which can have detrimental effects on cellular functions 
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(Table 1) [155]. Mitochondria are key sites of ROS production and targets of ROS-induced 

damage by inhibition of the mitochondrial election transport chain (ETC) [156]. PINK1 

and Parkin are PD-associated proteins important in mitochondrial homeostasis as well as 

ROS homeostasis [156].  

Many viruses, such as Hepatitis C (HCV), are known to cause oxidative stress by 

changing the antioxidant balance within cells (Figure 12) [157]. HCV belongs to a family 

of RNA viruses that cause damage and cirrhosis of the liver and patients with chronic 

hepatitis c have increased ROS levels triggering immune responses and increased 

inflammation [158]. Another virus, Zika virus (ZIKV), which has been extensively studied 

due to its link with congenital malformations has revealed that astrocytes are the targets of 

ZIKV [158]. In a recent study it was shown that ROS imbalance, coupled with 

mitochondrial defects, trigger DNA damage in Induced Pluripotent Stem Cells (iPSC)-

derived astrocytes, causing neuronal loss and motor defects  [159]. Interestingly, ZIKV 

belongs to the Flaviviridae family of viruses, as does HCV, and it replicates within the 

Endoplasmic Reticulum (ER) causing an increase in ROS in both the ER and mitochondria 

[160, 161]. This increase in ROS causes breaks in DNA, activating the DNA damage 

response ultimately causing apoptosis [160, 161]. Reactive gliosis is a condition whereby 

neuroinflammatory conditions caused by bacterial or viral infections cause an 

inflammatory environment culminating in astrocyte reactivity [162]. These infected 

astrocytes correlate to an increase in pro-inflammatory chemokines and cytokines, and it 

has been speculated that surviving children infected by ZIKV might show an increased rate 

of neurological disorders such as PD or Alzheimer’s disease (AD) later in life  [160, 161]. 

Although a definite connection is yet to be made between viral infections, such as ZIKV 
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and hepatitis C, with respect to increased risk of sporadic PD it is noteworthy that increased 

ROS and mitochondrial dysfunction are found in both viral infections and in PD (Table 1).   

 

 Alpha-
synuclein 

 
Oxidative Stress 

 
Inflammation 

 
Metals 

Gut 
Microbiome 

Olfactory 
Tract 

Parkinson’s 
Disease  

Aggregation 
leads to 
neurotoxic 
Lewy Bodies 
[32] 

Dysfunctional 
regulation of ROS 
by several genes 
including SOD1 
leads to oxidative 
stress and 
apoptosis [146] 

Protective short 
term, 
exacerbates 
non-motor 
symptoms long 
term [163, 164] 

Exposure to 
heavy 
metals such 
as Mn is a 
risk factor 
for PD [165] 

GI problems 
such as 
dysbiosis, 
constipation, 
and dysphasia 
[166] 

Olfactory 
dysfunction 
is one of 
the earliest 
signs of PD 
[135, 136] 

RNA Virus 
Infection 

Upregulated 
in infected 
cells and 
restricts RNA 
virus 
replication 
[142-144] 

Can create ROS 
imbalance causing 
DNA damage and 
neuroinflammation 
[153] 

Neuro-
inflammatory 
response can be 
triggered by 
infection [143, 
167] 

RNA virus 
replication 
depends on 
and may 
cause 
increase in 
Mn and Fe 
[165, 168, 
169] 

Microbiota 
depletion leads 
to GI issues 
causing 
inflammation 
and lack of gut 
flora [170]  

Olfactory 
dysfunction 
is one of 
the earliest 
signs of 
COVID-19 
infection 
[171, 172] 

Table 1. Commonalities between Parkinson’s Disease and RNA virus infection 

4.5  Inflammation 

Brain inflammation has long been implicated as a risk factor (Figure 12) [163, 173], as well 

as a pathological effect of PD (Table 1) [164, 167, 174, 175]. The primary facilitators of 

the neuroinflammatory response are microglia. Microglia release immune factors when 

activated in response to trauma, viral infection, and aggregated proteins such as a-syn [143, 

176]. Additionally, astrocytes can contribute to the inflammatory response when activated 

by RNA viral infection (Figure 12) [177]. Neuroinflammation has been described as a 

double-edged sword in regard to PD as on one hand it is neuroprotective in the short-term 

but acts in a neurotoxic manner when chronically sustained [176, 178]. Inflammatory 

cytokines, reported as increased in PD patients [165], have been shown to exacerbate 

cognition, depression, anxiety and sleep disturbances [168, 169]. Similarly, COVID-19 
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patients have shown a wide range of neurological disorders including psychosis/delirium, 

inflammation of the brain, ischemic stroke, and multisystem inflammatory syndrome 

(Table 1) [179, 180]. Interestingly, pro-inflammatory cytokines tumor necrosis factor alpha 

(TNFα), interleukin (IL)-2, and IL-6 are found at higher levels in the brains of PD patients 

and the cerebrospinal fluid of COVID-19 patients [181, 182]. Additionally, many COVID-

19 cases result in a cytokine storm, a massive immune response that upregulates pro-

inflammatory cytokines [183]. Increased inflammation, due to COVID-19 in PD patients, 

may exacerbate non-motor symptoms and it has been suggested that PD patients recovering 

from COVID-19 show an extended period before reaching baseline. However, it is unclear 

if the exact mechanisms of inflammation in PD, MSA, and COVID-19 are the same.  

4.6 Metals, Viral Infections, and PD 

It has been noted that exposure to heavy metals such as manganese and iron have played a 

role in the progression of PD and other neurological diseases (Figure 12) [184]. The most 

common form of exposure to these metals is the environment and abnormal accumulations 

in the body. The presence of these metals result in multiple oxidative stress pathways that 

can lead to the oxidation of dopamine and production of free radicals [184]. Similarly, it 

has been noted that heavy metals also play a role regarding some viral infections. Because 

many viruses use iron to replicate themselves, large iron buildups may form leading to 

potential neurodegeneration (Figure 12) [185]. Like many RNA viruses including most 

coronaviruses, the replication of the SARS-CoV-2 virus is dependent on manganese and 

iron, so it is possible that contracting COVID-19 may lead to the future onset of PD [166]. 

In addition, it has been found that heavy metals are found at higher concentrations in 

Hepatitis C infected individuals [186]. Therefore, people that contract RNA viral infections 
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that are dependent on heavy metals should be aware of the potential risk of developing PD 

in the future.   

4.7 COVID-19 and the Braak hypothesis 

The Braak hypothesis states that sporadic PD originates in the gut and the nasal cavity 

where a pathogen travels along the vagus nerve and olfactory tract towards the brain [187, 

188]. The Braak hypothesis is supported by longitudinal clinical data which demonstrate 

that loss of smell and gastrointestinal dysfunction represent early PD symptoms, often 

preceding a definite PD diagnosis once motor symptoms present themselves [136, 170, 

189-191]. Further, due to evidence of LB formation in the olfactory epithelium [192, 193] 

and the enteric nervous system [194, 195], a-syn aggregation has been implicated as the 

pathogen referenced in the Braak Hypothesis. That the staging presented by the Braak 

hypothesis resembles in many cases that of COVID-19 symptom progression is cause for 

concern. In essence, the Braak hypothesis describes a mode of pathogen transmission, 

likely a-syn aggregates, which can bypass the blood-brain-barrier and originate in two areas 

that are indeed affected by COVID-19.  
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Figure 13. The Brain-Gut microbiota axis: Schematic diagram highlighting the 

relationship between the brain and gut microbiota. A rich and diverse microflora allows for 

healthy immune and regulatory mediators, whereby a compromised gut microflora caused 

by viral infections, stress, antibiotics, and poor diet can cause a lack in immune response 

contributing to abnormal production of inflammatory cytokines which can lead to 

neuroinflammation. 

 

4.7.1 Viral infections, the gut and PD 

The human body is inhabited by a diverse microflora which plays a role in many 

physiological and metabolic processes [196]. A healthy commensal microbiota plays a role 

in the breakdown of dietary substances that are too large to be digested and it has been 

shown to be essential for protecting the host against a variety of pathogenic infections 

[197]. Viral infections are among some of the most common invading pathogens that effect 

the host microbiota. In fact our gut flora regulates viral expression yielding beneficial 



66 
 

outcomes, however it can also be regulated by viruses causing dysbiosis and a multitude 

of gastrointestinal (GI) issues [198]. The gut microbiota is decreased in older adults due to 

several factors that include diet, environmental factors, and genetics and the rate and 

duration of viral infections are much higher in those with a compromised gut flora [199]. 

Patients with PD display an array of GI complications such as dysbiosis, constipation, and 

dysphasia (Table 1) [200] and these complications can occur up to ten years before 

hallmark motor symptoms occur suggesting a possible link between the gut and the 

progression of PD (Figure 13) [201]. Indeed, individuals with PD are at a higher risk of 

infection due to a compromised gut microbiota as well as severity of infections and 

emerging evidence has suggested that a rich and microbiota can play an essential role in 

modulating host immune response [202]. This occurs by stimulating the production of 

various pro-inflammatory cytokines during infection (Figure 13).  

Commensal microbiota has also been shown to directly suppress viral infections 

especially in certain sites where viruses can gain entry into the host [198]. Supporting this 

notion, is the fact that Enterococcus faecium can prevent infection by the influenza virus 

by direct absorption and trapping as well as producing various metabolites to prevent viral 

infection [203]. Studies have also shown that microbiota depletion, due to antibiotic 

treatment, can result in significantly higher viral shedding [204]. Similarly, a study found 

that fecal microbiota transplants in rhesus macaques infected with simian 

immunodeficiency virus (SIV) induced greater antiviral immunity [205]. The immune gut 

homeostasis is delicately orchestrated by the fine tuning of the regulatory balance of pro-

inflammatory responses, such as Th17, versus inflammatory regulatory T cells (Tregs) 

(Figure 13) [205]. For example, gut probiotics like Lactobacillus paracasei increase pro-
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inflammatory cytokines like IL-33, IL-, IL-12, and INF during influenza virus infection 

[206]. Quite a few studies have also shown that viral infections such as HCV/HBV can 

cause a profound alteration in gut microbiota causing dysbiosis, and this reduced gut 

diversity caused an increase in severity of infections [207]. A healthy gut microbiome is 

therefore essential in maintaining an optimal immune system to fight off pathogenic 

infections including viral infections. 

It has been noted that severe viral infections could possibly increase the risk of 

developing PD later in life [208]. Clearly viral infections are not the primary cause of PD 

but may act as vital triggers as eluded to previously in this review [209]. For example, it is 

known that virions can pass the blood-brain barrier and elicit inflammatory responses in 

the brain such as observed in encephalitis [209]. It has also been documented that 

individuals infected with hepatitis C are 30% more likely to develop PD than individuals 

who never had the virus [210]. Similarly, PD patients show a statistically higher antibody 

titer against the HSV-1 virus than healthy controls, and this autoimmunity has been further 

highlighted in mechanisms of a-syn molecular mimicry [211]. Indeed, the immunological 

cross-reactivity between HSV-1 and a-syn has been shown to cause destruction of 

dopaminergic neurons of the substantia nigra [172]. In many cases SARS-CoV-2 primarily 

affects lung function through binding to ACE2 receptors present on the alveolar epithelial 

cells [171]. However, evidence has suggested that SARS-CoV-2 RNA can be detected in 

the stool of some patients with COVID-19 [212]. A recent study obtained blood and stool 

records from 100 patients with confirmed COVID-19, and 27 out of the 100 stool samples 

were collected 30 days after infection. The study discovered that the gut microbiome was 

significantly altered in patients with COVID-19 compared to control patients [213], 
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showing a decrease in Faecalibacterium prausnitzii, Eubacterium rectale and 

bifidobacterial. Further, the study showed elevated levels of C reactive protein and lactate 

dehydrogenase and it was suggested that altered gut microbiota is involved in COVID-19 

severity and this dysbiosis is observed after the infection has passed. 

This data suggests that there may be a link between the gut microbiota and COVID-

19 severity, particularly as the higher COVID-19 mortality rate is seen within the elderly 

population that have a decreased gut microbiota. Interestingly, PD patients with chronic GI 

conditions suffer from a decrease in gut flora causing constant bacterial infections [214]. 

This may suggest an increased chance of COVID-19 mortality for a patient with PD.  

4.7.2 The olfactory tract 

Loss of smell is one of the earliest symptoms of PD and the olfactory epithelium (OE) is 

becoming a target tissue to study PD and brain aging in general (Table 1) [21, 135, 136, 

215, 216]. Indeed, olfactory dysfunction is as common as the other cardinal motor 

symptoms in PD and more prevalent than resting tremor [217]. Idiopathic hyposmia has 

been associated with an increased risk for PD in first-degree relatives of PD individuals 

[21, 218] and it has been suggested that neurologists should screen high-risk patients with 

olfactory tests [219]. 

Like PD, olfactory dysfunction is one of the earliest symptoms of COVID-19 

infection and is therefore a key diagnostic criterion (Table 1) [220, 221]. With inhalation 

of SARS-CoV-2, the primary mode of infection, the nasal cavity and olfactory epithelium 

represent important targets for the virus. ACE2, critical to SARS-CoV-2 entry into cells, 

is expressed in sustentacular cells and basal cells of the olfactory epithelium, but is absent 

in olfactory sensory neurons [222]. Sustentacular cells act as support cells which provide 
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major physical, metabolic, secretory, and absorptive supports functions for the olfactory 

sensory neurons (OSN) [223] whilst basal cells of the OE act as stem cells producing OSNs 

since their lifespan is only a few weeks [223]. There are two mechanisms that could be at 

play here. First, RNA viral infection has been previously shown to be capable of inducing 

a-syn seeding in neurons [224]. Due to the prion-like activity of a-syn aggregates, a seeding 

event in any cell type of the OE can cause the propagation of aggregation throughout the 

OE towards the brain. Another mechanism of PD pathogenesis could be that the 

sustentacular cells and basal cells cannot function normally after infection and cause 

alterations in the OSNs.  In fact, glial cells loss-of-function or gain-of-toxic-function has 

been thought to participate in the pathogenesis of PD [225]. A variety of PD risk factors 

are associated with altered proteostasis and metabolism in neurons and a single seeding 

event, be it caused by viral infection or disrupted homeostasis, could contribute to the 

pathology established in the Braak hypothesis [226].  

4.8 PD non-motor symptoms and COVID-19 

One of the most common non-motor symptoms of PD is depression and typically, 30%-

40% of PD patients experience some form of depression in their lifetime post diagnosis 

[227]. It has been hypothesized that increased stress and a loss of emotional control is a 

result of a lack of dopamine-dependent adaptation [227]. In times of crisis, such as during 

the COVID-19 pandemic, stress induced depression and anxiety may increase because of 

medical, financial, and social factors. For PD patients who have contracted the SARS-CoV-

2 virus, it has been found that there is an increase in non-motor symptoms including trouble 

sleeping, mood changes, cognitive changes, and autonomic problems which all have ties 

to depression [228]. However, not only PD patients have experienced an increase in 
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depression because of the pandemic. Factors including a lack of knowledge of infectious 

diseases, the effects of quarantine, inadaptability, and the fear for one’s health all affect 

one’s mental health whether that person has been infected or not [229]. 

4.9 COVID-19 and PD guidelines 

During the COVID-19 pandemic, numerous guidelines have been published to keep the 

world’s populations safe and healthy. For many patients with PD, these guidelines are of 

course generally identical including the practice of social distancing and self-isolation if 

infected in order to prevent any further spread of the virus [230]. However, it has been 

noted that people with PD should remain active and engage in different forms of physical 

activity, particularly whilst spending time at home[231].  

 With regards to contagion, there does not seem to be a correlation between PD and 

contraction of the SARS-CoV-2 virus. However, if a PD patient does contract COVID-19, 

several complications may arise. It has been noted that PD patients are at larger risk of 

developing pneumonia and other respiratory infection so clearly a SARS-CoV-2 infection 

may in many cases lead to a worsening of PD symptoms [230]. Indeed, urinary tract 

infections, pneumonia or the flu can temporarily worsen PD symptoms and it is therefore 

important for patients to have their PD medications readily available  

 As with any underlying conditions PD patients should consult with their physician 

to ensure that their PD medications are compatible with medications used to treat 

symptoms of COVID-19. It should be noted that certain cold and flu medications should 

not be administered  together with, for example MAO-B inhibitors, such as 

Azilect/rasagiline or Xadago/safinamide, frequently used to treat PD symptoms [230]. 
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 In the past few years, it has been noted that the number of PD cases has been on the 

rise. Although this rise in cases may be in part be attributed to an increasingly aging 

population it is also believed that external factors such as pesticides, smoking and viral 

infections may contribute to the increase [232]. 

4.10 Concluding remarks 

The global COVID-19 health crisis has challenged the way of life across the planet, 

affecting the economy, social interactions and our health and safety. In his review we have 

highlighted the intersections between PD, viral infections, and COVID-19 with an 

emphasis on the many similarities between RNA viral pathways and neurodegeneration in 

PD.  Indeed, the onset and progression of PD, as detailed in the Braak hypothesis, as well 

as the pathogenic nature, molecular mechanisms, and symptom development of the 

disorder share many similarities with the SARS-CoV-2 virus and COVID-19. As further 

research is conducted, more evidence of a possible correlation between PD, viral infections 

and the current SARS-CoV-2 virus will become available.  
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5 Additional work 

5.1 Shuttling a-syn into the nucleus 

5.1.1 Introduction 

The varied locations a-syn suggest its biological functions also vary, however, its normal 

functions are debated and not fully understood. It is important to study the regular 

biological function of a-syn to deduce its loss-of-function or gain-of-function toxicity 

under various conditions. It has been conclusively shown by subcellular fractionation and 

chromatin precipitation that a-syn exists in the nucleus of neurons, and many proposed 

functions of nuclear a-syn involve direct DNA-binding or modulating histone modification  

[40, 233, 234]. In fact, a-syn has been found to act as a transcriptional regulator of PGC1a, 

a master mitochondrial transcriptional co-activator, which interestingly has been identified 

as a potential therapeutic target for early PD intervention [89, 235]. The aim of this body 

of work was to identify all DNA sites, genome-wide, that can bind a-syn. While a-syn was 

shown to bind promoters of various genes by ChIP-on-chip analysis, the study was 

performed using a microarray of probes for promoters [89]. We were interested in 

conducting a similar study using a more modern technique, ChIP-seq. ChIP-seq allows for 

the identification of genome-wide a-syn-DNA interactions without predetermined probes, 

thereby able to identify all possible enrichment sites. ChIP-seq can analyze a lane of 

samples, providing for the opportunity to analyze a-syn-DNA interactions in samples with 

mutant a-syn, overexpressed a-syn, and chemical stress. We attempted to flood the nucleus 

with a-syn by transfecting cells with SNCA that was tagged with nuclear localization 



73 
 

signals. Flooding the nucleus in this way creates a different condition than overexpressing 

WT SNCA and is likely to provide more or different potential binding sites for a-syn. 

5.1.2 Results and future work 

We used primers for SNCA containing nuclear localization signals (NLS) and nuclear 

localization control signals (NLC) in our cloning experiments to generate pcDNA3 vectors 

containing single and double tagged SNCA.  We transfected SH-SY5Y cells and analyzed 

the nuclear to cytosolic ratio of a-syn (Figure 14). While the double tagged a-syn showed 

the highest nuclear to cytosolic ratio, it did not necessarily result in flooding the nucleus in 

greater amount than cells transfected with WT SNCA (Figure 14). However, it is interesting 

that we were able to achieve a similar level of nuclear a-syn to the WT transfected cells 

without also flooding the cytosol (Figure 14B). The double tagged SNCA transfected cells 

represent a promising candidate for analyzing by ChIP-seq, however we did not flood the 

nucleus to a higher degree than wild type SNCA transfected cells. Testing and improving 

the transfection efficiency and combining with stress known to impact a-syn subcellular 

localization are a couple improvements and future steps to take in this study.  
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Figure 14. Ratio of localization signal tagged a-syn in the nucleus to cytosol. SNCA 

was tagged with nuclear localization sequence (NLS) or an inactive control sequence 

(NLC) at 5’ and/or 3’ ends. (A-B) Abundance of a-syn monomer (15 kDa) was analyzed 

and quantified by Western blot.  
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5.2 CRISPR knockdown of SNCA 

5.2.1 Introduction 

The most common tissue culture models used to study PD are SH-SY5Y and M17D human 

neuroblastoma cell lines. Often, cells are transfected, subjected to stress, and analyzed but 

may also be differentiated into a more dopaminergic phenotype [40, 236]. Although 

different models have different strengths and weaknesses, we sought to generate a cell 

model with no a-syn present. While our a-syn studies often include overexpressing SNCA 

or transfecting mutant forms of SNCA, we have no way of knowing how exogenous and 

endogenous SNCA expression are affecting each other. Additionally, and in line with our 

work of shuttling a-syn into the nucleus, this would present a powerful tool to study a-syn 

as a transcriptional regulator and would enhance the use of ChIP-seq technology to find 

binding sites of various forms of a-syn to chromatin without the interference of WT 

endogenous a-syn.  

5.2.2 Results and future work 

We attempted to knockout SNCA using CRISPR/Cas9 gene editing technology with the 

aim of creating a model that contained only exogenous SNCA expression. We achieved 

only 20% knockdown by transient transfections, so we attempted to create a stable cell line 

by co-transfection with HDR plasmid (Figure 15). A selection dosage of puromycin was 

determined by kill curve assay to be 10 µg/ml for both M17D and SH-SY5Y, however, 

transfected cells never survived under selection. Literature showing knocked out SNCA in 

cell lines is lacking, however knockout has been achieved in human embryonic stem cells 

which were then resistant to Lewy Body seeding by a-syn fibrils [237]. This work in human 
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embryonic stem cells is a similar approach to the goal of this study: knocking out SNCA 

followed by the introduction of exogenous SNCA (or in that case, a-syn fibrils). However, 

our cell lines are consistent with our previous studies, making data more easily comparable. 

Therefore, it would be advantageous to continue to pursue this study in M17D and SH-

SY5Y cells. The human embryonic stem cell study also used puromycin for selection, so 

SNCA expression likely does not interfere with survivability under selection [237]. A 

possible key difference in our studies is the source of the guide-RNA of the CRISPR/Cas9 

system. We purchased our plasmids, which were a mix of three guide-RNAs. The human 

embryonic stem cell study generated four guide-RNAs of their own [237]. The additional 

guide-RNA as well as the intentional location in the SNCA gene might lead to higher gene 

editing efficiency. 
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Figure 15. Transient knockdown of SNCA in M17D cells. (A) Western blot analysis of 

M17D cells transfected with CRISPR/Cas9 KO-plasmid (KO-SNCA) or control plasmids 

containing scrambled guide-RNA. (B) Quantification of a-syn monomer (***p<0.001, t-

test). 
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6 Collaborative Projects 

6.1 Subcellular Parkinson’s Disease-Specific A-syn Species Show Altered 

Behavior in Neurodegeneration 

6.1.1 Introduction 

Lewy bodies, with protein aggregates enriched with SNCA, is pathology of PD and other 

synucleinopathies [238]. SNCA, otherwise ubiquitously expressed protein, becomes 

neurotoxic with increasing evidence suggesting that SNCA oligomerization and post 

translational modifications have central roles in PD pathogenesis [239, 240]. It is suggested 

that the monomeric form of SNCA is probably the toxic species involved in 

neurodegeneration whereas the tetrameric form represents a more stable and perhaps a 

neuroprotective SNCA species [116, 240]. Further, phosphorylation at two specific serine 

residues – S129, Lewy body specific, and S87, possibly neuroprotective – has suggested 

its role in possible Lewy body formation and interaction with membrane proteins [58, 241]. 

However, it is unclear whether native SNCA exists as a homogenous population of 

unstructured monomeric states or in equilibrium with different oligomeric intermediate 

states and what individual roles these multimers play in PD pathogenesis [242, 243]. 

Furthermore, little is known regarding SNCA states within different subcellular neuronal 

compartments. This is especially important considering the cellular transportation of 

specific form of SNCA can have salient role to play in PD pathogenesis. Recent conflicting 

data concerning SNCA properties underline the complexity of SNCA biology in 

neurodegeneration [242, 243]. It is also becoming apparent that SNCA characteristics are 

different depending on the cell 1 94 type and tissue [244]. It is highly conceivable that the 
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potential neurotoxicity of specific intermediates in neurodegeneration may depend on a 

combination of conformation and multimerization. The relationship between the different 

states of SNCA and how some of these intermediates may drive neurotoxicity represent 

exciting prospects. The premise for this study was to define these subcellular specific 

SNCA intermediates and their change in characteristics in neurodegeneration because this 

is crucial for our understanding of SNCA dynamics in PD.  

6.1.2 Study design and key findings 

In this study we have employed subcellular fractionation, high-performance liquid 

chromatography, and mass spectrometric analysis to identify the multimeric SNCA species 

in different compartments of the neuronal and non-neuronal cells. We establish that in cell 

lines as well as human brain tissue, SNCA exists as well-defined, subcellular-specific 

populations of intermediate states in equilibrium with monomeric SNCA. Indeed, the 

profiles of SNCA in HEK293 subcellular fractions differ substantially from both SH-SY5Y 

cells and brain tissue. Moreover, our data shows that the defined SNCA intermediates in 

the cytosol, membrane and nuclear soluble fractions of neurons exhibit dynamic profile 

changes and altered phosphorylation status in response to oxidative stress in neuronal cell 

lines and in human cerebellum of PD subjects. We found that nuclear ~68kDa and 

membrane-bound ~150kDa SNCA species were phosphorylated at S129, which suggests 

that these two species are probably aggregation drivers. On the contrary, the cytosolic 1 95 

~68kDa was found to be phosphorylated at S87 suggesting a possible neuroprotective role. 

These findings are consistent with a recently published report (334). SNCA exists 

physiologically as well-defined, stable, subcellular-specific intermediates in equilibrium 

with monomeric SNCA but that despite their inherent stability this equilibrium shifts in 
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response to increased oxidative stress and PD pathogenesis. We have also identified a PD 

specific ~36kDa SNCA species, which we postulate, can be a potential pathogenic SNCA 

species contributing to PD pathology. The presence of ~36kDa band in the PD brain, 

neuronal cells overexpressing WTS and A53TS SNCA, is probably suggesting it to be a 

pathologically relevant SNCA species which might modulate neurotoxicity. We also 

overexpressed SNCA WT and its mutations known to cause PD to profile the different 

SNCA multimers in cellular compartments with these pathogenic states under normal 

condition and oxidative stress (neurotoxic levels of H2O2 and L-Dopa). Our data suggests 

that SNCA does not exist solely as either a monomeric or tetrameric structure but as a 

complex combination of several structural and oligomeric intermediate states. The data 

also highlighted the translocation of different SNCA species to different cellular 

compartments under oxidative stress. Furthermore, our data allows for the identification of 

neurotoxic SNCA intermediates, which represent prime targets to reduce SNCA 

pathogenicity. It is plausible that SNCA aggregation pathway(s) and toxicity are modulated, 

at least in part, via some of these subcellular-specific intermediates and our findings 

provide a 1 96 platform for the purification and characterization of these intermediates in 

vivo. The targeted manipulation of these intermediates represents hopeful neuroprotective 

therapeutic targets for individuals suffering from PD and other synucleinopathies. 
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Figure 16. Subcellular-specific a-syn profile changes in human brain tissue. Total of n 

= 4 PD positive brains (PD1–PD4) were fractionated and n = 4 PD-negative brains (N-

PD1–N-PD4) were fractionated. a) Quality control of fractionations of human cerebellum 

and frontal Cortex. b) Cytosolic a-syn profiles in cerebellum from non-PD and PD subjects. 

Arrowheads, ~36- and ~70- kDa a-syn species in cerebellum. c) Membrane a-syn profiles 

in cerebellum. Arrowheads, ~50- and ~70-kDa a-syn species in cerebellum. d) Monomeric 

a-syn in. e S129 phosphorylation of a-syn in cerebellum. f) S87 phosphorylation of a-syn 

in cerebellum. g) Representative Western blots of additional fractionated human frontal 

cortex brain samples demonstrating the enrichment of the cytosolic ~36-kDa a-syn species 

in PD samples as compared with non-PD samples. 
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6.1.3 My contribution 

I worked with Dr. Abdullah to conduct subcellular fractionations of human brain tissue 

samples. I also performed SDS-PAGE and western blot analysis of fractions probing for a-

syn and quality control markers. The assays showed PD brains were enriched with ~36 kDa 

a-syn and that fractions had little to no cross contamination.  

6.2 Dissecting the mechanism behind pathogenesis of SNCA mutants 

6.2.1 Introduction 

One of the earliest known and most researched protein in PD is SNCA. Although the exact 

function of SNCA is yet unknown, its implications in PD pathogenesis are clear. We have 

reported that the intermediate SNCA species are dynamically regulated in a subcellular-

specific manner depending on the exposure to oxidative stress [40]. In the above-mentioned 

report we have established a baseline for various SNCA species and their regulation in 

response to stress in neuroblastoma as well as non-neuronal cell lines. We also 

demonstrated the role of phosphorylation in regulation of these species. The key to 

deciphering the functional role of SNCA is not in the study of the SNCA monomer but the 

SNCA binding partners as found in the larger complexes found in our preliminary analysis. 

There are three main A30P, E46K, and A53T mutations along with recently found D2A, 

H50Q, and G51D mutations are known to be pathogenic.  It is also known that the mutants 

have higher propensity to form aggregates. Most of the research has been focused on 

ability/inability of SNCA to form aggregates. D2A, H50Q, and G51D mutations are 

involved in copper binding in SNCA. The differences in PD onset or progression in patients 

with different mutations or duplication/triplication events of SNCA is yet unresolved. All 
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the experiments and data analysis for this project is yet incomplete and is expected to be 

ready for publication by summer 2016.  

Further we sought to determine the binding partners associated with SNCA as well 

as the overall proteome change brought about by SNCA WT or mutant expression in 

neuroblastoma cells. This should provide a new insight into how SNCA behaves in neuronal 

cell and is able to exert neurotoxic effect as the disease progresses.  

6.2.2 Study design and key findings 

We hypothesized that the expression and regulation of different SNCA species in different 

subcellular compartments varies from mutation to mutation. To this end we expressed 

mutant SNCA proteins in SH-SY5Y cells and performed subcellular fractionation to track 

the changes in SNCA species. Our findings indicate a distinctive variation in SNCA 

multimer regulation amongst different mutation. We observed the ~36kDa SNCA species 

to be up-regulated due to WT, A30P, A53T SNCA but not due to H50Q, and G51D SNCA 

overexpression. We observed this regulation of ~36kDa SNCA in whole cell lysates and 

cytosolic fraction. The ~36kDa species, due to A53T SNCA, was up regulated in cytosol in 

response to H2O2Smediated oxidative stress. In our previous report we did not detect any 

SNCA species in the cytoskeletal fraction. Meanwhile we detected SNCA monomer in the 

cytoskeletal fractions of cells overexpressing WT SNCA. Moreover, when we 

overexpressed G51D SNCA in SH-SY5Y cells, there is marked up regulation of SNCA 

monomer due to H2O2 and L-DOPA induced stress.  

For tracking proteome changes resulting from pathogenic SNCA conditions we 

utilized 2D-PAGE/MS to screen for the candidate proteins that can either be interacting 

with SNCA or are affected by the pathogenic overexpression or mutation SNCA in 
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neuroblastoma cells. We further plan to verify these results by western blot and track these 

protein changes in subcellular compartments to ascertain a possible association with 

specific SNCA multimer.  

 

Figure 17. The multimeric a-syn species found in the nuclear soluble fraction of SH-

SY5Y cells transfected with pathological variants of SNCA under treatments. a) The 

a-syn multimeric profile of pathological SNCA transfections in the nuclear soluble fraction 

under no treatment conditions, b) under H2O2 treatment, and c) under L-Dopa treatment. 

d) Analysis of a-syn multimeric species relative changes in abundance in the 16 nuclear 

soluble fractions under untreated conditions, e) under H2O2 oxidative stress conditions, 

and f) under L-Dopa oxidative stress conditions. 
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6.2.3 My contribution 

I maintained SH-SY5Y cultures and performed transfection experiments with treatments. 

I performed subcellular fractionations of cultured cells, followed by SDS-PAGE and 

western blot analysis of the fractions. I also cloned His-EK tagged SNCA with clinical 

mutations (G51D and H50Q) into pcDNA3 and performed transfections for a-syn 

purification by high performance liquid chromatography (data not shown). The assays 

showed that a-syn multimerization is altered dependent on clinical mutations of SNCA and 

stress. 

6.3 Neuroprotection by miR-335-5p and miR-3613-3p may involve 

regulation of ATXN3, BAG5, and ATG5 

6.3.1 Introduction 

MicroRNAs (miRs) are small non-coding RNAs which are 20-22 nucleotides in length and 

function in gene regulation and silencing [245]. miRs have also been extensively studied 

as potential biomarkers due to their extracellular stability and altered disease state 

expression [246]. A recent study highlighted the differences in miRNA levels from PD and 

non-diseased brains stating that microRNAs are differentially expressed in patients with 

PD allowing for classification of PD within a 5% error [247]. While this is taking a 

potential diagnostic approach there have been studies which show regulatory effects of 

microRNAs in PD. One specific study showed the regulatory effects of miR-34b/c on key 

Parkinson’s proteins Parkin and DJ1 causing a loss in cell viability [248]. A considerable 

number of miRs have been reported for their regulatory roles in PD [249]We investigated 

miR-335-5p and miR-3613-3p which have been associated with an array of diseases from 
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cancer to gestational diabetes, however there are no studies to date that show the 

relationship between miR-335-5p and miR-3613-3p and PD.  

In this study we show that miR-335-5p and miR-3613-3p levels are significantly 

elevated in patients that have PD compared to healthy individuals which further 

corroborated our previous findings [250]. This increase in miR expression was also 

prevalent in post-mortem frontal cortex samples for both PD and age-matched controls. 

We further report that miR-335-5p and miR-3613-3p overexpression may have a 

neuroprotective function as it increases cell viability in SH-SY5Y cells induced with 

oxidative stress. We also show that oxidative stress causes miR-335-5p and miR-3613-3p 

overexpression not seen under normal conditions. This increase leads to increased 

expression of ATG5 and BAG5 while decreasing expression of ATXN3. 

6.3.2 Study design and key findings 

We hypothesized that our previously reported increased miRs in PD patient serum would 

reflect changes in brain miR profiles. We isolated miRNA from frontal cortex samples and 

found by qRT-PCR that miR-335-5p and has-miR-3613-3p levels were significantly 

upgraded in PD brains. In SH-SY5Y cells transfected with miR-335 and miR-3613, we 

showed a rescue of cell viability under stress by hydrogen peroxide. Interestingly, we found 

an increase in endogenous expression of miRs 335 and 3613 in our stable cell lines over 

expressing SNCA mutants which further corroborates our claim that miRs 335 and 3613 

expression is increased in neurotoxic conditions. Transfection of those SNCA mutant cell 

lines with miRs 335 and 3613 rescued cell viability under hydrogen peroxide stress. These 

results suggest miR-335 and miR-3613 serve a neuroprotective function and their 

overexpression is a cellular defense mechanism in PD serum, PD brain, and SNCA mutant 
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cell lines. We identified ATG5, BAG5, and Ataxin -3 as potential targets for miRs 335 and 

3613 by in silico prediction analysis (miRTarBase, Partek Genomics Suite) and our 

previously reported LC-MS data [246]. We tested protein levels in miR transfected SH-

SY5Y cells and found that miR-335-5p regulated all three targets, while miR-3613-3p 

regulated ATG5 and Ataxin-3. These data elucidate part of the likely expansive 

mechanisms of neuroprotectivity provided by these miRs. 

6.3.3 My contribution 

I maintained and cryopreserved stable SNCA-variant-expressing cell lines. I also worked 

with Alberim to perform miRNA transfections, including treatments, and neutral red 

uptake assays. The assays showed that miR-335-5p and miR-3613-3p expression is 

increased in SNCA-variant-expressing cells and the miRNA transfected cells were partially 

rescued under H2O2 stress. 



88 
 

 

Figure 18. PARKmiRs show increased cell viability under neurotoxic conditions. 

(A) Western blot analysis showing overexpression of monomeric a-syn Lane’s 1-4: 

pcDNA3, WT SNCA, E46K, A53T. (B) Overexpression of endogenous miR-335-5p and 

miR-3613-3p in mutant cell lines using qRT-PCR. (C) pcDNA3, WT SNCA, E46K, A53T 

cells were treated with neutral red and cell viability was assayed (n=3, ns- no significance). 

(D) Indicated cells were treated with 100uM H2O2 for 6 hours followed by neutral red assay 

for cell viability Lane 1-4, Untreated, Treated, miR-335-5p treated, miR-3613-3p treated 

(n=3, *p< 0.05, **p<0.01, t test). 
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7 Publications and projects to date  

1. Benjamin Rosen, Ketan S. Patil, Guido W. Alves, Simon G. Møller. Subcellular-

specific Alpha-synuclein in Parkinson’s Disease. The Neuroscience of 

Parkinson’s Disease (2020).  

2. Kurtishi A*, Rosen B*, Patil KS, Alves GW, Møller SG (2019 May). Cellular 

Proteostasis in Neurodegeneration. Molecular Neurobiology. 56(5):3676-3689 

3. Abdullah R, Patil KS, Rosen B, Pal R, Prabhudesai S, Lee S, Basak I, Hoedt E, 

Yang P, Panick K, Ho HP, Chang E, Tzoulis C, Larsen JP, Neubert TA, Alves G, 

Møller SG (2017 December). Subcellular Parkinson's Disease-Specific Alpha-

synuclein Species Show Altered Behavior in Neurodegeneration. Molecular 

Neurobiology. 54(10): 7639-7655 

4. Benjamin Rosen*, Alberim Kurtishi, Gonzalo Vazquez-Jimenez, Simon Geir 

Møller. The Intersection of Parkinson’s Disease, Viral Infections and COVID-19. 

Molecular Neurobiology. (submitted Dec. 2020)  

5. Benjamin Rosen, Alberim Kurtishi, Michael Padron, Ketan Patil, Francisco X. 

Vazquez, Simon Geir Møller. Alpha-synuclein Multimerization is Dependent on 

Structural Characteristics of Repeated KTKEGV Regions. Journal of Biological 

Chemistry (submit Q2 2021) 

6. Alberim Kurtishi, Benjamin Rosen, Ketan S. Patil, Guido W. Alves, Simon Geir 

Møller microRNA regulation of ATXN3, BAG5, and ATG5 by miRs 335 and 

3613. Molecular Neurobiology. (submit Q2 2021) 

*denotes equal contribution 
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8 Appendix 
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8.3 PageRuler Unstained Broad Range Protein Ladder 

 

8.4 HiLO DNA Marker 
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