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Background: Motor neurons (MNs) are distinct types of cells in the dorso-ventral axis of the spinal cord. These cells
are developed in the presence of two main morphogens, including Sonic hedgehog (Shh) and retinoic acid (RA).
On the other hand, human bone marrow mesenchymal stem cells (hBM-MSCs) are known as a multipotent type of
cells with neural differentiation capacity. In this regard, the aim of this study was to quantitatively evaluate the
expression of MN-related genes and the potent epigenetic regulatory genes involved in neurogenesis, including
Enhancer of zeste homolog 2 (EZH-2) and P300, during hBM-MSC differentiation into MN-like cells, using RA and Shh.
After isolating and inducing the cells with Shh and RA, the results were evaluated using immunocytochemistry and

Results: Our findings showed that the treated cells could express choline acetyltransferase (ChAT) and insulin gene
enhancer binding protein-1 (Islet-1) antigens at the protein level, 2 weeks after induction. Moreover, at the second
week after induction, the induced cells expressed MN-related genes (ChAT and ISLET-1) and epigenetic regulatory
genes (EZH-2 and P300) at significant levels compared to the control (non-treated BM-MSCs) and to the induced cells
at the first week (day 7). In addition, the expression of EZH-2, as a histone-modifying gene, was also significantly
upregulated at the first week compared to the control. No significant upregulation was detected in the expression of
motor neuron and pancreas homeobox 1 (MNX-1) in the treated groups compared to the control group.

Conclusion: We concluded that epigenetic modifiers, P300 and EZH-2, are important mediators for regulating the
process of motor neuron differentiation induced by RA and Shh.

Keywords: Motor neuron, Bone marrow, Mesenchymal stem cell, Epigenetic, P300, EZH-2

Background

Motor neurons (MNs) are known as a distinct type of
cells with defined functions along the dorso-ventral axis
of the spinal cord. Two main morphogens, including ret-
inoic acid (RA) and Sonic hedgehog (Shh), make role in
the developmental specification of these cells [1]. Motor
neuron-related diseases threaten the lives of many
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patients throughout the world. Since there is no efficient
clinical treatment for these patients, medical interven-
tions such as cell therapy still bring hope to these
people. Human bone marrow mesenchymal stem cells
(hBM-MSCs) are multipotent cells characterized by self-
renewal and immunomodulatory properties [2, 3]. Cell
fate of MSCs would be changed depending on the
source of origin and by the ingrained epigenetic memory
signatures of the cells [4]. Synergistic administration of
RA and Shh leads to the expression of motor neuron-
related markers in cultured stem cells [5]. Retinoic acid
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plays a major role in the development of stem cells;
however, little is known about the mechanisms for the
repression of RA-regulated genes [6]. Moreover, the evo-
lutionary conserved developmental morphogens, the
Hedgehog family, have critical roles in stem cell develop-
ment and functions [7]. During the development of hu-
man stem cells, differential gene expression is retained
through mitosis. Such stable alterations in the gene ex-
pression occur during progression from stem cells into
differentiated progenies. The commitment of stem cells
to differentiate into a particular cell type requires upreg-
ulating the expression of genes responsible for a specific
phenotype and suppressing the expression of other genes
that maintain the stemness properties [8, 9]. By impos-
ing functionally relevant modifications to the genome,
histone-modifying enzymes regulate the accessibility of
transcription factors and other modulators to the genes
[9, 10]. For example, a histone-lysine N-methyltransfer-
ase enzyme called enhancer of zeste homolog 2 (EZH-2)
regulates the transition from proliferation to differenti-
ation and accelerates the onset of neurogenesis [11, 12].
Moreover, it regulates the balance between self-renewal
and differentiation in the cerebral cortex cells [11], con-
trols neural stem cell state [13], and prevents premature
differentiation [11, 14]. Through an epigenetic mechan-
ism, Shh signaling regulates the expression of EZH-2
and manages the expression of genes involved in numer-
ous physiological functions such as neural cell survival
and differentiation, in vivo [15, 16].

On the other hand, a histone acetyltransferase,
P300, makes a role in the regulation of neurogenesis
in the spinal cord motor neurons [5, 17]. Tight con-
trol on the function of P300 is critical to ensure pre-
cise histone acetylation and gene activation.
Numerous studies have examined the functional re-
quirement of P300 to act as a co-activator or an ace-
tyltransferase for other transcription regulators [18].
In embryonic spinal motor neurons, P300 and
CREB-binding protein (CBP) contribute to the main-
tenance of Islet-1 expression as the main motor
neuron-related  transcription factor [19]. The
decrease in the number of MNs in CBP/P300
compound mutant embryos confirms that these co-
activators act redundantly to promote MN specifica-
tion, in vivo.

The gene expression and epigenetic regulation under-
lying the process of mesenchymal stem cell differenti-
ation into motor neurons are poorly understood.
Therefore, the purpose of this study was to quantita-
tively investigate the expression of motor neuron-related
genes and the potent epigenetic regulatory genes in-
volved in neurogenesis, including EZH2 and P300, dur-
ing differentiation of human BM-MSCs into motor
neuron-like cells, using RA and Shh.
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Methods

Isolation and culture of human bone marrow-derived
mesenchymal stem cells

The protocol for the aspiration of human bone marrow
was approved by the university research ethics commit-
tee. After diluting 5 ml of the aspirated samples with an
equal volume of phosphate-buffered saline (PBS; Gibco,
USA), to isolate bone marrow mesenchymal stem cells
(BM-MSCs), the solution was loaded onto 20 ml of
Ficoll (Inno-Train, Germany) and centrifuged (400xg, 20
min). The mononuclear cells were then collected,
washed twice with PBS, and seeded in tissue culture
flasks 75 cm® (TPP, Switzerland) at a density of 10°
cells/ml using Dulbecco’s modified Eagle’s medium
(DMEM-F12) supplemented with 15% fetal bovine
serum (FBS), 100 U/ml penicillin, and 100 pg/ml
streptomycin (all reagents from Gibco, USA). The cells
were cultured at 37 °C in an incubator containing 5%
CO,. The culture medium was refreshed every 3 days.
The cells were passaged at the ratio of 1: 3, upon reach-
ing 80% confluence [20]. The third passage cells were
used for subsequent experiments.

Characterization of mesenchymal stem cells
Mesenchymal stem cells were characterized using
mono-color cytofluorimetric analysis, according to our
previous protocol [21]. To do that, 1x10° of these cells
with 10% goat serum were incubated at 4 °C for an hour.
After removal of the serum, the cells were labeled with
monoclonal antibodies conjugated with red phycoeryth-
rin (PE) or green fluorescein isothiocyanate (FITC)-con-
jugated monoclonal antibodies against human antigens
including CD34, CD44, CD45, CD73, and CD90 (BD
bioscience) at 4 °C for 40 min. In each case, an isotype-
matched control was used. Antigen expression data ob-
tained by FACSCalibur Flow Cytometer (Becton Dickin-
son, UK) were analyzed by the FlowJo software.

Induction of mesenchymal stem cells into motor neuron-

like cells

Human bone marrow mesenchymal stem cells were in-
duced into motor neuron-like cells based on our previ-
ous protocol [20, 21]. In summary, the cells were
cultured overnight at a density of 10° cells/well in a 24-
well plate containing a complete expansion medium at
37 °C and 5% CO, humid incubator. Afterward, the
existing medium was replaced with a pre-inductive
medium consisting of DMEM-F12, 20% FBS, 10 ng/ml
bFGF (Sigma, USA), 250 mM isobutylmethylxanthine
(IBMX; Gibco, USA), 100 mM p-mercaptoethanol (f3-
ME; Gibco, USA), and 2% B27 (Invitrogen, USA) and
stored overnight in an incubator. On the following day,
after removing the inductive medium, the induced cells
were treated with the first differentiation medium
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including DMEM-F12 supplemented with 0.01 mM RA
(Sigma, USA), 100 ng/ml Shh (R&D, USA), and 0.2%
B27 for a week. The first differentiation medium was
then substituted with the second differentiation medium
containing DMEM-F12 with brain-derived neurotrophic
factor (BDNF; Invitrogen, USA) and 0.2% B27 as surviv-
ing factors, and differentiating cells were cultured in this
medium for 1 week later.

Immunocytochemical staining

To evaluate the expression of relevant antigens at the pro-
tein level, the treated cells were fixed using 4% paraformal-
dehyde. Then, the cells were permeabilized by treatment
with 0.2% Triton X-100 (Gibco, USA) in PBS. After wash-
ing, they were incubated with diluted 10% goat serum in
PBS as a blocking buffer at room temperature for an hour
to prevent nonspecific interactions. Thereafter, primary
antibodies against human choline acetyltransferase (ChAT;
Abcam, USA), Islet-1 (Santa Cruz, USA), and Mnx-1
(Abcam, USA) were incubated overnight with samples at 4
°C. After washing with PBS, the cells were labeled by incu-
bation with the corresponding secondary antibodies (Sigma,
USA) conjugated to FITC or PE at 37 °C for 45 min. Even-
tually, DAPI (Sigma, USA) was used to stain the nuclei, and
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Table 1 List of primers used in gRT-PCR

Target gene

Primer sequence

GAPDH F: CTCATTTCCTGGTATGACAAC
R: CTTCCTCTTGTGCTCTTGCT
CHAT F: GCA GGAGAAGACAGCCAACT
R: TGCAAACCTCAGCTGGTCAT
MNX-1 F: AGCACCAGTTCAAGCTCAACA
R: ACCAAATCTTCACCTGGGTCTC
ISLET-1 F: ATATCAGGTTGTACGGGATCAAATG
R: CACGCATCACGAAGTCGTTC
P300 F: GTTCTCCCTTACAGCAGCAACA
R: GCAGAGGATTCATGTTCTGCAAG
EZH-2 F: CCGGGCTAGGTTAATTGGGACCAAA

R: CTCGAGTTTGGTCCCAATTAACCT

cell observation was accomplished by a DP70 fluorescence
microscope (Olympus, Japan).

Q-RT PCR

The expressions of motor neuron-associated antigens and
the regulating histone acetyltransferase and histone methyl-
transferase genes were confirmed by real-time PCR. After
cell harvesting at days 7 and 14 post-induction, total RNA
was extracted by TRIzol Reagent (Sigma, Germany). Then,
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Fig. 1 Isolation and characterization of human bone marrow-derived mesenchymal stem cells. a BM-MSCs had fibroblast-like morphology after
three passages (magnification x4). b Cytofluorimetric analysis of the isolated cells at passage 3 revealed that they expressed CD44, CD73, and
CD90 antigens, but they could not express hematopoietic and leukocyte markers, including CD34 and CD45
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the purity of RNA was quantitatively evaluated by spectro-
photometer, and cDNA was synthesized from the extracted
RNA using a ¢cDNA Synthesis Kit (Fermentase, Canada).
Eventually, RT-PCR reactions were performed in a 7500
real-time PCR system (Applied Biosystems, USA) in such a
way that in each reaction, 2 pl of 12.5 ng cDNA was mixed
with 5 pl of SYBR Green Master Mix (Applied Biosystems,
USA) and 1 pl of corresponding forward and reverse
primers (Table 1), and the total volume was reached to 20
ul by adding double-distilled water. The expression level of
the GAPDH gene was considered as an internal control to
normalize the expression levels of selected genes. Each tar-
get gene expression was evaluated in duplicate for three dif-
ferent mRNA samples.

Results

Isolation and characterization of human bone marrow
mesenchymal stem cells

The isolated MSCs taken from human bone marrow had
spindle-like morphology at passage 3 (Fig. la). These
cells were able to express CD44, CD73, and CD90
markers on their surfaces, but they could not express
hematopoietic antigens, such as CD45 and CD34
(Fig. 1b).
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Differentiation of bone marrow mesenchymal stem cells
into motor neuron-like cells

The expression of motor neuron-related markers, in-
cluding ChAT, Islet-1, and Mnx-1, were evaluated using
immunocytochemical staining. The results showed that
the cells could express ChAT (45 + 13.4%) and Islet-1
(53 + 10.1%). No expression of Mnx-1 was detected on
day 14 (Fig. 2).

Evaluation of expression by real-time PCR

Treatment of hBM-MSCs with the induction medium
led to the upregulation of motor neuron-related genes,
including ISLET-1 and ChAT as well as histone-
modifying enzyme genes, P300 and EZH-2, at the second
week of induction when RA and Shh were removed
(p<0.05). Moreover, significant upregulation of EZH-2
was also detected at the first week when the result was
compared with non-treated BM-MSCs as the control
(p<0.05). We could not detect any upregulation in the
expression of MNX-1 compared to the control (Fig. 3).

Discussion

Mesenchymal stem cells derived from bone marrow are
known as multipotent cells with immunomodulatory
properties which have the potential to differentiate into

Control

(non-treated hBM-MSCs)

Fig. 2 Immunostaining of motor neuron-like cells derived from hBM-MSCs. The expression of Islet-1 (53 £ 10.1%), ChAT (45 £ 13.4%), and Mnx-1
antigens were investigated at the second week post-induction in the test group (treated hBM-MSCs) compared with the control group

~
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Fig. 3 Quantitative gene expression. The expression of ISLET-1, ChAT, and MNX-1 was evaluated in human BM-MSCs at 7 and 14 days after
induction in comparison with the control group (non-treated BM-MSCs) (n=3; mean + SE; p<0.05). The expression of motor neuron-related genes
(ISLET-1 and CHAT) and histone-modifying enzyme genes (P300 and EZH-2) was significantly upregulated at the second week of induction when
RA and Shh were removed. Significant upregulation in the expression of £ZH-2 was also detected at week 1 when the result was compared to
the control. No upregulation was detected in the expression of MNX-T when the results were compared with the control
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neural cell lineages. During stem cell differentiation,
some specific genes associated with the development of
a particular phenotype are upregulated, and the genes
accountable for stemness characteristics are inhibited [8,
22]. For example, in histone-mediated epigenetic regula-
tion of cell differentiation, some modifications alter the
access of transcription factors and other modulators to
gene promoters [9, 10].

In the process of motor neuron differentiation from
mesenchymal stem cells, the relationship between gene
expression and epigenetic regulation is poorly under-
stood. So, the aim of this study was to quantitatively in-
vestigate the expression of the candid genes associated
with motor neuron differentiation along with two potent
epigenetic regulatory genes, called EZH-2 and P300, in
motor neuron-like cells derived from hBM-MSCs. To in-
duce the differentiation, we used two morphogens called
RA and Shh which are responsible for the dorso-ventral
specification of the spinal cord and the development of
motor neurons, in vivo. To our knowledge, this is one of
the first studies to evaluate the expression of EZH-2 and
P300 during motor neuron differentiation of hBM-
MSCs.

According to our results, the treated cells could ex-
press ChAT and Islet-1 as motor neuron-specific
markers at both mRNA and protein levels at the second
week of induction. Data were confirmed by qRT-PCR
and immunocytochemistry. It has already been approved
that the synergistic administration of RA and Shh upre-
gulates the expression of Islet-1 and ChAT [23]. Islet-1
as a LIM-homeodomain transcription factor is involved
in the development of cholinergic amacrine cells and dif-
ferentiation of motor neurons [24]. We could not detect
any upregulation in the expression of MNX-1 upon dif-
ferentiation. Suppression of the expression of MNX-1 in
mice can reduce the number of developing motor neu-
rons; however, the target genes downstream of ISLET-1
are independent of MNX-1 [25]. We could detect signifi-
cant upregulation in the expression of ISLET-Iand
ChAT at the second week of the induction after removal
of RA and Shh. Accordingly, it seems that the morpho-
gens tend to keep the cells in an immature state.

We could also detect the expression of EZH-2 and
P300 genes for histone-lysine N-methyltransferase and
histone acetyltransferase enzymes, respectively. EZH-2 is
crucial for regulating the transition from proliferation to
differentiation as well as suppressing forebrain traits
[26]. It also controls the condition of neurogenesis by
coordination between neuro-regeneration and differenti-
ation in the cerebral cortex [11, 13]. In this regard, it
seems that the expression of EZH-2 sets on the process
of neurogenesis initiation by the transition from prolifer-
ation to differentiation and prevents premature differen-
tiation in our experiment. It has been shown that EZH-2
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has a serious time-dependent role during neurogenesis
[27]. In our study, the expression of EZH-2 upregulated
in the presence of RA and Shh and continued to be
expressed even after the removal of these two
morphogens.

Based on our results, the expression of the P300 gene
increased at the second week of differentiation after the
removal of RA and Shh. The expression of P300 is re-
quired for astrocyte development and axon regeneration
[14, 28]. The development of motor neurons in the
spinal cord is dependent on CBP [29]. Through synergis-
tic interaction with RA receptor (RAR) and Neurogenin
2, CBP and its paralog, P300, as co-activator are involved
in regulating neurogenesis and following stages of neural
differentiation in spinal motor neurons [28, 29]. This co-
activator participates in maintaining the expression of
ISLET-1 in embryonic spinal MNs. As we could see, the
expression of ISLET-1 was also upregulated at the sec-
ond week post-induction. According to Toch et al, the
mutation in the CBP/P300 compound reduces the num-
ber of developing MNs in the embryos. This indicates
that P300 acts redundantly in neural progenitors to pro-
mote MN specification [19]. Interestingly, other re-
searchers suggest that CBP and P300 also act in post-
mitotic MNs to regulate later aspects of development
[29]. This phenotype is due to the downregulation of
ISLET-1 in MNs, suggesting that the activity of CBP and
P300 in post-mitotic MNs may depend on the downreg-
ulation of ISLET-1 [19].

Conclusion

It can be concluded that neuronal inducing morphogens,
including RA and Shh, have regulatory effects on the ex-
pression of epigenetic regulatory genes, EZH-2 and
P300, during differentiation of mesenchymal stem cells
into motor neurons. These regulatory effects eventually
lead to the expression of motor neuron-related markers
such as ChAT and ISLET-1, which indicate the comple-
tion of the differentiation process.
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