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Abstract

Objectives: The relationship between reproductive factors and breast cancer (BC) risk has been investigated in
previous studies. Considering the discrepancies in the results, the aim of this study was to estimate the causal effect
of reproductive factors on BC risk in a case-control study using the double robust approach of targeted maximum
likelihood estimation.

Methods: This is a causal reanalysis of a case-control study done between 2005 and 2008 in Shiraz, Iran, in which
787 confirmed BC cases and 928 controls were enrolled. Targeted maximum likelihood estimation along with super
Learner were used to analyze the data, and risk ratio (RR), risk difference (RD), andpopulation attributable fraction
(PAF) were reported.

Results: Our findings did not support parity and age at the first pregnancy as risk factors for BC. The risk of BC was
higher among postmenopausal women (RR = 3.3, 95% confidence interval (Cl) = (2.3, 4.6)), women with the age at
first marriage 220 years (RR= 1.6, 95% Cl=(1.3, 2.1)), and the history of oral contraceptive (OC) use (RR=1.6, 95%
Cl=(1.3,2.1)) or breastfeeding duration <60 months (RR=1.8, 95% Cl = (1.3, 2.5)). The PAF for menopause status,
breastfeeding duration, and OC use were 40.3% (95% Cl =39.5, 40.6), 27.3% (95% Cl = 23.1, 30.8) and 24.4% (95%
Cl=105, 35.5), respectively.

Conclusions: Postmenopausal women, and women with a higher age at first marriage, shorter duration of
breastfeeding, and history of OC use are at the higher risk of BC.

Keywords: Breast neoplasms, Reproductive history, Case-control study, Population attributable fraction, Causal
analysis, Double robustness, TMLE, Super learner
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Highlights

Postmenopausal women, women with higher age at
marriage, women with lower breastfeeding duration,
and women with a history of OC usage are at greater
risk of BC.

The most important risk and preventive factors
were menopausal status and breastfeeding history,
respectively.

Encouraging people to marry at a younger age, and
increasing breastfeeding duration, as well as policies to
reduce the use of hormonal contraceptives, can be
effective in reducing BC cases.

Introduction

In previous decades, most cases of cancer have occurred
in more developed countries, but recently the pattern
has shifted towards developing or less-developed coun-
tries; these countries account for about 82% of the
world’s population, with about 57% of cancer cases and
65% of deaths from cancer [1]. According to GLOBO-
CAN, about 18.1 million new cases of cancer and 9.6
million deaths from cancer were reported in 2018 [2].

Breast Cancer (BC) has the highest number of incident
cases [3]; it alone accounts for 25% of cancer cases and
15% of cancer deaths among women, with almost half of
the new cases and 38% of deaths occurring in more de-
veloped countries [1, 4]. It has the highest annual inci-
dence among women in 161 countries and is also the
leading cause of cancer death in 98 countries [5]. With
1.68 million cases in 2016, BC was reported as the most
common cancer among women, with 535,000 deaths
and 15.1 million DALYs [6]. About one-third of new
cases of cancer among women is BC [7]. In recent years,
the incidence and deaths from BC have increased in
Asian countries including Iran [1, 3, 6].

Several factors, such as smoking, being overweight,
screening programs, physical inactivity, and changes in
reproduction patterns associated with urbanization and
economic development have contributed to the increase
in the incidence of BC [1, 2, 8]. Several studies have
been carried out on the role of reproductive factors and
contradictory results have been reported [9-16].

The causal study of the risk factors of BC requires
careful adjustment for confounders. There are two broad
approaches for confounding adjustment: conventional
outcome regression modeling and propensity score
methods (exposure modeling) [17]. The double-robust
approach combines outcome and exposure models [18].
Misspecification of regression models may cause ex-
treme bias in treatment effect estimates. This problem
has led to a growing interest in using adaptive regression
techniques, such as machine learning methods in causal-
ity research [19-22]. In particular, the field of targeted
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learning has emerged as a paradigm for wedding ma-
chine learning and formal statistical inference [23].

There are many methods for the causal analysis of
case-control data, such as inverse probability-of-
treatment weighting (IPTW), parametric g-formula
(model-based standardization), and targeted maximum
likelihood estimation (TMLE), all of which estimate the
so-called marginal (population-averaged) causal effects
[24-38]. The TMLE method is a combination of the
IPTW and parametric g-formula and so is double-
robust: there are two possibilities for correct model spe-
cification [29].

The relationship between reproductive factors and risk
of BC has been investigated in previous studies, but
there were discrepancies in the reported results. Also to
our best of knowledge, the causal effects of reproductive
factors on BC have not been studied. Therefore, the aim
of this study was to estimate the causal effect of repro-
ductive factors on the risk of BC in a case-control study
using TMLE [39] and Super Learner algorithms [39, 40]
to adjust for confounders.

Materials and methods

Study design

In this case-control study, frequency matching was per-
formed by age, with five-year intervals. BC cases were
confirmed by histopathology and their data were col-
lected in the Cancer Registry Center of Shiraz University
of Medical Sciences. This study was designed in 2005
and data were collected between September 2005 and
December 2008 in Shiraz, Iran, and the available data
were re-analyzed in 2018 (as PhD dissertation of the first
author) in order to achieve more valid estimates, apply-
ing the advanced causal methods. The case data were
collected from the main hospitals in Shiraz, covering
over 85% of the incident cases in the city. In this study,
more than 93% of the subjects were interviewed within a
maximum of 6 months after diagnosing BC. The control
group was selected from the Faqihi Hospital (as a gen-
eral hospital) in Shiraz and from women without a his-
tory of BC or diseases with common risk factors with
BC (such as gynecology, neoplasm, and hormonal disor-
ders, and those referred to the skin clinic, internal medi-
cine, and urology). Only participants with complete
information (787 cases and 928 controls) for all variables
were included. The study was approved in Tehran Uni-
versity of Medical Sciences (Code: 9121128009) in terms
of methodology also by the Ethical Committee of Shiraz
University of Medical Sciences (project number 591-2).
All participants provided informed consent to be in-
cluded in the study. Further details on the study design
have been published [12, 41]. All methods were per-
formed in accordance with the approved protocol as well
as STROBE guideline.
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Data gathering

Variables were collected through interviewing by two
nurses trained in the same way so that there is no het-
erogeneity in the data collection. A checklist (including
socioeconomic, demographic, and reproductive factors)
was used to collect relevant variables for BC.

Variables
Reproductive factors were identified as potential expo-
sures, and anthropometric and socioeconomic factors as
potential confounders. Reproductive variables, including
parity (<3, >3), menopausal status (post-, pre-
menopausal), age at first pregnancy (< 25, 225 years old),
age at first marriage (<20, >20years old), history of
breastfeeding duration (<60, > 60 months) and history of
oral contraceptive (OC) use (ever, never), were consid-
ered as exposure variables and BC as the outcome.
Causal directed acyclic graphs (DAGs) [42-45] were
used to identify the minimally sufficient set of con-
founders for effect of each exposure on the outcome
(Supplementary Figures S1, S2, S3, S4, S5 and S6). In
order to simplify the DAGs without loss of the validity
of the back-door criterion, we avoided to present some
arrows between covariates that did not play a role in
identifying confounders. The causal relationship between
variables (the arrows) was determined based on our
prior knowledge and review of literature. The selection
of which individuals to study (sampling) was influenced
by their age (matched variables) and their disease status
(case and control group), shown in the diagrams with ar-
rows. In the figures, the variable S indicates selection of
people from the hypothetical cohort into this case-
control study (1l:selected, 0: not selected). The arrows
from BC and age to S reflect the age-frequency-matched
case-control selection, and rectangle surrounding S=1
indicates analysis is conditional on the selected individ-
uals [46-48].

Statistical analysis

We used TMLE method to estimate the causal effect of
reproductive factors on BC. We estimated marginal risk
difference (RD) and risk ratio (RR) as well as population
attributable fraction (PAF) for the BC risk factors. We
used a modification of TMLE appropriate for analyzing
of case-control data, case-control weighted targeted
maximum likelihood estimation (CCW-TMLE) [29, 30].
Since sampling in case-control studies is biased with re-
spect to the disease status i.e., the probability of selection
for cases is much higher than that of controls [46, 47],
CCW-TMLE is a weighted analysis. The weights were
calculated as follows: The total number of BC women
who were registered at the center was 1020.As 85% of
newly-diagnosed cases were referred to this center [41],
over the period of the study, there were 1020/0.85 =
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1200 newly diagnosed patients in the province. Of these,
787 patients (with complete information) were entered
into our study. Thus the sampling fraction of the case
group was 787/1200 and the weight for cases will be
1200/787 = 1.5248. The average population of women
over 20years old in the study period in Fars province
was 1,346,630. In this study, 928 women were selected
as the control group. Thus, the sampling fraction of the
control group is equal to 928/1,346,630 and the weight
for the control group will be 1,346,630/928 = 1451.1.
The steps of CCW-TMLE are as follows:

Step 1: The case and control weights described above
were assigned to cases and controls necessary due to
the nature of the case-control study, to simulate a co-
hort study.

Step 2: The weighted conditional distribution of the
outcome given exposure and confounders was
estimated using super learning.

Step 3: The weighted conditional distribution of the
exposure given confounders was estimated using super
learning.

Step 4: A clever covariate, the inverse probability of
exposure given confounders in the case group and the
negative of the inverse probability of no exposure given
confounders in the control group, was calculated.

Step 5: The outcome regression model from Step 2
was updated by adding the covariate described in step
4, so that the coefficients of the model do not change.
Step 6: The standardized mean outcome (e.g., risk) in
the exposed group was calculated by predicting the
individual mean outcome, for exposure forced to be 1
for all individuals, and the actual values of confounders,
and then averaging them over the individuals from the
model fitted in Step 5. Similarly, we calculated the
standardized mean outcome (e.g., risk) in the
unexposed group by predicting the individual mean
outcome, for exposure forced to be 0 for all individuals,
and the actual values of confounders, and then
averaging them over the individuals from the model
fitted in Step 5. Then we derived the RD, RR, and PAF.
Step 7: The efficient influence curve (EIC) was used to
estimate the standard error and compute Wald-type
95% confidence intervals (CIs) [29, 30, 49].

In our study, PAF measures the proportion of BC (or
any health-related outcome) that is attributable to a
given exposure or the proportion of all BC cases that
would not have occurred if the exposure has been re-
moved [50, 51] and was calculated as follow [52]:

P.(RR-1)
RR

PAF =
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where P, stands for the prevalence of exposure in the
case group. To calculate a 95% CI for the PAF, a boot-
strap confidence interval was used based on 10,000 boot-
strap replicates and reporting the 2.5th and 97.5th
percentiles.

Statistical software

Stata 14.0 (StataCorp LLC, College Station, Texas, USA)
and R 3-4-3 software (R Foundation for Statistical Com-
puting, Vienna, Austria) were used to perform the statis-
tical analyses. The super learner packages glm, step,
glm.interaction,  randomForest, ~gam, rpart and
glmnet algorithms were used. The codes used in the stat-
istical analyses have been provided as a supplementary
file for reproducibility (Appendix 1).

Results

The demographic variables have been described, separ-
ately for case and control groups, in Table 1. The mean
age in the case and control groups were 49.8 (SD =0.4)
and 49.7 (SD = 0.3) years, respectively (p = 0.8). The body
mass index in the case group was higher than that in the
control group (27.9 vs. 27.3 kg/m?; p = 0.001).

As shown in Table 2, there was strong evidence of
higher education level among the case group compared
with the control (p =0.001). Also, there was strong evi-
dence that the frequency of being employed was higher
in the case group than in the control group (p =0.001),
while there was no evidence regarding the difference in
marital status between the two groups (p = 0.400). More-
over, the results of Table 2 support the higher preva-
lence of being postmenopausal, being older at first
pregnancy, being older at first marriage, breastfeeding
duration< 60 months, history of OCP use and parity <3
among case group than the control group.

The RR, RD, and PAF, obtained from the TMLE and
super learner model, are presented in Table 3. There
was no evidence of higher BC risk among women aged
>25years at first pregnancy vs. women aged < 25 years
(RR=1.1, 95% CI = (0.6, 1.7)) and there was also no evi-
dence that multiparity (parity>3) affects the risk of BC
(RR=1.1, 95% CI = (0.8, 1.5)). On the other hand, there

Table 1 Comparison of demographic continuous variables by
case-control status (787 cases and 928 controls) in Fars province,
Iran, 2009

Characteristic

Cases (n=787) Controls (n=928) P-

Mean (SD) Mean (SD) value”
Age (year) 49.8 (0.36) 49.7 (0.34) 0.820
Height (cm) 156.3 (0.21) 156.6 (0.20) 0.270
Weight (kg) 68.3 (042) 66.9 (0.39) 0.010
Body mass index” 279 (0.16) 273 (0.15) 0.001

“Weight (kg)/height® (m?); TObtained from independent t-test
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was strong evidence supporting a higher risk of BC
among postmenopausal women (RR = 3.3, 95% CI = (2.3,
4.6)), women with age at first marriage >20 years (RR =
1.6, 95% CI=(1.3, 2.1)), and women with a history of
OC use (RR =1.6, 95% CI =(1.3, 2.1)). Furthermore, the
history of lactation <60 months had a significant effect
on BC (RR=1.8, 95% CI = (1.3, 2.5)) (Table 3 and Fig. 1).
The PAF for menopause status, breastfeeding duration,
and history of OC use were 40.3% (95% CI = 39.5, 40.6),
27.3% (95% CI=23.1, 30.8) and 24.4% (95% CI=10.5,
35.5), respectively.

Discussion

Using TMLE and super learner, we examined the causal
relationship between reproductive factors and BC in a
case-control study. The results showed no evidence of a
causal relationship between parity or age at first preg-
nancy with the risk of BC. However, menopausal status,
age at first marriage, duration of breastfeeding, and his-
tory of OC use had causal effects on the risk of BC. PAF
analysis suggested that menopausal status and breast-
feeding duration have the most impact on the risk of BC
in our study population. For instance, we found that
27.3% of BC cases in the population can be attributed to
a history of breastfeeding duration <60 months.

The findings of our study showed no evidence for less
or higher risk of BC among multiparous women com-
pared with women with fewer than or equal to three de-
liveries. A protective role of parity above three has also
been reported in a meta-analysis study [15]. according to
a study in Nigeria, parity was negatively correlated with
the risk of BC [53].. In some other studies, parity has
been shown to have a dual effect on BC so that in
women under 45 years old parity was considered as a
risk factor but in women over 45 years old parity has a
protective role [16]. The results of a meta-analysis study
have also shown that the risk of BC in women who have
not yet given birth is 30% higher than that in women
who have given birth, and the risk for every two births is
reduced by 16% [54]. The results of the Antoniou et al.
study [10] suggested that parity is a protective factor for
BC among BRCA1l and BRCA2 notation carriers who
were older than 40 years old.

Menopausal status had a strong causal relationship
with BC (RR=3.3, 95% CI: (2.3, 4.6)). Although the re-
sults of some studies were in agreement with our results,
[13], the others indicated higher risk in premenopausal
women in the same age groups [11]. Some of the differ-
ences in risk of BC between postmenopausal women
and premenopausal women can be explained by differ-
ences in estrogen levels and age (if not adjusted) be-
tween the two groups [55].

Our study provided no evidence of higher BC risk in
women with higher age at first pregnancy. The results of
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Table 2 Comparison of categorical variables by case-control status (787 cases and 928 controls) in Fars province, Iran, 2009

Characteristic Cases Controls (n=928) p-
(n=787) value
n % n %

Education level llliterate 171 217 371 40.0 0.001
Primary 284 36.1 303 326
High-school 239 304 217 234
Academic 93 11.8 37 40

Occupation status Housewife 635 80.7 873 94.1 0.001
Employed 152 19.3 55 59

Marital status Married 665 84.5 777 83.7 0440
Divorced 11 14 8 0.90
Widow 11 14.1 143 154

Menopause status Pre-Menopausal 330 419 476 513 0.001
Post- Menopausal 457 58.1 452 487

Age at first pregnancy (year) <25 613 779 831 89.55 0.001
225 174 22.1 97 1045

Age at first marriage (year) <20 478 60.7 713 76.8 0.001
220 309 39.3 215 23.2

Breastfeeding duration (month) <60 475 60.4 385 415 0.001
> 60 312 396 643 585

OC use Never 280 356 397 428 0.002
Ever 507 64.4 531 57.2

Parity <3 354 45.0 317 342 0.001
>3 433 55.0 611 65.8

*Obtained from chi-square test

a study in Nigeria failed to show a relationship between
age at first live birth and BC [53]. However, several pre-
vious studies indicate that low age at the first pregnancy
reduces the risk of BC [12, 13, 15, 54, 56] so that the risk
of BC has been reported twice among women whose
first pregnancy was over 25vyears [12]. Being older at
first birth has been found to be associated with BC
among BRCA2 but not for BRCA1 mutation [10]. The
contradiction of our study findings with other studies
may be justified by different confounders adjusted for in

analysis and statistical methods used; TMLE method,
along with the super learner approach, have been identi-
fied more efficient for controlling confounding [29, 30,
57].

Although our study suggested that marriage before 20
years old is protective for BC, Ghiasvand et al. failed to
demonstrate any relationship between age at first mar-
riage and BC in young women [12]. Our findings are in
line with the Kinlen study [58] in which risk of BC in
women with age at first marriage and age at first birth

Table 3 The relationship between reproductive factors and breast cancer risk using TMLE and super learner approach (787 Cases,

928 Controls) in Fars province, Iran, 2009

Reproductive factors Risk Differences® Risk ratio PAF (%)

(95% ClI) (95% ClI) (95% Cl)
Parity (> 3) 6.6 (—14.6, 36.7) 1.1 (08, 1.5) 36 (-85, 20.2)
Menopausal status (yes) 694 (68.0, 70.0) 33(23,46) 40.3 (39.5, 40.6)
Age at first pregnancy (=25 years) 22 (-336,38.1) 1.1(06,1.7) 6 (1.16, 1.17)
Age at first marriage (=220 years) 37.0 (64, 60.1) 16 (1.3, 2.1) 145 (2.5, 23.5)
Breastfeeding duration (<60) 453 (384, 51.1) 18(1.3,25) 273 (23.1,30.8)
OC use (yes) 379 (16.8, 56.2) 16(13,21) 244 (105, 35.5)

Cl confidence interval, OC oral contraceptive, PAF population attributable fraction. °

per 100,000
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Variables RR 95%Cl
Menopausal status 33 —— (2.3-4.6)
Parity 1.1 H— (0.8-1.5)
OC use 1.6 — (1.3-2.1)
Age at first pregnancy 1.1 = (0.6 -1.7)
Age at first marriage 1.6 = (1.3-2.1)
Breastfeeding 1.8 —— (1.3-25)

T T T T 1

0 1 2 3 4 5

RR
Fig. 1 The Risk Ratios (RRs) of Interested Exposure and Breast Cancer

30years or older was 7 times compared to those with
age at first marriage and age at first birth below 20
though he hypothesized that marriage involves the clos-
est contact, pertinent to the infection, leading to an in-
crease in various types of cancer [58, 59].

History of breastfeeding has been shown to be a
protective factor for BC with a dose-response rela-
tionship, the risk is reduced with an increase in
breastfeeding duration [9, 60], confirmed in our study.
Generally, two mechanisms have been proposed for
the protective effect of breastfeeding, the differenti-
ation of breast tissue and the decrease in the number
of ovulation cycles throughout life [61]. the result of
a meta-analysis in 2008 demonstrated that only 11
out of the 24 published studies have reported a pro-
tective effect of breastfeeding on BC [61].

The history of OC use is considered to be a risk factor
for BC as identified in a meta-analysis study by Anothai-
sintawee et al. [9]. Similarly, the risk in people with a
history of OC use in our study was 1.6 times more than
that in women without. In a Danish cohort study of 1.8
million women between the ages of 15 and 49, the risk
ratio of BC for current and recent OC users was1.2, with
more years of consumption, leading to a greater risk
[14]. Conversely, some studies have reported any evi-
dence for the effect of OC use on BC [15].

One of the strengths of our case-control study is
applying the causal method of weighted TMLE, to
identify risk factors of BC, which unlike IPTW and
parametric g-formula, is double robust. Using this
methodology, we reported risk-based effect measures
including, RD and RR as well as the impact measure
of PAF. In addition, the super learner method has
been employed to estimate the probability of outcome
and exposure using a weighted linear combination of
different algorithms instead of relying on a single al-
gorithm, to improve the validity and efficiency of the
effect estimate.
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Limitations

Causal interpretation requires the measurement of all
confounders, some of which may have been ignored in
our study so the results should be considered with cau-
tion. Similar to all retrospective case-control studies,
there was a potential for recall bias. Due to data collec-
tion between the September 2005 and December 2008,
albeit the risk factors pattern is not expected to change
significantly during one or two decades, it is recom-
mended to externally validate the result of our study
based on newer data.

Conclusions

In summary, postmenopausal women, women older at
age of marriage, and women with the history of lower
breastfeeding duration or OC use are at higher risk of
BC. The most important risk and preventive factors were
menopausal status and history of breastfeeding duration,
respectively. Further studies with a larger sample size
and adjustment for a more complete set of confounders,
particularly with regard to lifestyle factors, are
warranted.
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