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Abstract 

Gene therapy by expression constructs or down-regulation of certain genes has shown great 

potential for the treatment of various diseases. The wide clinical application of nucleic acid 
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materials dependents on the development of biocompatible gene carriers. There are enormous 

various compounds widely investigated to be used as non-viral gene carriers including lipids, 

polymers, carbon materials, and inorganic structures. In this review, we will discuss the recent 

discoveries on non-viral gene delivery systems. We will also highlight the in vivo gene delivery 

mediated by non-viral vectors to treat cancer in different tissue and organs including brain, 

breast, lung, liver, stomach, and prostate. Finally, we will delineate the state-of-the-art and 

promising perspective of in vivo gene editing using non-viral nano-vectors. 
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1. Introduction  

Since the elucidation of the molecular mechanisms of several diseases along with the discovery 

of nucleic acid structure, the replacement of defective genes with functional versions has been 

considered as a new therapeutic paradigm called “gene therapy” (1, 2). Gene therapy is carried 

out by expression constructs in order to increase the production of specific proteins inside the 

cells. On the other hand, down-regulation of specific genes has shown great potential for the 

treatment of various diseases (3). Therefore, the modulation or silencing of such genes using 

antisense or siRNA has opened up new horizons for the introduction of a novel therapeutic 

strategy for incurable diseases (4). Recently, the breakthrough of chimeric antigen receptor T cell 

immunotherapy and gene editing platforms have revolutionized the classic gene therapy 

approaches.  

The broad clinical application of nucleic acid materials as a drug is significantly dependent on 

the progress of gene carriers with the capability to transfer nucleic acids into the target cells with 
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low toxicity (5). The evolution pathway of viruses enabled them to pack the genetic materials, 

protect them against degrading enzymes (e.g., nucleases) and transfer them into the target cells 

with high specificity. As of 2017, around 67% of all gene therapy clinical trials were carried out 

by viral vectors (6). However, there are several significant concerns regarding the application of 

viruses as a cargo, including immunogenicity, insertional mutagenesis, as well as reports of 

deaths following the administration of viral vectors for gene delivery. Also, the limited capacity 

of viruses for gene delivery and expensive production methods of engineered viruses for large-

scale production has hampered their application as a promising vector (7, 8). For example, 

Glybera (alipogene tiparvovec) which was approved in 2012 for the treatment of familial 

lipoprotein lipase deficiency (LPLD) withdrawn from the market due to the high price of 1 

million US dollar per single injection which made it as the most expensive medicine in the world 

at that time (9). Therefore, considerable attention has been directed to the application of a new 

class of carriers with the ability to mimic the virus properties for infection, promote the cellular 

entry of nucleic acids and their release inside the cells (e.g., cytosol or nucleus) (10, 11). These 

carriers are called as non-viral vectors and must be able to interact with nucleic acids to condense 

them outside the cells and protect the genetic materials from various degrading factors (12, 13).  

There are various enormous compounds widely investigated to be used as non-viral gene 

carriers, including peptides, lipids, and polymers. Among these different materials, polycationic 

polymers have been widely used due to their specific characteristics (14). The molecular 

structure of these compounds is stable and enables them to act as a scaffold for further 

modifications in order to improve their properties for in vivo applications. For instance, cationic 

polymers contain several amine groups in their structure, making them as positively charged 

compounds. This charge is the critical factor for electrostatic interaction with the negatively 
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charged nucleic acid materials and forming polyelectrolyte complexes (i.e., polyplex). These 

unique supramolecular assemblies could interact with the negatively-charged components on the 

plasma membrane and facilitate the cell entry via adsorptive endocytosis (15). The translation of 

polyplexes from bench to bed is still in the beginning. However, there are some polycationic 

compounds in different phases of a clinical trial for the treatment of various diseases, including 

cystic fibrosis, AIDS, bladder and ovarian cancers, as well as melanoma and inherited TTR 

amyloidosis (Tables 1 and 2) (16-19). Various polycations have been used in these clinical trials, 

such as unmodified polyethylenimine (PEI), which is the most extensively investigated 

polycation for gene delivery. Also, the conjugated forms of PEI with cholesterol and mannose 

have been used for some clinical applications (20, 21). On the other hand, PEG conjugated, and 

transferrin-conjugated polylysine have been applied in human clinical trials (22). The 

polycations used for human gene delivery showed that the application of such materials in 

human is highly dependent on the optimization of their intrinsic properties including cytotoxicity 

(23). In other words, their clinical application might be hampered by the significant toxic effects 

result from their cationic nature, which is a prerequisite for the formation of nano-sized particles 

(24). The dilemma between higher efficiency of gene transfer and cytotoxic effects of 

polycations has led researchers to seek for different conjugation strategies for improving the 

properties of these materials for human application (25). In addition, learning from nature directs 

investigators to design precise and sequence-defined polymers. This novel class of polycationic 

compounds could be called artificial viruses since they are not a real virus particle. However, 

they contain the essential parts of a virus, which have shown crucial role in gene delivery. These 

particles must be able to pack nucleic acid materials and protect them in the extracellular 

environment as well as intracellular compartments. The artificial viruses also contain the 
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targeting ligands in order to direct them into the specific cells or subcellular organelles (4, 26, 

27). On the other hand, the dissociation of nucleic acid from its cargo could be considered as the 

rate-limiting step in successful gene delivery. Although the association of nucleic acid and 

vehicle is essential for complex formation outside the cells, the release of nucleic acids in cytosol 

or nucleus is a determining factor for the biological effects of nucleic acid therapeutics. It seems 

that the bio-inspired polycationic carriers may open up new avenues for the clinical translation of 

non-viral gene delivery systems.   

 

2. From bench to bedside: an overview 

There are several intra- and extra-cellular barriers determining the pharmacokinetics and 

biodistribution of the non-viral gene carrier in the human body. These factors, along with the 

intrinsic characteristics of the carrier and nucleic acid material, play a crucial role in choosing the 

best and more efficient route for administration (4). Various types of nucleic acids could be 

applied as therapeutic agents in gene therapy. The determining factor to choose the best nucleic 

acid material is the purpose of the treatment. In some diseases or pathologic conditions, the 

expression of specific genes may be reduced. Therefore, the essential need is to compensate the 

lower levels of gene expression by transferring a construct enabling the cells to up-regulate the 

specific gene. In these cases, a plasmid DNA (pDNA) could be considered as a tool to enhance 

gene expression. Plasmid DNA-based gene therapies could be categorized as the classic gene 

therapy in which the lack or loss of function in a cell is attributed to the low expression of a 

specific gene. The concept of using the pDNA as a therapeutic agent comes from the fact that 

this loss of function could be compensated by transferring the corrected or enhanced sequences 

expressing the functional protein in the target cell (28-31). Although the general idea of pDNA 
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application for gene therapy seems to be simple, there are several problems hampering its 

clinical application. Naked pDNA delivery is not generally satisfactory due to the low uptake, 

degradation in the bloodstream, and poor pharmacokinetic properties. In addition, pDNA must 

be able to cross the nuclear membrane to access the transcriptional machinery of the cells (32). A 

successful gene carrier must be able to pack the plasmid DNA outside the cells and protect it 

against degrading agents. On the other hand, the carrier system must allow the pDNA to be 

accessed by the transcriptional machinery of the cells for the production of mRNA. Therefore, an 

efficient plasmid DNA delivery system is needed to protect the plasmid outside the cells, 

particularly against degrading enzymes, enhance their cellular uptake, preferably to the target 

cells and improve their pharmacokinetic properties for in-vivo applications. Since pDNA 

delivery has shown some difficulties particularly in terms of in-vivo applications, an alternative 

strategy to improve the gene expression level is mRNA therapy (33). mRNA therapy has shown 

great advantages compared with pDNA in recent years (34).The site of action for mRNA is 

cytoplasm, whereas the pDNA must be entered to cell nucleus for efficient gene expression (35). 

Using mRNA does not need to overcome the nuclear envelope as one of the toughest barriers 

limiting gene delivery. Since the site of action for mRNA is the cytoplasm, the risk of insertional 

mutagenesis could be ignored. Although the immunogenic response against pDNA is limited to 

the CpG motif of plasmids by tool like receptors, the same responses against RNA sequences are 

remarkably lower. One more advantage of mRNA versus pDNA therapy is that the size of 

mRNA is smaller than pDNA. Therefore, it could be transferred to the host cells more easily.  

The last but not least advantage of mRNA application for gene therapy is the rapid responses 

following transfection. The transfection of pDNA takes several hours or days since the pDNA 

must enter the cell nucleus, be transcripted to mRNA, transferred to the cytosol and finally be 
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accessed by the ribosome for the production of proteins. On the other hand, mRNA directly 

enters the cytoplasm and interacts with ribosome for protein production. These unique properties 

have made mRNA as a potential candidate not only for gene therapy but also for vaccine 

development particularly for the immunization against widespread viruses including SARS-

CoV-2 (36).  However, the major concerns regarding the application of mRNA for gene therapy 

are its unstable nature and the existence of degrading enzymes such as RNases in the extra- and 

intra-cellular environments (37, 38). To overcome these problems, new developments, including 

SNIM (stabilized non-immunogenic mRNA), have been introduced in which the modified 

nucleotides could be incorporated into the mRNA structure to increase its stability and reduce its 

immunogenicity (4, 39-41).  

The aim of gene therapy is not just increasing the expression of certain gene as it was expected in 

previous decades. There are several pathological conditions related to the genes over-expression. 

In such conditions, the gene therapy goal would be silencing the target genes. The knock-down 

of such genes could be achieved by different nucleic acid materials, including antisense and 

siRNA. It must be considered that there are some differences between gene therapy and 

oligonucleotide therapy (42). Oligonucleotide-based medications such as antisense do not need 

the transcriptional and translational machinery of the cells while the conventional gene therapy is 

based on the replacement of defected genes by the functional ones as well as the introduction of 

new gene into the cells including germlines or somatic cells (43). Antisense technology is 

defined as a powerful tool to down-regulate a specific gene by transferring the antisense strand to 

the cells with the ability to interact with the sense strand. The base pairing between the sense and 

antisense strands results in the translational block (44, 45). On the other hand, RNAi technology 

employs several enzymes (e.g., dicer) and proteins (e.g., RISC complex) to interfere with the 
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protein production. Antisense, miRNA, and siRNA are ribonucleic acid-based materials (46). 

Therefore, the major concerns for RNA-based therapeutics do already exist for them. The 

successful delivery of such materials to the cells or tissues and organs need a delivery vehicle 

designed to circumvent the barriers for their efficient delivery (47-49).  

 A successful non-viral delivery system must have a favorable circulation time allowing the 

carrier to penetrate the target tissue with low toxic effects as well as biocompatibility and 

biodegradability of the carrier system (34, 50). Once taken up by the target cells, the delivery 

system must be able to be unpacked and release the therapeutic nucleic acid inside the cell. In 

other words, vector unpackaging inside the cells could be considered as an important factor for 

high transfection efficacy while the formation of stable complexes (i.e., packaging) outside the 

cells is a key factor for achieving successful gene delivery (5, 30, 51).  

Another factor affecting the transfection efficiency is the size and zeta potential of the 

complexes. It seems that the particles with the size range of 50-100 nm and zeta potential of 

around ±10 mV have shown the best results to access the tumor microenvironment with the 

lowest uptake by the reticuloendothelial system (RES) (25, 50, 52, 53). The nucleic acid 

containing particles have shown short circulation half-life limiting their access to the target site 

while the larger complexes are not able to cross through the capillary fenestra to reach the tumor 

site. Prolonged blood circulation time is a prerequisite for gene delivery using non-viral gene 

carriers (54). There are several various molecules conjugated on the surface of polymeric 

vehicles to make them as stealth carriers, including polyvinyl alcohol (PVA), poly (glycerol), 

poly-N-vinylpyrrolidone and poly (ethylene glycol) (PEG) (32, 55-58). All these materials create 

a steric stabilization effect leading to the prolonged circulation half-life by prevention of 

immune-related proteins' opsonization. This type of carrier coating by forming a hydrophilic 
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layer on the surface of the carriers reduces the risk of aggregation and increases colloidal 

stability. The reduction of the interaction between the stealth gene carriers and serum 

components reduces the recognition of the vehicles by mononuclear phagocyte system (MPS), 

including macrophages, which in turn leads to enhanced circulation time (58). In order to direct 

the carriers into the precise site of action, smart gene carriers have been designed. These carriers 

could be targeted to the specific receptors by the conjugation of small molecules as well as 

macromolecules including monoclonal antibodies or aptamers (59-61). Once the nano-carriers 

reach the cells, they may enter endosomal compartment, which degrades the nucleic acid 

therapeutics and leads to failed transfection. Hence, the promotion of proton sponge effect or the 

conjugation of membrane fusogenic compounds could be considered as brilliant strategies to 

overcome the endo/lysosomal barrier (62, 63). While the siRNA site of action is the cytosolic 

environment, plasmids must be able to cross the nuclear barrier. It has been shown that the 

molecules with the molecular mass of 40-70 kDa (10-25 nm) are able to passively diffuse via 

nuclear pores. However, the exact mechanism of nuclear entry is not completely understood (4, 

64). It is not clear whether the polyplexes goes under vector unpackaging outside the nucleus or 

the transcriptional machinery of the cell dissociate the nucleic acids from the carrier inside the 

nucleus. Regardless of the mechanism, it has been demonstrated that cell cycle may have a 

crucial impact on the cell entry. The cells at the phases of S/G2 have shown the highest 

transfection efficiency. However, most cells are not in the dividing phase in vivo; therefore the 

alternative approaches, including the conjugation of nuclear localization signals (NLS), must be 

employed to increase nucleus entry (65, 66). The real value of these important findings is 

dependent on their translation to clinical application. The approval of patisiran (Onpattro
®

) as the 

first FDA approved siRNA based therapeutic for hereditary transthyretin-mediated (hATTR) 
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amyloidosis opened up new horizons for the scientists to seek for the efficient delivery systems 

enabling the nucleic acids to be used as therapeutic agents. Patisiran has been formulated as lipid 

nanoparticles (NPs) and is used by intravenous infusions while the second approval for siRNA-

based therapeutics belongs to givosiran (Givlaari
®
) (67-69). Givosiran has been prepared as N-

acetylgalactosamine (GalNAc) conjugated siRNA and is administrated subcutaneously. The first 

polymer-based gene therapy investigation in human was carried by Transferrin-polylysine 

(adenovirus-enhanced transferrinfection; AVET) carrier in order to transfer the plasmid encoding 

IL-2 gene for the treatment of melanoma (70). In the first-ever human study of polyplexes, the 

ex-vivo gene transfer was performed to deliver the plasmid DNA into the patient cells. PEG 

conjugated polylysine was used to transfer the pDNA to treat cystic fibrosis as a nasal drug 

delivery system (16). In another study to design a vaccine for HIV, mannose conjugated PEI was 

prepared as the carrier for the plasmid encoding various HIV antigens and used as a dermal 

formulation in a human clinical trials (71). The intraperitoneal injection of PEG-PEI-Cholesterol 

to transfer IL-12 plasmid was also used for ovarian cancer treatment (72). The intravenous 

injection of transferrin-cyclodextrin oligocation complexed with siRNA to silence ribonucleotide 

reductase M2(RRM2) was applied in various solid tumors (22). Since various routes of 

administration have been used to transfer non-viral delivery systems for gene therapy, it seems 

that the route is highly dependent on the characteristics of the carrier and nucleic acids as well 

the prepared complex and the final formulation. It seems that there is no restrict limitation for a 

specific route of administration for non-viral gene delivery carriers at least in the theoretical 

aspect (Table 2).  
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Table 1: Examples of non-viral delivery systems used for cancer gene therapy in preclinical 

stages.  

Delivery 

system/device 

Cancer 

type 

Bioactive 

compound 

Animal 

model 

Safety  Major 

outcomes  

Ref

s  

Polymer hybrid 

NPs 

Non-small 

cell lung 

cancer 

(NSCLC) 

PLK1 siRNA Subcutaneou

s A549 tumor 

model in 

male nude 

mice  

Favorable 

gene 

delivery 

system 

PHD/ 

PLL/siRNA NP 

showed 

excellent tumor 

growth 

inhibition rate 

(73

) 

Gene-loaded 

microbubbles 

(MBs)  

Lung 

cancer  

miR-449a Subcutaneou

s H1299-

tumor model 

in Forty 

specific 

pathogen-

free (SPF) 

BALB/C 

nude mice  

Ultrasound 

MBs were 

showed the 

advantages 

of high 

safety, 

stability, 

and 

transfection 

efficiency 

Ultrasound-

MB-mediated 

miR-449a 

protected the 

repressive 

effects of miR-

449a on lung 

cancer 

progression 

(74

) 

Polyethylenimine 

PEI-SP5-2 (PES) 

based polymer 

NPs 

NSCLC Human Wnt 

inhibitory 

factor-1 (hWIF-

1) 

Subcutaneou

s A549 tumor 

model in 

female 

BALB/c 

nude mice 

Polymer 

NPs  

showed 

high 

biocompati

bility in 

organ H&E 

and 

Hemolysis 

test 

PES/hWIF-1 

complexes 

inhibited the 

lung tumor 

growth  

(75

) 

Liposome Lung 

cancer 

CYP1A1 

siRNA 

BALB/c 

nude 

xenografts 

No 

noticeable 

toxicity 

Inhibited tumor 

growth via 

down-

regulation of 

CYP1A1 

expression 

(76

) 

Peptide-based 

cationic 

liposomes 

Lung 

cancer 

IGF-1R-siRNA Lung cancer 

A549 cell 

xenografts 

Induced 

pulmonary 

inflammatio

n and liver 

injury at 

higher 

dosages. 

Cationic 

peptide 

liposome was 

selectively 

delivered 

siRNA in the 

tumors of mice 

and efficiently 

inhibit tumor 

growth 

(77

) 

Aptamer- NSCLC AP/ES - Subcutaneou Did not Showed (78
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nanocomplexes Chloroquine  

/erlotinib/Survi

vin shRNA 

s xenograft 

tumor model 

show 

apparent 

toxicity  

normalization 

of tumor 

vessels, which 

helps 

erlotinib/Surviv

in-shRNA 

delivery for 

reversal of 

erlotinib 

resistance in 

EGFR NSCLC. 

) 

Poly(ester amine) 

(PEA-NPs 

Lung 

Cancer 

Anti-

MicroRNA-155 

Subcutaneou

s lung tumor 

model 

PEA/anti-

miR-

155/HA-

peptide 

complexes 

showed 

decent 

biocompati

bility and 

stability 

PEA/anti-miR-

155/HA-

peptide 

complexes 

showed 

excellent 

biocompatibilit

y and lung 

tumor growth 

inhibition  

(79

) 

Liposomes- PSH-

DL 

NSCLC PFKFB3-

shRNA& 

Docetaxel 

Subcutaneou

s A459 lung 

tumor 

xenograft 

model 

The highest 

apoptosis 

was 

observed 

for co-

loaded 

liposomes 

rather than 

control  

group 

PSH-DL 

showed 

promising 

tumor growth 

inhibition 

(80

) 

Lipid-based NPs Lung 

cancer 

Plasmid DNA Lung cancer-

bearing 

BALB/c 

nude mice 

Low 

cytotoxicity 

Tf/HA-pDNA 

NLC was 

developed as an 

efficient and 

safe gene 

delivery 

system 

(81

) 

Glycerol 

propoxylate 

triacrylate 

spermine (GPT-

SPE)- NPs 

Lung 

cancer 

Importin 7 

shRNA 

K-rasLA1 

lung cancer 

model  

Low 

toxicity, 

high 

transfection 

efficiency 

and 

biocompati

bility in 

vivo 

Down-

regulation of 

importin 7 

significantly 

inhibited lung 

tumor growth 

in vivo 

(82

) 

Superparamagnet

ic iron oxide NPs 

(SPIONs) 

Breast 

cancer  

MIR376B 

microRNAs/A

GO2 protein 

Subcutaneou

s SKBR3 and 

MDA-MB-

NPs 

showed no 

detectable 

NPs selectively 

delivered 

microRNA into 

(83

) 
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453 

xenograft 

mouse 

models 

side-effects 

in 

histopathol

ogical 

examinatio

n of major 

organs 

HER2-positive 

breast cancer 

cell lines in 

vivo and 

blocked 

autophagy 

Polymer-

inorganic hybrid 

–NPs 

Breast 

cancer 

Near-infrared 

(NIR-

II)/plasmid 

4T1-

Subcutaneou

s breast 

cancer 

The H&E 

staining 

analysis of 

major 

organs and 

no 

noticeable 

body 

weight loss  

confirm the 

low in vivo 

cytotoxicity 

of tri-modal 

therapy 

NPs showed a 

remarkable 

therapeutic 

effect of 

trimodal 

gene/PT/chemo

therapy of 

malignant 

breast cancer 

treatment in 

vitro and in 

vivo 

(84

) 

Graphene oxide 

nanoflakes with 

cationic lipids 

NPs 

Breast 

cancer 

DNA 

complexes 

MDA-MB 

and MCF-7 

cells 

Showed 

high 

transfection 

efficiency 

with no 

appreciable 

cytotoxicity 

Developed 

novel 

biocoronated 

gene delivery 

systems 

(85

) 

Elastin like-

recombinamer 

covalently 

conjugated to 

aptamer 

Breast 

cancer 

 pDhMUC1 Subcutaneou

s-MCF-7-

breast cancer 

model 

selective 

toxicity 

against 

cancer cells 

in in vitro 

and in vivo 

Showed 

promising 

tumor growth  

inhibition in 

subcutaneous 

breast cancer 

model 

(86

) 

Hydrogel Breast 

cancer 

RNA-triple-

helix-& 

CXCR4siRNA  

Subcutaneou

s breast 

cancer 

Low 

toxicity 

This gene 

delivery system 

delivered genes 

with high 

specificity and 

selectivity 

toward TNBCs 

(87

) 

Linear 

polyethylenimine 

(LPEI)-

Polyplexes 

Breast 

cancer 

CD49f-binding 

peptide 

CYESIKVAVS 

& plasmid 

DNA 

4T1 murine 

triple-

negative 

breast cancer 

No toxicity 

due to 

selective 

delivery 

Polyplexes 

were well 

tolerated and 

resulted in 

measurable 

transgene 

expression  

in tumor areas. 

(88

) 
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Magnetic- Fe3O4 

NPs-b-MNP-

PGEA 

Breast 

cancer 

PTT/p53gene Subcutaneou

s mouse 

breast cancer 

model 

No  

noticeable 

toxicity 

Synergistic 

effects based on 

PTT-enhanced 

gene therapy 

was achieved 

(89

) 

Hydrogel Breast 

cancer 

Survivin 

antisense 

oligonucleotide 

Subcutaneou

s breast 

cancer  

Reduced 

the possible 

adverse 

side effects 

Sur-

ASON/PHB-

P/PF127 

hydrogel 

significantly 

inhibited drug-

resistant tumor 

growth 

(90

) 

Mesoporous 

silica 

nanocapsules 

Breast 

cancer 

Doxorubicin/si

RNA cocktail 

Orthotopic 

breast cancer 

MSNCs 

showed 

high 

biocompati

bility 

Doxorubicin/si

RNA cocktail 

showed 

superior tumor 

growth 

inhibition in 

breast cancer. 

(91

) 

PEGylated-

PLGA/PIE NPs 

Breast 

cancer 

Ganciclovir 

(GCV) and 

CB1954 

Subcutaneou

s breast 

cancer 

Minimum 

toxicity 

GDEPT genes 

and prodrugs 

showed a 

significant 

reduction in 

tumor size (2.3-

fold) compared 

with untreated 

control mice. 

(92

) 

Immunoliposome

s 

Breast 

cancer 

pcDNA3.1-

CSF1-

endostatin 

Subcutaneou

s tumors 

No 

differences 

were 

observed in 

mice 

behavior, 

no 

significant 

difference 

was 

detected in 

body 

weight and 

liver index 

Anti-CD105-

mAb-

conjugated 

immunoliposo

mes showed 

enhanced tumor 

targeting, 

imaging, and 

gene transfer 

applications 

with reduction 

of tumor 

growth 

(93

) 

Branched 

polyethylenimine 

(BPEI) 

Breast 

cancer 

Plasmid DNA/ 

small 

interfering 

RNA (pololike 

kinase 1) 

Subcutaneou

s tumors 

Exhibited 

favorable 

biocompati

bility, 

excellent 

targeting 

ability  

SP-cross-linked 

BPEI/small 

interfering 

RNA (pololike 

kinase 1) 

polyplex 

showed 

(94

) 
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favorable gene-

silencing 

effects in vitro 

and satisfactory 

antitumor 

ability in vivo 

Lipid-coated 

calcium 

phosphate (LCP) 

NPs  

Breast 

cancer 

Cell death 

control siRNA 

MDA-MB-

468 human 

breast 

xenografts 

Showed no 

obvious 

cytotoxicity 

Dual target 

LCP NPs 

significantly 

facilitated the 

tumor 

accumulation in 

vivo 

(95

) 

Polymeric 

prodrugs- 

HPAA-

MTX/MMP-9 

Breast 

cancer 

MMP-9 shRNA 

plasmid/ 

methotrexate 

(MTX) 

MCF7 

subcutaneous 

tumors 

No 

significant 

histological 

difference 

in vital 

organs 

HPAA-

MTX/MMP-9 

co-delivery 

system 

exhibited 

significantly 

improved 

therapeutic 

efficacy to 

breast cancer 

(96

) 

Rod-shaped 

active pure drug 

NPs 

Breast 

cancer 

microRNA 

lethal-7a (let-

7a) 

4T1 tumors No 

significant 

toxicity in 

H&E based 

in vital 

organs 

Rod-shaped 

active NPs 

enable 

efficient and 

safe delivery of 

miRNA with 

synergistic 

treatment. 

(97

) 

Polypeptide NPs-

PNLS 

Breast 

cancer 

siMDR1 MCF-7/ADR  

tumors 

Showed 

high 

biocompati

bility & 

safety 

PNLS 

combined with 

paclitaxel 

showed 

antitumor 

effects and high 

MDR1 gene 

silencing 

efficiency in 

the tumor-

bearing nude 

mice 

(98

) 

Polylysine-

modified 

polyethylenimine 

polymer 

Glioblasto

ma 

HSV-TK and 

TRAIL 

Intracranial 

C6 cell rat 

GBM model 

double-

transfected 

MSCs have 

increased 

the 

apoptosis in 

glioma of 

Decline 

proliferation 

and 

angiogenesis, 

enhanced 

apoptosis 

(99

) 
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SD rats 

PEI-capped 

porous silicon 

NPs 

Glioblasto

ma 

 

MRP1-siRNA Subcutaneou

s xenograft 

tumor model 

in nude mice 

Biocompati

ble, No 

histopathol

ogical signs 

of acute 

damage 

MRP1 

knockdown, 

reduced GBM 

proliferation  

(10

0) 

Poly (l-lysine)-

grafted 

polyethylenimine 

(PEI-PLL) NPs 

Glioblasto

ma 

 

HSV-TK 

DNA+ 

Angiopep-2 

Orthotopic 

U87MG-

LUC GBM 

in nude mice 

model 

Enhanced 

survival 

Accumulation 

in striatum and 

cortex, 

inhibiting 

proliferation 

and inducing 

apoptosis, 

enhanced 

survival 

(10

1) 

Hyaluronic acid-

decorated 

superparamagneti

c iron oxide NPs 

Glioblasto

ma 

pDNA-TRAIL Orthotopic 

glioma model 

in 

BALB/cAnN

.Cg-

Foxn1nu/Crl

Narl mice 

- Activation of 

caspase-3 

apoptotic 

signaling, 

prolonged 

survival, 

declined tumor 

size 

(10

2) 

Methoxy 

polyethylene 

glycol-

polycaprolactone 

(MPEG-PCL) -

DOTAP(DMC) 

nanomicelles 

Glioblasto

ma 

EZH2-siRNA Subcutaneou

s 

Xerographic 

nude 

BALB/c 

mice and 

orthotopic 

glioma model 

in C57/BL6 

mice 

Normal 

histomorph

ology  

 

High 

transfection 

efficacy, 

apoptosis, cell 

proliferation 

inhibition,  

enhanced anti-

tumor efficacy, 

no changes in 

body weight  

(10

3) 

NickFect NPs- 

PEG2000 

Glioblasto

ma 

pLuc2 Intracranial 

U87MG and 

subcutaneous 

HT-1080 in 

nude mice 

Elevated 

liver 

enzymes, 

no 

pathologica

l changes in 

liver and 

lung 

High 

transfection 

efficacy, better 

endosomal 

escape, higher 

bioactivity, 

accumulation in 

brain 

(10

4) 

Folate-

conjugated 

cationic microbu

bbles 

Glioblasto

ma 

pFLuc Intracranial 

C6 cell rat 

GBM model  

Slight 

erythrocyte 

extravasatio

n 

Targeting 

potential, 

accumulation in 

brain, higher 

gene 

transfection and 

expression, 

accumulation in 

(10

5) 
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brain 

Reducible 

poly(oligo-D- ‐
arginine) 

Glioblasto

ma 

pEpo–NI2–SV–

TK 

Intracranial 

C6 cell rat 

GBM model 

Less liver 

toxicity 

Low 

cytotoxicity, 

higher anti-

tumor potential, 

apoptosis  

(10

6) 

R7L10 peptide 

micelle 

Glioblasto

ma 

pEpo-NI2-SV- 

HSVtk 

Subcutaneou

s C6 cell 

tumor model 

in Balb/c 

nude mice 

Lower 

cytotoxicity 

than PEI 

High apoptosis, 

higher 

antitumor 

effect, high 

transfection 

efficacy, 

reduced tumor 

size 

(10

7) 

R7L10 peptide 

micelles-

curcumin 

Glioblasto

ma 

HSVtk Subcutaneou

s C6 cell 

tumor model 

in Balb/c 

nude mice 

- High 

transfection 

efficacy, 

induced cell 

death, reduced 

tumor size 

(10

8) 

poly(β-amino 

ester)s (PBAEs) 

NPs 

Glioblasto

ma 

GFP DNA Orthotopic 

murine 

model in 

nude athymic 

mice 

- Higher affinity 

to tumor cells, 

High 

transfection 

efficacy and 

expression 

(10

9) 

Self-assembling 

of DOTAP and 

MPEG-PLA 

(DMA) 

Colorectal 

cancer 

(CRC) 

IL-15 plasmid 

(pIL15) 

Subcutaneou

s and 

peritoneal 

models  

Normal 

histological 

morphology

, and no 

toxicity 

induced by 

the DMA-

pIL15 on 

vital organ 

sections   

Inhibiting 

angiogenesis, 

promoting 

apoptosis, 

and reducing 

proliferation 

through 

activation of 

the host 

immune system  

(11

0) 

Cationic 

fluorinated 

polymers (PFs) 

Peritoneal 

metastasis 

of CRC  

hTRAIL 

plasmid 

Female 

BALB/c 

nude mice 

bearing 

peritoneal 

SW cells  

The 

treatment 

did not 

cause any 

toxicity to 

normal 

tissues and 

organs  

Significant 

inhibiting of 

peritoneal 

metastasis of 

CRC  

 

(11

1) 

Cationic poly 

(ω-

pentadecalactone

-co-N-

methyldiethylene

amine-co-

CRC G6PD shRNA  CRC cell 

line-based 

xenograft and 

patient-

derived 

xenograft 

- Increasing 

oxaliplatin-

induced 

apoptosis in 

CRC by redox 

modulation 

(11

2) 
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sebacate) 

(PPMS) polyplex 

(PPMS)  

(PDX) 

models with 

high 

expression of 

G6PD *   

Self-assembling 

of DOTAP and 

MPEG-PLA 

(DMA)  

CRC  IL-12 plasmid 

(pIL12) 

Subcutaneou

s and 

peritoneal 

models  

No toxicity 

on vital 

organs 

induced by 

DMP-

pIL12  

Suppressing 

tumor growth 

through 

preventing 

angiogenesis, 

enhancing 

apoptosis and 

inhibiting 

proliferation 

(11

3) 

Mixed 

micelleplexes 

containing 

PDMA-b-PCL 

and mPEG-PCL  

 

 

 

 

 

 

 

 

 

CRC SN-38 (7-ethyl-

10-

hydroxycampto

thecin), ultra-

small 

superparamagn

etic iron oxide 

NPs (USPIO), 

and VEGF 

siRNA   

Xenograft 

LS174T 

tumor-

bearing 

mouse  

The  mixed 

micelles 

more 

improved 

the in vivo 

biosafety 

than SN-

38/USPIO-

loaded 

siRNA-

PEG 

micelleplex

es 

A theranostic 

micellar drug 

and gene 

delivery 

system,  

suppressing 

tumor growth, 

acting as a 

negative  MRI 

contrast agent 

 

(11

4) 

Self-assembled 

multi-arm 

polyrotaxanes 

CRC IL-12 plasmid 

(pIL12) 

C57BL/6 

mice bearing 

subcutaneous 

MC38 tumor  

No major 

systemic 

toxicity 

Significant anti-

tumor 

efficiency  

 

(11

5) 

Poly(ethylene 

glycol)-ε-

poly(caprolacton

e) 

block copolymer  

CRC Co-loading of 

5-fluorouracil 

(5-FU) and 

pEGFP  

BALB/c 

nude mice 

bearing 

SW480 cells  

The low 

toxicity of 

the pEGFP 

and the 

materials 

used in the 

formulation 

Significant 

inhibiting 

tumor growth  

 

(11

6) 

PAMAM (G4 

and G5) 

dendrimers 

modified by 

alkyl-carboxylate 

chain, PEG and 

cholesteryl 

chloroformate  

Colon 

adenocarci

noma  

TRAIL plasmid  BALB/c 

mice bearing 

subcutaneous 

C26 tumor 

No toxicity  Suppressing the 

tumor growth  

 

(11

7) 

Fluorinated 

polymer (PF33) 

Colon 

cancer  

TRAIL gene  BALB/C 

nude 

mice bearing 

No 

systemic 

toxicity  

Significant 

depletion of 

cancer stem 

 

(11

8) 
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subcutaneous 

HCT 116 

cells 

cell-like cells 

(CSCL), 

remarkable 

inhibiting 

tumor growth  

Enteric-coated 

calcium 

pectinate 

microbeads  

CRC p53 plasmid  Adult Wistar 

rats  

- Oral gene 

delivery as an 

effective novel 

alternative for 

CRC therapy  

 

(11

9) 

CPIEDRPMC 

(RPM) peptide 

conjugated 

bioreducible 

polyethylenimine 

(SS-bPEIPEG-

RPM)  

Invasive 

colorectal 

cancer  

pDNA  BALB/c-

nu/nu mice 

bearing 

subcutaneous 

HT-29 cells   

Low 

toxicity  

Specifically 

enhanced 

transfection 

efficiency in 

invasive colon 

cancer cells in 

in vivo  

 

(12

0) 

Core/PEGylated 

shell (CPS) NPs 

comprised of a 

core of high 

molecular weight 

linear 

polyethylenimine 

(LPEI) 

complexed with 

DNA and 

surrounded by a 

shell of 

polyethyleneglyc

ol-modified 

(PEGylated) low 

molecular weight 

LPEI 

CRC   Plasmids  NOD-SCID-

IL-2Rγ–

deficient 

mice (NOG 

mice) bearing 

HCT116 

through 

intrasplenic 

injection  

Low 

toxicity  

16,000-fold 

increase tumor 

transfection, 

selectively 

transfected 

neoplastic cells 

rather than 

stromal cells 

within primary 

and metastatic 

tumors 

 

(12

1) 

Electrotransfectio

n  

Colorectal 

adenocarci

noma  

Plasmid DNA 

encoding 

miRNA-K-ras 

(pmiRNA-K-

ras)  

SCID-C.B-

17/IcrHsdPrk

dcscid female 

mice bearing 

Subcutaneou

s LoVo cells  

No side 

effects  

Electrotransfect

ion of LoVo 

cells with 

pmiRNA-K-ras 

indicated 

remarkable 

antitumor 

effectiveness, 

introducing the 

potential of 

miRNA 

molecules for 

local 

electrogene 

treatment of 

colorectal 

 

 

(12

2) 
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adenocarcinom

a tumors  

Peptide-tagged 

cationic 

liposome–DNA 

NPs 

Gastric 

cancer  

pGFP Athymic 

nude mice 

injected 

intraperitone

ally with 

MKN-45P 

cells  

Minimal 

accumulatio

n in healthy 

control 

tissues  

Enhanced 

tumor 

accumulation, 

preferential 

penetration of 

smaller tumor 

nodules, a 

highly 

clinically 

relevant target 

known to drive 

recurrence of 

the peritoneal 

cancer 

 

(12

3) 

RGD peptides-

conjugated 

pluronic triblock 

copolymers 

including 

poly(ethylene 

glycol)-block-

poly(propylene 

glycol)- block-

poly(ethylene 

glycol) (PEO-

block-PPO-

block-PEO, 

P123)  

Gastric 

cancer 

AP-2α 

expression 

plasmid 

Female 

BALB/c 

mice bearing 

subcutaneous 

MGC803 

cells 

(tumor 

xenograft 

mice) 

Low 

cytotoxicity  

High anti-tumor 

efficacy by 

over-expression 

of AP-2α  

 

 

(12

4) 

Oleylamine 

(OA)-modified 

disulfide-

containing 

polyethylenimine 

(PEI) 

Liver 

cancer 

Survivin-

specific gene 

silencing  

Nude mice 

carrying 

HepG2 

xenografts 

No toxicity 

to normal 

tissues  

Enhanced 

tumor 

accumulation, 

Significant 

inhibiting 

tumor growth, 

 

(12

5) 

Polymeric NPs 

composed of 2-

((3- 

aminopropyl) 

amino) ethanol 

end-modified 

poly(1,5-

pentanediol 

diacrylate-co-3-

amino-1- 

propanol) („536‟) 

Hepatocell

ular 

carcinoma 

(HCC)  

pEGFP-N1 

(eGFP) plasmid 

DNA  

Subcutaneou

s HCC 

mouse model  

Not 

cytotoxic to 

healthy 

hepatocytes  

High and 

preferential 

DNA 

transfection in 

vivo   

 

(12

6) 

Self-assembling 

peptide 

nanovesicle 

Liver 

cancer  

Co-delivery of 

doxorubicin 

(DOX) and the 

Liver cancer 

xenograft  

- Excellent 

drug/gene 

delivery, 

 

(12

7) 
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(SPV)  acetylcholineste

rase (AChE) 

gene  

significant 

growth-

suppressing 

effect   

Hydrodynamic 

gene delivery  

Hepatocell

ular 

carcinoma 

(HCC)  

Diphtheria 

toxin fragment 

A (DTA) gene-

expressing 

plasmid and 

alpha-

fetoprotein 

(AFP) promoter  

YAP-induced 

HCC mice  

No toxicity Significant 

inhibition of 

HCC 

occurrence and 

the suppression 

of the 

tumor marker 

of AFP and 

des-gamma-

carboxy 

prothrombin 

 

(12

8) 

SP94-targeted 

triblock co-

polymer NPs 

containing 

PLGA-PEG-PEI  

Hepatocell

ular 

carcinoma 

(HCC)  

Thymidine 

kinase-p53-

nitroreductase 

triple 

therapeutic 

gene 

The 

xenograft 

tumor 

model 

bearing 

HepG2-FLuc 

cell 

Reduced 

toxicity  

Strong 

expression of 

suicide genes 

selectively in 

tumors, 

inhibiting 

tumor growth 

after 

administration 

of GCV and 

CB1954 

prodrugs  

 

(12

9) 

Perfluoropentane

/C9F17-

PAsp(DET)/miR-

122/PGA-g-

mPEG ternary 

nanodroplets 

(PFP-TNDs/miR-

122) or 

ultrasound-

assisted 

polymeric 

nanodroplets 

Hepatocell

ular 

carcinoma 

(HCC)  

miR-122 BALB/c 

nude mice 

(human HCC 

xenograft 

model) 

bearing 

SMMC-7721 

cells  

Excellent 

safety, all 

the mice 

remained 

alive 

without any 

side effects, 

and no 

significant 

weight loss 

Significantly 

enhanced miR-

122 expression 

level 30-fold in 

human HCC 

xenografts, 

efficient 

inhibiting 

growth, 

migration and 

invasion of 

HCC cells and 

suppressing 

tumor 

proliferation  

 

(13

0)  

ApoE-modified 

liposomes  

Hepatocell

ular 

carcinoma 

(HCC)  

Survivin 

promoter-

driven HSVtk  

Human HCC 

xenograft 

mouse model  

Liposome-

HSVtk/GC

V system is 

safe in vivo 

Inhibiting  the 

growth of 

xenograft 

tumors 

through an 

apoptosis-

dependent 

pathway and 

 

(13

1) 
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extending the 

survival time of 

tumor-bearing 

mice 

Golgi membrane 

protein GP73 

modified-

liposome  

Hepatocell

ular 

carcinoma 

(HCC)  

Survivin 

promoter-

driven HSVtk/ 

ganciclovir 

suicide gene 

Human HCC 

xenograft 

mouse model  

Extended 

the survival 

of tumor-

bearing 

mice 

without 

damaging 

the mice 

liver 

function  

Significantly 

inhibiting the  

xenograft 

tumors growth 

via apoptosis-

dependent 

pathway 

 

(13

2) 

Polyethylenimine

-modified 

mesoporous 

silica NPs 

(PMSNs)  

Hepatocell

ular 

carcinoma 

(HCC)  

Dual delivery 

of HNF4α and 

cisplatin 

Male 

nonobese 

diabetic 

(NOD) 

severe 

combined 

immunodefic

ient (SCID) 

mice bearing 

subcutaneous 

Huh7 cells  

Mesoporou

s silica NPs 

(MSNs) 

have a good 

biocompati

bility and 

low toxicity 

Suppressing 

Cancer 

pluripotency 

and 

tumorigenicity 

in 

hepatoma-

derived CD133-

expressing stem 

cells 

 

(13

3) 

Polyallylamine 

(PAA) mixed 

with partially 

oxidized alginate 

(OA) 

Hepatocell

ular 

carcinoma 

(HCC)  

miR-141  Implanted 

HCC tumor 

model  

NPX-glue 

delivers 

therapeutic 

miR-141 to 

solid 

tumors in a 

safe manner 

Locoregional 

treatment of 

HCC is 

possible  

 

(13

4) 

Magnetic 

mesoporous 

silica NPs (M-

MSNs)  

Hepatocell

ular 

carcinoma 

(HCC)  

Herpes simplex 

virus thymidine 

kinase/ganciclo

vir (HSV-

TK/GCV) 

HepG2 

xenograft-

bearing nude 

mice  

Decreased 

systemic 

toxicity  

Theranostic 

nanoplatforms 

showed suicide 

gene therapy, 

magnetic 

hyperthermia 

therapy, and 

MRI 

simultaneously 

into a single 

system  

 

(13

5) 

Linear 

polyethylenimine 

(LPEI), 

polyethylene 

glycol (PEG) and 

synthetic peptide 

B6 (LPEI-PEG-

Hepatocell

ular 

carcinoma 

(HCC)  

Sodium iodide 

symporter 

(NIS)  

HCC 

xenograft 

model 

bearing 

subcutaneous 

HuH7  

Markedly 

improved 

survival, 

improved 

safety of 

systemic 

NIS gene 

Significant 

delay of tumor 

growth  

 

(13

6)  
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B6)  delivery 

Polymer-based 

nanosystem 

(ROSE)  

Hepatocell

ular 

carcinoma  

microRNA-34a  Mice bearing 

xenograft 

HCC tumors  

ROSE/miR-

34a could 

be used as a 

potential 

safe agent  

Redox-

responsiveness, 

oligopeptide-

guided 

specificity, self-

assembly, 

and enhanced 

transfection, 

Suppressing 

tumor growth  

 

(13

7) 

 

RGD-PEG-

DSPE/DOPA/Ca

P Nanoparticles 

 

Prostate 

cancer 

GRP78 siRNA 

and docetaxel 

(DTXL) 

The PC-3 

prostate 

cancer-

bearing cells 

established in 

nude female 

BALB/c 

mice 

LCP-RGD 

has a low 

hemolysis 

rate, good 

anticoagulat

ion 

property, 

and 

immune 

safety 

Good stability,  

Excellent 

biocompatibilit

y,  

High drug and 

siRNA loading 

capacity, in 

vitro 

sustainable 

release profile 

(13

8) 

Cationic 

nanobubbles 

(CNBs) 

conjugated with 

an A10-3.2 

aptamer 

Prostate 

cancer  

FoxM1 siRNA Xenografts 

tumors in 

nude-mouse 

model  

Very low 

toxicity of 

siFoxM1-

Apt-CNBs, 

without 

serious side 

effects 

Significant 

inhibition of 

tumor 

growth with 

low toxicity, an 

obvious 

reduction in 

FoxM1 

expression, and 

a higher 

apoptosis index 

(13

9) 

Sonoporation 

(sonodelivery) 

Prostate 

cancer  

IL-27 gene They 

generated a 

model for the 

mouse IL-

6Rα and 

aligned it to 

the human 

IL-6Rα 

crystal 

structure 

model 

ART-1-

directed 

liposomal 

IL-27 

offered a 

higher 

safety 

profile and 

an 

improved 

therapeutic 

index, 

supporting 

the concept 

that 

peptides 

can be used 

to direct 

Significant 

reduction in 

tumor growth, 

enhanced 

antitumor 

effects and 

higher 

accumulation of 

natural killer T 

(NKT) and 

CD8 effector 

cells in the 

tumors were 

observed. 

(14

0) 
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proteins or 

nanoparticl

es for 

targeted 

delivery 

Therapeutic-

ultrasound (TUS)  

Prostate 

cancer  

Human tumor 

suppressor gene 

(hSef-b) 

Xenograft 

model, 

Mouse 

models 

Therapeutic 

ultrasound, 

considered 

safe for 

clinical 

applications 

The results 

suggested that 

hSef-b acts in a 

cell 

autonomous as 

well as non-cell 

autonomous 

manner 

(14

1) 

TAT Modified 

and Lipid – PEI 

hybrid 

nanoparticles 

Prostate 

cancer  

Docetaxel (DT

X) and plasmid 

DNA (pDNA)  

PC3 cancer 

cells and in a 

murine prosta

te 

cancer model 

Safe TAT-

DTX/pDN

A LPNs 

improved 

safety of 

gene 

delivery 

 TAT-

DTX/pDNA 

LPNs could be 

a promising co-

delivery nano-

system to 

achieve 

therapeutic 

efficacy for 

treatment of 

cancer 

(14

2) 

Dendrimeric 

RGD peptide and 

PEI grafted water 

soluble chitosan 

(RPgWSC) 

copolymer 

Prostate 

cancer 

pEGFP-N1  Mouse 

xenograft 

model 

generated 

with PC3 

prostate 

tumor cells 

by silencing 

BCL2 

mRNA 

RGD/PEI/

WSC 

copolymer 

provides a 

safe and 

effective 

delivery of 

genetic 

material 

into cells 

RGD/PEI/WSC 

copolymer for a 

good candidate 

as a simple and 

biocompatible 

gene carrier. 

(14

3) 

Linear 

polyethylenimine 

(lPEI)-g-PEG as 

a career 

Prostate 

cancer 

VR1255C 

plasmid DNA 

encoding the 

gene for firefly 

luciferase 

Metastatic 

prostate 

cancer-

bearing mice 

Linear 

polyethylen

imine 

(lPEI)-g-

PEG as a 

career 

brings a 

safe 

delivery 

system in 

vitro and in 

vivo 

lPEI-g-PEG 

with short PEG 

grafts (MW 

500–700 Da) 

resulted in high 

colloidal 

stability, 

transfection 

activity in vitro 

and in vivo 

(14

4) 

Nanoghosts 

derived from 

mesenchymal 

stem cells 

Metastatic 

orthotopic 

lung 

cancer and 

Plasmid cDNA 

encoding for 

the C-terminal 

fragment of the 

Prostate 

cancer 

xenograft 

model 

The first 

evidence of 

the safe and 

effective 

The NGs‟ 

production 

scalability 

along with their 

(14

5) 
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subcutaneo

us prostate 

cancer  

human matrix 

metalloprotease

-2, known as 

the hemopexin-

like domain 

(PEX) 

transfection 

ability of 

MSC-NGs 

for cancer 

gene 

therapy 

uncompromisin

g safety and 

efficient 

transfection 

ability as well 

as their 

versatile 

loading 

capacity, 

selective 

targeting of 

various 

pathologies, 

and shelf life 

stability can 

undoubtedly 

place them at 

the forefront of 

gene-delivery 

systems. 

APT-PEG-

PAMAM (APT-

NPs) 

Prostate 

cancer  

miRNA-15a 

and miRNA-

16-1 

Xenograft 

mouse 

model  

To evaluate 

the safety 

of these 

NPs, body 

weight was 

monitored 

as a marker 

of overall 

toxicity. 

They 

resulted 

that the 

APT-NPs 

could be a 

safe gene 

delivery 

system for 

PCa 

treatment 

A prototype for 

the safe and 

efficient 

delivery of 

miRNA 

expression 

vectors to PCa 

cells 

(14

6) 

Cationic 

hydroxyethylated 

cholesterol-based 

nanoparticle- 

 

Prostate 

cancer 

The plasmid 

pCMV-luc 

encoding the 

luciferase gene 

Human 

prostate 

tumor PC-3 

cells and 

xenograft 

models 

Cationic 

hydroxyeth

ylated 

cholesterol-

Based 

nanoparticl

es transfer 

pCMV-luc 

in a safe 

manner 

Potential non-

viral DNA 

vector for the 

local treatment 

of tumor and in 

vitro 

(14

7) 
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* Patient-derived xenograft model is a tumor model in which the tumor cells from patients are 

implanted into the humanized or immunodeficient mouse model to obtain results that are more 

similar to the original patient.  

 

 

Table 2: Examples of non-viral carriers used in cancer gene therapy clinical trials.  

Non-viral 

carrier 

Target Bioactive 

compound 

Clinic

al 

trial 

Route of 

administration 

National 

Clinical 

Trial 

(NCT) 

Identifier 

PEG-PEI-

cholesterol 

lipopolymer 

Fallopian tube 

carcinoma, 

primary 

peritoneal 

carcinoma, 

recurrent ovarian 

carcinoma 

Plasmid encoding 

IL-12 

Phase 

2  

Intraperitoneal NCT01118

052 

Egen-001 (IL-12 

plasmid 

formulated with 

PEG-PEI-

cholesterol 

lipopolymer 

Recurrent or 

persistent 

ovarian 

epithelial cancer, 

fallopian tube 

cancer, or 

primary 

peritoneal cancer 

IL-12 plasmid 

and - pegylated 

liposomal 

doxorubicin 

hydrochloride 

Phase 

1  

Pegylated liposomal 

doxorubicin 

hydrochloride 

intravenously (IV) 

and EGEN-001 

intraperitoneally (IP) 

NCT01489

371 

Transferrin-

cyclodextrin-

oligocation 

Solid tumors siRNA against 

M2 subunit of 

ribonucleotide 

reductase (R2) 

Phase 

1  

Intravenous infusion NCT00689

065 

PEI Bladder 

neoplasms 

DNA plasmid 

that contains H19 

gene regulatory 

sequences that 

drive the 

expression of an 

intracellular toxin 

[diphtheria toxin 

A (DTA) 

chain]only in 

cancer cells 

Phase 

2  

Intratumoral NCT00711

997 

PEI Pancreatic ductal 

adenocarcinoma 

Plasmid encoding 

somatostatin 

Phase 

1 

Intratumoral NCT01274

455 
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receptor subtype 

2 named sst2 and 

deoxycitidine 

kinase :: 

uridylmonophosp

hate kinase 

named dck::umk 

 

Linear 

polyethylenimine 

Advanced/metast

atic or recurrent 

solid tumors 

MK-4621 

with or without 

pembrolizumab 

Phase 

1 

 

Intratumoral/Intrales

ional 

NCT03739

138 

DC-Chol 

liposomes 

Advanced head 

and neck cancer 

EGFR antisense Phase 

1 

Intratumoral NCT00009

841 

DOTMA/Cholest

erol liposomes 

Recurrent or 

refractory stage 

III or stage IV 

head and neck 

cancer 

Interleukin-2 

gene 

Phase 

2 

Intratumoral NCT00006

033 

Neutral liposome 

(1,2-dioleoyl-sn-

glycero-3-

phosphatidylchol

ine or DOPC) 

Advanced or 

recurrent solid 

tumors 

EphA2 siRNA Phase 

1 

 

Intravenous infusion NCT01591

356 

 

3. Lung cancer therapy 

Despite advances in chemotherapy, surgery, and radiation therapy, lung cancer is one of the 

leading causes of cancer-related deaths globally (148, 149). Even though there is some initial 

response with present conventional chemotherapy, patients will develop resistance and exhibit 

poor survival with prolonged usage (150). Several attempts were made to improve the survival of 

lung cancer patients using various combination therapies that have demonstrated that no further 

improvement observed, suggesting the need for specific, less toxic treatment approaches such as 

genetic alterations. Tumor suppressor genes and oncogenes are the two major genetic factors 

affecting the progression of the disease (151, 152). Hence, altering these explicit genes can 

advance the therapeutic benefit of present therapies. (153). Numerous gene therapy strategies 

have been adopted, such as the deletions of oncogenes, immune stimulation, replacement of 

tumor-suppressor genes and transfer of genes that enhance conventional treatments (154). Here, 
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there are some examples of the recently reported non-viral gene carriers for lung cancer gene 

therapy.(155-158). siRNA-encapsulated nanoformulations are being widely examined to find the 

suitable formulation, for lung cancer treatment (76, 159). For example, CYP1A1 is an important 

family member of cytochrome P450 enzymes involved in the metabolic pathways of cancer 

which is highly conserved in lung cancer. The investigators developed CYP1A1siRNA 

encapsulated cationic liposomes to inhibit the CYP1A1 gene in vivo. The cationic liposomes 

carrying CYP1A1siRNA efficiently silenced the CYP1A1 gene and inhibited tumor growth in 

BALB/c nude xenografts (77). Recently, scientists demonstrated that peptide head groups 

containing lipids are more suitable than quaternary ammonium head groups containing lipids for 

gene delivery vectors for cancer therapy. Using this peptide-based IGF-1R-siRNA delivery 

system, the effective  inhibition  of tumor growth of the A549 cell xenografts was achieved (77).  

 

Figure 1. Formation and delivery progress of PEA/anti-miR-155/HA–peptide complexes into lung cancer cells. 

HA–peptide: CSNIDARAC peptide modified HA; CSNIDARAC peptide is a targeted peptide for lung tumor sites. 

(B) Transmission electron microscopy (TEM) image of surface morphologies of the carrier. Reprinted with 

permission from (79). 
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Targeted delivery of the gene and drug to tumor cells is one of the important issues to reduce 

side effects on normal cells. Numerous approaches have been developed to improve the 

selectivity and safety of cancer treatments using small peptides, antibodies, and aptamers. For 

example, scientists developed Bcl-xL shRNA complexed PAMAM dendrimers containing 

aptamer as a targeting moiety for the treatment of lung cancer (160). Yang et al. used a 

biodegradable polyester amine (PEA) and hyaluronic acid-coated gene delivery vehicle to 

deliver anti-miR-155 to lung tumors which showed promising results in both in vitro and in vivo 

(Figure 1) (79). Importantly, the Leaf Huang group developed VEGF-siRNA encapsulated 

polymetformin containing hyaluronic acid NPs which exhibited significant in vivo VEGF 

knockdown in lung cancer xenograft model (Figure 2). The results exhibited that  the  non-viral 

delivery system for VEGF knockdown in a lung cancer xenograft model improved  the efficiency 

of tumor suppression (161). Recently, scientists developed a G11 peptide-functionalized 

supramolecular self-assembled pVEGF-shRNA loaded NPs for lung tumor-targeted therapy 

(162). Zhao and his team also developed PLK1siRNA loaded poly(l-histidine) containing hybrid 

nanoplatforms to deliver PLK1 siRNA to NSCLC tumors (73). Spermine is a tetra amine with 

outstanding biocompatibility. However, its usage in gene delivery is poor due to its low gene 

condensation capability. The researchers developed PEG-diacrylate modified spermine and 

folate functionalized NPs for gene therapy of lung cancer (163). More recently, delivery and 

controlled regulation of genes via exosomes is recognized as a potential therapeutic method in 

the treatment of cancer. Researchers have developed an exosome-based microRNA-497 delivery 

platform for anti-cancer therapy in a microfluidic 3D lung cancer model (164). In another study, 

scientists developed MDM2 siRNA loaded triazine-modified dendrimer NPs for gene delivery, 

which displayed remarkable tumor growth inhibition in the PC9 xenograft tumor model (165). 
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Scientists also used mesenchymal stem cells derived nanoghosts as a selective, safe non-viral 

gene delivery vehicle. pDNA complexed-nanoghosts inhibited the growth of metastatic 

orthotopic lung cancer, and significantly increased animal survival (145).  
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Figure 2. (A,C) Anionic HAsiRNA mixture was condensed by cationic PolyMet into a negatively charged 

PolyMet/(HAsiRNA) complex. (B,D) DOTAP/cholesterol cationic liposomes were added to the complex to form 

lipid coating, then DSPE-PEG and DSPE-PEG-anisamide were used to liposome by the post-insertion method to 

form LPH-PolyMet final NPs. (E) The daily calculated tumor volumes. (F) The daily calculated tumor weights. (G) 

Visual observations of the H460 tumor sizes in each treatment. DOTAP 1,2-dioleoyl-3-trimethylammonium-propane 

chloride salt. DSPE-PEG: 1,2-distearoryl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethyleneglycol-2000) 

ammonium salt. Reprinted with permission from (161). 

 

 

There are several other non-viral vectors used for the delivery of various nucleic acid materials 

for lung cancer (166-173). Another most common genetic alteration happen in the lung cancer is 

associated with the tumor suppressor genes. For example, tumor suppressor gene TUSC2/FUS1 

(TUSC2) is inactivated in lung cancer. However, no drug development approach is available for 

targeting the loss-of-function genetic deviations. Roth JA and his team developed a systemic 

gene therapy approach by using a TUSC2-expressing plasmid vector packaged in DOTAP:chol 

nanovesicles. They found that following the tumor treatment with DC-TUSC2, some major 

changes in the intrinsic pro-apoptotic pathway happened (174, 175). These nanovesicles were 

administered intravenously in the patients bearing lung cancer and the results showed an 

improvement in delivering TUSC2 genes to both human primary and metastatic tumors safely 

(176). Among several existing polymeric transporters, PEI was mostly exploited to transfer 

genes for both in vitro and in vivo transfection. For example, scientists used PEI to develop a pH-

sensitive in vivo selective gene delivery system to transfer p53DNA at the tumor site. A single 

administration of p53DNA nanocomplex along with laser radiation, significantly inhibited tumor 

growth and prolonged median survival (177). Gold NPs also used to deliver p53DNA to lung 

cancer cells (178). Several other studies also demonstrated that the p53-based gene delivery is 

able to improve the therapeutic outcome for lung cancer (179-182). In summary, based on these 
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research updates, non-viral based gene therapy has shown promising potential for further 

developments towards lung cancer gene therapy.  

The combination of physical approaches including ultrasound with non-viral vectors has shown 

great opportunity to enhance the transfection efficiency of these materials. For example, plasmid- 

binding cationic lipid microbubbles were combined with ultrasound mediated gene delivery to 

direct miR-133a to the tumor site. The results demonstrated that the transfection efficiency in 

cell cultivation and hind limb tumor xenografts significantly increased. The transfection 

enhancement could be associated with the potential of ultrasound in disturbing the cell 

membrane which facilitate the cell entry of nucleic acids (74).  

 

4. Breast cancer therapy 

There are several strategies to treat breast cancers based on the severity and the mechanisms 

involved in the pathogenesis including autophagy and apoptosis (183). Although there are 

several non-viral vehicle for breast cancer gene delivery including cationic-liposomes, polymers, 

PLGA, inorganic material, exosomes, and engineered stem cells (184), we have focused on 

recent developments for designing novel carriers for breast cancer gene therapy.  

Diverse categories of non-viral vehicles used for RNA (small interfering RNAs & microRNA) 

delivery. For instance, for the more sustained release of siRNA, Segovia et al. developed PBAE-

siRNA biodegradable hydrogels in a framework built on PAMAM dendrimer cross-linked with 

dextran aldehyde. They observed significant levels of gene knockdown in the breast cancer 

tumor model (185). In another study, the investigators established an inventive thermosensitive 

controlled release hydrogel loaded with a gene for breast cancer treatment (Figure 3) (90). Chol-

VEGF-siRNA fused in high density lipoprotein (rHDL) for anti-angiogenic gene therapy of 
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breast cancer (186). Further, investigators used multi-functional mesoporous silica NPs (MSNP) 

for specific transfer of siRNA to the tumor site. In their study, they observed a safe delivery of 

Pgp-siRNA and Dox together with PEI-PEG-decorated MSNP at the tumor site while the tumor 

growth was reduced by inhibiting Pgp expression (187). Pgp plays a crucial role in the induction 

of tumor resistance following the treatment with Dox and its down-regulation has attracted great 

attention for gene therapy. A similar study was carried out by another group using MSNs-TPGS 

NPs (188).  

 

Figure 3. (A to C) Schematic presentation for the preparation of thermosensitive hydrogel and its in vivo 

therapeutic effect. (D) Retention of free gene and encapsulated gene in hydrogel at the local injection site after 

intradermal injection into mice and fluorescence emission. Sur-ASON: survivin antisense oligonucleotide; F127: 

Pluronic, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) copolymer; PHB: Poly[(R)-3-

hydroxybutyrate; PDMAEMA: 2-dimethylamino)ethyl methacrylate. Reprinted with permission from (90). 
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More recently, Zhang and his team developed a novel RNA-triple-helix hydrogel for the 

treatment of triple negative breast cancers (TNBCs). The researchers incorporated 

CXCR4siRNA and an RNA-triple-helix in the hydrogels NPs without synthetic polycationic 

reagents for the treatment of breast cancer (189). Amorphous calcium carbonate fusion 

nanospheres fabricated with CaIP6 NPs were efficient in carrying genes to the tumor site. 

Scientists showed that AKT1 siRNA loaded CaCO3/CaIP6 nanocomplexes substantially 

inhibited tumor growth (190). Similarly, a polypeptide containing LAH4-L1-siMDR1 loaded 

nanocomplexes displayed significant tumor growth inhibition when used along with PTX. In this 

study,  high MDR1 gene silencing efficacy was observed in the tumor-bearing nude mice (98). 

Enormous efforts are still underway for developing novel and effective gene delivery systems 

based on biocompatible nanomaterials to transfer the target genes to the tumor site (167, 191, 

192). For example, researchers  have developed an elastin-like recombinant (ELR) and specific 

MUC1 aptamers for intracellular delivery of the MUC1 gene to breast tumors (193). More 

recently, the same group developed a double protection tumor-specific nanomaterial device for 

gene therapy in breast cancer (86). The functionalized peptides/ligands can also improve the 

delivery of nucleic acid-complexed NPs to tumors (95, 194, 195). Recently, researchers 

established CD49f peptide-fabricated aerosol polyplexes for gene delivery to tumors of both 

breast and lung over-expressing the D49f gene (88). In another study,  scientists developed a 

polycation-decorated bowl-shaped magnetic assembly (b-MNP-PGEA) for magnetic resonance 

imaging (MRI)-guided synergistic gene therapy for the treatment of breast cancer (89). Ruan et 

al. developed a cross-linked BPEI/plasmid DNA nanocomplexes, which resulted in great 

transfection efficiencies both in vitro and in vivo. Moreover, these polyplex have shown 

promising gene-silencing properties in vitro and significant antitumor activity (94). Another 
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group synthesized a novel PEGDGA-functionalized hPAMAM nanocomplex for effective gene 

delivery to breast cancer (196). Cell-penetrating peptide (CPP)-containing and EGFR-siRNA 

loaded nanobubbles showed synergism with ultrasound irradiation mediated EGFR-siRNA 

delivery to TNBC (197). Zhou et al also developed CD105-conjugated targeted cationic 

microbubbles for antiangiogenesis gene therapy for breast cancer (198). Similarly, endostatin 

loaded and CD105 antibody conjugated immunoliposomes were prepared for antiangiogenic and 

imaging therapy (199).  Gu et al. also prepared CD44 antibody conjugated and anti-MDR1/P-gp 

short hairpin RNA complexed nanosystem for reversal of drug resistance. These nanocomplex 

enhanced the therapeutic efficacy of adriamycin in in vivo model (200). Porous silicon NPs (pSi) 

were additionally reformed with PEI to yield pSi-PEI particles, which then complexed with 

siRNA for an effective treatment for breast cancer (201). Recently, Devulapally et al. showed 

that PEGylated-PLGA/PIE NPs fused with the TK-NTR gene are able to decrease tumor growth 

when treated with other prodrugs in TNBC xenograft in vivo (92). 

Recent discoveries may lead the researchers to redefine the role of p53 in breast cancer. Several 

studies have shown that p53 alterations increase the therapeutic efficacy of current 

chemotherapeutics. For example, Cationic β-cyclodextrin-polyethylenimine-Dox (PC-Dox) 

conjugates were prepared for carrying wt p53 plasmid in the form of PC-Dox/p53 

nanocomplexes. This nanocomplex could inhibited the tumor growth synergistically and 

prolonged the survival of drug-resistant breast tumors mice (202). In another similar study, the 

investigators proved that the co-delivery of p53 DNA and AVPI peptide enabled a complete 

arrest of tumor growth when used in combination with a reduced dose of Dox. In their study, 

they modified AVPI peptide not only to enable it to penetrate to tumor cells but also acts as a 

gene delivery vehicle by forming a nano complex with cationic R8 moiety (203). There are 
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several studies demonstrating that the  p53 mediated gene therapy for breast cancer treatment is 

an efficient approach in cancer gene therapy (204, 205). Overall, the combination of 

chemotherapy along with gene therapy may enhance the therapeutic effects against breast cancer. 

 

5. Brain tumor-targeted gene delivery 

There are other categorization methods for brain tumors including primary and secondary 

tumors. Primary tumors originate from meninges, glands, nerve and other brain cells, while 

secondary tumors originate from other parts of the body and spread to the brain (206). The most 

common brain cancers are glioma, neuroblastoma, meningioma, vestibular schwannoma and 

pituitary adenoma. The brain tumors can be primary diagnosed using MRI, CT scan, angiography, 

skull X-ray and biopsy. Despite enormous advances in the field of pharmaceutics and 

radiotherapy, the brain cancers cannot be completely cured.  

Polymer-based carriers are accounted as one of the most effective carriers in drug delivery (207-

209). Wilhelm et al. reported that active targeting with inorganic NPs such as gold NPs is the 

most effective strategy for drug delivery in cancer therapy (210, 211). Moreover, gene delivery is 

accounted as a hopeful strategy for brain cancer treatment. One of the most important obstacles 

in brain drug delivery is the blood-brain barrier (BBB). Therefore, there are many efforts to 

overcome this barrier including functionalization and modification of non-viral gene delivery 

vectors (212, 213). The modification leads to the transcytosis and endocytosis of vectors through 

cell-penetrating peptides (CPP) mediated transmembrane transport, adsorptive-mediated 

endocytosis and receptor-mediated endocytosis (214). There are some receptors on the surface of 

brain capillary endothelial cells (BBB cells), including transferrin, insulin receptors and low-

density lipoprotein receptor-related protein-1 (LRP1). Therefore, some molecules such as 
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Angiopep-2, avidin, lactoferrin and transferrin are able to act as targeting ligands for these 

receptors and would be considered as promising molecules for transcytosis through the BBB. 

There are several reports indicating the role of cell-penetrating peptides and polyarginine (R8) to 

enhance the transcytosis of cargo through the BBB and cell uptake.  

Several non-viral carriers have been investigated for gene delivery to the brain including 

monocytes owing to biocompatibility and passing through the BBB (101, 215, 216) as well as 

cationic polymers such as PEI (217), polyamidoamine (PAMAM) dendrimers, poly(amino acids 

cationic liposomes (218) and positive bubbles decorated with folate (105, 214).  Despite 

significant advantages, each carrier system may suffer from drawbacks such as cytotoxicity and 

low transfection efficiency. (214). PEGylated polyplexes have been developed to overcome the 

brain delivery of nucleic acids. These delivery systems  not only decrease the cytotoxicity of 

polyplexes but also improve the gene transfection (219). Abdallah et al. demonstrated that 

among the PEI with molecular weight of 25, 50 and 800 kDa, the PEI with 25 kDa has shown 

higher and prolonged gene transfection efficacy with less toxicity in mice brain (220). However, 

modification of PEI with other molecules such as myristic acid enhances transfection and 

survival time in tumor animal models (217). 

There are several various approaches to improve the transfection efficiency of non-viral carriers 

for brain delivery.  For example,  Jiao et al. (221) designed a multifunctional cargo for gene 

delivery (Figure 4). They used angiopep-2 as a transcytosis factor and conjugated R8 to a 

targeting motif of MMP2 as an inducer of cell uptake and cancer microenvironment targeting 

agent. The polypeptide was supposed to be released from the MMP-2-responsive peptide since 

the MMP2 is upregulated in tumor microenvironment. They prepared a cholesterol coupled 

micelle containing lysine and arginine (ch-KnR8) with the particle size and zeta potential of 90-
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160 nm and +10-40 mV, respectively. The cargo showed high transfection efficacy and uptake in 

U251 cells and high accumulation in mice bearing glioma (221).  

 

Figure 4. (A) Schematic illustration for the formation of micelle/DNA. (B) Size distribution and TEM image of 

the micelles. (C) Real-time in vivo fluorescence imaging of U251 tumor-bearing nude mice intravenously

administrated with PBS(I), YOYO-1(II), ch-K5(s-s)R8/pEGFP-YOYO-1(III), and ch-K5(s-s)R8-An/pEGFP- 

YOYO-1 (IV). Reprinted with permission from (221). 
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Noteworthy, Shi et al. also used Angiopep-2 to enhance BBB penetration. They decorated a 

polymersome containing poly(ethylene glycol)-b-poly(trimethylene carbonate-co-dithiolane 

trimethylene carbonate)-b-poly(ethylenimine) (ANG-CP) with Angiopeo-2 and loaded the cargo 

with anti- polo-like kinase 1 (PLK1) siRNA (N/P ratio of 0.4, siRNA loading 9.6 wt%, particle 

size of 115 ± 1.9 nm, zeta-potential + 0.4 mV). In vitro BBB transcytosis assay showed 

significantly higher transcytosis of targeted nanocarrier (ANG-CP-siRNA) as compared to naked 

siRNA and CP-siRNA. Interestingly, ANG-CP Scrambled siRNA induces 2.5 fold higher cell 

uptake compared to non-targeted CP siScramble on U-87 MG cells as a model cell line. 

Pharmacokinetic studies showed a significantly higher circulation time of targeted and non-

targeted CP-siPLK1 compared to the naked siPLK1. However, targeted CP siPLK1 accumulated 

in tumor site and not in the brain parenchyma and the targeted nanocarrier significantly silenced 

the oncogene and decreased the tumor growth with no bodyweight loss compared to the CP 

siRNA and naked siRNA. This gene carrier system did not show toxic effects on the other tissues 

such as spline, liver, heart, kidney and lung (222). 

Besides BBB transcytosis, multidrug resistance could be considered as one of the major 

obstacles in the efficacy of chemotherapeutic agents in glioblastoma multiforme (GBM). For 

example, multidrug resistance-associated protein 1 (MRP1) plays critical roles in chemo- and 

radio-resistance. Tong et al., prepared a PEI coated porous silicon NP with an average particle 

size of 169-173 nm and zeta potential of + 50 mV. They loaded NPs with the MRP1-siRNA with 

the release rate of 70% between 24 to 48 h and injected them into the mice bearing GBM (U87 

cell). The release profile of NPs between 24 to 48 h was 70% (100). PEI- Si NP- MRP1-siRNA 

showed significantly higher loading and cellular uptake in U87 cells as compared to the non-PEI 

NPs due to the higher positive charge. Furthermore, the NP exhibited S phase cell cycle arrest, 
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MRP1 silencing and doxorubicin sensitivity in U87 cells treated with PEI- Si NP- MRP1-siRNA 

compared to non-siRNA cargo. Noteworthy, the knock-down of the multidrug transporter P-

glycoprotein (Pgp) induces G2/M arrest in leukemia cells (223). The investigation of MRP1 

silencing in CD-1 nude mice bearing U87 cells showed that PEI-Si NP- MRP1-siRNA 

significantly decrease the level of MRP1 mRNA and protein compared to the non-siRNA cargo 

(100). It seems that the release profile of siRNA between 24 to 48 h has critical role in gene 

delivery efficiency. On the other hand, NPs with the same size showed different gene delivery 

efficiency due to release profile between 24 to 48 h. For example, chitosan (224) and PLGA NPs 

(225) led to the only 10% release of siRNA between 24 to 48 h. There are some reports on the 

comparison of biocompatibility of PEI with other polymers. For example, Oh et al. revealed that 

the cytotoxicity of PEI vectors was significantly higher than R7L10. R7L10 is a short 

amphiphilic peptide micelle that is chemically synthesized (107). They used a suicide gene, 

herpes simplex virus thymidine kinase (HSVtk), for the gene delivery to GBM. DNA with the 

negative charge interacts with the positive surface of R7L10 micelle, while hydrophobic drugs 

such as bevacizumab, an angiogenesis inhibitor, can be entrapped in the core. Erythropoietin 

(Epo) transcription enhances in hypoxia conditions (central core of GBM) while nestin intron 2 

(NI2) leads to gene expression in glioblastoma and neural stem cells. It was demonstrated that 

the stability of pEpo–NI2–SV–HSVtk/R7L10 was considerably higher than pEpo–NI2–SV–

HSVtk/PEI after heparin treatment. Another result obtained from the Oh et al. study was the high 

DNA protection from the nuclease and significantly less C6 cell toxic effects by pEpo–NI2–SV–

HSVtk/R7L10 compared to the pEpo–NI2–SV–HSVtk/PEI. Moreover, the transfection efficacy 

of R7L10 was significantly less than PEI and lipofectamine, while PEI induced a significantly 

higher cytotoxic effect in the liver, kidney and lung. Besides, combination therapy of avastin 
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with pEpo–NI2–SV–HSVtk/R7L10 had a synergistic effect on tumor growth inhibition. Hence, 

it seems that R7L10 is safer than PEI and conjugation with Epo enhances its gene and drug 

delivery efficacy in hypoxia condition (107).  

Dendrimers have been considered as effective drug delivery carriers and polyamidoamine 

(PAMAM) is one the most well-known dendrimers in drug delivery. It seems that primary and 

tertiary amines in dendrimer play a critical role in DNA condensation and release (226). 

However, there are controversial reports on the safety of dendrimers owing to their positive 

surface charge, especially for G2–G4 dendrimers (227, 228). It has been shown that PEGylated 

lactoferrin-dendrimer-DNA has shown significantly less toxicity and higher transfection efficacy 

than non-PEGylated ones. Interestingly, they showed that brain uptake and transfection efficacy 

of the lactoferrin conjugated complexes were significantly higher than the transferrin substituted 

ones (229). Bai et al., prepared an arginine-PAMAM carrier to deliver human interferon beta 

(IFN-β) using human IFN-β plasmid to glioma tumors in mice. IFN-β plays anti-tumor efficacy 

through the induction of apoptosis in the tumor. Their findings showed that R-PAMAM- pORF-

IFN-β plasmid DNA significantly decreases tumor size in xenograft brain tumor model induced 

by U87MG cells and cancer cells such as U87 and Neuro2a while did not decreases survival rate 

in HT22 cells. However, R-PAMAM- pORF-IFN-β induced significantly higher levels of IFN-β 

gene expression and apoptosis in the brain tumor models in mice compared to the R-PAMAM- 

pORF groups (230). Furthermore, functionalization of PEGylated PAMAM/pEGFP with 

chlorotoxin (N/P= 3:1) significantly enhances the animal survival rate, biodistribution, gene 

expression and apoptosis following the intravenous injection in the brain tumor compared to 

non-chlorotoxin dendrimer in the tumor (C6)-bearing mice (231). 
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There is some reports showing that the PEGylation and modification of liposomes with OX26 

(BBB transporting facilitator) and chlorotoxin (brain tumor targeting) containing the plasmid 

hTERTC27 (N/P=6:1, particle size 120 nm) leads to significantly decrease in tumor volume and 

enhanced survival rate as compared to liposome/C27, liposome/OX26/C27, liposome/ 

chlorotoxin/OX26/pEGFP. These findings confirmed the importance of dual targeting in a 

successful gene delivery (218). Furthermore, Huang et al. developed a superparamagnetic iron 

oxide NPs decorated with hyaluronic acid and functionalized with TNF-related apoptosis-

inducing ligand (TRAIL) and CD44. The complex significantly decreases the tumor size and 

enhanced survival rate in the orthotopic xenograft cancer BALB/cAnN.Cg-Foxn1nu/CrlNarl 

mice model (102). 

As mentioned earlier, transferrin is a considerable receptor on the surface of brain blood 

endothelial cells and glioma while the presence of excess transferrin induces competition with 

endogenous transferrin molecules. Therefore, Kuang et al. developed a sequence that targets 

transferrin (His-Ala-Ile-Tyr-Pro-Arg-His) while interacts with the distinct binding site of 

transferrin receptor (232). Since the transportation of T7 increases in the presence of excess 

transferrin, Kuang et al. attached the T7 via PEG to a peptide dendrimer (dendrigraft poly-l-

lysines (DGLs)) and red fluorescent protein (RFP) plasmid was used as the reporter gene. They 

formed polyplexes with the particle size of 141.6 ± 52 nm and zeta potential of + 3.19 mV. The 

results showed the enhancement of U87 cellular uptake by the T7 complex as compared to the 

T7. (232). 

There is a well-known method for the preparation of peptide carrier and template with a secure 

biological activity and stability. D-amino acids are more stable than L-amino acids while they 

show less biological activity. If the peptide sequence gets retro-inverse the biological activity 
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will approach to the native sequence (233). Wang et al. synthesized a retro-inverse peptide from 

the parent sequence of C-end rule (CendR) “RPPREGR” and conjugated it to modified PEI and 

PEG to prepare a non-viral vector. The sequence specifically recognizes neuropilin-1 receptor 

which is involved in angiogenesis and over expressed on glioma cells. Since the pORF-hTRAIL 

gene enhances survival time in U87 glioma-bearing BALB/c nude mice through the apoptosis of 

glioma cells, this plasmid was used to form the complexes with the peptide platform. The cell 

viability of the complex was significantly less than PEI on U87 cells. The peptide prepared in 

this study has shown higher stability, remarkable ligand-receptor affinity for glioma cells and 

biological activity than parent peptide. However, the transfection efficacy and anticancer effect 

of the complex containing RPPREGR was significantly higher than the parent RPPREGR vector 

owing to receptor targeting of the retro-inverse peptide (233). Another example for the 

application of peptide motifs as gene delivery systems was reported by Zhan et al..They 

conjugated cyclic arginine-glycine-aspartic acid- (cyclic RGD) to a PEG-PEI polymer and the 

plasmid DNA (pORF-HTRAIL) was used for complexation. The complexes were formed with 

the average particle size of 73 nm. RGD as an important factor in neovascularization has shown 

high affinity for integrin αvβ3 and it could be used as a targeting ligand for glioblastoma cells 

(U87). However, the nanocarrier induces significantly prolonged survival time in glioblastoma 

bearing nude mice (234). One major point is that the cyclic RGD has shown higher affinity and 

selectivity with its receptor compared to RGD through conformational restraint (235, 236). Lei et 

al. investigated whether the applying of disulfide bound to conjugate the RGD-PEG and PEI core 

may enhance the transfection efficacy in U87 brain tumor-bearing BALB/c nude mice. They 

used the plasmid pDsRED-N1 to form the complexes at N/P ratio of 12 with the particle size of 

205.5 nm and zeta potential of +4.6 mV. The results indicated that the PEGylation decreased the 
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particle size and zeta potential due to the reduced surface charge. Moreover, the transfection 

efficacy of RGD-PEG-SS-PEI/pDsRED-N1 was significantly higher than the non-sulfide vector 

due to the detachment of PEG from the complex following the cleavage of disulfide linker in 

GSH rich microenvironment at tumor cell (237). Furthermore, other researchers designed a 

PEGylated peptide NP with CPP (stearylated transpartan 10 sequences) and nominated it as 

NickFect (NF). The structure was prepared using the attachment of Cys to Boc-l-Lys(Mtt)- OH. 

The negative charge of phosphorylated NF and increment of helicity lead to the enhancement of 

transfection efficacy. Moreover, the results of gene delivery in BALB/c mice bearing 

glioblastoma showed higher gene transfection efficacy than naked pDNA. (104). Another 

example of gene delivery via peptide vehicles is the complexation of herpes simplex virus-

thymidine kinase-ganciclovir (HSV-TK/GCV) plasmid and TRAIL plasmid into poly L-lysine-

PEI. It has been shown that HSV-TK/GCV is a suicide gene which has synergistic effect while it 

is used with TRAIL (238). They confirmed that the increase of polymer has a direct relationship 

with the decrease of cell viability and poly L-lysine enhances cell viability. Intratumoral 

injection of MSC (tumor tropism) transfected with polyplex-TRAIL- HSV-TK (N/P 1:3) 

enhances cell viability, rat survival and VEGF marker while decreases apoptosis as compared to 

the polyplex-TRAIL, polyplex-HSV-TK and PBS in glioma-bearing SD rats (99). However, the 

complex containing SV-TK with erythropoietin and nestin intron 2 (NI2) showed that its 

complexation with reducible poly oligo D-arginine has significantly less cytotoxicity than PEI 

even at hypoxic condition. Furthermore, the polyplex induced significantly higher apoptosis and 

tumor size decrease in an intracranial glioblastoma rat model (106). Overall, the targeting 

strategies might be considered as a prerequisite for non-viral vectors used for brain gene therapy.  
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6. Gastrointestinal cancer therapy 

The focus of this section is on the synthetic non-viral delivery vectors evaluated in in vivo 

gastrointestinal cancers including colorectal and gastric cancers. These nano carriers have been 

employed as delivery vehicles for RNA silencing of oncogenes, DNA delivery of tumor 

suppressors, apoptosis inducers, suicide genes or immune-stimulatory molecules.   

 

6.1. Colorectal cancer therapy 

Colorectal cancer is the third most deadly diagnosed cancer in the world due to its metastasis 

(239, 240). Various types of non-viral carriers have been employed for colorectal cancer therapy 

(241-243). However, combination therapy, including co-delivery of drug and gene by NPs have 

attracted more attention these years (244, 245). Wang et al. (116), investigated the potential of 

co-loaded NPs with anticancer drugs and genes as a promising strategy for colorectal cancer 

therapy. They used poly (ethylene glycol)-ε-poly(caprolactone) block copolymer for co-loading 

of 5-fluorouracil (5-FU) and pEGFP (DNA) as DFNC. Investigating in vivo gene transfection of 

NCs (nanocarrires) such as DNC (DNA nanocarrier) and DFNC showed more anticancer 

efficiency at 72 h rather than 24 h resulted from the NCs sustained release. The results of in vivo 

gene delivery indicated that around 60% of the cells were transfected by the gene. The in vivo 

study was done on BALB/c nude mice and qualitative and quantitative findings confirmed the 

efficiency of NCs for in vivo gene therapy of colon cancer. Antitumor efficacy of NCs was also 

exhibited significantly reduced the tumor growth in FNCs and DFNCs groups (around 320 mm
3
 

at day 21) rather than free 5-FU (852 mm
3
).  

Moreover, siRNA-based gene therapy is a promising alternative modality in colorectal cancer 

treatment. mPEG-PCL copolymer has been widely studied due to the biocompatibility and 
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biodegradability as a carrier for different drugs (246, 247). Modifying this copolymer with 

amphiphilic DOTAP (DMP) has shown remarkable stability and safety for colon cancer gene 

therapy (248, 249). For example, the cationic self-assembled DOTAP and MPEG-PCL hybrid 

micelles safely and effectively deliver Bcl-xl siRNA and Mcl1 siRNA to C26 cells in BALB/c 

mice bearing colon cancer xenografts. DMP/siRNA also demonstrated significant therapeutic 

efficacy in inhibiting tumor growth induced by apoptosis activation. Bcl-xl and Mcl1 genes are 

anti-apoptotic genes from Bcl-2 family which play a crucial role in suppressing apoptosis. 

DOTAP containing DMP micelles has shown great stability over 96 hours with remarkable 

transfection efficiency. Their hydrodynamic average size and zeta potential were 144.8 nm and 

+46.4 mV, respectively. The highest binding efficiency of siRNA was achieved at the highest 

DMP: siRNA (N/P) ratio of ≥ 30. Intratumoral injection of DMP/siRNA in C26 xenograft animal 

model showed significant reduced tumor weight, including DMP/siMcl1 complex (0.34 ± 0.06 g, 

p < 0.01), DMP/siBcl-xl complex (0.42 ± 0.08 g, p < 0.01) compared to control group (0.85 ± 

0.09 g) and DMP group (0.76 ± 0.11 g), confirming the tumor growth inhibitory effects of 

DMP/siRNA complexes. Moreover, no significant changes were reported on the other organs 

such as heart, liver, spleen, lung, or kidney mainly due to partial masking of positive charges of 

DOTAP. During the self-assembly process of micelles, DOTAP is embedded inside the MP 

copolymer. This phenomenon causes the shielding of the positively charged head groups of 

DOTAP. Moreover, it is resulted in less serum protein binding and ultimately more transfection 

efficiency (248). Also, DMP micelles were used for the delivery of the survivinT34A gene (S-

T34A, a suicide gene) for colon cancer gene therapy (249). Targeting the apoptosis pathways 

plays a critical role in cancer treatment. Survivin is an apoptosis inhibitor (126, 250, 251) 

through phosphorylation of its threonine 34 (Thr34) (247), resulting in the stimulation of tumor 
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growth and resistance to cancer therapy. However, the lack of Thr34 phosphorylation leads to the 

breakdown of caspase-9-survivin protein complex and activation of caspase-dependent apoptosis 

(247-249). In order to prepare a nonphosphorylated mimic of survivin, Thr34 was changed to 

Ala (T34A) via site-directed mutagenesis, (252, 253). Following the infection of cancer cells by 

survivin-T34A mutant, activation of the suicide effects and spontaneous apoptosis occurred. The 

mean particle size and the zeta potential of DMP were 46 ± 5.6 nm and +41.8 ± 0.5 mV, 

respectively. The highest DNA binding efficiency of DMP was observed at DMP: DNA ≥ 10 

(weight:weight) ratio. The transfection efficiency was 37±2.5% compared to 32± 3% for the 

golden standard of PEI25kDa. Intraperitoneal injection of DMP/S-T34A (125 mg/5 mg) to 

female BALB/c mice with the abdominal cavity metastases of C-26 colon carcinoma resulted in 

the significant reduce of tumor weight and cancer-associated ascites. These findings indicated 

the therapeutic efficacy of DMP/S-T34A in suppressing the abdominal cavity metastases of C-26 

colon carcinomas. It was suggested that apoptosis activation is the major anticancer mechanism 

of DMP/S-T34A in vivo.   

Despite the advancement in targeted drugs, the metastatic CRC (mCRC) patients are still 

suffered from poor prognosis and more mortality. However, improved pharmacokinetic profiles 

of targeted drugs, such as siRNA can be considered as promising achievements in mCRC 

treatment. In this regard, Sousa et al. (254), reviewed the systemic siRNA delivery strategies in 

mCRC, focusing on PLGA NPs. They reviewed strategies to enhance the siRNA encapsulation 

efficiency into PLGA, including co-encapsulation by cationic polymers and the other less toxic 

materials. These co-encapsulants facilitate endosomal escape, which in turn improved delivery 

efficiency. For example, Sureban et al. (255), used PEI as a co-encapsulants to enhance 

encapsulation efficiency of siDCAMKL-1 in PLGA NPs for CRC therapy (Figure 5). The 
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particles has shown the average size of around 200 nm and practical loading efficiency of 7.45 

µg/mg. NP-siDCAMKL-1 was injected intratumorally into HCT116 xenografts in male athymic 

nude mice (NCr-nu/nu). DCAMKL-1 (Doublecortin and CaM kinase-like-1) is a microtubule-

associated protein kinase and has been proposed as the gastrointestinal stem cell marker with 

high expression levels in gastrointestinal cancers (256). DCAMKL-1 silencing could be achieved 

by activating the tumor suppressors such as microRNAs (let-7a, miR-200a and miR-144) and the 

down-regulation of c-Myc, KRAS, ZEB1, ZEB2 and Notch-1. NP-siDCAMKL-1 administration 

into colorectal cancer tumor xenograft model inhibited the tumor growth by silencing the proto-

oncogenes including Notch-1 and c-Myc through the activation of miR-144 and let-7a, 

respectively. NP-siDCAMKL-1 can also suppress cancer metastasis due to effect on epithelial–

mesenchymal transition (EMT) by Snail, Slug, ZEB1, ZEB2 down-regulation via miR-200a 

activation (255). EMT in human epithelial cells creates the phenotype of “stem cell-like” and 

CD44
high

/CD24
low

 cell surface markers (257). 

Taken together, NP-siDCAMKL-1 as a novel promising anti-cancer therapeutics could inhibit 

tumorigenesis and metastasis of CRC by knocking down the specific oncogenes through the 

regulation of various miRNA-dependent mechanisms. Furthermore, the same group reported the 

liposomal carrier for siDCAMKL-1 in order to inhibit CRC xenograft growth previously. 

However, PLGA-siDCAMKL-1 has shown the same efficiency or more than the liposomal 

formulations in the silencing of oncogenes including c-Myc. 

It has been extensively reported that dendrimers are promising nanomaterials for cancer gene 

therapy due to their unique properties. Dufes et al. (258) systemically administrated 

polypropyleneimine dendrimers (PPIG3) loaded with tumor necrosis factor A (TNFA) gene, 

under the control of telomerase gene promoters (hTR and hTERT)  to LS174T colorectal 
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adenocarcinoma. This treatment demonstrated the synergistic antitumor effects of TNFA-loaded 

PPIG3 compared with the alternative treatments. This delivery system led to the remarkable 

regression and long-term survival in 100% of tumor models.  

 

Figure 5. (A) Measured tumor volume size at different time. (B)  Photograph of mice bearing the tumors. 

Reprinted with permission from (255).  
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PAMAM dendrimers were also used for the delivery of survivin antisense oligonucleotide 

(survivin-ASODN) in colorectal cancer subcutaneous xenograft models (259). PAMAM-

survivin- ASODN significantly down-regulated survivin expression and tumor growth.  

Nanogels are another type of non-viral gene carriers used for the delivery of therapeutic 

oligonucleotide in vivo. Nanogel containing heparin and cell-penetrating peptide R8 were grafted 

to low-molecular-weight PEI for the delivery of human TNF-related apoptosis-inducing ligand 

plasmid (phTRAIL). HPR/phTRAIL complex exhibited safe and efficient hTRAIL plasmid 

delivery and significant tumor growth suppression in the in vivo model of the abdominal 

metastatic colon carcinoma (260).  

Plasmids expressing vesicular stomatitis virus matrix protein (pVSVMP)-loaded heparin-

polyethyleneimine (HPEI) nanogels were also showed significant anti-tumor efficacy.  

pVSVMP/HPEI complexes significantly arrested the C-26 colon carcinoma growth in both 

intraperitoneal and intravenous injection, which resulted in the inhibition of abdominal and 

pulmonary metastases, respectively. Tumor suppression is induced by apoptosis induction, 

resulting in the prolonged survival rate. pVSVMP/HPEI complexes showed high transfection 

efficiency, low cytotoxicity, and improved blood compatibility compared with  PEI25kDa (261).  

In another strategy, the combination of immunogenic chemotherapy was studied by oxaliplatin 

(OxP), the first-line chemotherapy of colorectal cancer, and plasmid DNA of PD-L1 trap- loaded 

lipid-protamine DNA NPs. This strategy led to a transient and local expression of PD-L1 trap in 

the tumor microenvironment and synergistically inhibited the tumor growth with OxP in an 

orthotopic colorectal cancer model. Interestingly, the combination of OxP and PD-L1 trap does 

not stimulate the spleen accumulation of Th17 cells, despite the combination of OxP and anti-

PD-L1 mAb, representing its low immunogenicity. Finally, this system showed the efficient and 
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safe cancer immunotherapy approach which overcomes the limitations of checkpoint inhibitor 

immunotherapy (262).  

Liposomes have also been extensively used in gene therapy of gastrointestinal cancers due to 

remarkable properties, including biocompatibility (263). An injectable plasmid DNA of 

telomerase-specific oncolytic adenovirus (TelomeScan) expressing GFP was loaded in liposome 

(Lipo-pTS) and investigated in HCT116 tumor-bearing mice to take the advantages of oncolytic 

virotherapy and overcome their limitations including elimination by the immune system. Lipo-

pTS showed the strong tumor-specific antitumor effect independent of coxsackie and adenovirus 

receptor (CAR) and decreased adenovirus-neutralizing antibodies (AdNAbs) in immune-

competent mice. (264). In another study, cationic liposome-targeted the murine endostatin gene, 

antiangiogenic agent, (Lipo/mEndo) suppressed the colon cancer growth and prolonged survival 

times of intraperitoneally injected mice.  Lipo/mEndo inhibited ascites formation and tumor foci 

numbers on mesentery of the mice resulting in the reduction of tumor burden in the abdominal 

cavity (265). Cationic liposomes were also employed to encapsulate the plasmid encoding 

prostate apoptosis response protein 4 (par-4). The administration of this formulation resulted in 

the over-expression of par-4, activation of apoptosis and more susceptibility to 5-FU in hT29 

tumor-bearing nude mice (266).  

In addition to various materials used for the delivery of nucleic acids for colorectal carcinoma, 

electrotransfection is a promising route for facilitated delivery of genes into the target cells. In a 

study conducted by Vidic et al., the effect of miRNA to knock down the K-ras on K-ras 

expression level and the growth of colorectal carcinoma cell line was evaluated using 

electrotransfection. The results showed the potential of electroporation as a simple and 

reproducible method for local administration of miRNA-K-ras into the target cells with no side 
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effects. Therefore, electro gene therapy could be considered as an effective strategy to direct the 

genes to the target cells and organs (122). 

 

6.2. Gastric cancer therapy 

Gastric cancer is the second most malignant cancer worldwide with the poor five-year survival of 

30% (267). A range of nanoparticulate systems have been investigated for efficient and safe 

delivery of genes to gastric cancer models. For example, calcium phosphate NPs (CPNPs) were 

used to deliver a novel fusion suicide gene, yCDglyTK, which is regulated by a cancer-specific 

CEA promoter and a CMV enhancer (CV) (268-270). It was observed that CPNPs specifically 

delivered the suicide gene to the CEA positive gastric cancer cells and significantly inhibited the 

growth of gastric tumor xenograft models following the 5-FC administration. CPNPs-CV-

yCDglyTK system can also be encouraging in the treatment of other cancers with CEA over-

expression  alone or in the combination with radiopharmaceuticals or other conventional 

therapies.  

Furthermore, RNA-based nanoformulations have recently attracted considerable attention as a 

new paradigm of in vivo cancer therapy due to chemically and thermostatic stability and 

desirable and specific in vivo characteristics. For instance, Cui et al. constructed a 

multifunctional RNA NP to transfer BRCAA1 siRNA to gastric cancer MGC803 xenograft 

model. This targeted theranostic NPs composed of three-way junction (3WJ) of bacteriophage 

phi29 motor pRNA, folic acid as targeting ligand, Alexa647 as a fluorescent image marker and 

BRCAA1 siRNA. FA-pRNA-3WJ-BRCAA1 siRNA NPs significantly led to in vivo gastric 

cancer regression and in situ fluorescence imaging of tumor without toxicity in the non-targeted 

organs (271).  
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Drug resistance to anti-HER-2 medications in gastric cancer treatment resulted in the 

development of other treatment strategies. The combination of multiple therapies like gene-, 

immune-, and photothermal-therapy was reported through siRNA@CPG@Gold Nanoshell. Gold 

nanoshells were used for the delivery and photothermal release of HER-2-siRNA and 

immunoadjuvant of CpG oligodeoxynucleotide in MFC gastric cancer. Multidimensional 

treatment strategy based on gold nanoshell has shown more effectiveness rather than 

monotherapy in gastric cancer models (272).   

Cationic polymers including linear or branched PEI have been extensively applied for gene 

therapy in vitro and in vivo. The branched form is preferable due to the high cationic charge and 

transfection efficiency (273). A gastric cancer-targeting NP for siRNA delivery and MRI 

applications was synthesized by the conjugation of a single-chain variable fragment of CD44v6 

(scFvCD44v6) to polyethylene glycol-grafted PEI modified with superparamagnetic iron oxide 

(PEG-g-PEI-SPION). The targeting of scFvCD44v6-PEG-g-PEI-SPION in vivo was confirmed by 

MRI, which was encouraging for simultaneous diagnosis and treatment of gastric cancer (274). 

PEG-g-PEI-SPION with the promising results was also used by Chen et al. for the delivery of 

siRNA targeting CD44v6. This target was designed for the prevention and treatment of gastric 

cancer metastasis and in vivo MRI gene tracking (275).The results showed the capability of 

PEG-g-PEI-SPION as a highly efficient contrast agent in MRI applications in vivo.  

 

7. Liver cancer therapy 

Hepatocellular carcinoma (HCC) is another deadly cancer worldwide due to the late diagnosis 

and the impaired and insufficient treatments. Therefore, it is necessary to develop the carriers 

with enhanced targeted specificity, improved efficiency and safety (276, 277). Diez et al. (278), 
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formulated one of the advanced non-viral carrier called targeted lipopolymer for encapsulation of 

interleukin (IL)-12. This system has demonstrated enhanced transfection efficiency and the 

higher survival in mice bearing BNL (undifferentiated murine hepatocarcinoma). The targeted 

lipopolymer consists of PLGA/DOTAP conjugated to asialofetuin (AF) ligand and loaded with 

IL-12 gene. The transfer of immunostimulatory gene is a potent strategy for cancer therapy. 

Interleukin (IL)-12 is one of the most powerful immunostimulatory cytokines with the 

considerable anticancer effects (279, 280). Asialofetuin (AF) is also an excellent ligand for the 

specific recognition of asialoglycoprotein receptor (ASGPR) over-expressing in the 

hepatocarcinoma cells. Targeted-NPs demonstrated five- to 12-fold improved transfection 

efficiency in comparison with non-targeted complexes or naked plasmid pCMV IL-12, 

respectively. This is associated with the maximal levels of IL-12 and interferon-γ in the mice 

sera on the day 14 after the injection. AF-NPs inhibited the tumor growth by stimulating the 

natural killer (NK) cells through the releasing of IFN-γ which is essential for antitumor activity 

of  IL-12  (278). 

Designing the targeted vectors for specific delivery to the liver with high transfection efficiency 

is the main obstacle for HCC gene therapy. To circumvent these limitations, Xue et al. (281), 

prepared dual targeting NPs to targeted delivery of RASSF1A gene to HCC via ASGPRs and 

external magnetic field (Figure 6). In this regard, Gal-CMCS-Fe3O4-NPs were synthesized by 

modification of Fe3O4 NPs with biocompatible and biodegradable carboxymethyl chitosan 

(CMCS) and conjugation to galactose (Gal) ligands through free amino groups of CMCS. Ras 

Association Domain Family 1A (RASSF1A) is the prominent tumor suppressor gene which is 

involved in the Ras signaling pathway and have shown crucial role in apoptosis, microtubule 

stability, and cell-cycle regulations. Inactivation of RASSF1A through the hypermethylation of 
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its promoter is associated with the risk of several cancers including HCC. It can also be 

a predictive factor for poor HCC prognosis. In vivo efforts to re-express RASSF1A has shown 

the arrest of  HCC growth as well as the improved sensitivity of HCC cells to mitomycin (282).  

 

Figure 6. (A) Schematic illustration of the entry of chitosan-Fe3O4-NPs inside the nucleus of cell. (B) Orthotopic 

transplantation of hepatocellular carcinoma in mice. The arrow marks the position of the small magnet. Reprinted 

with permission from (281). 

 

 

Gal-CMCS-Fe3O4-NPs have shown the average size of 40.1± 5.3 nm and the zeta potential of 

+6.5 mV. This size limit is proper for uptaking by HCC cells (283). Since receptor-mediated 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

endocytosis of targeted carriers is affected by the NPs size (284), NPs with a diameter of < 50 

nm are selectively targeted to the hepatocytes while NPs with a diameter of > 140 nm could be 

uptake by Kupffer cells. Gal-CMCS-Fe3O4-NPs were stable at pH=7 and demonstrated the 

strongest DNA binding at physiological pH. The optimal DNA binding was observed at the 

weight:weight ratio of 3:1. Transfection efficiency of pcDNA6.2mir-EGFP-loaded Gal-CMCS-

Fe3O4-NPs in HCC tissue in the presence and the absence of an external magnetic field was 

about 40.8% and 29.7%, respectively, suggesting the efficiency of dual-targeting of NPs in the 

specific tumor accumulation. For in vivo studies, nude mice with orthotopically transplanted 

HCC were treated with intravenous injection of the Gal-CMCS-Fe3O4-NPs/pcDNA3.1(+) 

RASSF1A complex and intraperitoneal injection of MMC along with the applying an external 

magnetic field to the tumor site. These mice showed the smallest tumor size, the most percentage 

of apoptotic cells, and up-regulation of caspase-3 expression in tumor tissue compared with the 

other groups. Re-expressing of RASSF1A using dual targeting NPs proposes a new promising 

approach for HCC gene therapy through increasing the sensitivity of HCC cells to chemotherapy.  

Using the gold NPs for miR-375 delivery has also been reported for the HCC gene therapy (284). 

miR-375 regulates the gene expression and acts as a tumor suppressor macromolecule. It has 

been reported that miR-375 down-regulation is associated with different tumors, including 

gastrointestinal cancers (285). However, re-expression of miR-375 suppresses 

hepatocarcinogenesis and HCC malignancy (247). The surface of gold NPs was coated by a PEG 

layer for stabilizing the particles and covalent binding to miR-375 and labeled with Cy3 

fluorescent dye for fluorescence imaging. Gold NP-miR-375 had an average size of 53 ± 8 nm 

and the zeta potential of -34 ± 1.8 mv. In vivo studies of gold NP-miR-375 in HepG2 xenograft 
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tumor mouse model and primary HCC tumors demonstrated the safe and enhanced delivery of 

miR-375 to tumor tissue resulting in the significant increase of therapeutic efficacy.   

Poly (beta-amino ester) (PBAE) NPs are another carrier which investigated by Zamboni et al. for 

specific and efficient DNA delivery to HCC. 2-((3- 

aminopropyl) amino) ethanol end-modified poly(1,5-pentanediol diacrylate-co-3-amino-1-

propanol) (known as „536‟) at carrier to plasmid ratio of 25 (w/w) demonstrated specific DNA 

delivery to a heterogenic HCC population and HCC xenograft model. pEGFP-N1 (eGFP) 

plasmid DNA was used as a reporter gene. The average hydrodynamic size and zeta potential of 

the carrier system at C/P ratio of 25 were 157 ± 3 nm and +18 ± 0.3 mV, respectively. The nano-

vehicle was intratumorally injected to subcutaneous Huh-7 xenografts in athymic nude mice. It 

was suggested that biodegradable 536 NPs would also be appropriate for systemic or trans-

arterial delivery due to its small size which preferentially localized in tumor through EPR effect 

(126).     

In another effort for HCC gene therapy, a multifunctional NP targeted for HCC was designed to 

deliver TRAIL gene in mice (251). These self-assembled lipid-bilayer structures (LCPP NPs) are 

composed of the calcium phosphate (CaP) and protamine core, which act as a pH stimuli-

responsive and TRAIL nuclear localization agent, respectively. Moreover, The Ca ions released 

from CaP reverse the TRAIL resistance. HCC-targeting peptide (SP94) was also used for 

targeted delivery of NPs. Finally, TNF-related apoptosis induced by efficient TRAIL delivery 

and targeting of both the tumor and the adjacent tumor microenvironment resulted in the 

significant HCC tumor inhibition. Co-delivery of TRAIL and PTEN gene by zein NPs as an 

FDA-approved protein with a high proportion of hydrophobic and polar amino acids has also 

been reported (286). The amphiphilic characteristics of these NPs have facilitated the interaction 
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with DNA and cell membrane, thereby high bioavailability of loaded genes in HCC rat liver 

tissue has been observed. Besides TRAIL, other apoptotic inducers have been delivered for HCC 

gene therapy. DNA encoding tBid, a pro-apoptotic mitochondrial factor, was interacted with a 

nanopolymer based on folic acid grafted PEI600-CyD (Cyclodextrin) named H1. A modified 

human α-fetoprotein (AFP) promoter, EA4D, was fused with tBid to achieve pGL3-EA4D-

tBid/H1. HCC tumor model studies showed the best activity and specificity in AFP-producing 

HCC treatment with the minimal toxicity in nude mice (287). 

Various studieshave shown the successful delivery of siRNA through NPs in HCC models in 

vivo, although they have not entered to clinical trials yet. siRNA-lipid NPs (siRNA-LNPs) were 

reported to target YAP (Yes-associated protein), an oncogenic transcription factor, in a 

genetically engineered mouse (GEM) HCC model. YAP suppression leads to the arrest of the 

rapid proliferation of tumor cells, and then acquire the characteristics of hepatocyte 

differentiation in advanced HCC (288).  Due to the high specificity and low toxicity of siYAP-

LNPs, it is expected that this delivery system could be used for delivery of siRNA or shRNA to 

inhibit multiple targets in HCC.  

In order to develop a novel approach for improved cancer immunotherapy, tumor-targeted lipid-

dendrimer-calcium-phosphate (TT-LDCP) was designed for dual-targeting of siRNA against 

immunosuppressive factors (the immune checkpoint PD-L1) and pDNA encoding the 

immunostimulating cytokine IL-2. TT-LDCP NPs led to enhanced tumoral infiltration and 

stimulation of CD8
+
 T cells, improved cancer immunotherapy, and regression of HCC (289).  

Another alternative strategy for hepatocellular carcinoma gene therapy is hydrodynamics-based 

gene delivery procedure. This method has been tested in several studies due to its simplicity, 

reproducibility and its potential to transfect around 30–40% of cells, mostly the hepatocytes in 
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the liver. In a study conducted by Kamimura and his colleagues, a diphtheria toxin fragment A 

(DTA) gene-expressing plasmid was transferred using the hydrodynamics-based procedure. The 

results demonstrated a substantial inhibition of hepatocellular carcinoma occurrence in mice 

treated with hydrodynamic-based gene therapy 0 and 2 months after gene delivery (128). Since 

ultrasound microbubble sonoporation have shown great potential for gene delivery, a ternary 

nanodroplet composed of perfluoropentane/C9F17-PAsp(DET)/miR-122/PGA-g-mPEG (PFP-

7TNDs/miR-122) was prepared and evaluated for the transferring of microRNA-122 (miR-122) 

for hepatocellular carcinoma treatment. The results showed that the treatment of the cells with 

such system combined with ultrasound irradiation increased the miR-122 expression level by 30-

fold in human HCC xenografts (130). Hence, these methods have shown potential for further 

studies to develop safe and efficient gene therapy approaches.   

 

8. Prostate cancer therapy 

Prostate cancer is the fourth most common cancer and the second most extensive cancer in males 

leading to the mortality of around 300,000 individuals per year. Almost 200,000 new patients 

have been diagnosed per annum. The late diagnosis of prostate cancer is the primary cause of 

death (290, 291). Based on the stage and severity of the tumor, different treatments can be 

suggested to the patient including prostatectomy, radiotherapy, hormone therapy, chemotherapy, 

gene therapy, and a combination of them. The most recent procedure is gene therapy that mainly 

initiated via transferring a new gene to achieve destruction or fixation of cancerous cells (292-

294). Transferrin and lactoferrin are two iron-binding proteins that widely used as targeting 

ligands for prostate cancers (295, 296). Another promising approach for prostate targeting is 

using the integrins that can be attached to the extracellular matrix of prostate cancer 
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microenvironment. Integrin receptors are supposed to be over-expressed on prostate cancer cells 

(297, 298). Prostate-specific membrane antigen (PSMA), integrins, and prostate stem cell 

antigen (PSCA) are the glycoprotein which could be targeted by various ligands (299, 300). 

Zhang et al. (138) studied an effective and biocompatible drug and gene delivery system using a 

RGD-PEG-DSPE/CaP. They achieved the LCP-RGD NPs by modifying the NPs, which contains 

a calcium phosphate (CaP) core, dioleoyl phosphatidic acid (DOPA) and RGD modified 

poly(ethylene glycol)-conjugated distearoyl phosphatidylethanolamine (RGD-PEG-DSPE). They 

used this system for co-delivery of GRP78 siRNA and docetaxel (DTXL) in other to cure the 

PC-3 CRPC. In another study, Dong et al. (142) tried to develop an effective co-delivery of 

docetaxel (DTX) and plasmid DNA (pDNA) for combination chemotherapy. They studied a cell-

penetrating peptides (CPPs) modified lipid-PEI hybrid NPs (LPNs) and evaluated a modified 

RKKRRQRRR peptide (TAT), DTX, pDNA and LPNs (TAT-DTX/pDNA LPNs) in PC3 cancer 

cells (in vitro) and in a murine prostate cancer model (in vivo). Wang et al. (301) investigated in 

vitro and in vivo anti-tumor effects of nanobubbles carrying androgen receptor (AR) siRNA. In 

this study, they combined those nanobubbles with ultrasonic irradiation in order to test them on 

androgen-independent prostate cancer (AIPC). They concluded that those nanobubbles could be 

used as gene vectors for the treatment of AIPC. In a study by Wu et al. (139) they prepared an 

anti-tumor targeted FoxM1 siRNA-loaded cationic nanobubbles (CNBs) conjugated with an 

A10-3.2 aptamer (siFoxM1-Apt-CNBs). They concluded that their synthesized NPs could 

potentially act as a promising targeted gene delivery system for prostate cancer therapy. Rak et 

al. (302) suggested a group of cationic polyprenyl derivatives with different lengths of 

polyprenyl chains as DNA vehicles. They provided a group of lipofecting agents for in vitro and 

in vivo applications. Their results showed that these carriers could act as powerful gene carriers 
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on DU145 human prostate cancer cells.  In two different studies, Williford et al (144) and Wu et 

al. (146) worked on prostate tumor regression. Willfort et al. designed a PEGylated structure for 

DNA micellar NPs in order to achieve balanced colloidal stability and improved transfection 

activity (144). On the other hand, Wu et al. evaluated the possibility of using aptamer-modified 

NPs (APT-NPs) to deliver microRNA (miRNA) to prostate cancer cells to demonstrate their 

tumor-targeting efficiency (146). 

Some other studies tried to find a meaningful interaction between the prostate cancer and other 

organs using cytokines. For instance, Zolochevska (303) et al. analyzed the role of interleukin-27 

(IL-27) in the interactions between prostate cancer and bone. They used the IL-27 gene delivery 

by applying sonoporation (sonodelivery) in vivo in order to treat and reduce the growth of 

prostate cancer at a bone metastatic site. Hattori et al. (304) achieved the elevated efficiency of 

transfection using the adhesion of extracellular matrix (ECM) to the complex of DNA/lipid 

(nanoplex). Once the ECM proteins coated on the nanoplex, they could improve DNA 

transfection activity in cells. They showed that Fn-coating nanoplexes could facilitate 

transfection of prostate tumor cells. 

The use of alternative approaches including sonoporation for prostate cancer gene delivery has 

attracted great attention due to the high transfection efficiency and safety. For example, the 

delivery of IL-27 was carried out using sonodelivery with a biocompatible polymer complexed 

to pDNA to reduce prostate tumor growth in an immunocompetent TC2R C57/BL6 model (140). 

Since there are several therapeutic ultra sound waves for clinical applications, those which  

operates at frequencies of 1-3 MHz and use relatively low intensities (0.1–2 W/cm
2
)  could be 

considered for in vivo transfection. Using such therapeutic-ultrasound (TUS), a human tumor 

suppressor gene, hSef-b, was successfully transferred to prostate tumors in vivo (141). These 
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achievements have shown the potential of these routes for further studies towards the clinical 

translation.  

 

9. Co-delivery systems 

The most common treatment of cancers is chemotherapy while having various challenges and 

side effects including the lack of selectivity to the cancer cells and toxicity to the healthy cells 

(305). Different approaches such as gene therapy and combination therapy have been suggested 

to circumvent these limitations (111, 285, 306). Combination therapy may decrease the toxicity 

of each agent by reducing the individual drug-related dose. In this field, co-delivery of drug and 

gene-based NPs have attracted more attention (244, 245). The most common used nanosystems 

for co-delivery are polyplexes, which are made by the electrostatic interactions among the 

polymers, drugs, and nucleic acid materials. Wang et al. (116) investigated the potential of co-

loaded NPs with anticancer therapeutics and genes as a promising strategy for the treatment of 

colorectal cancer. They used poly (ethylene glycol)-ε-poly(caprolactone) block copolymer for 

co-loading of pEGFP (DNA) and 5-fluorouracil (5-FU). The average hydrodynamic size of DNA 

and 5-FU co-loaded nanocarriers (DFNC) was increased to around 145 nm with a zeta potential 

of +15.4±3.2 mV in the case of co-loaded particles compared with +27.6±2.9 mV in the case of 

control nanocarriers. Electrostatic interaction of DNA with the outer layer of cationic NCs is the 

reason for increasing the size and neutralizing the surface charge. The gene entrapment 

efficiency was around 90%, indicating the high DNA-loading capacity resulting in the higher 

gene expression in vivo. Drug entrapment efficiency was also higher than 80%, suggesting the 

stability of NC. Moreover, the in vivo stability evaluation of NCs in the serum demonstrated no 

changes in the average size following the mixing with serum media. In vivo stability and the lack 
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of protein corona may be induced by the PEG coating. Release studies exhibited that over 80 % 

of DNA was released at 48 h while the same release profile for the drug was achieved at 72 h, 

suggesting the faster release of DNA due to their orientation on the outer layer of NCs. 

Interestingly, in a new promising strategy, a triblock copolymer micelle based on N-succinyl 

chitosan–poly-L-lysine–palmitic acid (NSC–PLL–PA) was employed by Zhang et al. (250) for 

co-delivery of doxorubicin and siRNA against P-glycoprotein. It has been observed that the 

emerged synergistic effect is even more efficient than co-treatment of chemotherapeutics and 

siRNA (116, 193, 244, 285). Dox–siRNA-micelle had an average size of 170 nm and a zeta 

potential of +3.2 mV. Furthermore, encapsulation and loading efficiency of DOX were 95.32 ± 

2.06% and 16.09 ± 0.17%, respectively. siRNA binding efficiency was achieved at the best N/P 

ratio of 20:1. siRNA electrostatically interacted with the cationic backbone of PLL while the 

hydrophilic shell of NSC provides enhanced biocompatibility. On the other hand, DOX was 

encapsulated in the hydrophobic core of PLA. Following 24 h post-injection, tumor 

accumulation of Dox–siRNA-micelles was approximately complete due to the particle size and 

instability at low pH. In another study, researchers employed survivin shRNA and erlotinib 

(gene/drug) co-loaded delivery nanoformulation for the treatment of drug resistance EGFR-

mutated non-small cell lung cancer (78). More recently, this strategy was further improved by 

the other groups where the researchers used chitosan-based nanocomplex to deliver survivin 

shRNA, erlotinib, and heptamethine cyanine dye (Cy7, as a photothermal agent) in one stage for 

triple-combination therapy of NSCLC (307). 

 

10. Future perspectives 
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In recent decades, considerable attention has been directed to the non-viral delivery of nucleic 

acid materials for gene therapy (308, 309). The breakthrough of immunotherapy, new advances 

in genomics and discoveries in re-programming the somatic cells to induced pluripotent stem 

cells (iPS) have created a new paradigm in medicine, which resulted in the re-introduction of 

gene therapy as a powerful tool for the treatment of several various diseases from cancer to viral 

infections. Recently, CRISPR (clustered regularly interspaced short palindromic repeat)/Cas 

(CRISPR-associated) genome editing systems have attracted considerable attention due to their 

potential to edit the genome based on RNA-guided nuclease (310-313). Among the several kinds 

of CRISPR/Cas systems, the type II systems attracted more attention for human applications. 

Only in these systems, Cas9 protein is an essential compartment for DNA interference. 

Generally, this system contains a nuclease protein (Cas9) and a guide RNA (gRNA) (213). 

Since, the gRNA could be replaced by sgRNA (synthetic chimeric single guide RNA), the Cas9 

protein could be directed to the target site using sgRNA which consequently leads to the 

induction of double-stranded DNA breaks (DSBs). Finally, the major pathways of repair 

mechanism in the cells are responsible for inducing the alterations. This simple, robust, user-

friendly, specific, and efficient system has enabled researchers to create models for various 

diseases as well the novel therapeutic approaches (314-317).  

Generally, there are three different approaches for CRISPR/Cas 9 delivery (318). The ultimate 

goal is to transfer the whole system into the cells. However, the ribonucleoprotein complex could 

be transferred to the cells via different routes. The first choice is to deliver sg RNA with Cas9 

protein. This strategy is simple and straightforward which provides the Cas9 protein inside the 

target cells with no need for transcription or translation. The positive charge of Cas9 protein in 

physiological condition and the negative charge of sgRNA in the same environment may result 
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in a major obstacle for efficient delivery of such ribonucleoprotein material. On the other hand, 

Cas9 protein is a large macromolecule with a molecular weight of ~160 kg/mol which might be 

obtained through the expression in bacterial hosts. The production of the protein in the bacterial 

hosts might be expensive and the endotoxin contamination could be considered as an additional 

obstacle for their large-scale production. Various non-viral carriers have been used to transfer 

such platforms into the target cells including gold NPs, graphene oxide, carboxylated branched 

poly (β-amino ester) NPs, β-cyclodextrin-conjugated low-molecular-weight polyethylenimine, 

microbubble-nanoliposomal particles, pH-responsive silica–metal-organic framework (SMOF) 

hybrid NPs consisting of both silica and zeolitic imidazole framework (ZIF) as well as cell-

penetrating peptides and DNA nanoclews (319-331).  

Since the difficulties for efficient delivery of Cas9 protein reduces the transfection efficiency of 

sgRNA and Cas9 protein, the alternative strategy is to use the Cas9 mRNA with sgRNA. For 

efficient delivery of Cas9 protein and sgRNA, the delivery platform must be able to transfer a 

large positively charged protein (Cas9) and a negatively charged nucleic acid (sgRNA) together. 

Designing such delivery systems is not simple. The second approach includes the delivery of two 

mRNA molecules with similar biophysical properties that facilitates the design of delivery 

systems. Besides, the introduction of Cas9 mRNA into cells does not need to be entered into the 

cell nucleus for subsequent transcription. Therefore, the main advantage for this approach is the 

quick onset of action. The transient expression of Cas9 mRNA in the cytosol along with the 

quick onset of Cas9 action make this approach an attractive way for the researchers to reduce the 

off-target effects associated with the long time presence of Cas9 protein inside the cells. 

However, the low stability of mRNA is the major hampering factor for this delivery method. 
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Various non-viral delivery strategies have been employed to transfer Cas9 mRNA with the 

sgRNA together including zwitterionic aminolipid NPs (332-335) and branched-tail lipid NPs.  

Since there are several problems for efficient delivery of Cas9 protein, Cas 9 mRNA and 

sgRNA, the third method have been introduced which includes the design of a plasmid encoding 

Cas 9 and sgRNA inside the cells. The stability of plasmid-based CRISPR/Cas9 systems is really 

higher than protein or mRNA making these systems more attractive for in vivo applications. 

However, there are several major obstacles reducing its clinical applications. This system could 

be able to cross the nuclear membrane and access the transcriptional machinery of the cells. 

Since the transcription of the plasmids and the production of Cas9 protein and sgRNA need more 

time rather than the direct introduction of these macromolecules into the cells, the delay in the 

onset of therapeutic action is expected. In addition, the off-target effects associated with the 

long-term production of Cas9 protein is more probable rather than the previous methods.  Also, 

the risk of the integration of plasmid into the genomic materials may reduce their potential for 

wide clinical applications. However, several non-viral delivery systems have been introduced for 

the efficient transfer of plasmid-based CRISPR/Cas9 systems including dendrimers, polymers, 

polypeptides and polysaccharides such as PLGA as well as lipid encapsulated gold NPs, 

polyethylenimine magnetic NPs and multifunctional nucleus-targeting core-shell artificial 

viruses (336-341). 

The physical approaches to transfer the CRISPR/Cas9 system for in vitro studies have shown 

great results. However, these strategies, including electroporation and microinjection, could not 

be used in human clinical trials (342). The application of viruses (e.g., adeno-associated virus) is 

an efficient way to transfer these systems into the human target sites, but the drawbacks of the 

virus application as a gene carrier have raised several concerns (343-345). Despite several 
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obstacles hampering the efficient delivery of such systems into the cells, their tendency to the 

dividing cells versus post-mitotic non-dividing cells could be considered as an opportunity to 

transfer these platforms into the cancer cells. Altogether, the great potential of CRISP/Cas9 

system for the treatment of several diseases and the development of various delivery approaches 

have opened up new horizons to translate the lab-scale achievements to the clinical applications.  

 

11. Conclusions 

In recent decades, various oligonucleotide-based therapeutics have been introduced for human 

clinical applications. This novel category of therapeutic materials includes antisense 

oligonucleotides and aptamers as well as siRNA-based medications. The clinical applications of 

these new drugs are the result of breakthrough discoveries in molecular biology. However, the 

translation of these achievements to the clinical applications is substantially dependent on the 

development of efficient and safe delivery systems. An optimized delivery system for nucleic 

acids should be able to form a stable structure outside the cells and release the payloads at the 

specific site of action. In addition, the toxicity of the delivery vehicle must be tolerable by the 

human cells. The biophysical properties and the pharmacokinetic characteristics of the vehicles 

are the other significant points which determine the potential of delivery system for human 

applications. In order to improve these properties, stealth technology using various materials 

such as PEG and targeting strategies have been introduced. Using these approaches, the 

biophysical characteristics of the carriers could be modified and their pharmacokinetic properties 

might be improved. Generally, polymer and dendrimer-based delivery systems have shown 

higher transfection efficiency (5, 25, 53). However, their toxicity is the major concern for the 

further developments towards the clinical applications. For these carrier systems, the main 
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modification strategy is focused on the reduction of cytotoxicity through the modulation of 

cationic charge or designs the biodegradable polycationic compounds. In addition, these 

materials suffer from the low targetability for the specific cells or tissues (346). Therefore, the 

addition of targeting moieties on these materials could be considered as an effective way to 

improve their properties. These materials are appropriate delivery systems for the formation of 

complexes based on the electrostatic interaction between the nucleic acid and carrier. On the 

other hand, lipid-based carriers have demonstrated higher biocompatibility rather than the 

polymeric delivery systems (347, 348). These delivery systems have shown great potential for 

clinical applications due to their low toxicity. However, the transfection efficiency of such 

materials is generally lower than the polymeric compounds. Therefore, the major approaches to 

improve the properties of these vehicles are focused on the augmentation of their transfection 

efficiency. Similar to the polymeric delivery systems, lipid-based materials need the targeting 

moieties for efficient transfer of nucleic acid to the target cells or organs. Although the toxicity 

of lipid-based delivery systems is lower than the polycationic polymers or dendrimers, they may 

induce inflammatory responses following systemic administration. The translation of these 

materials for commercial application needs a scalable production process which leads to the 

commercial products with highest batch-to-batch uniformity. The most recent clinical trial on the 

application of mRNA as a potential vaccine for SARS-CoV-2 has been conducted by LNPs 

which shows the importance of this category of delivery system for human application (36). To 

date, cationic lipids have shown great efficiency for the delivery of these materials compared 

with the other non-viral carriers. It seems that the rapid developments of gene editing platforms 

could not be translated to the clinical application, while the bottleneck of delivery systems is 
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limiting their administration (349). Therefore, the shoulder-to-shoulder development of these two 

fields is essential for the clinical translation of gene editing platforms.  

 

Acknowledgments  

The authors would like to thank Dr. Horacio Cabral (Department of Materials Engineering, The 

University of Tokyo) for his constructive comments. 

 

References 

1. Gorecki DC. Prospects and problems of gene therapy: an update. Expert Opinion on Emerging 
Drugs. 2001;6(2):187-98. 
2. Song S, Goudy K, Campbell-Thompson M, Wasserfall C, Scott-Jorgensen M, Wang J, et al. 
Recombinant adeno-associated virus-mediated alpha-1 antitrypsin gene therapy prevents type I 
diabetes in NOD mice. Gene Therapy. 2004;11(2):181-6. 
3. Ashrafizadeh M, Fekri HS, Ahmadi Z, Farkhondeh T, Samarghandian S. Therapeutic and biological 
activities of berberine: The involvement of Nrf2 signaling pathway. Journal of Cellular Biochemistry. 
2020;121(2):1575-85. 
4.                                                                               5             
beyond). Chemical Reviews. 2015;115(19):11043-78. 
5. Dehshahri A, Alhashemi SH, Jamshidzadeh A, Sabahi Z, Samani SM, Sadeghpour H, et al. 
Comparison of the effectiveness of polyethylenimine, polyamidoamine and chitosan in transferring 
plasmid encoding interleukin-12 gene into hepatocytes. Macromolecular Research. 2013;21(12):1322-
30. 
6. Ginn SL, Amaya AK, Alexander IE, Edelstein M, Abedi MR. Gene therapy clinical trials worldwide 
to 2017: An update. The Journal of Gene Medicine. 2018;20(5):e3015. 
7. Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene 
therapy. Nature Reviews Genetics. 2003;4(5):346-58. 
8. Check E. A tragic setback. Nature Publishing Group; 2002. 
9. Senior M. After Glybera's withdrawal, what's next for gene therapy? : Nature Publishing Group; 
2017. p. 491–2. 
10. Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, et al. Accumulation of sub-
100 nm polymeric micelles in poorly permeable tumours depends on size. Nature Nanotechnology. 
2011;6(12):pages815–23. 
11. Tockary TA, Foo W, Dirisala A, Chen Q, Uchida S, Osawa S, et al. Single-Stranded DNA-Packaged 
Polyplex Micelle as Adeno-Associated-Virus-Inspired Compact Vector to Systemically Target Stroma-Rich 
Pancreatic Cancer. ACS Nano. 2019;13(11):12732-42. 
12. Lehrman S. Virus treatment questioned after gene therapy death. Nature Publishing Group; 
1999. 
13. Wong SY, Pelet JM, Putnam D. Polymer systems for gene delivery—past, present, and future. 
Progress in Polymer Science. 2007;32(8-9):799-837. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

14. De Smedt SC, Demeester J, Hennink WE. Cationic polymer based gene delivery systems. 
Pharmaceutical Research. 2000;17(2):113-26. 
15. Pack DW, Hoffman AS, Pun S, Stayton PS. Design and development of polymers for gene 
delivery. Nature Reviews Drug Discovery. 2005;4(7):581-93. 
16. Konstan MW, Davis PB, Wagener JS, Hilliard KA, Stern RC, Milgram LJ, et al. Compacted DNA 
nanoparticles administered to the nasal mucosa of cystic fibrosis subjects are safe and demonstrate 
partial to complete cystic fibrosis transmembrane regulator reconstitution. Human Gene Therapy. 
2004;15(12):1255-69. 
17. Walsh M, Tangney M, O'Neill M, Larkin J, Soden D, McKenna SL, et al. Evaluation of cellular 
uptake and gene transfer efficiency of pegylated poly-L-lysine compacted DNA: implications for cancer 
gene therapy. Molecular Pharmaceutics. 2006;3(6):644-53. 
18. Ohana P, Gofrit O, Ayesh S, Al-Sharef W, Mizrahi A, Birman T, et al. Regulatory sequences of the 
H19 gene in DNA based therapy of bladder cancer. Gene Therapy & Molecular Biology. 2004;8(8):181-
92. 
19. Haussecker D. Current issues of RNAi therapeutics delivery and development. Journal of 
Controlled Release. 2014;195:49-54. 
20. Fewell JG, Matar MM, Rice JS, Brunhoeber E, Slobodkin G, Pence C, et al. Treatment of 
disseminated ovarian cancer using nonv             k  ‐12                  v                        T   
Journal of Gene Medicine. 2009;11(8):718-28. 
21. Diebold SS, Kursa M, Wagner E, Cotten M, Zenke M. Mannose polyethylenimine conjugates for 
targeted DNA delivery into dendritic cells. Journal of Biological Chemistry. 1999;274(27):19087-94. 
22. Davis ME. The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin 
polymer-based nanoparticle: from concept to clinic. Molecular Pharmaceutics. 2009;6(3):659-68. 
23. Mohammadinejad R, Dadashzadeh A, Moghassemi S, Ashrafizadeh M, Dehshahri A, Pardakhty A, 
et al. Shedding light on gene therapy: Carbon dots for the minimally invasive image-guided delivery of 
plasmids and noncoding RNAs-A review. Journal of Advanced Research. 2019;18:81-93. 
24. Chen J, Tian B, Yin X, Zhang Y, Hu D, Hu Z, et al. Preparation, characterization and transfection 
efficiency of cationic PEGylated PLA nanoparticles as gene delivery systems. Journal of Biotechnology. 
2007;130(2):107-13. 
25. Sabahi Z, Samani SM, Dehshahri A. Conjugation of poly (amidoamine) dendrimers with various 
acrylates for improved delivery of plasmid encoding interleukin-12 gene. Journal of Biomaterials 
Applications. 2015;29(7):941-53. 
26. Alemzadeh E, Dehshahri A, Izadpanah K, Ahmadi F. Plant virus nanoparticles: novel and robust 

nanocarriers for drug delivery and imaging. Colloids and Surfaces B: Biointerfaces. 2018;167:20-7. 
27. Alemzadeh E, Dehshahri A, Dehghanian AR, Afsharifar A, Behjatnia AA, Izadpanah K, et al. 
Enhanced anti-tumor efficacy and reduced cardiotoxicity of doxorubicin delivered in a novel plant virus 

nanoparticle. Colloids and Surfaces B: Biointerfaces. 2019;174:80-6. 
28. Horn NA, Meek JA, Budahazi G, Marquet M. Cancer gene therapy using plasmid DNA: 
purification of DNA for human clinical trials. Human Gene Therapy. 1995;6(5):565-73. 
29. Hardee CL, Arévalo-Soliz LM, Hornstein BD, Zechiedrich L. Advances in non-viral DNA vectors for 
gene therapy. Genes. 2017;8(2):65. 
30. Nouri F, Sadeghpour H, Heidari R, Dehshahri A. Preparation, characterization, and transfection 
efficiency of low molecular weight polyethylenimine-based nanoparticles for delivery of the plasmid 
encoding CD200 gene. International Journal of Nanomedicine. 2017;12:5557–69. 
31. Oskouei R, Dehshahri A, Shier WT, Ramezani M. Modified polyethylenimine: Self assemble 
nanoparticle forming polymer for pDNA delivery. Iranian Journal of Basic Medical Sciences. 
2008;11(1):33-40. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

32. Jiang C, Chen J, Li Z, Wang Z, Zhang W, Liu J. Recent advances in the development of 
polyethylenimine-based gene vectors for safe and efficient gene delivery. Expert Opinion on Drug 
Delivery. 2019;16(4):363-76. 
33. Tang X, Zhang S, Fu R, Zhang L, Huang K, Peng H, et al. Therapeutic prospects of mRNA-based 
gene therapy for glioblastoma. Frontiers in Oncology. 2019;9:1208. 
34. Merkel OM, Kissel T. Quo vadis polyplex? Journal of Controlled Release. 2014;190:415-23. 
35. Kowalski PS, Rudra A, Miao L, Anderson DG. Delivering the messenger: advances in technologies 
for therapeutic mRNA delivery. Molecular Therapy. 2019;27(4):710–28. 
36. Le TT, Andreadakis Z, Kumar A, Roman RG, Tollefsen S, Saville M, et al. The COVID-19 vaccine 
development landscape. Nature Reviews Drug Discovery. 2020;19(5):305-6. 
37. Wagner E. Biomaterials in RNAi therapeutics: quo vadis? Biomaterials Science. 2013;1(8):804-9. 
38. Yoshinaga N, Cho E, Koji K, Mochida Y, Naito M, Osada K, et al. Bundling mRNA Strands to 
P           ‐A   mb     w             S  b      T w     R         I  V v  D   v     A   w      
Chemie International Edition. 2019;58(33):11360-3. 
39. Kormann MS, Hasenpusch G, Aneja MK, Nica G, Flemmer AW, Herber-Jonat S, et al. Expression 
of therapeutic proteins after delivery of chemically modified mRNA in mice. Nature Biotechnology. 
2011;29(2):154-7. 
40. B     ‐R land N, Tomczak K, Fernández Fernández E, Leier G, Leciejewski B, Rudolph C, et al. 
C        b           m mb                          ‐mR A     v         v            v             
fibrosis gene therapy. The Journal of Gene Medicine. 2013;15(11-12):414-26. 
41. Wang Y, Su H-h, Yang Y, Hu Y, Zhang L, Blancafort P, et al. Systemic delivery of modified mRNA 
encoding herpes simplex virus 1 thymidine kinase for targeted cancer gene therapy. Molecular Therapy. 
2013;21(2):358-67. 
42. Buss CG, Bhatia SN. Nanoparticle delivery of immunostimulatory oligonucleotides enhances 
response to checkpoint inhibitor therapeutics. Proceedings of the National Academy of Sciences. 2020. 
43. Levin AA. Treating disease at the RNA level with oligonucleotides. New England Journal of 
Medicine. 2019;380(1):57-70. 
44. Marwick C. First antisense drug will treat CMV retinitis. JAMA. 1998;280(10):871-. 
45. Smith RJ, Hiatt WR. Two new drugs for homozygous familial hypercholesterolemia: managing 
benefits and risks in a rare disorder. JAMA Internal Medicine. 2013;173(16):1491-2. 
46. Z   Y  Z     M  Y       M    F  M      K  K m HJ         V    ‐m m  k       m      
polymersomes boost targeted cancer siRNA therapy in vivo. Advanced Materials. 2017;29(42):1703285. 
47. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide 
RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411(6836):494-8. 
48. Kota J, Chivukula RR, O'Donnell KA, Wentzel EA, Montgomery CL, Hwang H-W, et al. Therapeutic 
microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell. 2009;137(6):1005-17. 
49. Khalvati B, Dehshahri A. ShRNA-mediated knock-down of CD200 using the self-assembled 
nanoparticle-forming derivative of polyethylenimine. Nanomedicine Journal. 2019;6(3):195-206. 
50. Kullberg M, McCarthy R, Anchordoquy TJ. Systemic tumor-specific gene delivery. Journal of 
Controlled Release. 2013;172(3):730-6. 
51. Khalvati B, Sheikhsaran F, Sharifzadeh S, Kalantari T, Behzad Behbahani A, Jamshidzadeh A, et al. 
Delivery of plasmid encoding interleukin-12 gene into hepatocytes by conjugated polyethylenimine-
based nanoparticles. Artificial Cells, Nanomedicine, and Biotechnology. 2017;45(5):1036-44. 
52. Amin ZR, Rahimizadeh M, Eshghi H, Dehshahri A, Ramezani M. The effect of cationic charge 
density change on transfection efficiency of polyethylenimine. Iranian Journal of Basic Medical Sciences. 
2013;16(2):150–6. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

53. Dehshahri A, Oskuee RK, Ramezani M. Plasmid DNA delivery into hepatocytes using a 
multifunctional nanocarrier based on sugar-conjugated polyethylenimine. Gene Therapy & Molecular 
Biology. 2012;14:62-71. 
54. Tong AW, Jay CM, Senzer N, Maples PB, Nemunaitis J. Systemic therapeutic gene delivery for 
cancer: crafting Paris' arrow. Current Gene Therapy. 2009;9(1):45-60. 
55. Woodle MC, Engbers CM, Zalipsky S. New amphipatic polymer-lipid conjugates forming long-
circulating reticuloendothelial system-evading liposomes. Bioconjugate Chemistry. 1994;5(6):493-6. 
56. Takeuchi H, Kojima H, Yamamoto H, Kawashima Y. Evaluation of circulation profiles of liposomes 
coated with hydrophilic polymers having different molecular weights in rats. Journal of Controlled 
Release. 2001;75(1-2):83-91. 
57. Maruyama K, Okuizumi S, Ishida O, Yamauchi H, Kikuchi H, Iwatsuru M. Phosphatidyl 
polyglycerols prolong liposome circulation in vivo. International Journal of Pharmaceutics. 
1994;111(1):103-7. 
58. Romberg B, Hennink WE, Storm G. Sheddable coatings for long-circulating nanoparticles. 
Pharmaceutical Research. 2008;25(1):55-71. 
59. Dehshahri A, Sadeghpour H, Oskuee RK, Fadaei M, Sabahi Z, Alhashemi SH, et al. Interleukin-12 
plasmid DNA delivery using l-thyroxine-conjugated polyethylenimine nanocarriers. Journal of 
nanoparticle research. 2014;16(5):2423. 
60. Sheikhsaran F, Sadeghpour H, Khalvati B, Entezar-Almahdi E, Dehshahri A. Tetraiodothyroacetic 
acid-conjugated polyethylenimine for integrin receptor mediated delivery of the plasmid encoding IL-12 
gene. Colloids and Surfaces B: Biointerfaces. 2017;150:426-36. 
61. Sadeghpour H, Khalvati B, Entezar-Almahdi E, Savadi N, Alhashemi SH, Raoufi M, et al. Double 
domain polyethylenimine-based nanoparticles for integrin receptor mediated delivery of plasmid DNA. 
Scientific reports. 2018;8(1):1-12. 
62. Hall A, Lächelt U, Bartek J, Wagner E, Moghimi SM. Polyplex evolution: understanding biology, 
optimizing performance. Molecular Therapy. 2017;25(7):1476-90. 
63. Sipe DM, Jesurum A, Murphy RF. Absence of Na+, K (+)-ATPase regulation of endosomal 
acidification in K562 erythroleukemia cells. Analysis via inhibition of transferrin recycling by low 
temperatures. Journal of Biological Chemistry. 1991;266(6):3469-74. 
64. Pandey AP, Sawant KK. Polyethylenimine: A versatile, multifunctional non-viral vector for nucleic 
acid delivery. Materials Science and Engineering: C. 2016;68:904-18. 
65. Liu G, Li D, Pasumarthy MK, Kowalczyk TH, Gedeon CR, Hyatt SL, et al. Nanoparticles of 
compacted DNA transfect postmitotic cells. Journal of Biological Chemistry. 2003;278(35):32578-86. 
66. Khalil IA, Kogure K, Akita H, Harashima H. Uptake pathways and subsequent intracellular 
trafficking in nonviral gene delivery. Pharmacological Reviews. 2006;58(1):32-45. 
67. Hu B, Weng Y, Xia XH, Liang Xj, Huang Y. Clinical advances of siRNA therapeutics. The Journal of 
Gene Medicine. 2019;21(7):e3097. 
68. Dong Y, Siegwart DJ, Anderson DG. Strategies, design, and chemistry in siRNA delivery systems. 
Advanced Drug Delivery Reviews. 2019;144:133-47. 
69. Rüger J, Ioannou S, Castanotto D, Stein CA. Oligonucleotides to the (Gene) Rescue: FDA 
Approvals 2017–2019. Trends in Pharmacological Sciences. 2019;41(1):27-41. 
70. Stingl G, Bröcker E-B, Mertelsmann R, Wolff K, Schreiber S, Kämpgen E, et al. Phase I study to the 
immunotherapy of metastatic malignant melanoma by a cancer vaccine consisting of autologous cancer 
cells transfected with the human IL-2 gene. Journal of Molecular Medicine. 1997;75(4):297-9. 
71. Rodriguez B, Asmuth DM, Matining RM, Spritzler J, Jacobson J, Mailliard R, et al. Safety, 
Tolerability and Immunogenicity of Repeated Doses of DermaVir, a Candidate Therapeutic HIV Vaccine, 
in HIV Infected Patients Receiving Combination Antiretroviral Therapy. Results of the ACTG 5176 Trial. 
Journal of Acquired Immune Deficiency Syndromes. 2013;64(4). 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

72. Anwer K, Barnes M, Fewell J, Lewis D, Alvarez R. Phase-I clinical trial of IL-12 
plasmid/lipopolymer complexes for the treatment of recurrent ovarian cancer. Gene therapy. 
2010;17(3):360-9. 
73. Shi M, Zhang J, Huang Z, Chen Y, Pan S, Hu H, et al. Stimuli-responsive release and efficient 
siRNA delivery in non-small cell lung cancer by a poly(l-histidine)-based multifunctional nanoplatform. 
Journal of Materials Chemistry B. 2020;8(8):1616-28. 
74. Meng L, Yuan S, Zhu L, ShangGuan Z, Zhao R. Ultrasound-microbubbles-mediated microRNA-
449a inhibits lung cancer cell growth via the regulation of Notch1. OncoTargets and therapy. 
2019;12:7437-50. 
75. Yang Y, Xue B, Shi K, Jia Y, Hao Y, Xiao Y, et al. Synthesis and Application of a Novel Gene Delivery 
Vector for Non-Small-Cell Lung Cancer Therapy. Journal of Biomedical Nanotechnology. 2019;15(3):431-
42. 
76. Zhang M, Wang Q, Wan K-W, Ahmed W, Phoenix DA, Zhang Z, et al. Liposome mediated-CYP1A1 
gene silencing nanomedicine prepared using lipid film-coated proliposomes as a potential treatment 
strategy of lung cancer. International Journal of Pharmaceutics. 2019;566:185-93. 
77. Zhu Y, Meng Y, Zhao Y, Zhu J, Xu H, Zhang E, et al. Toxicological exploration of peptide-based 
cationic liposomes in siRNA delivery. Colloids and Surfaces B: Biointerfaces. 2019;179:66-76. 
78. Lv T, Li Z, Xu L, Zhang Y, Chen H, Gao Y. Chloroquine in combination with aptamer-modified 
nanocomplexes for tumor vessel normalization and efficient erlotinib/Survivin shRNA co-delivery to 
overcome drug resistance in EGFR-mutated non-small cell lung cancer. Acta Biomaterialia. 2018;76:257-
74. 
79. Yang Y, Jia Y, Xiao Y, Hao Y, Zhang L, Chen X, et al. Tumor-Targeting Anti-MicroRNA-155 Delivery 
Based on Biodegradable Poly(ester amine) and Hyaluronic Acid Shielding for Lung Cancer Therapy. 
ChemPhysChem. 2018;19(16):2058-69. 
80. Chowdhury N, Vhora I, Patel K, Doddapaneni R, Mondal A, Singh M. Liposomes co-Loaded with 
6-Phosphofructo-2-Kinase/Fructose-2, 6-Biphosphatase 3 (PFKFB3) shRNA Plasmid and Docetaxel for the 
Treatment of non-small Cell Lung Cancer. Pharmaceutical research. 2017;34(11):2371-84. 
81. Zhang B, Zhang Y, Yu D. Lung cancer gene therapy: Transferrin and hyaluronic acid dual ligand-
decorated novel lipid carriers for targeted gene delivery. Oncology Reports. 2017;37(2):937-44. 
82. Lee AY, Kim S, Lee S, Jiang H-L, Kim S-B, Hong S-H, et al. Knockdown of Importin 7 Inhibits Lung 
Tumorigenesis in K-rasLA1 Lung Cancer Mice. Anticancer Research. 2017;37(5):2181-386. 
83. Unal O, Akkoc Y, Kocak M, Nalbat E, Dogan-Ekici AI, Yagci Acar H, et al. Treatment of breast 
cancer with autophagy inhibitory microRNAs carried by AGO2-conjugated nanoparticles. Journal of 
Nanobiotechnology. 2020;18(1):65. 
84. Zhao N, Fan W, Zhao X, Liu Y, Hu Y, Duan F, et al. Polycation–Carbon Nanohybrids with Superior 
Rough Hollow Morphology for the NIR-II Responsive Multimodal Therapy. ACS Applied Materials & 
Interfaces. 2020;12(10):11341-52. 
85. Quagliarini E, Di Santo R, Palchetti S, Ferri G, Cardarelli F, Pozzi D, et al. Effect of Protein Corona 
on The Transfection Efficiency of Lipid-Coated Graphene Oxide-Based Cell Transfection Reagents. 
Pharmaceutics. 2020;12(2). 
86. Piña MJ, Girotti A, Serrano S, Muñoz R, Rodríguez-Cabello JC, Arias FJ. A double safety lock 
tumor-specific device for suicide gene therapy in breast cancer. Cancer Letters. 2020;470:43-53. 
87. Ding L, Li J, Wu C, Yan F, Li X, Zhang S. A self-assembled RNA-triple helix hydrogel drug delivery 
system targeting triple-negative breast cancer. Journal of Materials Chemistry B. 2020;8(16):3527-33. 
88. Taschauer A, Polzer W, Alioglu F, Billerhart M, Decker S, Kittelmann T, et al. Peptide-Targeted 
Polyplexes for Aerosol-Mediated Gene Delivery to CD49f-Overexpressing Tumor Lesions in Lung. 
Molecular Therapy - Nucleic Acids. 2019;18:774-86. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

89. Wang R, Dai X, Duan S, Zhao N, Xu F-J. A flexible bowl-shaped magnetic assembly for 
multifunctional gene delivery systems. Nanoscale. 2019;11(35):16463-75. 
90. Zhao D, Song H, Zhou X, Chen Y, Liu Q, Gao X, et al. Novel facile thermosensitive hydrogel as 
sustained and controllable gene release vehicle for breast cancer treatment. European Journal of 
Pharmaceutical Sciences. 2019;134:145-52. 
91. Wang S, Liu X, Chen S, Liu Z, Zhang X, Liang X-J, et al. Regulation of Ca2+ Signaling for Drug-
Resistant Breast Cancer Therapy with Mesoporous Silica Nanocapsule Encapsulated Doxorubicin/siRNA 
Cocktail. ACS Nano. 2019;13(1):274-83. 
92. Devulapally R, Lee T, Barghava-Shah A, Sekar TV, Foygel K, Bachawal SV, et al. Ultrasound-guided 
delivery of thymidine kinase–nitroreductase dual therapeutic genes by PEGylated-PLGA/PIE 
nanoparticles for enhanced triple negative breast cancer therapy. Nanomedicine. 2018;13(9):1051-66. 
93. Zhuo H, Zheng B, Liu J, Huang Y, Wang H, Zheng D, et al. Efficient targeted tumor imaging and 
secreted endostatin gene delivery by anti-CD105 immunoliposomes. J Exp Clin Cancer Res. 
2018;37(1):42-. 
94. Ruan C, Liu L, Wang Q, Chen X, Chen Q, Lu Y, et al. Reactive Oxygen Species-Biodegradable Gene 
Carrier for the Targeting Therapy of Breast Cancer. ACS Applied Materials & Interfaces. 
2018;10(12):10398-408. 
95. Tang J, Howard CB, Mahler SM, Thurecht KJ, Huang L, Xu ZP. Enhanced delivery of siRNA to triple 
negative breast cancer cells in vitro and in vivo through functionalizing lipid-coated calcium phosphate 
nanoparticles with dual target ligands. Nanoscale. 2018;10(9):4258-66. 
96. Tang Q, Ma X, Zhang Y, Cai X, Xue W, Ma D. Self-sensibilized polymeric prodrug co-delivering 
MMP-9 shRNA plasmid for combined treatment of tumors. Acta Biomaterialia. 2018;69:277-89. 
97. Xin X, Pei X, Yang X   v Y  Z        H            R  ‐           v                    b             
and safe gene delivery. Advanced Science. 2017;4(11):1700324. 
98. Liu J, Guo N, Gao C, Liu N, Zheng X, Tan Y, et al. Effective Gene Silencing Mediated by 
Polypeptide Nanoparticles LAH4-L1-siMDR1 in Multi-Drug Resistant Human Breast Cancer. Journal of 
Biomedical Nanotechnology. 2019;15(3):531-43. 
99. Malik YS, Sheikh MA, Xing Z, Guo Z, Zhu X, Tian H, et al. Polylysine-modified polyethylenimine 
polymer can generate genetically engineered mesenchymal stem cells for combinational suicidal gene 
therapy in glioblastoma. Acta Biomaterialia. 2018;80:144-53. 
100. Tong WY, Alnakhli M, Bhardwaj R, Apostolou S, Sinha S, Fraser C, et al. Delivery of siRNA in vitro 
and in vivo using PEI-capped porous silicon nanoparticles to silence MRP1 and inhibit proliferation in 
glioblastoma. Journal of nanobiotechnology. 2018;16(1):38. 
101. Gao S, Tian H, Xing Z, Zhang D, Guo Y, Guo Z, et al. A non-viral suicide gene delivery system 
traversing the blood brain barrier for non-invasive glioma targeting treatment. Journal of Controlled 
Release. 2016;243:357-69. 
102. Huang R-Y, Lin Y-H, Lin S-Y, Li Y-N, Chiang C-S, Chang C-W. Magnetic ternary nanohybrids for 
nonviral gene delivery of stem cells and applications on cancer therapy. Theranostics. 2019;9(8):2411. 
103. Wang X, Hua Y, Xu G, Deng S, Yang D, Gao X. Targeting eZh2 for glioma therapy with a novel 
nanoparticle–sirNa complex. International journal of nanomedicine. 2019;14:2637. 
104. Freimann K, Arukuusk P, Kurrikoff K, Vasconcelos LDF, Veiman K-L, Uusna J, et al. Optimization 
of in vivo DNA delivery with NickFect peptide vectors. Journal of Controlled Release. 2016;241:135-43. 
105. Fan C-H, Chang E-L, Ting C-Y, Lin Y-C, Liao E-C, Huang C-Y, et al. Folate-conjugated gene-carrying 
microbubbles with focused ultrasound for concurrent blood-brain barrier opening and local gene 
delivery. Biomaterials. 2016;106:46-57. 
106. Kim HA, Lee H-L, Choi E, Kim Y-H, Lee M. Reducible poly (oligo-D-arginine) as an efficient carrier 
of the thymidine kinase gene in the intracranial glioblastoma animal model. Journal of Pharmaceutical 
Sciences. 2015;104(11):3743-51. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

107. Oh B, Han J, Choi E, Tan X, Lee M. Peptide micelle-mediated delivery of tissue-specific suicide 
gene and combined therapy with Avastin in a glioblastoma model. Journal of pharmaceutical sciences. 
2015;104(4):1461-9. 
108. Park JH, Han J, Lee M. Thymidine kinase gene delivery using curcumin loaded peptide micelles as 
a combination therapy for glioblastoma. Pharmaceutical research. 2015;32(2):528-37. 
109. Guerrero-Cázares H, Tzeng SY, Young NP, Abutaleb AO, Quiñones-Hinojosa A, Green JJ. 
Biodegradable polymeric nanoparticles show high efficacy and specificity at DNA delivery to human 
glioblastoma in vitro and in vivo. ACS nano. 2014;8(5):5141-53. 
110. Liu X, Li Y, Sun X, Muftuoglu Y, Wang B, Yu T, et al. Powerful anti-colon cancer effect of modified 
nanoparticle-mediated IL-15 immunogene therapy through activation of the host immune system. 
Theranostics. 2018;8(13):3490-503. 
111. Li L, Deng R, Su Y, Yang C. Dual-targeting nanoparticles with excellent gene transfection 
efficiency for gene therapy of peritoneal metastasis of colorectal cancer. Oncotarget. 2017;8(52):89837. 
112. Ju H, Lu Y, Wu Q, Liu J, Zeng Z, Mo H, et al. Disrupting G6PD-mediated Redox homeostasis 
enhances chemosensitivity in colorectal cancer. Oncogene. 2017;36(45):6282-92. 
113. Liu X, Gao X, Zheng S, Wang B, Li Y, Zhao C, et al. Modified nanoparticle mediated IL-12 
immunogene therapy for colon cancer. Nanomedicine: Nanotechnology, Biology and Medicine. 
2017;13(6):1993-2004. 
114. Lee S-Y, Yang C-Y, Peng C-L, Wei M-F, Chen K-C, Yao C-J, et al. A theranostic micelleplex co-
delivering SN-38 and VEGF siRNA for colorectal cancer therapy. Biomaterials. 2016;86:92-105. 
115. Ji Y, Liu X, Huang M, Jiang J, Liao Y-P, Liu Q, et al. Development of self-assembled multi-arm 
polyrotaxanes nanocarriers for systemic plasmid delivery in vivo. Biomaterials. 2019;192:416-28. 
116. Wang Z, Wei Y, Fang G, Hong D, An L, Jiao T, et al. Colorectal cancer combination therapy using 
drug and gene co-delivered, targeted poly (ethylene glycol)-ε-poly (caprolactone) nanocarriers. Drug 
design, development and therapy. 2018;12:3171. 
117. Pishavar E, Attaranzadeh A, Alibolandi M, Ramezani M, Hashemi M. Modified PAMAM vehicles 
for effective TRAIL gene delivery to colon adenocarcinoma: in vitro and in vivo evaluation. Artificial cells, 
nanomedicine, and biotechnology. 2018;46(sup3):S503-S13. 
118. Li L, Li X, Wu Y, Song L, Yang X, He T, et al. Multifunctional nucleus-targeting nanoparticles with 
ultra-high gene transfection efficiency for in vivo gene therapy. Theranostics. 2017;7(6):1633. 
119. Bhatt P, Khatri N, Kumar M, Baradia D, Misra A. Microbeads mediated oral plasmid DNA delivery 
using polymethacrylate vectors: an effectual groundwork for colorectal cancer. Drug delivery. 
2015;22(6):849-61. 
120. Lee YM, Lee D, Kim J, Park H, Kim WJ. RPM peptide conjugated bioreducible polyethylenimine 
targeting invasive colon cancer. Journal of controlled release. 2015;205:172-80. 
121. Yang J, Hendricks W, Liu G, McCaffery JM, Kinzler KW, Huso DL, et al. A nanoparticle formulation 
that selectively transfects metastatic tumors in mice. Proceedings of the National Academy of Sciences. 
2013;110(36):14717-22. 
122. Vidic S, Markelc B, Sersa G, Coer A, Kamensek U, Tevz G, et al. MicroRNAs targeting mutant K-ras 
by electrotransfer inhibit human colorectal adenocarcinoma cell growth in vitro and in vivo. Cancer 
Gene Ther. 2010;17(6):409-19. 
123. Wonder E, Simón-Gracia L, Scodeller P, Majzoub RN, Kotamraju VR, Ewert KK, et al. Competition 
of charge-mediated and specific binding by peptide-tagged cationic liposome–DNA nanoparticles in vitro 
and in vivo. Biomaterials. 2018;166:52-63. 
124. Wang W, Liu Z, Sun P, Fang C, Fang H, Wang Y, et al. RGD peptides-conjugated pluronic triblock 
copolymers encapsulated with AP-2α                m                                           v         
in vivo. International journal of molecular sciences. 2015;16(7):16263-74. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

125. Zhao Y, Lee RJ, Liu L, Dong S, Zhang J, Zhang Y, et al. Multifunctional drug carrier based on PEI 
derivatives loaded with small interfering RNA for therapy of liver cancer. International journal of 
pharmaceutics. 2019;564:214-24. 
126. Zamboni CG, Kozielski KL, Vaughan HJ, Nakata MM, Kim J, Higgins LJ, et al. Polymeric 
nanoparticles as cancer-specific DNA delivery vectors to human hepatocellular carcinoma. Journal of 
Controlled Release. 2017;263:18-28. 
127. Liang X, Shi B, Wang K, Fan M, Jiao D, Ao J, et al. Development of self-assembling peptide 
nanovesicle with bilayers for enhanced EGFR-targeted drug and gene delivery. Biomaterials. 
2016;82:194-207. 
128. Kamimura K, Yokoo T, Abe H, Sakai N, Nagoya T, Kobayashi Y, et al. Effect of Diphtheria Toxin-
Based Gene Therapy for Hepatocellular Carcinoma. Cancers. 2020;12(2):472. 
129. Sukumar UK, Rajendran JCB, Gambhir SS, Massoud TF, Paulmurugan R. SP94-Targeted Triblock 
Copolymer Nanoparticle Delivers Thymidine Kinase–p53–Nitroreductase Triple Therapeutic Gene and 
Restores Anticancer Function against Hepatocellular Carcinoma in Vivo. ACS Applied Materials & 
Interfaces. 2020;12(10):11307-19. 
130. Guo H, Xu M, Cao Z, Li W, Chen L, Xie X, et al. Ultrasound-Assisted miR-122-Loaded Polymeric 
Nanodroplets for Hepatocellular Carcinoma Gene Therapy. Molecular Pharmaceutics. 2019;17(2):541-
53. 
131. Mu X, Wang X, Wei Y, Wen C, Zhang Q, Xu C, et al. ApoE-modified liposomes mediate the 
antitumour effect of survivin promoter-driven HSVtk in hepatocellular carcinoma. Cancer gene therapy. 
2019:1-14. 
132. Liu C, Wen C, Wang X, Wei Y, Xu C, Mu X, et al. Golgi membrane protein GP73 modified-
liposome mediates the antitumor effect of survivin promoter-driven HSVtk in hepatocellular carcinoma. 
Experimental cell research. 2019;383(1):111496. 
133. Tsai P-H, Wang M-L, Chang J-H, Yarmishyn AA, Nhi Nguyen PN, Chen W, et al. Dual Delivery of 
H F4α     C         b  M          S                    I   b    C      P                
Tumorigenicity in Hepatoma-Derived CD133-Expressing Stem Cells. ACS applied materials & interfaces. 
2019;11(22):19808-18. 
134. Kim M-K, Moon Y-A, Song CK, Baskaran R, Bae S, Yang S-G. Tumor-suppressing miR-141 gene 
complex-loaded tissue-adhesive glue for the locoregional treatment of hepatocellular carcinoma. 
Theranostics. 2018;8(14):3891. 
135. Wang Z, Chang Z, Lu M, Shao D, Yue J, Yang D, et al. Shape-controlled magnetic mesoporous 
silica nanoparticles for magnetically-mediated suicide gene therapy of hepatocellular carcinoma. 
Biomaterials. 2018;154:147-57. 
136. Urnauer S, Klutz K, G ü w    GK  M     S  S  w  k    Z    C         S    m     m  ‐         
sodium iodide symporter (NIS) gene therapy of hepatocellular carcinoma mediated by B6 peptide 
polyplexes. The journal of gene medicine. 2017;19(5):e2957. 
137. Hu Q, Wang K, Sun X, Li Y, Fu Q, Liang T, et al. A redox-sensitive, oligopeptide-guided, self-
assembling, and efficiency-enhanced (ROSE) system for functional delivery of microRNA therapeutics for 
treatment of hepatocellular carcinoma. Biomaterials. 2016;104:192-200. 
138. Zhang X, He Z, Xiang L, Li L, Zhang H, Lin F, et al. Codelivery of GRP78 siRNA and docetaxel via 
RGD-PEG-DSPE/DOPA/CaP nanoparticles for the treatment of castration-resistant prostate cancer. Drug 
Design, Development and Therapy. 2019;13:1357–72. 
139. Wu M, Zhao H, Guo L, Wang Y, Song J, Zhao X, et al. Ultrasound-mediated nanobubble 
destruction (UMND) facilitates the delivery of A10-3.2 aptamer targeted and siRNA-loaded cationic 
nanobubbles for therapy of prostate cancer. Drug Delivery. 2018;25(1):226-40. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

140. Figueiredo ML, Neto MF, Salameh JW, Decker RE, Letteri R, Chan-Seng D, et al. Ligand-mediated 
targeting of cytokine Interleukin-27 enhances its bioactivity in vivo. Molecular Therapy-Methods & 
Clinical Development. 2020;17:739-51. 
141. Mishel S, Shneyer B, Korsensky L, Goldshmidt-Tran O, Haber T, Machluf M, et al. Delivery of the 
gene encoding the tumor suppressor Sef into prostate tumors by therapeutic-ultrasound inhibits both 
tumor angiogenesis and growth. Scientific reports. 2017;7(1):1-12. 
142. Dong S, Zhou X, Yang J. TAT modified and lipid–PEI hybrid nanoparticles for co-delivery of 
docetaxel and pDNA. Biomedicine & Pharmacotherapy. 2016;84:954-61. 
143. Kim Y-M, Park S-C, Jang M-K. Targeted gene delivery of polyethyleneimine-grafted chitosan with 
RGD dendr m              αvβ3         -overexpressing tumor cells. Carbohydrate polymers. 
2017;174:1059-68. 
144. Williford J-M, Archang MM, Minn I, Ren Y, Wo M, Vandermark J, et al. Critical length of PEG 

grafts on lPEI/DNA nanoparticles for efficient in vivo delivery. ACS Biomaterials Science & 

Engineering. 2016;2(4):567-78. 
145. Kaneti L, Bronshtein T, Malkah Dayan N, Kovregina I, Letko Khait N, Lupu-Haber Y, et al. 
Nanoghosts as a Novel Natural Nonviral Gene Delivery Platform Safely Targeting Multiple Cancers. Nano 
Letters. 2016;16(3):1574-82. 
146. Wu X, Tai Z, Zhu Q, Fan W, Ding B, Zhang W, et al. Study on the prostate cancer-targeting 
mechanism of aptamer-modified nanoparticles and their potential anticancer effect in vivo. 

International Journal of Nanomedicine. 2014;9:5431–40. 
147. Hattori Y, Ding W-x, Maitani Y. Highly efficient cationic hydroxyethylated cholesterol-based 
nanoparticle-mediated gene transfer in vivo and in vitro in prostate carcinoma PC-3 cells. Journal of 
controlled release. 2007;120(1-2):122-30. 
148. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA: A Cancer Journal for Clinicians. 
2019;69(1):7-34. 
149. Barta JA, Powell CA, Wisnivesky JP. Global Epidemiology of Lung Cancer. Annals of Global Health. 
2019;85(1). 
150. Lim Z-F, Ma PC. Emerging insights of tumor heterogeneity and drug resistance mechanisms in 
lung cancer targeted therapy. Journal of Hematology & Oncology. 2019;12(1). 
151. Hanahan D, Weinberg Robert A. Hallmarks of Cancer: The Next Generation. Cell. 
2011;144(5):646-74. 
152. Fouad YA, Aanei C. Revisiting the hallmarks of cancer. Am J Cancer Res. 2017;7(5):1016-36. 
153. Wang D, Gao G. State-of-the-art human gene therapy: part II. Gene therapy strategies and 
clinical applications. Discov Med. 2014;18(98):151-61. 
154. Goswami R, Subramanian G, Silayeva L, Newkirk I, Doctor D, Chawla K, et al. Gene Therapy 
Leaves a Vicious Cycle. Frontiers in Oncology. 2019;9. 
155. Ramamoorth M. Non Viral Vectors in Gene Therapy- An Overview. Journal of Clinical and 
Diagnostic Research. 2015. 
156. Lundstrom K, Boulikas T. Viral and Non-viral Vectors in Gene Therapy: Technology Development 
and Clinical Trials. Technology in Cancer Research & Treatment. 2016;2(5):471-85. 
157. Chen J, Guo Z, Tian H, Chen X. Production and clinical development of nanoparticles for gene 
delivery. Molecular Therapy - Methods & Clinical Development. 2016;3. 
158. Patil, Gao, Lin, Li, Dang, Tian, et al. The Development of Functional Non-Viral Vectors for Gene 
Delivery. International Journal of Molecular Sciences. 2019;20(21). 
159. Itani R, Al Faraj A. siRNA Conjugated Nanoparticles—A Next Generation Strategy to Treat Lung 
Cancer. International Journal of Molecular Sciences. 2019;20(23). 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

160. Ayatollahi S, Salmasi Z, Hashemi M, Askarian S, Oskuee RK, Abnous K, et al. Aptamer-targeted 
delivery of Bcl-xL shRNA using alkyl modified PAMAM dendrimers into lung cancer cells. The 
International Journal of Biochemistry & Cell Biology. 2017;92:210-7. 
161. Zhao Y, Wang W, Guo S, Wang Y, Miao L, Xiong Y, et al. PolyMetformin combines carrier and 
anticancer activities for in vivo siRNA delivery. Nature Communications. 2016;7(1). 
162. Lu S, Bao X, Hai W, Shi S, Chen Y, Yu Q, et al. Multi-functional self-assembled nanoparticles for 
pVEGF-shRNA loading and anti-tumor targeted therapy. International Journal of Pharmaceutics. 
2020;575. 
163. Zhang M, Kim Y-K, Cui P, Zhang J, Qiao J, He Y, et al. Folate-conjugated polyspermine for lung 
cancer–targeted gene therapy. Acta Pharmaceutica Sinica B. 2016;6(4):336-43. 
164. Jeong K, Yu YJ, You JY, Rhee WJ, Kim JA. Exosome-mediated microRNA-497 delivery for anti-
cancer therapy in a microfluidic 3D lung cancer model. Lab on a Chip. 2020;20(3):548-57. 
165. Huang Q, Li L, Li L, Chen H, Dang Y, Zhang J, et al. MDM2 knockdown mediated by a triazine-
modified dendrimer in the treatment of non-small cell lung cancer. Oncotarget. 2016;7(28). 
166. Alhakamy NA, Ishiguro S, Uppalapati D, Berkland CJ, Tamura M. AT2R Gene Delivered by 
Condensed Polylysine Complexes Attenuates Lewis Lung Carcinoma after Intravenous Injection or 
Intratracheal Spray. Molecular Cancer Therapeutics. 2016;15(1):209. 
167. Piña MJ, Alex SM, Arias FJ, Santos M, Rodriguez-Cabello JC, Ramesan RM, et al. Elastin-like 
recombinamers with acquired functionalities for gene-delivery applications. Journal of Biomedical 
Materials Research Part A. 2015;103(10):3166-78. 
168. Andey T, Marepally S, Patel A, Jackson T, Sarkar S, O'Connell M, et al. Cationic lipid guided short-
hairpin RNA interference of annexin A2 attenuates tumor growth and metastasis in a mouse lung cancer 
stem cell model. Journal of Controlled Release. 2014;184:67-78. 
169. Mohammadi Z, Abolhassani M, Dorkoosh FA, Hosseinkhani S, Gilani K, Amini T, et al. Preparation 
and evaluation of chitosan–DNA–FAP-B nanoparticles as a novel non-viral vector for gene delivery to the 
lung epithelial cells. International Journal of Pharmaceutics. 2011;409(1-2):307-13. 
170. Poddar A, Conesa JJ, Liang K, Dhakal S, Reineck P, Bryant G, et al. Encapsulation, Visualization 
and Expression of Genes with Biomimetically Mineralized Zeolitic Imidazolate Framework-8 (ZIF-8). 
Small. 2019;15(36):1902268. 
171. Lee AY, Cho M-H, Kim S. Recent advances in aerosol gene delivery systems using non-viral 
vectors for lung cancer therapy. Expert Opinion on Drug Delivery. 2019;16(7):757-72. 
172. K       C   F   Y   Xm  J    M  F  M      J          RPV‐m             b                   ‐    v    
      m               ‐ m                        w   b    m                        C      S        
2020;111(2):621-36. 
173. Son S-M, Yun J, Lee S-H, Han HS, Lim YH, Woo CG, et al. Therapeutic Effect of pHLIP-mediated 
CEACAM6 Gene Silencing in Lung Adenocarcinoma. Scientific Reports. 2019;9(1). 
174. Ji L, Roth JA. Tumor Suppressor FUS1 Signaling Pathway. Journal of Thoracic Oncology. 
2008;3(4):327-30. 
175. Deng WG, Kawashima H, Wu G, Jayachandran G, Xu K, Minna JD, et al. Synergistic Tumor 
Suppression by Coexpression of FUS1 and p53 Is Associated with Down-regulation of Murine Double 
Minute-2 and Activation of the Apoptotic Protease-Activating Factor 1-Dependent Apoptotic Pathway in 
Human Non-Small Cell Lung Cancer Cells. Cancer Research. 2007;67(2):709-17. 
176. Katoh M, Lu C, Stewart DJ, Lee JJ, Ji L, Ramesh R, et al. Phase I Clinical Trial of Systemically 
Administered TUSC2(FUS1)-Nanoparticles Mediating Functional Gene Transfer in Humans. PLoS ONE. 
2012;7(4). 
177. Tseng SJ, Liao Z-X, Kao S-H, Zeng Y-F, Huang K-Y, Li H-J, et al. Highly specific in vivo gene delivery 
for p53-mediated apoptosis and genetic photodynamic therapies of tumour. Nature Communications. 
2015;6(1). 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

178. Abdel-Rashid RS, Omar SM, Teiama MS, Khairy A, Magdy M, Anis B. <p>Fabrication Of Gold 
Nanoparticles In Absence Of Surfactant As In Vitro Carrier Of Plasmid DNA</p>. International Journal of 
Nanomedicine. 2019;Volume 14:8399-408. 
179. Kamat CD, Shmueli RB, Connis N, Rudin CM, Green JJ, Hann CL. Poly( -amino ester) Nanoparticle 
Delivery of TP53 Has Activity against Small Cell Lung Cancer In Vitro and In Vivo. Molecular Cancer 
Therapeutics. 2013;12(4):405-15. 
180. Moon C, Oh Y, Roth JA. Current Status of Gene Therapy for Lung Cancer and Head and Neck 
Cancer. Clinical Cancer Research. 2003;9(14):5055. 
181. Li C, Hu J, Li W, Song G, Shen J. Combined bortezomib-based chemotherapy and p53 gene 
therapy using hollow mesoporous silica nanospheres for p53 mutant non-small cell lung cancer 
treatment. Biomaterials Science. 2017;5(1):77-88. 
182. Rong J, Li P, Ge Y, Chen H, Wu J, Zhang R, et al. Histone H2A-peptide-hybrided upconversion 
mesoporous silica nanoparticles for bortezomib/p53 delivery and apoptosis induction. Colloids and 
Surfaces B: Biointerfaces. 2020;186. 
183. Rabiee S, Tavakol S, Barati M, Joghataei MT. Autophagic, apoptotic, and necrotic cancer cell 
fates triggered by acidic pH microenvironment. Journal of cellular physiology. 2019;234(7):12061-9. 
184. Tavakol S, Kiani V, Tavakol B, Derakhshan MA, Joghataei MT, Rezayat SM. Toxicity concerns of 
nanocarriers.  Nanotechnology-Based Approaches for Targeting and Delivery of Drugs and Genes: 
Elsevier; 2017. p. 453-84. 
185. Segovia N, Pont M, Oliva N, Ramos V, Borrós S, Artzi N. Hydrogel Doped with Nanoparticles for 
Local Sustained Release of siRNA in Breast Cancer. Advanced Healthcare Materials. 2015;4(2):271-80. 
186. Ding Y, Wang Y, Zhou J, Gu X, Wang W, Liu C, et al. Direct cytosolic siRNA delivery by 
reconstituted high density lipoprotein for target-specific therapy of tumor angiogenesis. Biomaterials. 
2014;35(25):7214-27. 
187. Meng H, Mai WX, Zhang H, Xue M, Xia T, Lin S, et al. Codelivery of an Optimal Drug/siRNA 
Combination Using Mesoporous Silica Nanoparticles To Overcome Drug Resistance in Breast Cancer in 
Vitro and in Vivo. ACS Nano. 2013;7(2):994-1005. 
188. Zhao P, Li L, Zhou S, Qiu L, Qian Z, Liu X, et al. TPGS functionalized mesoporous silica 
nanoparticles for anticancer drug delivery to overcome multidrug resistance. Materials Science and 
Engineering: C. 2018;84:108-17. 
189. Ding L, Li J, Wu C, Yan F, Li X, Zhang S. A self-assembled RNA-triple helix hydrogel drug delivery 
system targeting triple-negative breast cancer. Journal of Materials Chemistry B. 2020. 
190. Wang, Dai Q, Zhou H, Wang L, Cheang T, Wei J, et al. CaCO3/CaIP6 composite nanoparticles 
effectively deliver AKT1 small interfering RNA to inhibit human breast cancer growth. International 
Journal of Nanomedicine. 2015. 
191. Arias FJ, Santos M, Ibanez-Fonseca A, Pina MJ, Serrano S. Elastin-Like Recombinamers As Smart 
Drug Delivery Systems. Current Drug Targets. 2018;19(4):360-79. 
192. Changi K, Bosnjak B, Gonzalez-Obeso C, Kluger R, Rodríguez-Cabello JC, Hoffmann O, et al. 
Biocompatibility and immunogenicity of elastin-like recombinamer biomaterials in mouse models. 
Journal of Biomedical Materials Research Part A. 2018;106(4):924-34. 
193. Piña MJ, Girotti A, Santos M, Rodríguez-Cabello JC, Arias FJ. Biocompatible ELR-Based Polyplexes 
Coated with MUC1 Specific Aptamers and Targeted for Breast Cancer Gene Therapy. Molecular 
Pharmaceutics. 2016;13(3):795-808. 
194. Xiao Y, Shi K, Qu Y, Chu B, Qian Z. Engineering Nanoparticles for Targeted Delivery of Nucleic 
Acid Therapeutics in Tumor. Molecular Therapy - Methods & Clinical Development. 2019;12:1-18. 
195. Taylor RE, Zahid M. Cell Penetrating Peptides, Novel Vectors for Gene Therapy. Pharmaceutics. 
2020;12(3). 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

196. Hemmati M, Najafi F, Shirkoohi R, Moghimi HR, Zarebkohan A, Kazemi B. Synthesis of a novel 
PEGDGA-coated hPAMAM complex as an efficient and biocompatible gene delivery vector: an in vitro 
and in vivo study. Drug Delivery. 2016;23(8):2956-69. 
197. Jing H, Cheng W, Li S, Wu B, Leng X, Xu S, et al. Novel cell-penetrating peptide-loaded 
nanobubbles synergized with ultrasound irradiation enhance EGFR siRNA delivery for triple negative 
Breast cancer therapy. Colloids and Surfaces B: Biointerfaces. 2016;146:387-95. 
198. Zhou Y, Gu H, Xu Y, Li F, Kuang S, Wang Z, et al. Targeted Antiangiogenesis Gene Therapy Using 
Targeted Cationic Microbubbles Conjugated with CD105 Antibody Compared with Untargeted Cationic 
and Neutral Microbubbles. Theranostics. 2015;5(4):399-417. 
199. Zhuo H, Zheng B, Liu J, Huang Y, Wang H, Zheng D, et al. Efficient targeted tumor imaging and 
secreted endostatin gene delivery by anti-CD105 immunoliposomes. Journal of Experimental & Clinical 
Cancer Research. 2018;37(1). 
200. Gu J, Fang X, Hao J, Sha X. Reversal of P-glycoprotein-mediated multidrug resistance by CD44 
antibody-targeted nanocomplexes for short hairpin RNA-encoding plasmid DNA delivery. Biomaterials. 
2015;45:99-114. 
201. Zhang M, Xu R, Xia X, Yang Y, Gu J, Qin G, et al. Polycation-functionalized nanoporous silicon 
particles for gene silencing on breast cancer cells. Biomaterials. 2014;35(1):423-31. 
202. Lu X, Wang Q-Q, Xu F-J, Tang G-P, Yang W-T. A cationic prodrug/therapeutic gene nanocomplex 
for the synergistic treatment of tumors. Biomaterials. 2011;32(21):4849-56. 
203. Wang H, Wang H, Liang J, Jiang Y, Guo Q, Peng H, et al. Cell-Penetrating Apoptotic Peptide/p53 
DNA Nanocomplex as Adjuvant Therapy for Drug-Resistant Breast Cancer. Molecular Pharmaceutics. 
2014;11(10):3352-60. 
204. Rejeeth C, Vivek R. Comparison of two silica based nonviral gene therapy vectors for breast 
carcinoma: evaluation of the p53 delivery system in Balb/c mice. Artificial Cells, Nanomedicine, and 
Biotechnology. 2016;45(3):489-94. 
205. Rejeeth C, Salem A. Novel luminescent silica nanoparticles (LSN): p53 gene delivery system in 
breast cancer in vitro and in vivo. Journal of Pharmacy and Pharmacology. 2016;68(3):305-15. 
206. Verneda Lights, Han S. Brain Tumor. Healthline. 2017. 
207. Samarehfekri H, Ranjbar M, Pardakhty A, Amanatfard A. Systematic Study of NaF Nanoparticles 
in Micelles loaded on Polylactic Acid Nanoscaffolds: In Vitro Efficient Delivery. Journal of Cluster Science. 
2020;31(2):453-61. 
208. F k   HS  R   b   M         GD  Z             G                          m                   ‐
assembled in the presence of carboxymethyl cellulose: an in vivo imaging study. Luminescence. 
2019;34(8):870-6. 
209. Fekri HS, Ranjbar M, Pardakhty A. A Systematic Study of Cu Nanospheres Embedded in Non-
ionic Surfactant-Based Vesicle: Photocatalytic Efficiency and In Vivo Imaging Study. Journal of Cluster 
Science. 2019;30(3):561-70. 
210. Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, et al. Analysis of nanoparticle delivery 
to tumours. Nature reviews materials. 2016;1(5):1-12. 
211. Jamaledin R, Di Natale C, Onesto V, Taraghdari ZB, Zare EN, Makvandi P, et al. Progress in 
Microneedle-Mediated Protein Delivery. Journal of Clinical Medicine. 2020;9(2):542. 
212. Shakeri S, Ashrafizadeh M, Zarrabi A, Roghanian R, Afshar EG, Pardakhty A, et al. Multifunctional 
Polymeric Nanoplatforms for Brain Diseases Diagnosis, Therapy and Theranostics. Biomedicines. 
2020;8(1):13. 
213. Mohammadinejad R, Sassan H, Pardakhty A, Hashemabadi M, Ashrafizadeh M, Dehshahri A, et 
al. ZEB1 and ZEB2 gene editing mediated by CRISPR/Cas9 in A549 cell line. Bratislavske Lekarske Listy. 
2020;121(1):31-6. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

214. Liu Y, Huang R, Jiang C. Non-viral gene delivery and therapeutics targeting to brain. Current 
Nanoscience. 2011;7(1):55-70. 
215. Wu J, Yang S, Luo H, Zeng L, Ye L, Lu Y. Quantitative evaluation of monocyte transmigration into 
the brain following chemical opening of the blood–brain barrier in mice. Brain research. 
2006;1098(1):79-85. 
216. Mashal M, Attia N, Soto-Sánchez C, Martínez-Navarrete G, Fernández E, Puras G, et al. Non-viral 
vectors based on cationic niosomes as efficient gene delivery vehicles to central nervous system cells 
into the brain. International journal of pharmaceutics. 2018;552(1-2):48-55. 
217. Li J, Gu B, Meng Q, Yan Z, Gao H, Chen X, et al. The use of myristic acid as a ligand of 
polyethylenimine/DNA nanoparticles for targeted gene therapy of glioblastoma. Nanotechnology. 
2011;22(43):435101. 
218. Yue P-j, He L, Qiu S-w, Li Y, Liao Y-j, Li X-p, et al. OX26/CTX-conjugated PEGylated liposome as a 
dual-targeting gene delivery system for brain glioma. Molecular Cancer. 2014;13(1):191. 
219. Vinogradov SV, Batrakova EV, Kabanov AV. Nanogels for oligonucleotide delivery to the brain. 
Bioconjugate chemistry. 2004;15(1):50-60. 
220. Abdallah B, Hassan A, Benoist C, Goula D, Behr JP, Demeneix BA. A powerful nonviral vector for 
in vivo gene transfer into the adult mammalian brain: polyethylenimine. Human gene therapy. 
1996;7(16):1947-54. 
221. Jiao X, Yu Y, Meng J, He M, Zhang CJ, Geng W, et al. Dual-targeting and microenvironment-
responsive micelles as a gene delivery system to improve the sensitivity of glioma to radiotherapy. Acta 
Pharmaceutica Sinica B. 2019;9(2):381-96. 
222. Shi Y, Jiang Y, Cao J, Yang W, Zhang J, Meng F, et al. Boosting RNAi therapy for orthotopic 
glioblastoma with nontoxic brain-targeting chimaeric polymersomes. Journal of controlled release. 
2018;292:163-71. 
223. Lehne G, De Angelis P, Den Boer M, Rugstad H. Growth inhibition, cytokinesis failure and 
apoptosis of multidrug-resistant leukemia cells after treatment with P-glycoprotein inhibitory agents. 
Leukemia. 1999;13(5):768-78. 
224. Raja MAG, Katas H, Wen TJ. Stability, intracellular delivery, and release of siRNA from chitosan 
nanoparticles using different cross-linkers. PloS one. 2015;10(6). 
225. Chen C, Mei H, Shi W, Deng J, Zhang B, Guo T, et al. EGFP-EGF1-conjugated PLGA nanoparticles 
for targeted delivery of siRNA into injured brain microvascular endothelial cells for efficient RNA 
interference. PloS one. 2013;8(4). 
226. Santos JL, Pandita D, Rodrigues J, Pêgo AP, Granja PL, Balian G, et al. Receptor-mediated gene 
delivery using PAMAM dendrimers conjugated with peptides recognized by mesenchymal stem cells. 
Molecular pharmaceutics. 2010;7(3):763-74. 
227. Wang W, Xiong W, Zhu Y, Xu H, Yang X. Protective effect of PEGylation against poly 
  m    m   )       m  ‐          m            m       b            J          B  m       M         
Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese 
Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for 
Biomaterials. 2010;93(1):59-64. 
228. D m ń k  D  K        B  B   z w k  M  I            PAMAM       m         m       b     
cells. Bioelectrochemistry. 2004;63(1-2):189-91. 
229. Huang R, Ke W, Liu Y, Jiang C, Pei Y. The use of lactoferrin as a ligand for targeting the 
polyamidoamine-based gene delivery system to the brain. Biomaterials. 2008;29(2):238-46. 
230. Bai CZ, Choi S, Nam K, An S, Park J-S. Arginine modified PAMAM dendrimer for interferon beta 
gene delivery to malignant glioma. International journal of pharmaceutics. 2013;445(1-2):79-87. 
231. Huang R, Ke W, Han L, Li J, Liu S, Jiang C. Targeted delivery of chlorotoxin-modified DNA-loaded 
nanoparticles to glioma via intravenous administration. Biomaterials. 2011;32(9):2399-406. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

232. Kuang Y, An S, Guo Y, Huang S, Shao K, Liu Y, et al. T7 peptide-functionalized nanoparticles 
utilizing RNA interference for glioma dual targeting. International journal of pharmaceutics. 
2013;454(1):11-20. 
233. Wang J, Lei Y, Xie C, Lu W, Wagner E, Xie Z, et al. Retro-inverso CendR peptide-mediated 
polyethyleneimine for intracranial glioblastoma-targeting gene therapy. Bioconjugate chemistry. 
2014;25(2):414-23. 
234. Zhan C, Meng Q, Li Q, Feng L, Zhu J, Lu W. Cyclic RGD–Polyethylene Glycol–Polyethylenimine for 
I            G   b     m ‐T        G    D   v     C  m     –An Asian Journal. 2012;7(1):91-6. 
235. B        Ab  z   M  M       JV  S k       ‐D          M  S k        C  T   k     D         M       
the binding domains of     αIIb   b      A             m              v        m                 
         αIIbβ3                      b     m       2  3;27  18) 376 -7. 
236. Martin I, Dohmen C, Mas-Moruno C, Troiber C, Kos P, Schaffert D, et al. Solid-phase-assisted 
synthesis of targeting peptide–PEG–oligo (ethane amino) amides for receptor-mediated gene delivery. 
Organic & biomolecular chemistry. 2012;10(16):3258-68. 
237.     Y       J  X   C                     Y         G          ‐       v  RGD‐                     )‐
SS‐    ethylenimine for intracranial glioblastoma targeted gene delivery. The journal of gene medicine. 
2013;15(8-9):291-305. 
238. Beltinger C, Fulda S, Walczak H, Debatin K-M. TRAIL enhances thymidine kinase/ganciclovir gene 
therapy of neuroblastoma cells. Cancer Gene Therapy. 2002;9(4):372-81. 
239. R w   P  S  k    T  B     k A       m                             I          m             v v    
       k          P z       G                z    2 19;14 2) 89  
240. Siegel RL, Miller KD, Fedewa SA, Ahnen DJ, Meester RG, Barzi A, et al. Colorectal cancer 
statistics, 2017. CA: a cancer journal for clinicians. 2017;67(3):177-93. 
241. Marfavi ZH, Farhadi M, Jameie SB, Zahmatkeshan M, Pirhajati V, Jameie M. Glioblastoma U-
87MG tumour cells suppressed by ZnO folic acid-conjugated nanoparticles: an in vitro study. Artificial 
cells, nanomedicine, and biotechnology. 2019;47(1):2783-90. 
242. Mirzaei-Parsa MJ, Najafabadi MRH, Haeri A, Zahmatkeshan M, Ebrahimi SA, Pazoki-Toroudi H, et 
al. Preparation, characterization, and evaluation of the anticancer activity of artemether-loaded nano-
niosomes against breast cancer. Breast Cancer. 2020;27(2):243-51. 
243. Zahmatkeshan M, Gheybi F, Rezayat SM, Jaafari MR. Improved drug delivery and therapeutic 
efficacy of PEgylated liposomal doxorubicin by targeting anti-HER2 peptide in murine breast tumor 
model. European Journal of Pharmaceutical Sciences. 2016;86:125-35. 
244. Shao Z, Shao J, Tan B, Guan S, Liu Z, Zhao Z, et al. Targeted lung cancer therapy: preparation and 
optimization of transferrin-decorated nanostructured lipid carriers as novel nanomedicine for co-
delivery of anticancer drugs and DNA. International journal of nanomedicine. 2015;10:1223. 
245. P    MJ  G       A  S      M  R       z-Cabello JC, Arias FJ. Biocompatible ELR-based polyplexes 
coated with MUC1 specific aptamers and targeted for breast cancer gene therapy. Molecular 
pharmaceutics. 2016;13(3):795-808. 
246. Wei X, Gong C, Gou M, Fu S, Guo Q, Shi S, et al. Biodegradable poly (ɛ-caprolactone)–poly 
(ethylene glycol) copolymers as drug delivery system. International journal of pharmaceutics. 
2009;381(1):1-18. 
247. Gou M, Wei X, Men K, Wang B, Luo F, Zhao X, et al. PCL/PEG copolymeric nanoparticles: 
potential nanoplatforms for anticancer agent delivery. Current drug targets. 2011;12(8):1131-50. 
248. Lu Y, Zhong L, Jiang Z, Pan H, Zhang Y, Zhu G, et al. Cationic micelle-based siRNA delivery for 
efficient colon cancer gene therapy. Nanoscale research letters. 2019;14(1):193. 
249. Duan X, Wang P, Men K, Gao X, Huang M, Gou M, et al. Treating colon cancer with a suicide 
gene delivered by self-assembled cationic MPEG–PCL micelles. Nanoscale. 2012;4(7):2400-7. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

250. Zhang C-g, Zhu W-j, Liu Y, Yuan Z-q, Chen W-l, Li J-z, et al. Novel polymer micelle mediated co-
delivery of doxorubicin and P-glycoprotein siRNA for reversal of multidrug resistance and synergistic 
tumor therapy. Scientific reports. 2016;6:23859. 
251. Liu CH, Chern GJ, Hsu FF, Huang KW, Sung YC, Huang HC, et al. A multifunctional nanocarrier for 
          TRAI ‐b           herapy against hepatocellular carcinoma with desmoplasia in mice. 
Hepatology. 2018;67(3):899-913. 
252. Aspe JR, Wall NR. Survivin-T34A: molecular mechanism and therapeutic potential. OncoTargets 
and therapy. 2010;3:247. 
253. O'Connor DS, Grossman D, Plescia J, Li F, Zhang H, Villa A, et al. Regulation of apoptosis at cell 
division by p34cdc2 phosphorylation of survivin. Proceedings of the National Academy of Sciences. 
2000;97(24):13103-7. 
254. Sousa AR, Oliveira AV, Oliveira MJ, Sarmento B. Nanotechnology-based siRNA delivery strategies 
for metastatic colorectal cancer therapy. International journal of pharmaceutics. 2019:118530. 
255. Sureban SM, May R, Mondalek FG, Qu D, Ponnurangam S, Pantazis P, et al. Nanoparticle-based 
delivery of siDCAMKL-1 increases microRNA-144 and inhibits colorectal cancer tumor growth via a 
Notch-1 dependent mechanism. Journal of nanobiotechnology. 2011;9(1):40. 
256. Sureban SM, May R, Ramalingam S, Subramaniam D, Natarajan G, Anant S, et al. Selective 
blockade of DCAMKL-1 results in tumor growth arrest by a Let-7a MicroRNA-dependent mechanism. 
Gastroenterology. 2009;137(2):649-59. e2. 
257. Wahl GM, Spike BT. Cell state plasticity, stem cells, EMT, and the generation of intra-tumoral 
heterogeneity. NPJ breast cancer. 2017;3(1):1-13. 
258. Dufes C, Keith WN, Bilsland A, Proutski I, Uchegbu IF, Schätzlein AG. Synthetic anticancer gene 
medicine exploits intrinsic antitumor activity of cationic vector to cure established tumors. Cancer 
research. 2005;65(18):8079-84. 
259. Li Z, Huang Z-H, Cui D-X, Yao H, Yu J-L, Li Q, et al. [Polyamidoamine dendrimer-mediated survivin 
antisense oligonucleotide inhibits the growth of subcutaneously transplanted colorectal cancer in nude 
mice]. Nan Fang Yi Ke Da Xue Xue Bao. 2008;28(11):1935-8. 
260. Song L, Liang X, Yang S, Wang N, He T, Wang Y, et al. Novel polyethyleneimine-R8-heparin 
nanogel for high-efficiency gene delivery in vitro and in vivo. Drug delivery. 2018;25(1):122-31. 
261. Gou M, Men K, Zhang J, Li Y, Song J, Luo S, et al. Efficient inhibition of C-26 colon carcinoma by 
VSVMP gene delivered by biodegradable cationic nanogel derived from polyethyleneimine. ACS nano. 
2010;4(10):5573-84. 
262. Song W, Shen L, Wang Y, Liu Q, Goodwin TJ, Li J, et al. Synergistic and low adverse effect cancer 
immunotherapy by immunogenic chemotherapy and locally expressed PD-L1 trap. Nature 
communications. 2018;9(1):1-11. 
263. Das M, Huang L. Liposomal nanostructures for drug delivery in gastrointestinal cancers. Journal 
of Pharmacology and Experimental Therapeutics. 2019;370(3):647-56. 
264. Aoyama K, Kuroda S, Morihiro T, Kanaya N, Kubota T, Kakiuchi Y, et al. Liposome-encapsulated 
plasmid DNA of telomerase-specific oncolytic adenovirus with stealth effect on the immune system. 
Scientific reports. 2017;7(1):14177. 
265. Lan K-L, Ou-Yang F, Yen S-H, Shih H-L, Lan K-H. Cationic liposome coupled endostatin gene for 
treatment of peritoneal colon cancer. Clinical & experimental metastasis. 2010;27(5):307-18. 
266. Kline CL, Shanmugavelandy SS, Kester M, Irby RB. Delivery of PAR-4 plasmid in vivo via 
nanoliposomes sensitizes colon tumor cells subcutaneously implanted into nude mice to 5-FU. Cancer 
biology & therapy. 2009;8(19):1831-7. 
267. Abdul Kuddus S. Nanoparticles to Deal with Gastric Cancer. J Gastrointestinal Cancer and 
Stromal Tumors. 2017;2(112):2. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

268. Czupryna J, Tsourkas A. Suicide gene delivery by calcium phosphate nanoparticles: a novel 
method of targeted therapy for gastric cancer. Cancer biology & therapy. 2006;5(12):1691-2. 
269. Liu T, Tang A, Zhang G, Chen Y, Zhang J, Peng S, et al. Calcium phosphate nanoparticles as a 
novel nonviral vector for efficient transfection of DNA in cancer gene therapy. Cancer biotherapy & 
radiopharmaceuticals. 2005;20(2):141-9. 
270. Liu T, Zhang G, Chen Y-H, Chen Y, Liu X, Peng J, et al. Tissue specific expression of suicide genes 
delivered by nanoparticles inhibits gastric carcinoma growth. Cancer biology & therapy. 
2006;5(12):1683-90. 
271. Cui D, Zhang C, Liu B, Shu Y, Du T, Shu D, et al. Regression of gastric cancer by systemic injection 
of RNA nanoparticles carrying both ligand and siRNA. Scientific reports. 2015;5:10726. 
272. Zhang J, Zhao T, Han F, Hu Y, Li Y. Photothermal and gene therapy combined with 
immunotherapy to gastric cancer by the gold nanoshell-based system. Journal of nanobiotechnology. 
2019;17(1):80. 
273. Patnaik S, Gupta KC. Novel polyethylenimine-derived nanoparticles for in vivo gene delivery. 
Expert opinion on drug delivery. 2013;10(2):215-28. 
274. Chen Y, Wang W, Lian G, Qian C, Wang L, Zeng L, et al. Development of an MRI-visible nonviral 
vector for siRNA delivery targeting gastric cancer. International journal of nanomedicine. 2012;7:359. 
275. Chen Y, Lian G, Liao C, Wang W, Zeng L, Qian C, et al. Characterization of polyethylene glycol-
grafted polyethylenimine and superparamagnetic iron oxide nanoparticles (PEG-g-PEI-SPION) as an MRI-
visible vector for siRNA delivery in gastric cancer in vitro and in vivo. Journal of gastroenterology. 
2013;48(7):809-21. 
276. Baig B, Halim SA, Farrukh A, Greish Y, Amin A. Current status of nanomaterial-based treatment 
for hepatocellular carcinoma. Biomedicine & Pharmacotherapy. 2019;116:108852. 
277. Redd Bowman KE, Lu P, Vander Mause ER, Lim CS. Advances in delivery vectors for gene therapy 
in liver cancer. Therapeutic Delivery. 2020;11(1):833-50. 
278. Díez S, Navarro G, de ILarduya CT. In vivo targeted gene delivery by cationic nanoparticles for 
     m                             m   T   J          G    M         A      ‐                         
research on the science of gene transfer and its clinical applications. 2009;11(1):38-45. 
279.     k    Z   ż ż   R  J k b    k M  I       k   12             m                      m   
immunotherapy? Cancer Immunology, Immunotherapy. 2014;63(5):419-35. 
280. Hernandez-Alcoceba R, Poutou J, Ballesteros-Briones MC, Smerdou C. Gene therapy approaches 
against cancer using in vivo and ex vivo gene transfer of interleukin-12. Immunotherapy. 2016;8(2):179-
98. 
281. Xue W-J, Feng Y, Wang F, Guo Y-B, Li P, Wang L, et al. Asialoglycoprotein receptor-magnetic dual 
targeting nanoparticles for delivery of RASSF1A to hepatocellular carcinoma. Scientific reports. 
2016;6:22149. 
282. Xue WJ, Li C, Zhou XJ, Guan HG, Qin L, Li P, et al. RASSF1A expression inhibits the growth of 
hepatocellular carcinoma from Qidong County. Journal of gastroenterology and hepatology. 
2008;23(9):1448-58. 
283. Popielarski SR, Hu-Lieskovan S, French SW, Triche TJ, Davis ME. A nanoparticle-based model 
delivery system to guide the rational design of gene delivery to the liver. 2. In vitro and in vivo uptake 
results. Bioconjugate chemistry. 2005;16(5):1071-80. 
284. Xue H-Y, Liu Y, Liao J-Z, Lin J-S, Li B, Yuan W-G, et al. Gold nanoparticles delivered miR-375 for 
treatment of hepatocellular carcinoma. Oncotarget. 2016;7(52):86675. 
285. Sun B, Fang Y, Li Z, Chen Z, Xiang J. Advances in the application of nanotechnology in the 
diagnosis and treatment of gastrointestinal tumors. Molecular and clinical oncology. 2015;3(2):274-80. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

286. El Sharkawi FZ, Ewais SM, Fahmy RH, Rashed LA. PTEN and TRAIL genes loaded zein 
nanoparticles as potential therapy for hepatocellular carcinoma. Journal of drug targeting. 
2017;25(6):513-22. 
287. Hu B-g, Liu L-   C    GG  Y  CG        KK  H  R          T                        m   v   α-
fetoprotein promoter-mediated tBid delivered by folate-PEI600-cyclodextrin nanopolymer vector in 
hepatocellular carcinoma. Experimental cell research. 2014;324(2):183-91. 
288. Fitamant J, Kottakis F, Benhamouche S, Tian HS, Chuvin N, Parachoniak CA, et al. YAP inhibition 
restores hepatocyte differentiation in advanced HCC, leading to tumor regression. Cell reports. 
2015;10(10):1692-707. 
289. Huang K-W, Hsu F-F, Qiu JT, Chern G-J, Lee Y-A, Chang C-C, et al. Highly efficient and tumor-
selective nanoparticles for dual-targeted immunogene therapy against cancer. Science Advances. 
2020;6(3):eaax5032. 
290. Freytag SO, Stricker H, Movsas B, Kim JH. Prostate cancer gene therapy clinical trials. Molecular 
Therapy. 2007;15(6):1042-52. 
291. Tewari AK, Whelan P, Graham JD. Prostate cancer: diagnosis and clinical management: John 
Wiley & Sons; 2013. 
292. Wirth T, Parker N, Ylä-Herttuala S. History of gene therapy. Gene. 2013;525(2):162-9. 
293. Wang W, Li W, Ma N, Steinhoff G. Non-viral gene delivery methods. Current Pharmaceutical 
Biotechnology. 2013;14(1):46-60. 
294. Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: the impact of passive 
and active targeting in the era of modern cancer biology. Advanced Drug Delivery Reviews. 2014;66:2-
25. 
295. Altwaijry N, Somani S, Parkinson JA, Tate RJ, Keating P, Warzecha M, et al. Regression of 
prostate tumors after intravenous administration of lactoferrin-bearing polypropylenimine dendriplexes 
encoding TNF-α  TRAI               k  -12. Drug Delivery. 2018;25(1):679-89. 
296. Al Robaian M, Chiam KY, Blatchford DR, Dufès C. Therapeutic efficacy of intravenously 
administered transferrin-conjugated dendriplexes on prostate carcinomas. Nanomedicine. 
2014;9(4):421-34. 
297. Fornaro M, Manes T, Languino LR. Integrins and prostate cancer metastases. Cancer and 
Metastasis Reviews. 2001;20(3-4):321-31. 
298. Marelli UK, Rechenmacher F, Sobahi TRA, Mas-Moruno C, Kessler H. Tumor targeting via integrin 
ligands. Frontiers in Oncology. 2013;3:222. 
299. Panda PK, Saraf S, Tiwari A, Verma A, Raikwar S, Jain A, et al. Novel Strategies for Targeting 
Prostate Cancer. Current Drug Delivery. 2019;16(8):712-27. 
300. Altwaijry N, Somani S, Dufès C. Targeted nonviral gene therapy in prostate cancer. International 
Journal of Nanomedicine. 2018;13:5753–67. 
301. Wang L, Zhang M, Tan K, Guo Y, Tong H, Fan X, et al. Preparation of nanobubbles carrying 
androgen receptor siRNA and their inhibitory effects on androgen-independent prostate cancer when 
combined with ultrasonic irradiation. PloS One. 2014;9(5):e96586. 
302. Rak M, Oc  ł k A  B     k            w  z J  G w    k  K  S  k  J                          ‐      
gene delivery by anionic lipoplexes based on polyprenyl ammonium salts and their effects on cell 
physiology. The Journal of Gene Medicine. 2016;18(11-12):331-42. 
303. Zolochevska O, Ellis J, Parelkar S, Chan-Seng D, Emrick T, Wei J, et al. Interleukin-27 gene 
delivery for modifying malignant interactions between prostate tumor and bone. Human Gene Therapy. 
2013;24(12):970-81. 
304. Hattori Y, Maitani Y. DNA/Lipid complex incorporated with fibronectin to cell adhesion enhances 
transfection efficiency in prostate cancer cells and xenografts. Biological and Pharmaceutical Bulletin. 
2007;30(3):603-7. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

305. Tavakol S, Ashrafizadeh M, Deng S, Azarian M, Abdoli A, Motavaf M, et al. Autophagy 
modulators: mechanistic aspects and drug delivery systems. Biomolecules. 2019;9(10):530. 
306. Du J, Li L. Which one performs better for targeted lung cancer combination therapy: pre-or post-
bombesin-decorated nanostructured lipid carriers? Drug delivery. 2016;23(5):1799-809. 
307. Li Z, Zhu L, Liu W, Zheng Y, Li X, Ye J, et al. Near-infrared/pH dual-responsive nanocomplexes for 
targeted imaging and chemo/gene/photothermal tri-therapies of non-small cell lung cancer. Acta 
Biomaterialia. 2020. 
308. Mohammadinejad R, Ashrafizadeh M, Pardakhty A, Uzieliene I, Denkovskij J, Bernotiene E, et al. 
Nanotechnological Strategies for Osteoarthritis Diagnosis, Monitoring, Clinical Management, and 
Regenerative Medicine: Recent Advances and Future Opportunities. Current Rheumatology Reports. 
2020;22(4). 
309. Ashrafizadeh M, Ahmadi Z, Kotla NG, Afshar EG, Samarghandian S, Mandegary A, et al. 
Nanoparticles targeting STATs in cancer therapy. Cells. 2019;8(10):1158. 
310. Fineran PC, Charpentier E. Memory of viral infections by CRISPR-Cas adaptive immune systems: 
acquisition of new information. Virology. 2012;434(2):202-9. 
311. Wiedenheft B, Sternberg SH, Doudna JA. RNA-guided genetic silencing systems in bacteria and 
archaea. Nature. 2012;482(7385):331-8. 
312. Mohammadinejad R, Biagioni A, Arunkumar G, Shapiro R, Chang K-C, Sedeeq M, et al. EMT 
signaling: potential contribution of CRISPR/Cas gene editing. Cellular and Molecular Life Sciences. 
2020:1-22. 
313. McCarty NS, Graham AE, Studená L, Ledesma-Amaro R. Multiplexed CRISPR technologies for 
gene editing and transcriptional regulation. Nature Communications. 2020;11(1):1-13. 
314. Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, et al. Efficient genome editing in 
zebrafish using a CRISPR-Cas system. Nature Biotechnology. 2013;31(3):227-9. 
315. Bikard D, Euler CW, Jiang W, Nussenzweig PM, Goldberg GW, Duportet X, et al. Exploiting 
CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nature Biotechnology. 
2014;32(11):1146-50. 
316. Wu Y, Zhou H, Fan X, Zhang Y, Zhang M, Wang Y, et al. Correction of a genetic disease by CRISPR-
Cas9-mediated gene editing in mouse spermatogonial stem cells. Cell Research. 2015;25(1):67-79. 
317. Cho SW, Kim S, Kim JM, Kim J-S. Targeted genome engineering in human cells with the Cas9 
RNA-guided endonuclease. Nature Biotechnology. 2013;31(3):230–2. 
318. Rahimi H, Salehiabar M, Charmi J, Barsbay M, Ghaffarlou M, Razlighi MR, et al. Harnessing 
nanoparticles for the efficient delivery of the CRISPR/Cas9 system. Nano Today. 2020;34:100895. 
319. Mout R, Ray M, Yesilbag Tonga G, Lee Y-W, Tay T, Sasaki K, et al. Direct cytosolic delivery of 
CRISPR/Cas9-ribonucleoprotein for efficient gene editing. ACS nano. 2017;11(3):2452-8. 
320. Qiao J, Sun W, Lin S, Jin R, Ma L, Liu Y. Cytosolic delivery of CRISPR/Cas9 ribonucleoproteins for 
genome editing using chitosan-coated red fluorescent protein. Chemical communications. 
2019;55(32):4707-10. 
321. Ramakrishna S, Dad A-BK, Beloor J, Gopalappa R, Lee S-K, Kim H. Gene disruption by cell-
penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome research. 
2014;24(6):1020-7. 
322. Wang Y, Shahi PK, Xie R, Zhang H, Abdeen AA, Yodsanit N, et al. A pH-responsive silica–metal–
organic framework hybrid nanoparticle for the delivery of hydrophilic drugs, nucleic acids, and CRISPR-
Cas9 genome-editing machineries. Journal of Controlled Release. 2020;324:194-203. 
323. Chen G, Abdeen AA, Wang Y, Shahi PK, Robertson S, Xie R, et al. A biodegradable nanocapsule 
delivers a Cas9 ribonucleoprotein complex for in vivo genome editing. Nature nanotechnology. 
2019;14(10):974-80. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

324. Cheng Q, Wei T, Farbiak L, Johnson LT, Dilliard SA, Siegwart DJ. Selective organ targeting (SORT) 
nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nature Nanotechnology. 
2020;15(4):313-20. 
325. Shahbazi R, Sghia-Hughes G, Reid JL, Kubek S, Haworth KG, Humbert O, et al. Targeted 
homology-directed repair in blood stem and progenitor cells with CRISPR nanoformulations. Nature 
materials. 2019;18:1124–32. 
326. Yue H, Zhou X, Cheng M, Xing D. Graphene oxide-mediated Cas9/sgRNA delivery for efficient 
genome editing. Nanoscale. 2018;10(3):1063-71. 
327. Alsaiari SK, Patil S, Alyami M, Alamoudi KO, Aleisa FA, Merzaban JS, et al. Endosomal escape and 
delivery of CRISPR/Cas9 genome editing machinery enabled by nanoscale zeolitic imidazolate 
framework. Journal of the American Chemical Society. 2018;140(1):143-6. 
328. S      J     H    JM  H  Q       C  B      C          S   ‐    mb    D A        w          
efficient delivery of CRISPR–Cas9 for genome editing. Angewandte Chemie International Edition. 
2015;54(41):12029-33. 
329. R   Y         DR  C    J  V        M  S       K  K        J         C  b         b              β-
amino ester) nanoparticles enable robust cytosolic protein delivery and CRISPR-Cas9 gene editing. 
Science Advances. 2019;5(12):eaay3255. 
330. Wan T, Chen Y, Pan Q, Xu X, Kang Y, Gao X, et al. Genome editing of mutant KRAS through 
supramolecular polymer-mediated delivery of Cas9 ribonucleoprotein for colorectal cancer therapy. 
Journal of Controlled Release. 2020;322:236-47. 
331. Ryu J-Y, Won E-J, Lee HAR, Kim JH, Hui E, Kim HP, et al. Ultrasound-activated particles as 
CRISPR/Cas9 delivery system for androgenic alopecia therapy. Biomaterials. 2020;232:119736. 
332. Hajj KA, Melamed JR, Chaudhary N, Lamson NG, Ball RL, Yerneni SS, et al. A potent branched-tail 
lipid nanoparticle enables multiplexed mRNA delivery and gene editing in vivo. Nano Letters. 2020. 
333. Jiang C, Mei M, Li B, Zhu X, Zu W, Tian Y, et al. A non-viral CRISPR/Cas9 delivery system for 
therapeutically targeting HBV DNA and pcsk9 in vivo. Cell research. 2017;27(3):440-3. 
334. M      JB  Z     S  K   P  X     H  Z    K  P    m   SS            ‐v     CRISPR/C                
in vitro and    v v     b    b                           ‐    v       C  9 mR A       R A  A   w      
Chemie International Edition. 2017;56(4):1059-63. 
335. Finn JD, Smith AR, Patel MC, Shaw L, Youniss MR, van Heteren J, et al. A single administration of 
CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell reports. 
2018;22(9):2227-35. 
336. Kretzmann JA, Ho D, Evans CW, Plani-Lam JH, Garcia-Bloj B, Mohamed AE, et al. Synthetically 
controlling dendrimer flexibility improves delivery of large plasmid DNA. Chemical science. 
2017;8(4):2923-30. 
337.      P  Z        Z        C       G   Z  X   Y         T   m ‐                     CRISPR‐C  9 
     m b       ‐                                      m            A   w      C  m   I          al 
Edition. 2018;57(6):1491-6. 
338. Rohiwal S, Dvorakova N, Klima J, Vaskovicova M, Senigl F, Slouf M, et al. Polyethylenimine based 
magnetic nanoparticles mediated non-viral CRISPR/Cas9 system for genome editing. Scientific reports. 
2020;10(1):1-12. 
339. Jo A, Ringel-Scaia VM, McDaniel DK, Thomas CA, Zhang R, Riffle JS, et al. Fabrication and 
characterization of PLGA nanoparticles encapsulating large CRISPR–Cas9 plasmid. Journal of 
nanobiotechnology. 2020;18(1):1-14. 
340. Li L, Song L, Liu X, Yang X, Li X, He T, et al. Artificial virus delivers CRISPR-Cas9 system for genome 
editing of cells in mice. ACS nano. 2017;11(1):95-111. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

341. Timin AS, Muslimov AR, Lepik KV, Epifanovskaya OS, Shakirova AI, Mock U, et al. Efficient gene 
editing via non-viral delivery of CRISPR–Cas9 system using polymeric and hybrid microcarriers. 
Nanomedicine: Nanotechnology, Biology and Medicine. 2018;14(1):97-108. 
342. Cheng MQ, Wahafu TEHJ, Jiang GF, Liu W, Qiao YQ, Peng XC, et al. A novel open-porous 
magnesium scaffold with controllable microstructures and properties for bone regeneration. Scientific 
Reports. 2016;6. 
343. Yu W, Mookherjee S, Chaitankar V, Hiriyanna S, Kim J-W, Brooks M, et al. Nrl knockdown by 
AAV-delivered CRISPR/Cas9 prevents retinal degeneration in mice. Nature Communications. 
2017;8(1):1-15. 
344. Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang L, et al. Generation of gene-modified cynomolgus 
monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell. 2014;156(4):836-43. 
345. Xue W, Chen S, Yin H, Tammela T, Papagiannakopoulos T, Joshi NS, et al. CRISPR-mediated direct 
mutation of cancer genes in the mouse liver. Nature. 2014;514(7522):380-4. 
346. Dehshahri A, Sadeghpour H, Mohazzabieh E, Saatchi Avval S, Mohammadinejad R. Targeted 
double domain nanopl   b                                   m                     v       I ‐12 
plasmid. Biotechnology Progress. 2020:e3002. 
347. Buck J, Grossen P, Cullis PR, Huwyler Jr, Witzigmann D. Lipid-based DNA therapeutics: hallmarks 
of non-viral gene delivery. ACS nano. 2019;13(4):3754-82. 
348. Rui Y, Wilson DR, Green JJ. Non-viral delivery to enable genome editing. Trends in 
biotechnology. 2019;37(3):281-93. 
349. C    F  A        M      Q  S                 v                 ‐b         v       CRISPR/C  9 
therapeutics. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2020;12(3):e1609. 

Graphical abstract 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



Figure 1



Figure 2



Figure 3



Figure 4



Figure 5



Figure 6


