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Abstract

To avoid the indeterminate and generally unbounded positions of the agents in

financial market models with order-based trading, the paper considers the al-

ternative of position-based strategies. To this end it extracts a prototype model

from the literature, with fundamentalists, chartists, and a risk-averse market

maker. The deterministic formulation of the model leads to a neutral delay-

differential equation of the price, whose mathematical analysis is non-standard.

The stability conditions are nevertheless quite analogous to the order-based

Beja–Goldman model. The effects of parameter variations are also studied in a

stochastic setting, where special emphasis is put on the misalignment between

price and the time-varying fundamental value, and on the differential profits of

fundamentalists and chartists.

JEL classification: C15, D 84, G 12.

Keywords: asset pricing; fundamentalists, chartists and market maker; misalign-

ment; neutral delay-differential equation; random fixed point.

∗Correspondence: franke@iksf.uni-bremen.de. Financial support from EU STREP ComplexMarkets,

contract number 516446, is gratefully acknowledged.



Contents

1 Introduction 1

2 A direct inspiration from Beja and Goldman 3

2.1 A recapitulation of the Beja–Goldman model . . . . . . . . . . . . . . . . . . 3

2.2 A respecification of Beja–Goldman with position-based trading . . . . . . . . 6

3 The deterministic position-based prototype model 9

3.1 Formulation of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Mathematical stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Numerical investigation of the stability frontiers . . . . . . . . . . . . . . . . 15

3.4 Dynamic mechanisms over a cycle . . . . . . . . . . . . . . . . . . . . . . . 21

4 A stochastic version of the model 26

4.1 Properties of a base scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 A stochastic equilibrium notion . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Parameter effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Conclusion 38

A Appendix 39

A.1 Proof of Proposition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

A.2 Proof of Proposition 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

A.3 Recursive formulation of the stochastic PBT model . . . . . . . . . . . . . . 44

A.4 Variations of parameters in the stochastic model . . . . . . . . . . . . . . . . 45

B References 46

0



1 Introduction

In theoretical financial economics it is now widely acknowledged that a paradigm shift has

taken place from the representative agent with his or her rational expectations towards a

behavioural approach, in which markets are populated by heterogeneous and boundedly

rational agents who use rule-of-thumb strategies. The success of a new paradigm is not

the least dependent on neat and catchy model designs that capture some of the key ideas

under discussion and show how the basic feedback mechanisms work out. An early proto-

type model of this kind has been put forward by Beja and Goldman (1980), who enthroned

the market maker responsible for the gradual price adjustments together with the two

archetypal groups of fundamentalists and chartists. The elementary setup and the intuitive

outcome that fundamentalists tend to stabilize and chartists tend to destabilize the market

had a great influence on the agent-based modelling that has begun in the 1990s. Whether

the agents’ asset demand is postulated directly or derived from expected utility maximiza-

tion under constant absolute risk aversion (CARA), and whether the market impact of each

of the speculative groups is constant or endogenously varying over time, in many of these

models the original mechanisms of the Beja–Goldman model are still shining through. In

one form or another, they remain important to an understanding of what is going on in

different episodes of a model-generated price history.

Not only in the Beja–Goldman model but in the vast majority of agent-based asset

pricing models, the strategies of the speculative traders are expressed in terms of their orders

on the market. This is a problematic feature, although it is rarely seriously discussed. At

least since Markowitz (1959) it is, first, a well established standard in portfolio choice theory

that investors consider holdings rather than orders as the relevant object of their profit and

risk evaluation. Second and more importantly, it is also well-known that in the order-

based framework the inventories of the agents and, in particular, the market maker are not

anchored and so will be indeterminate. In a stochastic setting they may even easily become

unbounded, which is certainly not compatible with the risk constraints of real traders.

There are a few models in the recent literature that adopt a different point of view and

remove this inconsistency by letting the traders’ strategies focus on their desired position.

This branch of the literature is mainly connected with the name of Doyne Farmer: Farmer

(2001) and Farmer and Joshi (2002), to cite the two papers with which we will be mostly
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concerned here.1 However, while the position-based models have examined a variety of

single aspects so far, there is as yet no model formulation at a similar level of abstraction

and insightfulness to the Beja–Goldman model. To prevent an anecdotal wilderness of

bounded rationality as research proceeds further along these lines, it is the aim of the

present paper to extract such a position-based prototype model from the two papers just

mentioned. The outcome in the deterministic continuous-time framework will be a type of

dynamic system that, as far as we know, shows up for the first time in economic modelling:

a neutral delay-differential equation. It is more involved than a delay-differential equation,

which is already of infinite dimension, since the right-hand side of the differential price

equation contains not only the lagged level of the price but also its lagged derivative.

Despite its complexity it is possible to undertake a mathematical stability analysis.

In fact, the resulting conditions on the parameters turn out to be analogous to the stability

conditions in the two-dimensional Beja–Goldman model. Referring to a stylized periodic

trajectory we will, however, also demonstrate that the cyclical mechanisms are different.

Apart from that, a special feature of the model is an explicit risk aversion of the market

maker, which has no counterpart in the order-based models.

In a second stage of the analysis, the model is reconsidered in a stochastic version,

for which we employ the common assumption that the fundamental value follows a random

walk. We briefly sketch the notion of a random fixed point and the pointwise convergence

to it, which is a direct analogue of an attractive deterministic equilibrium. In a study of

the effects of ceteris paribus variations of the model’s parameters, the qualitative notion

of stability is subsequently complemented by the quantitative concept of the degree of

misalignment between price and fundamental value. In addition, we investigate the impact

of a change in the parameters on the long-run profits of fundamentalists and chartists, where

the prospects of the latter will be generally much better than in an order-based framework.

The paper proceeds as follows. In the next section we begin with a short recapitulation

of the Beja–Goldman model and then try an immediate respecification of its fundamentalist

1Two references that take up Farmer’s approach and develop it further in different directions are Car-

valho (2001) and Pape (2007). An earlier paper that remains in a Beja–Goldman framework and incor-

porates the traders’ inventory accumulation and cash flow into it is Sethi (1996). Some discussion of the

market maker’s profitability or inventory risk in an otherwise order-based framework can be found in Day

(1997) and Westerhoff (2003).
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and chartist (flow) demand as position-based strategies. Since the resulting dynamics tend

to be rather dull, Section 3 models the chartists in an alternative way, which, in the deter-

ministic continuous-time framework, introduces lagged prices in their desired positions and

thus a lagged price derivative in their market orders. This formulation yields our prototype

model. The section contains the mathematical stability analysis, a numerical investigation

of parameter variations and their impact on stability, and a study of the comovements of the

variables on a stylized cyclical motion. Section 4 sets up the stochastic version, discusses

the properties of a numerical base scenario and the random fixed point, and finally studies

the effects of parameter variations. Section 5 concludes.

2 A direct inspiration from Beja and Goldman

2.1 A recapitulation of the Beja–Goldman model

Beja and Goldman (1980) distinguish three groups of participants in an asset market: two

groups of speculators—fundamentalists and chartists—and a market maker. Fundamental-

ists have long time horizons and base their demand on the differences between the current

price and the fundamental value. Even though they might expect the gap between the two

prices to widen in the immediate future, they do not trade on these short-run expectations,

choosing instead to place their bets on an eventual rapprochement. Chartists, on the other

hand, neglect deviations of the price from the fundamental value and concentrate on short-

run changes. They use past movements of prices as indicators of market sentiments and

extrapolate these into the next periods. In general, demand and supply of fundamentalists

and chartists will not match the (fixed) supply of the asset. It is the primary function of

the market maker to mediate transactions out of equilibrium. He executes all orders at the

present price and accordingly decumulates (accumulates) inventories of the financial asset.

His expectations and possible feedback effects from undesired inventories are ignored. So

the demand of the market maker is treated as a residual and the only reaction considered

here is the setting of a new price for the next trading round.

Let p be the log price and v the log of the fundamental value, on which the agents

unanimously agree. As long as we are in a deterministic setting, here and in the following

models, v is supposed to remain constant. The fundamentalists specified by Beja and
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Goldman buy (sell) when p is below (above) v. Chartist demand is characterized by a term

π that represents their perceptions of the current trend of prices. Both types of demand,

denoted by df and dc, are specified in a linear manner. Introducing two positive coefficients

φ and χ, which may be taken as indicative of the aggressiveness of fundamentalists and

chartists, respectively, or of their share of wealth in total speculative capital, we have

df = φ (v − p) (1)

dc = χ π (2)

To save an extra symbol for the supply of the asset, df and dc may be interpreted as

excess demand (in the verbal discussion we will also economize on the expression ‘excess’).

The dynamic relationships in the Beja–Goldman model are formulated in continuous time.

Measuring the extent to which the market maker changes the price by a coefficient βp > 0,

the evolution of prices is governed by the differential equation

ṗ = βp (df + dc) (3)

The perception π of the trend by the chartists is a predetermined variable, for which a

simple adaptive updating rule is postulated. As the current ‘trend’ towards which the

chartists seek to adjust their expectations is given by the instantaneous price changes, the

rule is specified as

π̇ = βπ (ṗ− π) (4)

where βπ represents the speed at which these adjustments are carried out. This equation

completes the description of the Beja–Goldman model. The four equations can be reduced

to two linear differential equations in the price p and the perceived trend π. They possess

a unique equilibrium point p= v and π =0, which (apart from a fluke) is either attractive

or repelling. The stability condition can be formulated as follows.

Proposition 1

The equilibrium point of system (1) – (4) is asymptotically stable if χ < φ/βπ +

1/βp, and it is repelling if the inequality is reversed. A loss of stability under

ceteris paribus variations of a parameter occurs by way of a Hopf bifurcation.

Proof: Substituting (1), (2) into (3) and the latter into (4), one gets the two-dimensional

system
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ṗ = βp [ φ (v − p) + χ π ]

π̇ = βπ [ βpφ (v − p) + (βpχ− 1) π ]
(BG)

The determinant of its Jacobian is unambiguously positive, which rules out saddle point

instability and zero eigen-values. The trace is negative if and only if the inequality stated

in the proposition is satisfied.
q.e.d

The simple condition in the proposition allows one to characterize the parameters of the

model as either stabilizing or destabilizing, meaning that sufficiently high values render a

possibly unstable equilibrium stable or, respectively, they turn a possibly stable equilibrium

into an unstable one. In this sense, the aggressiveness of fundamentalists φ, or their weight

in the market, is a stabilizing parameter, whereas a stronger weight χ of chartists is desta-

bilizing. Presupposing χ > 1/βp, chartists can furthermore destabilize the equilibrium by a

high adjustment speed βπ in the updating of their expectations about future price changes.

Effectively, βπ is the rate at which old price changes are discounted. Thus, for a comparison

with our main model later on, the instability feature may complementarily be also summa-

rized by the statement that a short memory of chartists is destabilizing. A long memory

(low βπ), on the other hand, can always ensure stability. Finally, sufficiently sluggish price

adjustments βp of the market maker are stabilizing, and highly responsive adjustments are

destabilizing if βπχ >φ .

Because of the linearity of system (BG), the Hopf bifurcation in Proposition 1 is, of

course, degenerate; periodic orbits only come into existence at the bifurcation value itself.

We mention the Hopf bifurcation, here and in other propositions to follow, as a convenient

short-cut which indicates that the positive and negative feedback mechanisms in the model

provide considerable scope for cyclical behaviour. There are thus phases in the dynamics

where the destabilizing forces (stemming from the chartists) dominate and drive the price

away from the fundamental value, and other phases where the stabilizing forces (of the

fundamentalists) gain momentum again and reverse this tendency. This interplay, whether

explicitly referred to or not, has made the Beja–Goldman model an attractive basis for

stochastic and deterministic extensions that give rise to richer dynamic phenomena.
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2.2 A respecification of Beja–Goldman with position-based trad-

ing

In order to cope with the problem of indeterminate, unless unbounded, inventories in the

Beja–Goldman model and to reconcile this model with the literature on position-based

strategies, it is straightforward to redirect its focus from, so to speak, flows to stocks. In

fact, the basic idea has already been put forward in a paper by Farmer (2001), though he

does not mention the relationship or analogy to Beja–Goldman and is not concerned with

a deterministic skeleton of the model variants he discusses.

To begin with, let af , ac, am be the asset positions of fundamentalists, chartists and

the market maker. They can be positive and negative or, to be more precise, they may be

conceived of as deviations from some fixed target positions. Three assumptions are then

common in Farmer’s work on position-based trading, which we here formulate in continuous

time. The first two are only natural for a parsimonious modelling at the macroscopic level,

the third one is introduced for a more specific reason.

(1) Dividends (in case of shares) or interest from foreign bonds (in case of a foreign

exchange market), as well as the receipts from an alternative riskless asset are neglected

as a source of reinvestment and accumulation of wealth. In other words, the market is

supposed to be closed, so that the total number of assets is conserved: every time an agent

buys an asset, another agent loses it.2 With the interpretation as deviations from a target,

the agents’ positions thus satisfy the following identity in every point in time,

af + ac + am = 0 (5)

(2) On the part of fundamentalists and chartists, one need not distinguish between

desired and actual positions since the demand (in form of market orders) to which the

desired positions give rise is always fulfilled by the market maker. As a consequence, the

demand of the speculative agents and the rate of change in their positions coincide,

df = ȧf , dc = ȧc (6)

(3) The third assumption will turn out to be a crucial mechanism to keep the market

maker’s inventory within bounds and even center it around its target. The essence of the

2In Farmer (2001) this seems to be tacitly understood; in Farmer and Joshi (2002) it is explicitly stated

on p. 154.

6



price adjustment rule (3) is maintained, but an explicit risk aversion of the market maker is

added. In Farmer’s (2001, p. 66) specification, a negative (positive) position that has been

accumulated prompts him to encourage selling (buying) by raising (lowering) the price more

than usual. The risk that in this way impacts on the market is measured by a coefficient

µ > 0. We also adopt Farmer’s notation and replace the coefficient βp in (3) with 1/λ,

which continues to be fixed over time. Here λ is viewed as a scale factor and is referred to

as the market’s liquidity (or its depth), which nevertheless is assumed to be fixed. Upon

closer scrutiny, this parameter has no time dimension and, nota bene, is not a speed of

adjustment.3 On the whole, price changes are now described by the equation

ṗ = (df + dc − µ am) /λ (7)

According to what has just been said about λ, the coefficient µ has the same time dimension

as the left-hand side of the equation: if the underlying time unit were shortened from one

day to half a day, say, then µ would have to be reduced by fifty percent, too. It is worth

mentioning that a term like −µ (am − xm), where xm is the target level of the market

maker’s inventory, can be part of his optimal policy in a rigorous dynamic setting which, in

particular, takes his uncertainty about the future arrival of tenders into account (Bradfield,

1979).4

Having thus established a basis for dealing with position-based strategies, we can

change the Beja–Goldman model’s type of demand from flows to stocks. Now fundamen-

talists do not buy if the market is undervalued but they hold the asset (take a long position),

and if the price exceeds the fundamental value they do not sell but take a short position.

Correspondingly so for the chartists if they perceive a positive or negative price trend,

respectively. Formally it is postulated that the right-hand sides of eqs (1) and (2) deter-

mine the desired (and realized) positions of fundamentalists and chartists (rather than their

market orders),

af = κf (v − p) (8)

3See the derivation of the market impact function in Farmer and Joshi (2002, pp. 152f). Observe also

that in connection with the coefficient βp in eq. (3) we have avoided the expression ‘adjustment speed’ (in

contrast to Beja and Goldman, 1980, p. 237, themselves).
4The market structure in Bradfield’s model is, however, more detailed than is usual in the present kind

of modelling. A special result of his analysis is that, due to overnight costs, the coefficient µ depends on

the time of the trading day: the later the time of the day, the less willing is the market maker to permit

am to diverge from xm, so that transaction prices would be more variable at that time of the day.
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ac = κc π (9)

π̇ = βπ (ṗ− π) (10)

The last equation is eq. (4) from Beja–Goldman, which is here reproduced for convenience.

The original coefficients φ and χ in (1) and (2) have been better replaced by κf and κc

in the first two equations, since they have a different dimension in the new framework.

Indeed, κf and κc are viewed as being proportional to the trading capital in the hand of

the two groups of agents (cf. Farmer and Joshi, 2002, p. 158 and several times from p. 163

on). For easier erference, κf and κc are even identified with the trading capitals (which has

motivated our choice of the Greek letter).

Equations (5) – (10) constitute a linear model where the formulation of demand in

Beja–Goldman has been directly translated into position-based strategies. The model is

again two-dimensional with the price p and the perceived trend π as state variables. As

made explicit below, its reduced-form representation can indeed do without the positions,

since the market maker’s inventory in the price equation (7) is given by am = −af −ac and,

using (8), (9), the latter two positions can be expressed in terms of p and π. Proposition 2

collects the results of a stability analysis of this model.

Proposition 2

System (5) – (10) is well-defined and has a unique equilibrium point p = v, π = 0

if λ + κf #= βπκc. Under this assumption the dynamics can be characterized as

follows:

(a) The equilibrium is asymptotically stable if βπκc ≤ κf .

(b) Saddle point instability prevails if βπκc > λ + κf .

(c) If κf < βπκc < λ+κf , the equilibrium is asymptotically stable if µ < µc :=

βπ (1 + αβπκc) /α (βπκc − κf ), and repelling if the inequality is reversed,

where α := 1/(λ + κf − βπκc) > 0.

(d) In cases 1 and 3, the motions are monotonic (at least) if βπ ≥ µ.

The model shares with the Beja–Goldman model the property that fundamentalists are sta-

bilizing (a sufficiently high weight κf ) and chartists are destabilizing (large trading capital

κc or fast adjustments βπ of their perceived trend). However, the model’s scope for cyclical

dynamics is rather limited, as shown by part (b) and (d) of the proposition. In contrast
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to what has been remarked on the Beja–Goldman at the end of the previous subsection,

system (5) – (10) appears quite dull and not very promising for further extensions. The

perhaps most interesting property is the feature stated in part (c) that a high risk aversion

of the market maker could destabilize the market, though a risk aversion exceeding the

critical value µc would be more academic than real. The phenomenon can nevertheless be

taken as a harbinger of a theme that will become more prominent in the next sections.

Proof: Using the definition of the coefficient α in part (c) of the proposition, the two

differential equations for p and π read,

ṗ = f(p, π) := α [ µκf (v − p) − κc(βπ−µ)π ]

π̇ = βπ [ f(p, π)− π ]

The determinant of the Jacobian matrix J is αβπµκf . Hence det J < 0 and the equilibrium

is a saddle under the condition stated in the second part of the proposition. The rest of

the proof supposes α > 0, so that the determinant is positive. The trace of the Jacobian

can be written as trace J = −αµ(κf − βπκc) − βπ(1 + αβπκc), which establishes part (a).

If κf − βπκc < 0, a negative trace is equivalent to the condition µ < µc in part (c). To

demonstrate the final part of the proposition, we can infer from an explicit calculation of the

two eigen-values of the Jacobian that the system’s trajectories are monotonic if (traceJ)2−

4 det J = [αµκf +βπ+αβπκc(βπ−µ)]2−4αβπµκf is nonnegative. The supposition βπ−µ ≥ 0

ensures that this expression is not less than (αµκf + βπ)2 − 4αβπµκf = (αµκf − βπ)2 ≥ 0.

q.e.d

3 The deterministic position-based prototype model

3.1 Formulation of the model

The main message of the previous section was a negative one: if one wants to set up a

relatively simple model with position-based strategies and an interplay of negative and

positive feedback effects that can provide broad scope for cyclical dynamics, then a direct

respecification of the fundamentalist and chartist strategies from the Beja–Goldman model

in terms of a demand for holding desired positions does not appear very fruitful. This result

leads us to look for alternative strategies that could be more successful in this respect. A
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promising candidate are the trend followers that are put forward in a later paper by Farmer

and Joshi (2002). These agents have a memory of θ time units, and their desired positions

are proportional to the price change observed over this horizon. In their discrete-time

and stochastic framework, Farmer and Joshi (pp. 154ff) establish that this strategy has the

potential of amplifying the noise in the price and of inducing oscillations at frequencies that

are related to the length of the memory θ.

Regarding the market maker in this paper, Farmer and Joshi make no mentioning of

his possible risk aversion. To deal with the problem that prices and fundamental values may

easily drift apart, they rather assume a large number of trend followers and fundamentalists

with individual trading capitals and, in addition, individual thresholds for entering and

exiting a position. The numerical simulation experiments demonstrate that this strong

heterogeneity can indeed achieve a cointegration of price and value (if the parameter choices

take care of certain trade-off effects; see Farmer and Joshi, 2002, p. 167, fn 10). However,

the very construction and purpose of this model make it meaningless to ask for a low-

dimensional deterministic skeleton that could be studied on its own.

In order to design such a prototype model, we extract two central ideas from the

concepts presented so far and combine them with the position-based fundamentalists from

above. First, we use Farmer and Joshi’s (2002) specification of trend followers as our chartist

strategy. This element should give sufficient prospects for dynamic feedback mechanisms

generating oscillatory behaviour. Second, we reintroduce the risk aversion of the market

maker from Farmer (2001), which by keeping his inventory within bounds should also be

able to prevent persistent misalignment. Our analysis begins with the deterministic and

continuous-time formulation of this model mix.

Since with the introduction of the time lag θ > 0 chartists base their decisions on

prices in two different moments in time, the time index can no longer be dropped. The

(desired and realized) positions of fundamentalists and chartists are given by

af (t) = κf [ v − p(t) ] (11)

ac(t) = κc [ p(t) − p(t−θ) ] (12)

Equation (11) reiterates (8), and (12) corresponds to eq. (8) in Farmer and Joshi (2002,

p. 154).
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The evolution of prices continues to be governed by (7). By plugging (11), (12) into

eq. (6) for the market orders, solving identity (5) for the market maker’s position am(t),

and substituting the resulting expressions in the price equation (7), the market dynamics

can be reduced to the following differential equation:

ṗ(t) =
µκf [v − p(t)] + µκc [p(t)− p(t−θ)] − κc ṗ(t−θ)

λ + κf − κc
(PBT)

The acronym PBT serves to indicate that the equation summarizes a model with position-

based trading, the one that we will be concerned with in the rest of the paper.

Given µ > 0, the model has a unique equilibrium price p = v, which implies overall

zero positions af = ac = am = 0 in that state. Note that without the market maker’s risk

aversion, when µ = 0, the equilibrium price would be indeterminate and so would be the

positions of fundamentalists and the market maker. Of course, this is the reason why prices

do not track values in the simpler versions of Farmer and Joshi’s model (see, in particular,

Farmer and Joshi, 2002, p. 159).

3.2 Mathematical stability analysis

The reduced form (PBT) of the price dynamics is of a remarkable type. The lagged price

p(t−θ) on the right-hand side makes it a (linear) delay differential equation (or a differential

equation of retarded type), while the lagged derivative ṗ(t−θ) makes it a so-called neutral

delay differential equation. Beginning with the pioneering work of Kalecki (1935) and

Goodwin (1951), delay differential equations are occasionally encountered in the (non-

orthodox) modelling of dynamic economic systems. We do not know, however, of one single

example of a neutral delay differential equation in that field. Moreover, even in the more

advanced textbooks on economic dynamics this type of equation is at best mentioned in

an introductory classification, but any further treatment of it is lacking (e.g., in Gandolfo,

1997, pp. 550f). Since the standard literature provides no mathematical theorems that

could be utilized to inquire into the stability of a neutral delay differential equation like

(PBT), we have to collect several different results from a (small) number of more specialized

mathematical papers, which are even of quite recent dates. The following analysis may

therefore also be of some independent interest to economists working with dynamic systems.
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Differential equations with delays are of infinite dimension. This is reflected by the fact

that the initial conditions to start a trajectory require the specification, not of a vector with

finitely many components, but of an entire time path of the state variable(s). The initial

price path in the present model has also to be taken into account by the precise definition

of stability.5 Thus, to be perfectly clear, consider a starting time t = 0, let po = po(t)

be a differentiable function on the interval [−θ, 0] that specifies the initial condition for

system (PBT), and denote the corresponding solution of (PBT) as p = p(t; po(·)). The

equilibrium point v is called stable if for any ε > 0 there exists a number δ > 0 such that

every initial time path po(·) with |po(t) − v| < δ for t ∈ [−θ, 0] gives rise to a trajectory

that satisfies |p(t; po(·)) − v| < ε for all t > 0. If in addition p(t; po(·)) → v as t → ∞,

the equilibrium is called asymptotically stable. Synonymously, also system (PBT) itself my

be called (asymptotically) stable. It goes without saying that because everything is linear

here, local stability amounts to global stability.

The dynamic properties of the system continue to be determined by the roots of the

characteristic equation. However, what is true for delay differential equations is all the more

true for neutral equations: rather than a polynomial the characteristic equation becomes

a transcendental equation, which has a countably infinite number of roots (cf. Gandolfo,

1997, p. 551). The whole stability analysis rests on the conclusions that can be drawn for

the real parts of these roots. The results that we are thus able to derive are summarized

in the next proposition. Its proof is given in the appendix.

Proposition 3

Assume κc < λ + κf . Then the following holds:

(a) If κc < κf/2, system (PBT) is asymptotically stable.

(b) If κc > (λ + κf )/2, system (PBT) is unstable.

(c) A loss of stability under ceteris paribus variations of a parameter occurs

by way of a Hopf bifurcation.

(d) If κf/2 < κc < (λ + κf )/2, there exists a bifurcation value θ" > 0 of the

lag θ such that (PBT) is asymptotically stable if 0 < θ < θ", and unstable

if θ > θ". For short lags, the equilibrium is generically approached in a

5See, e.g., Han (2001, p. 966) for an explicit statement of the following definition.
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monotonic manner. For values of θ in a certain (possibly wide) neighbour-

hood of θ", the motions of (PBT) are generically of a cyclical nature. Close

to θ", their period is T ≈ 2π/ν" > 2θ", where

ν" :=

√
µ2 κf (2κc − κf )

(λ + κf ) (λ + κf − 2κc)

The stability conditions bear a close resemblance to those of Proposition 1 for the Beja–

Goldman (BG) model. In particular, fundamentalists and chartists maintain their basic

roles. Thus, a sufficiently large trading capital κf of the fundamentalist trading group can

always stabilize the equilibrium, just like the corresponding parameter φ in (BG). Chartists,

on the other hand, destabilize the market if their trading capital κc is large, which parameter

is analogous to the chartist aggressiveness χ in (BG). As far as the responsiveness of prices

is concerned, the counterpart of a high market liquidity λ in (PBT) is a high value of the

reciprocal 1/βp of the price adjustment parameter in (BG), and both have a stabilizing

effect on the dynamics. A further common feature of the two models is their potential

to generate cyclical motions of the price. Proposition 3(d) asserts that these cycles are

essential in (PBT), in the sense that their period is at least twice as long as the memory of

the chartists.

The memory of chartists in (PBT) and (BG) cannot be directly compared. In the

discussion of Proposition 1 a long memory has been identified with slow adjustments of the

perceived trend and so with low values of the adjustment speed βπ. With this interpretation

a long memory was stabilizing. In (PBT), a long memory is represented by a long time

horizon θ, which according to Proposition 3(d) is destabilizing if κc is contained in the

intermediate interval (κf/2, (λ+κf )/2). This characterization would, however, be misleading

since longer lags θ tend to increase the difference between the current and the lagged price

p(t−θ). If one wants to control this effect it would be more appropriate to specify eq. (12)

as

ac(t) = κ̃c [ p(t) − p(t−θ) ] / θ (13)

The coefficient κc in eq. (PBT) would then read κ̃c/θ, and this expression remains no longer

fixed as θ varies. With this observation we can more specifically conclude that, with a

given value of κ̃c, a sufficient increase of θ would eventually let the term κ̃c/θ fall below

the critical value κf/2 of Proposition 3(a). Conversely, if θ approaches zero, the same term
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would eventually exceed the threshold stated in part (b) of the proposition. Hence we obtain

an additional stability result.

Proposition 4

Replace eq. (12) with eq. (13) in the PBT model. Then the equilibrium is as-

ymptotically stable if the lag θ is large enough, and unstable if it is sufficiently

short.

Referring more loosely to the memory of chartists, we can now say that in both the BG

model and the reformulated PBT model a long memory is stabilizing and a short memory

is destabilizing.

The overall conclusion from the propositions is that (PBT) as a stylized model with

position-based fundamentalist and chartist traders has very similar dynamic properties to

the Beja–Goldman model with its order-based strategies. In a form that emphasizes the

analogies between (PBT) and (BG), the parameter effects on the stability of the equilibrium

point are succinctly summarized in Table 1. The present model should thus be a good basis

for more ambitious small-scale modelling attempts within a position-based framework, from

which one could expect comparable results, at least numerically, to what has been obtained

in the order-based framework.

weight F weight C memory C liquidity risk aversion MM

PBT : S (κf ) D (κc) S (θ) S (λ) D (µ)

BG : S (φ) D (χ) S (1/βπ) S (1/βp) — —

Table 1: Parameter effects on stability in (PBT) and (BG).

Note: S (D) means that a sufficiently large increase of the parameter (de)stabilizes
the equilibrium. Regarding θ, the specification of eq. (13) with a fixed value of κ̃c is
assumed.

There is one parameter left in the PBT model that has no counterpart in (BG),

namely, the risk aversion µ of the market maker. Returning to the original formulation

of the model with eq. (12) and concentrating the interest on the inconclusive parameter

interval for κc, where stability as well as instability may prevail, it is relatively easy to get
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a definite characterization of the coefficient µ, too. As shown in Appendix A.2, the proof

of the next proposition is almost a by-product of the proof of Proposition 3(d).

Proposition 5

Suppose κf/2 < κc < (λ+κf )/2 in eq. (PBT), consider two values µ1, µ2 of the

market maker’s risk aversion, and, fixing the other parameters, let θ"
1, θ"

2 be the

corresponding bifurcation values of the lag θ. Then θ"
2 = µ1 θ"

1 / µ2.

The consequence of the proposition is immediate. Fix all parameters except µ and start

from some intermediate value µ1 with associated bifurcation value θ"
1, for which we may

assume that it entails stability, θ < θ"
1. Then the proposition says that the bifurcation

lag θ" = θ"(µ) is reduced as µ begins to rise. If µ rises far enough, the model’s lag θ will

no longer be contained in the shrinking stability interval, θ > θ"(µ), and the equilibrium

becomes unstable. Hence, under the given condition on κf , κc and λ, a higher risk aversion

of the market maker tends to be destabilizing. Recalling the destabilizing risk aversion

found in Proposition 2(c) for our first position-based model, this result now turns out to

be not so atypical after all.

The mechanism also works in the opposite direction. If initially µ = µ1 gives rise

to instability, θ > θ"
1, then a sufficient lowering of µ lets θ"(µ) increase above θ and so

renders the equilibrium stable. In this sense a low risk aversion of the market maker may

be called stabilizing. It has, however, to be taken into account that this would also slow

down the speed at which the market maker’s inventory approaches its target level. One

easily finds numerical examples where convergence toward the equilibrium takes so long

that classifying this system as stable would rather be misleading. In particular, already

weak random perturbations would suffice to completely blur any tendency of the price to

return to the fundamental value.

3.3 Numerical investigation of the stability frontiers

The mathematical stability analysis allowed us to state that sufficiently low values of a

parameter entail stability of the equilibrium and/or sufficiently large values of this parame-

ter entail its instability; or the other way around. Hence a ceteris paribus variation of the

parameter renders a stable equilibrium unstable, or vice versa. For example, with respect
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to the chartist trading capital κc Proposition 3 tells us that such a bifurcation occurs some-

where in the interval (κf/2, (λ+κf )/2). Likewise, if 2κc > λ then a rise of κf beginning at

zero stabilizes the originally unstable dynamics somewhere in the interval (2κc−λ, 2κc). A

question that the mathematical analysis could not answer, however, is whether these bifur-

cations are unique, i.e., whether a reswitching of stability or instability can be ruled out.

Except for the lag parameter θ, for which a unique bifurcation is ensured by Proposition

3(d), we have here to resort to numerical calculations.

Although the mathematical theory of neutral delay differential equations is quite

involved, numerical bifurcations can be studied by checking a surprisingly simple criterion.

To this end, let η stand for one of the parameters κf , κc, λ or µ; η is supposed to vary and

the other parameters remain fixed. Equation (21) in Appendix A.1 specifies a0, b0, b1 as

composite terms of the four coefficients, so that for the present purpose we may write them

as a0 = a0(η), etc. In addition, we refer to ν" = ν"(η) from the formulation of Proposition

3. Then, consider the functional expression

h(θ, η) := a0(η) + b0(η) cos[ν"(η) θ] + b1(η) ν"(η) sin[ν"(η) θ] (14)

which is at the heart of the bifurcation analysis. From eq. (24) in the appendix and the

subsequent arguments it can be inferred that an admissible value η" is a bifurcation value

if, and only if, it satisfies

h(θ, η") = 0 and ν"(η") θ < π (15)

Numerical studies of (15) are somewhat facilitated by the feature that, for example, λ can

serve as a scaling parameter in (PBT). In fact, it is obvious that multiplying λ as well as κf

and κc by the same factor leaves the differential equation completely unaffected. So when

we fix the parameters in a numerical scenario, let us adopt the normalization λ = 1.

An investigation of eq. (15) over a wide range of the other parameters led us to the

conclusion that unique bifurcation values can be considered to be the rule. There are

exceptions to this principle, but it requires some effort to find them.6 The bold (blue) line in

Figure 1 presents one such counterexample for the trading capital κf of the fundamentalists

6The function η *→ h(θ, η) has infinitely many roots if the variations of η let the expression (λ+κf−2κc)

converge to zero. However, in these cases the term ν!(η) usually gets so large that it violates the second

constraint in (15). The task is to find an ‘unusual’ case of these oscillations where a root η! is already so

far away from the boundary that ν!(η!) θ < π.
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as the bifurcation parameter. Given the coefficients reported in the note added to Figure 1

and, in particular, κc = 0.480, stability prevails for 0 < κf < 0.00874 and for κf > 0.08227,

whereas the equilibrium is unstable for values of κf in the intermediate interval.

κc =0.480

κc =0.472

κc =0.497

stable

unstable

Figure 1: Reswitching of stability under variations of κf .

Note: The graph of the function κf *→ h(θ, κf ) specified in (15), given λ = 1,
µ = 0.05, θ = 40 and three values of κc as indicated. Positive (negative) values of h
entail stability (instability).

The shape of the function κf *→ h(θ, κf ) under κc = 0.480 illustrates the difficulties

that one will have in a general analytical treatment of the uniqueness conjecture. At the

same time, the diagram also demonstrates the limited significance of multiple bifurcations

of a parameter. First, note the relatively narrow and low range of κf over which the

reswitching is obtained (this will become even more evident in Figure 2 below). Second,

the reswitching phenomenon does not appear to be very robust, either, since already small

changes in the (exogenous) parameter κc, in either direction, are sufficient for the multiple

roots of the function h(θ, ·) to disappear. Thus, at κc = 0.472 the function h has a similar

qualitative shape, but the decline after the initial rise is no longer strong enough to reach

the zero line; see the thin (green) line in the upper half of Figure 1. Hence the equilibrium

is here stable for all κf > 0. At a higher level of the chartist trading capital such as
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κc = 0.497, the function decreases steeply right from the beginning and, after increasing

again, cuts the zero line only once (at κf = 0.14044).

Regarding multiple bifurcations of the parameters as rather exceptional cases sharp-

ens the stability statements of the mathematical propositions. Accordingly, the trading

capital κf of fundamentalists and market liquidity λ can be characterized as being (almost)

unambiguously stabilizing. Which means that if the equilibrium is not yet stable, then it

can be made stable by a sufficient increase of κf or λ—and stability is preserved if these

parameters are further increased. Conversely, if the equilibrium is stable then an arbitrary

decline of κf below a certain threshold destabilizes it. Low values of λ have the same effect

unless κc ≤ κf/2. In an analogous sense, the trading capital κc of chartists and the risk

aversion of the market maker µ are (almost) unambiguously destabilizing. The close corre-

spondence to the stability results in the Beja–Goldman model, where multiple bifurcations

are ruled out, has already been pointed out above in a comment on Proposition 3.

A summary of the stabilizing or destabilizing properties of the parameters can be

made more vivid by computing the stability frontiers in a paremeter plane. Most expedient

for this are the trading capitals κf and κc of the two speculative groups, where now a greater

range of the two coefficients than in Figure 1 should be considered. To set up a benchmark

of the other three parameters, we maintain the scaling λ = 1 for market liquidity and the

market maker’s risk aversion µ = 0.05, and reduce the memory of chartists by half, i.e.,

we put θ = 20. The stability frontier in the (κf , κc) plane to which these coefficients give

rise is shown in the upper-left panel in Figure 2; it separates the pairs entailing stability

(in the dotted area) from those entailing instability. Given that the functional expression

h in eq. (14) is fairly nonlinear in κc and κf , it is remarkable that the stability frontier is

an almost perfect straight line.

Proposition 3(d) has established that an originally stable equilibrium is destabilized by

sufficiently long lags θ, provided κc is contained in the intermediate interval (κf/2, (λ+κf )/2)

and eq. (12) is retained (and not replaced with (13), which is the case covered by Proposition

4). The upper-right panel in Figure 2 considers the destabilizing effect from a different point

of view. It shows that an increase of the lag θ from 20 to 40 causes the stability region to

shrink, although the reduction is rather limited. Note the tiny ‘hook’ at the lower end of

the stability frontier, which owing to the large scale of κf and κc is hardly recognizable: for
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λ↑ µ↑

θ↑

Figure 2: Stability frontier of (PBT) in the (κf , κc) parameter plane.

Note: The dotted area is the stability region. The (red) dashed lines reproduce the
stability frontier of the benchmark case in the first panel, which is based on λ = 1
µ = 0.05, θ = 20.

κc slightly less than 0.50 we have here the stability reswitching of κf from Figure 1 (which

had θ = 40 underlying).

The other two panels in Figure 2 demonstrate the stabilizing effect when market

liquidity is increased from 1 to λ = 2, and the destabilizing effect when the market maker’s

risk aversion is increased from 0.05 to µ = 0.20. Again there are no ambiguities in the

relocation of the stability frontier, practically it is even a parallel upward and downward

shift, respectively. In sum, Figure 2 is a representative illustration of the fact that the

parameter effects on stability are of an amazingly regular nature.

A special feature of the model is that we have an explicit expression for the cycle period

T induced by the parameters on the stability frontier, T = 2π/ν" according to Proposition

3(d). While the mathematical analysis has made sure that the period is significantly longer

than the time horizon θ of the chartists, T > 2θ, it does not tell us by how much T exceeds

this lower boundary. For this and to get an impression of how T varies with the parameters
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of the model, we better resort to specific numerical values and make use of the stability

frontiers already computed.

1: benchmark
2: θ = 40 (↑)
3: λ = 2.00 (↑)
4: µ = 0.20 (↑)

Figure 3: Period T on the four stability frontiers from Figure 2.

Figure 3 depicts on the horizontal axis the same values of κf as in Figure 2. It takes

the parameters underlying the latter diagram, computes the bifurcation values of κc given

κf , plugs all these coefficients into the formula for ν", and then draws T = 2π/ν" as a

function of κf . Numbers 1 . . 4 in Figure 3 indicate the panels in Figure 2 from which the

functions are thus obtained. Since the second panel has examined a different lag θ from

the other panels, Figure 3 plots the fraction T/θ.

One property that the four functions have in common is that they decline with κf .

The initial level and the slope of the functions are, however, quite distinct. Our benchmark

case (the bold line) implies relatively short oscillations. They increase, though not very

much, for deeper markets (line 3 brought about by a rise in λ). However, if a model builder

requires a period three times or more as long as the memory θ, then he or she will consider

the option of increasing θ itself or the risk aversion µ of the market maker, where at the

same time the trading capital of fundamentalists and chartists should be rather limited (in

relation to the fixed market liquidity λ).
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Regarding the cycle prolonging effects of an increase in µ it is interesting to quote a

remark by Farmer on the market maker, although he made it in a stochastic context with

no chartists: “Once the market maker acquires a position, because of her risk aversion, she

has to get rid of it. By selling a fraction β [our coefficient µ] at each time step, she will

unload the position a bit at a time. This behavior causes a trend in prices. Any risk-averse

behavior on the part of the market maker will result in a temporal structure of some sort

in prices.” (Farmer, 2001, p. 67). It is noteworthy that this tendency still prevails when

we restrict our attention to the periodic orbits generated by the bifurcation values of the

parameters.

One point following from these considerations is that temporal structure in prices

creates an opportunity for technical traders (ibid., p. 68). This observation motivates us to

have now a look at the time series properties of the model and, in particular, the implied

performance of the agents.

3.4 Dynamic mechanisms over a cycle

While cycle generating feedbacks in models with order-based strategies are well understood,

these aspects are still largely neglected in the position-based systems. For this reason we

want to study a stylized cyclical motion of (PBT), without any random noise and unaffected

by nonlinear amendments like thresholds and flexible ceilings and floors. It will also be

illuminating to compare the cyclical patterns of the variables with those arising from the

order-based Beja–Goldman model. The parameters that we employ to obtain periodic

orbits of these linear systems read as follows:7

BG : φ = 0.20 χ = 2.000 βp = 1 βπ = 0.20

PBT : φ = 0.20 κc = 0.616 λ = 1 θ = 20 µ = 0.05
(16)

The results for the two models are contrasted in Figure 4, where the BG model is shown

in the upper part and the PBT model in the lower part. Let us begin with system (BG),

at a point in time when the price is rising and just passes the fundamental value, which is

normalized at zero. This happens at t = 39.50 in the top panel of the diagram. Since the

7(PBT) is discretized with ∆t = 1, which is not too large given the lag θ = 20. The bifurcation value κc

given the other parameters is slightly higher (not lower!) than it would be in continuous time. For (BG)

the step size is so small that the continuous-time and discrete-time bifurcation values of κc are practically

the same.
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demand of fundamentalists is a negative mirror image of the price movements, the price

increases are here solely due to the demand of the chartists. The latter is positive since the

price has already been rising for a while, such that the perceived trend of the chartists has

become positive in the meantime.

Figure 4: Price series and the agents’ characteristics in (BG) and (PBT).

Note: The bold (blue) line in the top panel of (BG) and (PBT), respectively, is the
log price, the bold lines in the other panels depict market orders, or demands, df and
dc. The thin solid (red) lines are the positions am, af , ac, respectively, the dotted
(green) lines are the profit flows, or capital gains, gm, gf , gc. Market orders and
profits are rescaled to fit into the diagrams.
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A central feature of the cycle generating mechanism in the BG model is the fact that

the more the price increases, the stronger becomes the negative impact on the part of the

fundamentalists. The ensuing slow down in the price increases works to the effect that

eventually the rising trend as it is perceived by the chartists, π, comes to a halt and then

begins to decline. Since this occurs at a relatively high level of π, chartist demand still

exceeds fundamentalist demand for some time. At t = 47.38, the difference between the

two narrows down to zero, so that ṗ = 0 and the price reaches an upper turning point.

From then on p is falling; the decline in π accelerates and dc decreases faster as df now

begins to increase. Hence the negative demand of the fundamentalists dominates the (here

still positive) demand of the chartists. As the decline in the price goes on, the dynamics

enters the stage with which we have begun, now with signs reversed.

Before discussing the implied positions and profits, let us turn to the lower part of

Figure 4 with the dynamics of the PBT model. The initial conditions have been chosen

such that with ±0.23 the price oscillations exhibit the same amplitude as in the BG model.

We consider the same phase of a cycle as before, beginning with the upward movement of

the price when it just crosses the zero line at t = 1298. For the fundamentalists it is now the

position af rather than the demand that is a negative mirror image of the price series; see

the thin solid (red) line in the middle panel. Since af is falling at t = 1298, fundamentalist

demand df = ȧf is initially negative. At that time it is even close to its trough value over

the entire cycle. Note, however, that the amplitude of df in (PBT) is more than four times

lower than in (BG), ±0.52 versus ±2.29.

In order for the price to increase at t = 1298, chartist demand dc must dominate df ,

which can be seen in the bottom panel. The reason for the relatively high demand is not the

positive position ac, which is proportional to the slope in the log price p(1298) − p(1278),

but the fact that this slope is presently rising, so that ac is rising and thus dc = ȧc > 0.

In addition the negative inventory am of the market maker has to be taken into account,

which via the correction term −µam > 0 in the price impact function (7) reinforces the rise

in p.

In the next few periods there are two features that, taken on their own, would ac-

celerate the price increase. First, the increase in the market maker’s short position, i.e.,

the ongoing decline in am. Second, the position of fundamentalists declines, too, but at a

lesser speed. Hence, while df = ȧf < 0, the influence of the supply from this side of the
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market tends to weaken. Chartist demand, however, counteracts these forces. Although

chartists continue to build up long positions, they do this more and more slowly. In fact,

their position reaches the highest level at t = 1310, afterwards ȧc < 0 and chartists turn

into net suppliers of the asset.

The price peaks three periods later, at t = 1313. Its increase over this short interval

where both dc and df are negative is due to the market maker, who with his accumulated

short position still feels it necessary to give some incentive to the agents to sell the asset to

him.

The beginning downturn of the price gains momentum through the increasing desire

of the chartists to cut down on their long position, though for a while they keep on wanting

to hold the asset in positive amounts. Their supply is the main force on the market in that

stage of the cycle, which dominates the low positive demand of the fundamentalists and

the positive price correction by the market maker.

The discussion will have made it clear that with position-based strategies, even though

it is a prototype model and we have only studied the most regular periodic trajectories, the

dynamic relationships are more involved than in the Beja–Goldman model; since in addition

to the relationship between demand and price changes, the relationships between the two

speculative groups of agents, and the new influence of the market maker’s risk aversion,

one also has to consider the relationships between the agents’ stock and flow variables, i.e.,

their desired positions and the market orders deriving from them.

It can moreover be said that fundamentalists and chartists perform different roles over

the cycle in the two modelling frameworks. Thus, take the stage of the cycle when after the

peak the price begins to fall. In the BG model this phase is characterized by the negative

demand of the fundamentalists, which dominates the positive demand of the chartists. By

contrast, in the present PBT model chartist and fundamentalist demands have opposite

signs from BG, and it is the negative demand of the chartists which dominates the positive

demand of fundamentalists and so causes the price to fall.

The upper part of Figure 4 also keeps track of the agents’ positions in the BG model,

as they are implied by their demands and the corresponding trading activities. In the

present case with the regular oscillations of demand and price, the positions, too, move

in a periodic manner. The center of these oscillations, however, depends on the starting
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conditions. In the first three panels the initial values of am, af , ac have therefore been

chosen in such a way that the positions oscillate around zero; see the thin solid (red) lines

in Figure 4, which have been suitably rescaled to let the cyclical patterns and comovements

stand out more clearly.

With the time series of the price and the positions we can compute the profits from

the different trading strategies. To ease the discussion, let us assume that the agents’

target positions are zero. Denoting the actual asset price by P = exp(p) and the value of

the alternative asset that an agent h holds by mh, the wealth of this agent is given by

W h = Pah + mh. The changes in mh are inversely related to the sales and purchases of the

risky asset, i.e., ṁh = −Pdh = −P ȧh. Hence the capital gains gh of agent h from trading

are determined by,8

gh = Ẇ h = Ṗ ah + P ȧh + ṁh = Ṗ ah = exp(p) ṗah h = f, c, m (17)

These profits are depicted as the dotted (green) lines in Figure 4. Regarding the BG model,

it is obvious that the fundamentalists should make positive profits over a cycle; after all

they consistently buy low and sell high. Even their instantaneous profits turn out to be

positive whenever the price changes, since they have gone long when the price is rising and

short when it is falling.

Chartists, by contrast, earn positive profits only over short subintervals of the cycle: in

the upswing (downswing) of the price just after their position becomes positive (negative).

As soon as the price reaches its peak or trough, respectively, the chartists make losses again.

It may also be observed that although the oscillations of the price and the position appear

almost perfectly symmetrical, the induced motions of the profits are not. The losses of

chartists are heavier when their long position is deteriorated by the falling price than when

their position is negative and the asset appreciates.

Averaging over a full cycle, the losses of the chartists turn out to be almost equal to

the profits earned by the fundamentalists. Therefore, in the present stylized scenario, the

market maker neither loses nor wins from his function as an intermediary. The reason for

this is that profits in the aggregate cancel out, gf + gc + gm = 0 in every instant of time,

which follows from (5).

8Recall that we neglect dividends, interest payments and similar proceeds from the assets. Zero trans-

action and information acquisition costs will likewise be understood.
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The second part of Figure 4 demonstrates that relative profits in the PBT model are

different from the BG model. The PBT dynamics allows both fundamentalists and chartists

to make positive profits over the cycle, which goes at the expense of the market maker. The

latter could, of course, make up for these losses by charging a fee on the transactions or by

bid-ask spreads, which so far have not been explicitly modelled.

Besides the qualitative statements, the profits of fundamentalists and chartists cannot

be unambiguously compared, since the coefficients κf , κc, which for short have been referred

to as “trading capital”, incorporate the aggressiveness of single agents as well as the market

fractions of the two groups. Hence if the almost ten times higher profits of the chartists

that we obtain, gc/gf = 930/95, were attributed to a ten times higher market fraction of

this group, fundamentalist and chartist trading strategies would perform equally well. More

informative in this respect is perhaps the ratio of the amplitudes of profits and positions,

which are indeed almost equal:9 gf/af = 712/464 ≈ 1.5 versus gc/ac = 392/257 ≈ 1.5.

Nevertheless, as long as both groups of speculative traders earn positive profits, unambigu-

ous comparisons between the two can only be made across different parameter sets with

identical coefficients κf and κc.

4 A stochastic version of the model

4.1 Properties of a base scenario

Financial market models with a more or less distant view to the empirical stylized facts

are directly set up as stochastic models. Often, but not always, a deterministic skeleton is

then identified and part of the investigation is concerned with the deterministic properties

and how they may influence the statistical properties of the full model. The presentation in

this paper is the other way around. After having designed a deterministic prototype model

and studied its main features, we now proceed with a minimal stochastic extension. This

means the model is formulated in discrete time (∆t=1, so to speak) and we work with the

widely employed assumption that the fundamental value follows a random walk.

9In view of the asymmetric peaks and troughs, the ‘amplitude’ is defined as the mean of the absolute

values of the two.
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When establishing a numerical set of parameters that can serve as a base scenario

and, in particular, in order to assess the memory θ of the chartists, the time unit of the

model must be made explicit. To this end we make a visual inspection of several episodes

of the S&P 500 stock price index that are not too much trending, so that they allow us

to recognize some (noisy) cyclical patterns. We perceive an average length between 7 and

8 days of these cycles, whatever may have caused them or how spurious the phenomenon

might be. On the other hand, the period of the oscillations of (PBT) in Figure 4 was 55

time units, and the period in the model that will be relevant to us shortly below is 53 time

units. Therefore, we may stipulate that seven time units of the model correspond to one

trading day.

In many simulations of financial markets with a random walk for the fundamental

value, the latter is supposed to change every day. To be in line with this convention, the

fundamental value v=vt in PBT is updated, not every time unit, but every τ =7 time units.

Numerically we follow He and Li (2007, p. 3404), who adopt an annual volatility of 20%. The

corresponding standard deviation for the daily changes of vt is σv = 0.20/
√

250 = 0.0126.

The precise formulation of this discrete-time stochastic process is given in Appendix A.3 .

Of course, since nonlinearities continue to be absent in the model, only parameters

entailing deterministic stability are admissible to simulate this market. Our idea is to

maintain the basic cyclical tendencies we have found, so that the parameters should give

rise to dampened oscillations in the deterministic version (as in He and Li, 2007, pp. 3404f).

Specifically, starting out from the PBT parameters in (16) above, we decide to settle down

on a set of rounded parameters that imply a dampening factor of 0.69 and a period of 53

time units, i.e. 7.57 days (defining the dampening factor as the ratio of two successive peak

values of the log price). These parameters are collected in Table 2.

κf κc θ λ µ σv τ

0.20 0.57 20 1.00 0.050 0.0126 7

Table 2: Base scenario of the stochastic PBT model.

Figure 5 contrasts one year of daily data on the S&P 500 index with 250 days =

1750 time units of a sample run of the base scenario. If one takes the limited noise in the

model into account then, at face value, the empirical and artificial price series are fairly
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well comparable. For our investigations of the parameter effects below, this qualitative

correspondence will be good enough.

Figure 5: Contrasting an artificial price series with S&P 500.

Note: Underlying the simulation run are the coefficients of Table 2. The bold (blue)
line in the lower panel depicts the log price pt, the thin (green) line is the random
walk of the fundamental value vt.

The lower panel in Figure 5 also illustrates that the price tracks the fundamental value

rather closely (actually more closely than the examples given in Farmer, 2001, p. 67 and

Farmer and Joshi, 2002, pp. 162f). Upon closer inspection of the price series over shorter

time intervals, however, one could distinguish episodes where pt seeks to catch up with vt

very rapidly, and other episodes of 10 or 20 days where the temporarily divergent tendencies

of the cycle generating mechanism prove to be dominant, so that pt and vt move out of line.

The fact that the price does not deviate very far and not very persistently from the

fundamental value implies that the positions af
t of the fundamentalists center around their

target. Though it is analytically not obvious, it turns out that the basic convergence forces

in the system are so strong that also the positions ac
t of the chartists are centered. This

notwithstanding, their amplitude can be quite variable over longer time intervals.

The short sample period of 50 days shown in Figure 6 can illustrate three things. First,

the consistent centering of the agents’ positions. Second, the distinctly larger fluctuations

of ac
t versus af

t (note the equal scaling of the axes). Hence the market maker’s inventory am
t
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Figure 6: Positions af
t , ac

t , am
t over a short sample period in the base scenario.

is largely inversely related to ac
t , which demonstrates that his main function is to buffer the

market disequilibria caused by the chartists. A third point is that the cyclical tendencies of

the deterministic core manifest themselves, not so much in the price series with its pseudo

trend incidents, but at the level of the positions of the chartists and the market maker.

Regarding the capital gains that the agents derive from their positions, the regular

oscillations in Section 3.4 proved to yield positive profits over the cycle for fundamentalists

as well as for chartists, which goes at the expense of the market maker. Figure 7 makes it

evident that, in the long-run, this also holds true in the stochastic setting, at least at the

present parameter values. Precisely, the diagram presents the daily profits of agent group

h, gh
t = W h

t −W h
t−τ with τ =7 (period t a multiple of τ) and h = f, c, m.

The high spikes in the middle panel for the chartists might suggest that the profits

from ac
t are much higher than the profits from af

t , similar perhaps to the ratio 930/95

reported for the deterministic motion. These appearances are, however, deceiving. Over

the two years = 500 days shown in Figure 7, the average daily profits of fundamentalists

and chartists are 1.26 and 2.87, respectively (both multiplied by 105). Over the long run

of 100 years (i.e. 25,000 days or 175,000 time units), these magnitudes are 0.95 and 2.17,

respectively. Even if one were to assume an identical number of agents in both groups, it
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Figure 7: Daily profits gf
t , gc

t , gm
t of the agents in the base scenario.

could be argued that fundamentalism and chartism are about equally attractive, since the

higher profits gc
t come along with a higher standard deviation, 6.29 versus 2.71 for gf

t (and

7.51 versus 2.88 in Figure 7). Note that in both cases the positive mean values are not

much more than one third of the standard deviation. So chartist and also fundamentalist

trading is not without risk—at least if the initial wealth is small or trading is debt financed.

It will also be observed that for the chartists tranquil times alternate with larger

fluctuations of the profits. This phenomenon may be informally described as volatility

clustering. Nevertheless, it must then not be forgotten that we are concerned with profits,

and here the profits of only one of the speculative groups. Volatility clustering of returns,

to which this mode of expression usually applies, is not yet achieved; in this respect the

model is still too simple.

4.2 A stochastic equilibrium notion

To put the properties of one or several simulation runs into perspective, it would be ex-

pedient if one could refer to a notion of stochastic equilibrium. An obvious approach to

meet this desire is to view the stochastic process as a Markov process, which is set up by
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the transition probabilities P (dt, B) that a price deviation dt := pt−vt in period t will, in

the next period t+1, be contained in the set B. The period-t variable to be studied will

then be a time-varying unconditional probability distribution πt of dt. If its law of motion

is succinctly summarized by a mapping Φ, such that πt+1 = Φ(πt), an equilibrium of this

process is constituted by an invariant distribution π" satisfying the equation π" = Φ(π").

Under certain regularity conditions, which one feels should be satisfied here, such a fixed

point exists, is unique, and is attractive, i.e., πt → π" as t→∞ for any initial distribution

π0.10

If this kind of ergodicity prevails, the qualitative long-run behaviour of each sample

path of the system is completely described by the Markov equilibrium from a statistical

point of view. It does not, however, describe the quantitative behaviour of single sample

paths nor the qualitative behaviour of ensembles of sample paths, whether sample paths

starting at different states converge or diverge for a given sequence of random shocks. An

appropriate concept to treat this problem is that of a random fixed point and its asymp-

totic stability, which are counterparts of the deterministic concepts. It is, in particular,

convenient that this notion of stability is one of pointwise convergence.

In its precise definition, a random fixed point is a random variable, that is, a mapping

on a probability space, which is a rather abstract and technical concept.11 For the present

purpose it is sufficient to degenerate the probability space to a given sequence {δt}∞t=0 of the

random walk innovations to the fundamental value. In this perspective, the stochastic model

becomes a forced oscillator, which has a deterministic solution path once an initial price

history is given. An implication of a random fixed point, then, is that the solutions from

any two price histories get, and stay, arbitrarily close as time unfolds. As a consequence,

all these sample paths have the same limiting behaviour.12

10Such a result should at least be obtainable if the normal distribution for the innovations in the random

walk is truncated. For a compact introduction to the these discrete-time Markov processes with continuous

state space, and the conditions for uniqueness of and convergence toward π!, see Futia (1982),
11Arnold (1998) is a standard reference to the theory of random dynamical systems. For an immediate in-

troduction to random fixed points and applications to economic systems, see Schenk–Hoppé and Schmalfuß

(2001), and Böhm and Chiarella (2005).
12The statistical properties of the associated invariant distribution could thus be determined from the

limits of orbits, since by ergodicity any empirical time average (or other moment) converges to the true

mean (or other moment) of the invariant distribution (Böhm and Chiarella, 2005, p. 77).
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Figure 8: Convergence of sample paths from different initial conditions.

Note: The upper panel has the base scenario underlying with, in particular, κc = 0.57.
In the lower panel this parameter is changed to κc = 0.61, which is close to the
bifurcation value.

Figure 8 illustrates the convergence process to the limiting behaviour for the base

scenario of Table 2. Actually, convergence is rather fast, after 40 days the three price

series are virtually identical. A lower speed of convergence will, however, be expected if the

parameters are closer to the stability frontier. This intuition is confirmed in the lower part

of Figure 8, where with κc = 0.61 the chartist trading capital is only marginally below its

bifurcation value. Given the large amplitude of the price fluctuations around the (omitted)

path of the fundamental value (cf. the scale in the two panels), it is remarkable that these

cycles synchronize already much earlier. It follows that generally, if one is interested in

certain summary statistics as being representative of a given parameter set, there will be

no problems with the sampling variability from different starting conditions. Already a

few explorations of the kind here presented give a good feeling for the length of an initial

transition period that should be ignored. For the statistics computed in the experiments

below, the first 500 days will be discarded, with which we are completely on the safe side.
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4.3 Parameter effects

In this section we return to the parameters of the model and an analysis of their properties.

Our first aim is to characterize the parameters as stabilizing or destabilizing, which requires

a new effort since the notion of stability in a stochastic setting is different from deterministic

stability. There we had a qualitative distinction, according to which the equilibrium is either

attractive or not. Variations in something like a degree of stability could only be informally

considered by alluding to the distance of a parameter from the stability frontier; the implicit

idea that such a distance may be inversely related to a speed of convergence toward the

equilibrium has not been pursued.

In the present context, the concept of ‘stability’ can be quantified in a very natural

way. As the basic convergence of the deterministic skeleton is continuously perturbed by

the random shocks to the fundamental value, which again and again move this target away

from the current price, the relative strength of the centripetal and centrifugal forces is

most directly measured by the average gap between price and fundamental value. In other

words, the central figure with which we will be concerned is the misalignment, specified as

the long-run standard deviation of pt−vt and denoted as σ(p−v). The time series in Figure

5 was already sufficiently representative to show that the misalignment is quite limited in

our base scenario, and we will now ask how it is influenced by ceteris paribus variations of

the single parameters. As indicated above, the ’long-run’ perspective for this and all other

summary statistics will be defined by a period of 25,000 days.13

If we recall the models on position-based trading in the literature and their concern

with the cointegration of prices and values, then the parameter of primary interest to us

is the risk aversion of the market maker, µ, which has been said to be in control of this

feature. It has been observed in that literature that prices and values disconnect if there

are only a few homogeneous groups of agents and, in our notation, µ is zero. Surely, the

phenomenon should essentially persist if µ is only slightly raised. On the other hand, from

the comment on Proposition 5 we know that high values of µ will eventually destabilize the

deterministic equilibrium. Hence the misalignment should also become increasingly worse

as µ approaches its bifurcation value µH from below (the letter H because it is a Hopf

bifurcation).

13After dropping the first 500 days to eliminate any impact of the starting values on the simulations.
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This argument can be readily tested with the parameters from Table 2, where µ

varies between zero and µH and the latter is computed as µH = 0.0856. The sequence of

the random shocks to the fundamental value is the same in each simulation run (this equally

holds for the other experiments to follow). The top-left panel of Figure 9 shows the resulting

misalignment over this range as a function of µ, which indeed displays the predicted U-

shape. Hence, regarding the present notion of stability in the stochastic framework, the

market maker’s risk aversion is an ambiguous parameter.

Figure 9: Variations of µ in the base scenario.

Note: Based on samples of 25,000 days. Misalignment is specified as σ(p−v) over
this period (in percent), ‘sd positions MM’ is σ(am). The dotted lines indicate a
one standard deviation band around the mean profits. The crosses mark the base
scenario.

In an immediate thought experiment it can here be asked why the market maker

should choose a value of µ that entails a relatively weak misalignment (especially if he

has no real-time knowledge of the fundamental value). Since his main motive is to limit

the deviations of his inventory from target, we additionally compute the long-run standard

deviation σ = σ(am) of his positions, the outcome of which is plotted in the top-right panel

of Figure 9. While it will not be surprising that a strong (weak) misalignment goes along

34



with strong (weak) imbalances, it is remarkable that the ‘valley’ in the graph of the function

µ *→ σ(am) is considerably wider than in the misalignment function µ *→ σ(p−v).

Having above computed the profits that the speculative agents earn with their strate-

gies, we can furthermore examine how seriously they are affected by different degrees of

the market maker’s risk aversion. The corresponding mean values over the 25,000 days, ḡf

and ḡc, are drawn in the two bottom panels of Figure 9. Two features are here worth men-

tioning. First, it cannot be generally concluded that a strong misalignment is favourable

or unfavourable for fundamentalists; this rather depends on the mechanism causing the

misalignment. If the prices disconnect from the fundamental in one direction over longer

periods of time, which will be the typical case at low values of µ, then there are only

weak prospects for the position-based fundamentalists to extract profits from that pattern.

Better opportunities, however, arise for them if the misalignment is caused by wider and

wider fluctuations of the price around the fundamental value, as they occur when the risk

aversion approaches the bifurcation value µH .

The second feature is the temporal structure, which becomes more pronounced as

µ rises and so provides technical traders with more or stronger regularities in the price

series that they can seek to exploit. The lower-right panel of Figure 9 cogently confirms

this intuition. The profits of the chartists in this model are seen to be increasing with µ,

even at an increasing rate and without any further adjustments in the trading coefficient.

It should, however, be observed that the associated risk rises, too. More specifically, the

standard deviation of the profits tend to become unbounded as µ gets closer to µH .

Nevertheless, all of these findings should not be prematurely generalized. To illustrate

this, Figure 10 presents the results from the same experiments as before; this time for a

market which, owing to a high trading capital κf of the fundamentalists, is not only stable

for all values of µ, but where convergence in the deterministic version is also monotonic.14

In this example, even much larger values of µ than above are not able to generate sufficient

temporal structure in the price from which the chartists could profit to an appreciable

extent; at least not in comparison to the group of fundamentalists, for which this kind of

dynamics is more favourable.

14Evidently, κc < κf/2 for the parameters in the note on Figure 10, so that the condition in Proposition

3(a) is satisfied.
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Figure 10: Variations of µ in a stable scenario with monotonic convergence.

Note: Maintaining λ, θ, σv and τ , the two trading capital coefficients are κf = 0.80
and κc = 0.25.

As regards the risk of the market maker, he can drive the standard deviation of his

inventory down to zero by sufficiently increasing his price correction coefficient µ; cf. the

top-right panel in Figure 10. The reduced fluctuations in am are, however, not tantamount

to a similar decrease in the misalignment of the price. After the initial decline of σ(p−v) as µ

rises above zero, this function begins to increase again as µ rises further, until it eventually

levels off at 1.70%. The top-left panel is thus another instance which shows that the effects

of the market maker’s risk aversion are not easily assessed.

We believe that the cyclical base scenario is a more attractive and fruitful numerical

specification than a scenario of overall monotonic convergence, and we will therefore return

to it. The experiments in Figure 10 are, however, useful for a better evaluation of the

previous results and the ones to follow, insofar as they point out that cyclicality in the

deterministic skeleton may be of crucial importance for them to come about.

Concentrating on the numerical coefficients from Table 2, we can take the other pa-

rameters κf , κc, θ and λ, one after another, let them vary up or down to their bifurcation
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value, compute the same summary statistics as we did for µ, and plot them as functions of

this parameter. The corresponding diagrams, which are analogous to Figure 9, are docu-

mented in Appendix A.4. Here we report the main parameter effects, which are collected

in Table 3.15

weight F weight C memory C liquidity risk aversion MM

κf κc θ λ µ

Misalignment : S A A A A

Profits F : H (H) (L) (L) (H)

Profits C : L H L L H

Table 3: Effects of ceteris paribus variations of the parameters

in the (cyclical) base scenario.

Note: S and A indicate that the parameter is stabilizing or ambiguous, respectively,
insofar as an increase of it reduces the misalignment, or produces both increases and
reductions over different intervals. H (H) and L (L) means that an increase of the
parameter leads to (weakly) higher or lower mean profits for the fundamentalists (F)
and chartists (C). Besides Figure 9, the diagrams from which this summary derives
are given in Appendix A.4.

If we view a decrease (increase) of the misalignment brought about by a higher pa-

rameter value as a stabilizing (destabilizing) effect, then the first row in Table 3 can be

compared to the stability effects in Table 1. It is thus seen that an increase in the trading

capital of the fundamentalists is stabilizing according to both the stochastic and determin-

istic criterion. However, besides µ also the other three parameters κc, θ and λ have an

ambiguous impact on the misalignment. If, in finer detail, we consider 80 percent or more

of the entire parameter interval, over which σ(p−v) happens to change in one direction,

then it could be said that θ and λ tend to be weakly destabilizing, and κc tends to be

weakly stabilizing. This, however, is just the opposite characterization from Table 1.

The last two rows of Table 3 summarize the impact of the parameter variations on

the long-run profits of fundamentalists and chartists. Clear effects are produced by the

15Concerning the variations of θ, we use specification (13) for the chartist positions. κ̃c is fixed at the

value it attains in the base scenario, where it satisfies the equation 0.57 = κc = κ̃c/θ = κ̃c/20. The

appendix, in particular, shows that the shapes of the functions of the statistics are very similar for the

variations of λ and θ.

37



fundamentalist trading capital. A ceteris paribus increase of κf grants the fundamentalists

higher mean profits and reduces those of the chartists. By contrast, the changes of the

fundamentalist profits brought about by the other parameters are weak or even negligible,

except perhaps (very) close to the stability frontier. The effects are in any case more distinct

for the capital gains of the chartists. They profit from a rise in µ (already noted) and their

own trading capital κc, from a shorter memory θ, and from less liquidity λ on the market.

On the whole, Table 1 in Section 3.2 above is the upshot of the stability analysis of

the deterministic system, and Table 3 compactly sums up the central dynamic properties

of the stochastic PBT model.

5 Conclusion

Within the field of asset pricing models with few groups of heterogeneous traders, we have

started out from the observation that the overwhelming majority of these models leaves the

positions of the agents as a residual in the background. As a consequence, the positions

may easily become unbounded once some stochastic perturbations are introduced. This

inconsistency can be avoided by modelling the agents’ strategies as position-based rather

than order-based. There are a few examples of this approach in the recent literature, but it

seems they have made relatively little impact as yet. One reason for the limited influence

might be the lack of an elementary reference model with position-based trading. The main

purpose of the present paper was therefore the design and analysis of such a prototype

model, whose properties are well understood and which, in particular, can be contrasted

with an order-based prototype model.

More specifically, we extracted a position-based prototype model from two major con-

tributions by Farmer (2001) and Farmer and Joshi (2002), while as a order-based reference

model the Beja–Goldman model was most suitable. A special feature of our model, which

has no counterpart in the latter, is that it allows us to discuss the role of the market maker

at a similarly elementary level as the other components of the two models. Under certain

conditions, his risk aversion introduces more temporal structure into the price dynamics

and potentially even destabilizes it.

Although the deterministic continuous-time version of the model is mathematically

(much) more involved than the Beja–Goldman model, the stability conditions on the para-
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meters turned out to be completely analogous. Hence the present framework should provide

an equally fruitful and promising basis for conceptually more ambitious extensions, which

may be concerned with time-varying demand intensities of fundamentalists and chartists,

or with switching market fractions of the two, or more, speculative groups.16 In this respect

we hope that the results from our numerical study of the stochastic market can give some

useful insights, regarding the misalignment of price and fundamental value as well as the

differential profits of fundamentalists and chartists.17 It is a challenging problem whether

models developed in this direction will be able to match (some of) the stylized facts of

volatility clustering, fat tails and power-law behaviour. In any case, these models will not

be plagued with inconsistencies regarding the long-run evolution of the agents’ positions.

A Appendix

A.1 Proof of Proposition 3

Proof: To prove part (a) of Proposition 3, write system (PBT) as

ṗ(t) = a p(t) + b p(t−θ) + c ṗ(t−θ) (18)

This notation allows us to refer directly to a simplified version of Theorem 1 and Corollary

1 in Hu and Hu (1996).18 It says that (18) is asymptotically stable if |c| < 1 and if for all

complex numbers ξ = x + iy on the border of the unit circle, where |ξ| = x2 + y2 = 1, the

real part of (1− ξc)−1(a + ξb) is negative.

With the formula (α+ iβ)−1 = (a− iβ)/(α2 +β2) for the inverse of complex numbers,

we have Re [(1−ξc)−1(a+ξb)] = Re [(1−cx−icy)(a+bx+iby)] = Re [(1−cx+icy)(a+bx+

iby)]/[(1−cx)2+c2y2]). Substituting 1−x2 for y2, the sign of this expression is easily seen to

be determined by f(x) := a− bc− (ac− b) x, where x varies between −1 and 1. Since f(·) is

16An elaborate attempt with switching market fractions is Pape (2007).
17Given the good performance of chartists in scenarios with some cyclical potential, and the dominance of

fundamentalist profits in the Beja–Goldman model and other models with order-based strategies, it appears

a fascinating task to pair our present position-based chartists with the order-based fundamentalists from

Beja and Goldman to see what kind of market ecology may emerge from that. The fundamentalists should

perhaps be endowed with some correction mechanism to keep their positions within bounds.
18In its generality, their theorem applies to vectors p = p(t) and square matrices A,B,C in place of the

real numbers a, b, c.
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linear, only the end-points have to be considered, for which we obtain f(−1) = (a−b)(1+c)

and f(1) = (a + b)(1− c).

The sign of (a + b) and (a− b) is given by −µ(κf − κc)− µκc = −µκf and −µ(κf −

κc) + µκc, respectively. The latter expression is negative if κc < κf/2. (1 − c) and 1 + c)

are positive if |c| = κc/(λ − κc + κf ) < 1, which is equivalent to κc < κf/2 + λ/2. Hence

κc < κf/2 is a sufficient condition for f(−1) < 0 as well as f(1) < 0, and it can be concluded

that the conditions stated in the abovementioned theorem are fulfilled.

The argument for proving part (b) is borrowed from Barker and Whitesides (1976, pp. 759ff).

For better reference to this article we now write (PBT) in the form

a0 p(t) + a1 ṗ(t) + b0 p(t−θ) + b1 ṗ(t−θ) = 0 (19)

from where the characteristic equation for the roots s ∈ IC reads

Q(s) := a0 + b0 exp(−θs) + [a1 + b1 exp(−θs)] s = 0 (20)

and the coefficients in (19) are given by the structural parameters as

a0 = µ(κf − κc)/(λ + κf − κc) a1 = 1

b0 = µκc/(λ + κf − κc) b1 = κc/(λ + κf − κc)
(21)

It has to be shown that Q(·) has a root with positive real part, since this implies the

instability of (19). Given that all roots s = σ + iν must satisfy the inequality

| |a1| − |b1| exp(−θσ) | |s| ≤| a0| + |b0| exp(−θσ)

and a1 and b1 are different from zero, the roots of Q(·) have bounded real part σ. Arranging

the roots in ascending order of their modulus, it can more specifically be concluded that the

real parts of the large modulus roots sk, for which |sk|→∞ as k →∞, obey the constraint

lim
k→∞

[ |a1| − |b1| exp(−θσk) ] = 0 (22)

Hence their real parts get arbitrarily close to σ∞ = σ∞(θ) := −(1/θ) ln(|a1/b1|). It remains

to observe that under the restriction κc < λ+κf , the inequality κc > (λ+κf )/2 is equivalent

to |a1/b1| = (λ − κc + κf )/κc < 1: since σ∞ > 0 in this case, there is one root sk (indeed

infinitely many) with positive real part σk
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Regarding the third part of the proposition, we first observe that κc > κf/2 is tantamount

to κc > κf−κc, so that the numerator in the definition of ν" is positive. The other condition

κc < (λ + κf )/2 gives λ + κf − κc > κc, so that the denominator is positive as well.

The next step follows the reasoning in Barker and Whitesides (1976, p. 761). Again

consider the characteristic polynomial Q(·) as it is given in (20). For θ → 0 (θ > 0),

it has one (real) root that is arbitrarily close to the one root of the polynomial equation

Qo(s) := a0 + b0 + (a1 + b1) s, which is obviously negative. The remaining roots of Q(·)

are complex and have arbitrarily large moduli. Let θ̂ be a number such that this situation

prevails for all θ ≤ θ̂ and σ̂ := (1/θ̂) ln(|a1/b1|) is less than the root of Qo(·); negativity of

ln(|a1/b1|) derives from from κc < (λ+κf )/2 and reversing signs in the argument following

eq. (22). Since for the large modulus roots, σ∞ = −(1/θ) ln(|a1/b1|) → −∞ < σ̂ < 0

as θ approaches zero, Qo and Q have the same number of roots whose real part exceeds

the negative number σ̂. This proves that system (PBT) is asymptotically stable if θ is

sufficiently small.

The rest of the proof draws on Ford and Nelson (2004). It focusses on any critical

values θ" of the lag θ at which a root of the characteristic equation transitions from having

negative real parts to having positive real parts. When this occurs, the root must be purely

imaginary; s = 0 in (20) is not possible by virtue of a0 + b0 > 0, which establishes the

Hopf bifurcation statement of part (c). The main point in the proof of part (d) is that this

root s = iν = iν" can be computed independently of the lag θ. In fact, the critical value

θ" that gives rise to just this root iν" is subsequently determined from one of the real and

imaginary components of the characteristic equation.

To compute the root s = iν", we begin by separating the characteristic polynomial

(20) into its real and imaginary parts. Writing the exponential exp(−iν) in terms of the

trigonometric functions, it reads

Q(iν) = ao + i a1ν + (b0 + i b1ν)[cos(νθ)− i sin(νθ)] = 0 (23)

In order for (20) to hold, both the real and imaginary part must be 0, which yields the two

real-valued equations

a0 = −[b0 cos(νθ) + b1 ν sin(νθ)] =: f1(ν, νθ)

a1ν = b0 sin(νθ)− b1 ν cos(νθ) =: f2(ν, νθ)
(24)
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The trigonometric terms disappear and the lag θ is eliminated if the two equations are

squared and then added up. In this way the condition a2
0 + a2

1ν
2 = b2

0 + b2
1ν

2 is obtained. It

is solved for ν = ν" as

ν" =

√
b2
0 − a2

0

a2
1 − b2

1

=

√
µ2 [κ2

c − (κf − κc)2]

(λ + κf − κc)2 − κ2
c

(25)

The second expression, which is the same as the one in the proposition, follows from defi-

nition (21) for the coefficients. For better reference in the further course of the proof, we

also note

b0 > a0 and a1 > b1 (26)

It will be established in a moment that there exist delay parameters θ̃ > 0 such that the

first equation in (24) is satisfied, f1(ν", ν"θ̃) = a0. The critical values satisfy the second

equation, too, since from the determination of ν" by squaring and adding the two equations

one has a2
1ν

2 − f 2
2 (ν", ν"θ̃) = f 2

1 (ν", ν"θ̃) − a2
0 = 0. Hence changing the perspective and

considering θ̃ as given, the purely imaginary number s = iν" is a root satisfying (24) and

thus the characteristic equation (23) or (20).

The minimum value θ = θ" that in eq. (24) equates f1(ν", ν"θ) to a0 is contained in

the interval (0, π/ν"). This is inferred from f1(ν", 0) = −b0 < a0 < b0 = f1(ν", π), where

−b0 < a0 is obvious and the other inequality was already stated in (26).19 Clearly, if θ = θ"

for the lag parameter, the period of the system’s cyclical motions is given by T = 2π/ν",

and T > 2θ" follows from θ" < π/ν".

Having seen that any root s = s(θ) of the characteristic equation crossing the imag-

inary axis is determined as s = ±iν", we now show that with rising θ the root must in

any case move from the negative into the positive half-plane. This kind of transition comes

about at all θ̃ that, by equating f1(ν", ν"θ) to a0, give rise to just this root. Formally,20

d

dθ
Re[s(θ)]

∣∣∣
θ=θ̃,s=iν!

> 0 (27)

19Invoking the properties of the first and second derivative of f1 with respect to ν!θ it can also be

demonstrated that θ! is the only θ in the interval (0,π/ν!) bringing about f1(ν!, ν!θ) = a0.
20Equation (27) is stated as Lemma 1 in Forde and Nelson (2004, p. 276). However, their proof only

appears to establish that the derivative of the real part of the root is nonzero (thus ruling out a degeneracy),

while positivity follows from the context according to which all of the roots are assumed to have negative

real parts when θ is less than the bifurcation value.
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Together with the stability statement for sufficiently short lags θ, the inequality establishes

that all roots of (20) have negative real parts if 0 < θ < θ" (θ" being the smallest θ̃),

whereas once a root has entered the positive half-plane it cannot return into the negative

half-plane. To sum up, the system is asymptotically stable in the first case, and instability

prevails if θ > θ".

To prove the inequality in (27) put P1(s) := ao +a1s, P2(s) := bo + b1s and rewrite the

characteristic equation (20) as Q(s) = P1(s)+P2(s) exp(−θs) = 0. Solving it for exp(−θs)

and taking logs, we have

−θs = ln [−P1(s) /P2(s)]

where s is to be conceived as a function of θ. Differentiating this equation with respect to

θ and evaluating it at θ = θ̃, s = iν = iν" gives us (with P ′
k = dPk/ds, k = 1, 2)

−s − θ
ds

dθ
=

P ′
1P2 − P1P ′

2

P1P2

ds

dθ
=

a1b0 − a0b1

a0b0 − ν2a1b1 + iν (a0b1 + a1b0)

ds

dθ
(28)

Write the denominator of the ratio on the right-hand side as α+ iν β and note that (a1b0−

a0b1) β = a2
1 b2

0 − a2
0 b2

1. In this way the ratio in (28) can be computed as

(a1b0 − a0b1) (α− iν β)

α2 + ν2β2
=

(a1b0 − a0b1) α − iν (a2
1 b2

0 − a2
0 b2

1)

α2 + ν2β2

=: γ − iν δ

On this basis eq. (28) can be more compactly formulated as −iν = (θ + γ − iν δ) (ds/dθ).

Solving it for ds/dθ leads to

ds

dθ
=

−iν (θ + γ + iν δ)

(θ+γ)2 + ν2δ2
=

ν2 δ − iν (θ + γ)

(θ+γ)2 + ν2δ2

It follows that the sign of the real part of ds/dθ is given by the sign of δ. As this term

is proportional to a2
1 b2

0 − a2
0 b2

1, we can refer to (26) to conclude that δ is positive. This

establishes the positive sign in (27) and so completes the proof.
q.e.d

A.2 Proof of Proposition 5

From the proof of Proposition 3(c) it follows that if we put ν = ν", the bifurcation value

θ" of the lag parameter is given as the—unique—value of θ in the interval (0, π/ν") that

satisfies the first equation in (24). Then, observe that the terms ν", a0, b0 entering there can
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be factorized as ν"(µ) = µν̃", a0(µ) = µã0 and b0(µ) = µb̃0, where ν̃", ã0, b̃0 are independent

of µ and fixed in the present context. Dividing the said equation by µ, we can say that

θ" = θ"(µ) is equally determined as the solution of the equation

ã0 + b̃0 cos(ν̃"µθ) + b1 ν̃" sin(ν̃"µθ) = 0 (29)

Clearly, if (29) is fulfilled for some µ1 and θ"
1, then the bifurcation lag θ"(µ) of another µ is

given by ν̃"µθ"(µ) = ν̃"µ1θ"
1 < π; since any other value of θ satisfying (29) implies ν̃"µθ > π

and, thus, θ > θ"(µ).
q.e.d

A.3 Recursive formulation of the stochastic PBT model

The history of the log prices until pt, the log fundamental value vt, and the positions af
t ,

ac
t of fundamentalists and chartists are predetermined in period t. The values of these

variables for the next period, besides the inventory of the market maker am
t in the current

period, are obtained as follows:

am
t = −af

t − ac
t

af
t+1 = κf (vt − pt)

ac
t+1 = κc (pt − pt−θ)

df
t = af

t+1 − af
t

dc
t = ac

t+1 − ac
t

pt+1 = pt + (df
t + dc

t − µ am
t ) /λ

vt+1 =

{
vt + σv δt if t mod τ = 0
vt else

δt ∼ N(0, 1)
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A.4 Variations of parameters in the stochastic model

Figure A1: Variations of κf .

Note: Fixing the other parameters as given in Table 2, which equally applies to the
other figures. See note on Figure 9 for further details.

Figure A2: Variations of κc.
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Figure A3: Variations of θ.

Note: Chartist positions specified by eq. (13), with κ̃c = 0.57 · 20 = 11.40 = const.

Figure A4: Variations of λ.
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