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Pancreatic cancer is the most lethal malignancy of the gastrointestinal tract. Due to

its propensity for early local and distant spread, affected patients possess extremely

poor prognosis. Currently applied treatments are not effective enough to eradicate all

cancer cells, and minimize their migration. Besides, these treatments are associated with

adverse effects on normal cells and organs. These therapies are not able to increase

the overall survival rate of patients; hence, finding novel adjuvants or alternatives is so

essential. Up to now, medicinal herbs were utilized for therapeutic goals. Herbal-based

medicine, as traditional biotherapeutics, were employed for cancer treatment. Of them,

apigenin, as a bioactive flavonoid that possesses numerous biological properties (e.g.,

anti-inflammatory and anti-oxidant effects), has shown substantial anticancer activity.

It seems that apigenin is capable of suppressing the proliferation of cancer cells via

the induction of cell cycle arrest and apoptosis. Besides, apigenin inhibits metastasis

via down-regulation of matrix metalloproteinases and the Akt signaling pathway. In

pancreatic cancer cells, apigenin sensitizes cells in chemotherapy, and affects molecular

pathways such as the hypoxia inducible factor (HIF), vascular endothelial growth factor

(VEGF), and glucose transporter-1 (GLUT-1). Herein, the biotherapeutic activity of

apigenin and its mechanisms toward cancer cells are presented in the current review to

shed some light on anti-tumor activity of apigenin in different cancers, with an emphasis

on pancreatic cancer.
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INTRODUCTION

Pancreatic Cancer: A Brief Representation
Pancreatic cancer (PC) is the fourth leading cause of malignancy-
associated mortality with <5% 5-years survival. Clinical
strategies for the management of this cancer have recently been
developed; however, the mortality rate is still mostly unaltered
(Siegel et al., 2018). This high rate of mortality is attributed to
the aggressive nature of this cancer as well as a lack of efficient
therapy methods (Tempero et al., 2017). The high metastatic
ability of PC cells, and also, their uncontrolled growth have
led to some difficulties in the effective treatment of this life-
threatening disorder.

Although chemotherapy and surgery are the most common
methods in cancer therapy, growing evidence demonstrates
that the aforementioned strategies are only effective in a few
numbers of patients. Consequently, radiotherapy is also used
to enhance the efficacy of chemotherapy. However, it seems
that combination chemotherapy with other anti-tumor agents
would be the best strategy for cancer treatment. This is due to
the fact that cancer cells are able to acquire resistance toward
both radiotherapy and chemotherapy; accordingly, combination
chemotherapy facilitates the disruption molecular pathways
involved in cancer resistance. Subsequently, the effectiveness
of chemotherapy is ameliorated and its clinical trial findings
would be more satisfactory. Finding a suitable anti-tumor agent
in combination with chemotherapy is of importance in poly-
chemotherapy. High anti-tumor activity, multi-targeting, and
minimal toxicity are some of the most important properties of
an ideal anti-tumor agent (Lee et al., 2019b,c, 2020; Tan and
Norhaizan, 2019; Banik et al., 2020; Patra et al., 2020).

To date, a wide variety of strategies were employed in
suppressing chemoresistance, and malignant behavior of PC
cells. Among them, plant derived-natural products are of
importance in PC due to their excellent anti-tumor activity, and
capability of enhancing sensitivity in PC cells into chemotherapy
(Cheng et al., 2018; Yan et al., 2018). In light of this,
much attention was directed toward using plant derived-
natural compounds as potential anti-tumor agents for use
in combination chemotherapy, and for suppressing malignant
behavior and the proliferation of cancer cells (Abotaleb et al.,
2020; Liskova et al., 2020; Varghese et al., 2020). In respect to
the fact that a variety of molecular pathways are involved in the
progression and proliferation of PC cells such as Wnt (Xu et al.,
2020), Nrf 2 (Krajka-Kuzniak et al., 2020), long non-coding RNAs
(lncRNAs) (Yin et al., 2020), andmicroRNAs (miRs) (Wang et al.,
2020) its effective therapy relies on using anti-tumor compounds
with the capability of the induction of onco-suppressor pathways,
and the inhibition of oncogene ones. Notably, naturally occurring
compounds are capable of modulating molecular pathways and
mechanisms. It seems that Akt is an oncogene pathway involved
in the proliferation and viability of PC cells. The administration
of curcumin, as a naturally occurring nutraceutical compounds,
remarkably reduces Akt expression by suppressing its upstream
modulator epidermal growth factor (EGF), leading to a decrease
in growth and malignant behavior of the PC cells (Li et al.,
2019). The curcumin analogs have demonstrated more inhibitory

effects on the proliferation of pancreatic cancer cells due to
their enhanced bioavailability (Nagaraju et al., 2019). Besides,
phytochemicals are able to interfere with metastasis and the
invasion of PC cells by suppressing epithelial-to-mesenchymal
transition (EMT) (Hoca et al., 2019). It is worth mentioning that
plant derived-natural compounds are beneficial in enhancing the
sensitivity of PC in chemotherapy (Zhou et al., 2019). These
studies are in line with the potentiality of herbal-based products
in PC therapy. Herein, we aim to explore the anti-tumor activity
of apigenin, as a natural compound, on different cancers with a
special focus on PC.

Apigenin: Chemical Structure and
Biological Functions
Apigenin (4′,5,7-trihydroxyflavone) is a plant-derived material
belonging to the flavone category that is the aglycone of
several naturally occurring glycosides. The molecular formula
and molecular weight of apigenin are C15H10O5 and ∼270
g/mol, respectively. Flavones and several of their synthetic
derivatives are well-known for their biological and therapeutic
activities, including anti-oxidant, anti-inflammatory, anti-cancer,
ant-genotoxic, anti-allergic, neuroprotective, cardioprotective,
and antimicrobial (Catarino et al., 2015). Apigenin is a yellow
crystalline solid and its main non-pharmaceutical application
is its use to dye wool. Compared to other structurally related
flavonoids, apigenin was a useful and health promoting agent
in recent years due to its low toxicity and significant effects
on normal vs. cancer cells (Gupta et al., 2001). The solid
therapeutic potential of apigenin against various diseases was
proven through evidence achieved by numerous studies. The
prior art has not been able to provide a robust proof to
indicate that apigenin increases the negative metabolic responses
in vivo when consumed as part of a normal diet. However,
the results of some investigations in Swiss mice proposed the
oxidative stress-induced liver damage, which may be due to the
stimulation of multiple genes via apigenin at higher doses (Singh
et al., 2012). The strong anti-oxidant and anti-inflammatory
activities of apigenin are a substantial reason for its possible
cancer preventive effects (Singh et al., 2012). Encouraging
metal chelation, scavenging free radicals, and triggering phase
II detoxification enzymes in cell cultures as well as in vivo
tumor models are also functions of apigenin (Middleton et al.,
2000). More importantly, apigenin significantly contributes in
the prevention of cancer by inducing apoptosis in different cell
lines as well as animal models (Kaur et al., 2008).

Pharmacokinetics of Apigenin: A Brief
Explanation
Owing to outstanding pharmacological activities of apigenin,
a number of studies have exploited the pharmacokinetics of
apigenin to demonstrate its absorption, metabolism, distribution,
and excretion. Such findings are beneficial for directing further
studies to use an optimal dose of apigenin in disease therapy
(Wang et al., 2019a). It was reported that after the consumption
of polyphenols, 5–10% of apigenin may be absorbed (Cardona
et al., 2013). The gastrointestinal tract (GIT) is involved in the
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absorption of apigenin before its arrival in blood circulation and
the liver. Upon aglycone apigenin administration, its immediate
absorption occurs in the intestine (based on a perfused rat
intestinal model) (Liu and Hu, 2002). It is worth mentioning
that different parts of the intestine have various absorption
routes for apigenin. For instance, passive and active carrier-
mediated saturable mechanisms contribute to the absorption of
apigenin in the duodenum and jejunum, while its absorption
occurs in the ileum and colon via passive transportation (Zhang
et al., 2012). However, there are conflicting data about the
rate of apigenin absorption. Although one study is in line
with the fact that apigenin has a low absorption rate after
oral administration (appearing in blood circulation after 24 h)
(Gradolatto et al., 2005), another research confirms its high
absorption rate (appearing in blood circulation after 3.9 h) (Chen
et al., 2007). Consequently, more studies should be conducted to
show the absorption rate of apigenin. In terms of distribution,
various studies were performed and it was reported that apigenin
is distributed in different organs of the body including the kidney,
intestine, and liver. Moreover, half of apigenin intake appeared in
urine and feces (Liu and Hu, 2002; Gradolatto et al., 2005; Cai
et al., 2007; Wan et al., 2007).

Increasing evidence demonstrates that the metabolism of
apigenin consists of two major phases. The phase I metabolism of
apigenin occurs in the liver, and at the presence of liver enzymes
such as cytochrome P450 with collaboration of nicotinamide
adenine dinucleotide phosphate (NADPH) and flavin-containing
monooxygenase (FMO) (Cardona et al., 2013; Tang et al.,
2017). Enteric and enterohepatic cycling participate in the
biotransformation of apigenin in phase II metabolism (Chen
et al., 2007). Glucuronidation and sulfation are essential for
phase II metabolism (Tang et al., 2017). During metabolism,
apigenin is bio-transformed into metabolites including luteolin
(Lut) and sulfated and glucuronidated conjugates (Chen et al.,
2003; Gradolatto et al., 2005). Regarding the excretion, apigenin
appeared in both urine and feces with more concentration in
urine. The age and sex of rats are crucial factors that affect
the excretion of apigenin. Furthermore, it was shown that
metabolism and the excretion of apigenin occur in a slow process,
confirming accumulation of apigenin in the body (Gradolatto
et al., 2005).

Chemistry of Apigenin: An Overview
Apigenin and its derivatives are found in several sorts of plants,
e.g., fruits, vegetables, nuts, citrus, tea, chamomile, thyme, celery,
and celeriac in its glycoside form (Figure 1) (Yan et al., 2017;
Wang et al., 2019b). Among glycoside forms, apigenin-7-O-
glucoside is the major one. In terms of solubility, apigenin is
not soluble in water and non-polar solvents (e.g., silicon fluid),
while it is soluble in organic solvents such as dimethylsulfoxide
(DMSO) (Li et al., 1997; Zhang et al., 2012; Lakshmanan et al.,
2015; Wang et al., 2017). It was demonstrated that glycoside and
acylated derivatives of apigenin have more solubility in water,
compared to apigenin (Shukla and Gupta, 2010). Such changes
in the hydrophilicity of apigenin affects its absorption and
bioavailability. It was shown that when apigenin is attached into
β-glycosides, it possesses the highest bioavailability among other

forms (Patel et al., 2007). The excellent therapeutic and biological
activities of apigenin are due to the presence of glucosides that
promote the stability of apigenin (Gurung et al., 2013). Regarding
its storage, it is recommended that apigenin be stored at −20◦C,
since it is unstable at room temperature (Patel et al., 2007). It
is worth mentioning that the degradation of natural compounds
rely on the presence of special structures. For instance, hydroxyl
groups enhance degradation, while sugar moiety and hydroxyl
groups reduce the rate of degradation (Biesaga, 2011).

In respect to the poor bioavailability of apigenin resulted
from its slow absorption and metabolism, several studies
were conducted on developing nanocarriers for enhancing its
bioavailability and improving its therapeutic effects. To date,
various types of nanoparticles including liposomes and polymeric
nanoparticles were developed for the delivery of apigenin (Karim
et al., 2017; Pápay et al., 2017a,b; Telange et al., 2017; Alshehri
et al., 2019). Notably, they were able to remarkably enhance
therapeutic effects of apigenin and, accordingly, its ability in
the treatment of different disorders. In section Apigenin-loaded
nanovehicles, we specifically discuss role of nanoparticles in
promoting anti-tumor activity of apigenin against cancer cells
along with enhancing the efficacy of chemotherapy.

APIGENIN FOR CANCER THERAPY

In addition to anti-inflammatory and anti-oxidant effects,
apigenin possesses a significant anti-cancer property in different
types of cancer cells, such as breast cancer (Perrott et al., 2017),
liver cancer (Qin et al., 2016), PC (Johnson and de Mejia, 2013),
prostate cancer (Shukla et al., 2014a), lung cancer (Pan et al.,
2013), and colon cancer (Lee et al., 2014). In this section, we
provide discussions about the anti-tumor activity of apigenin,
and its efficacy in negatively affecting both the proliferation and
migration of cancer cells.

Carcinogenesis is known as a multistage procedure that is
accompanied by a series of genetic and epigenetic alterations,
resulting in the initiation, promotion, and development of cancer
(Farhood et al., 2019; Mortezaee et al., 2019a; Woo et al., 2019).
Cancer treatment strategies include eradicating tumor cells by
stimulating cell apoptosis or preventing cancer cell proliferation
by inducing cell cycle arrest (Mortezaee et al., 2019b,c,d). With
these remedies, cancer turns into a chronic disease and the
survival of patients can be prolonged. Encouraging apoptosis or
autophagy, regulating cell cycle, preventing tumor cell migration
and invasion, and triggering the patient’s immune response
were suggested as current strategies (Najafi et al., 2018, 2019a,b;
Hashemi Goradel et al., 2019). So far, all of these antitumor
activities of apigenin within diverse types of tumors were
reported in vitro and in vivo models. Table 1 represents an
overview of anti-cancer features of apigenin and the involved
signaling pathways.

Apigenin in Induction of Cell Cycle Arrest
Another important and key feature of cancer is its uncontrolled
and rapid cell division (Farhood et al., 2020). Therefore,
targeting the growth of cancer cells is pivotal for suppressing
cancer. One of the abnormalities in cancer cells is proliferation
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FIGURE 1 | Structures and sources of apigenin and its glycosidic, glucuronide, acetylated, and methyl ester derivatives. Reprinted with modification from Salehi et al.

(2019).

without paying attention to checkpoints of cell cycle. Notably,
phytochemicals have demonstrated great potential in the
activation of checkpoints and the induction of cell cycle arrest
in cancer cells to limit their growth (Farooqi et al., 2019;
Aggarwal et al., 2020). Based on the documentation presented,
one of the prominent roles of apigenin is to modulate the
cell cycle and block the cellular phase at the G2/M or G0/G1
checkpoint, which hinders cancer cell proliferation. In a study
which was conducted to determine the effect of apigenin in
human colorectal carcinoma HCT116 cells, it was shown that
treatment with this flavone (0–50µM) potentially inhibits cell
growth through inducing cell arrest at the G2/M phase; it is
associated with the suppression of the expression level of both
cyclin B1 as well as both Cdc2 and Cdc25c which are cyclin B1
activating partners, and also an increase of the expression level
of cell cycle inhibitors, p53 and p21WAF1/CIP1 (Lee et al., 2014).
Also, in experiments performed by the Western blot technique,
it was found that the expression levels of cyclin A, cyclin B, and
cyclin-dependent kinase-1 (CDK1) were repressed by apigenin
treatment in human breast cancer cell line MDA-MB-231. Based
on the findings, apigenin (0–40µM) led to the up-regulation of
p21WAF1/CIP1 and enhanced the interaction of p21WAF1/CIP1 with
a nuclear proliferating cell antigen (PCNA) preventing cell cycle
development at the G2/M stage (Tseng et al., 2017).

The inhibitory effect of apigenin on the cell cycle can be
related to its impact on genetic materials. Synthesis of genetic
materials is a critical step for the proliferation of cancer cells,
and any impairment or damage in DNA can lead to growth
inhibition (Gourley et al., 2019). Apigenin follows a samemethod
in suppressing the proliferation of cancer cells. It seems that

in a time- and dose-dependent manner, apigenin (0–80µM)
causes DNA damage and encourages G2/M phase cell cycle arrest
through ataxia telangiectasia mutated (ATM) modulation (Meng
et al., 2017).

Cancer cells need high energy in order to grow and glucose
transporter-1 (GLUT-1) participates in cancer proliferation by
providing high energy via enhancing glucose uptake. Inhibition
of GLUT-1 is a promising strategy in cancer therapy, and
phytochemicals have demonstrated great potential in this
way (Zambrano et al., 2019). Considering the functions of
apigenin (10–160µM) in adenoid cystic carcinoma (ACC),
it causes G2/M-phase arrest, and ACC-2 cell growth and
proliferation inhibition in a dose- and time-dependent manner
via lessening the expression level of GLUT-1 (Fang et al.,
2015).

As it was mentioned earlier, DNA damage is induced
by apigenin to trigger cell cycle arrest. One of the ways
to stimulate DNA damage is by providing oxidative stress.
Enhancing the generation of reactive oxygen species
(ROS) is associated with oxidative stress that subsequently,
induces DNA damage in cancer cells, and inhibits their
proliferation (Shuai et al., 2019; Srinivas et al., 2019).
Through apigenin (12.5–100µM) treatment in human
papillary thyroid carcinoma BCPAP cells, G2/M cell cycle
arrest occurred by down-regulating the Cdc25c expression
level and also, the accumulation of ROS produced were
stimulated which triggered DNA damage (Zhang et al.,
2015).

Moreover, cell cycle arrest at the G0/G1 or S checkpoints
can be induced by apigenin. Apigenin leads to G1 arrest of
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TABLE 1 | Selected in vitro and in vivo studies on the therapeutic effects of apigenin in various cancers.

Cancer Dose (s) Target gene Model Type of cell line Effect (s) References

Cervical cancer 40µM CK2α In vitro HeLa Inhibits cell self-renewal

capacity

Liu et al., 2015a

Head and neck

squamous cell

carcinoma

40µM CD44, NANOG,

and CD105

In vitro HSC-3, HN-8, and

HN- 30

Inhibits the expression of

cancer stem cell marker

Ketkaew et al., 2017

Osteosarcoma 50 µg/m Wnt/β-catenin In vitro U2OS and MG63 Inhibits proliferation and

invasion

Liu et al., 2015b

Mesothelioma 50µM, 20 mg/kg AKT and c-Jun

phosphorylation/

NF-κB

In vitro, in vivo Malignant

mesothelioma (MM)

cells

Induces Apoptosis Masuelli et al., 2017

Oral squamous cell

carcinoma

100µM cyclin D-1 and E In vitro SCC-25, HaCaT Inhibits proliferation; Induces

apoptosis

Maggioni et al., 2013

Papillary thyroid

carcinoma

25µM Cdc25C In vitro BCPAP Cell cycle arrest and

autophagy induction

Zhang et al., 2015

Adenoid cystic

carcinoma

40µM GLUT-1 In vitro ACC-2 Inhibits proliferation; Induces

apoptosis

Fang et al., 2015

Renal cell carcinoma 20µM, 30 mg/kg p53 In vitro, in vivo ACHN, 786-0, and

Caki-1

Induces cell cycle arrest Meng et al., 2017

Glioblastoma 25µM c-Met In vitro U87MG and U373MG Inhibits self-renewal

capacity

Kim et al., 2016

50µM TGF-b1 In vitro GL-15 Inhibits angiogenesis Freitas et al., 2011

Ovarian cancer 20,40µM FAK In vitro A2780 Inhibits adhesion, migration,

and invasion

Hu et al., 2008

20,40µM CK2α In vitro SKOV3 Inhibits the self-renewal

capacity

Tang et al., 2015

Leukemia 60µM caspase-9 and

caspase-3

In vitro HL60 Induces apoptosis Wang et al., 1999

HL60 (50µM) and

TF1 (30µM)

JAK/STAT In vitro HL60 / TF1 Induces cell cycle arrest Ruela-de-Sousa et al.,

2010

40µM, 20, 40

mg/kg

Akt, JNK In vitro, in vivo U937 Induces apoptosis Budhraja et al., 2012

Melanoma 40µM caspase-3/ PARP/

ERK1/2 proteins/

p-AKT and

p-mTOR

In vitro A375, C8161 Inhibits proliferation and

invasion; Induces apoptosis,

and cell cycle arrest

Zhao et al., 2017a

20µM FAK/ERK1/2 In vitro A2058, A375 Inhibits metastasis Hasnat et al., 2015

20µM, 150 mg/kg MMP-2, MMP-9,

VEGF, and Twist1

In vitro, in vivo A375, G361 Inhibits metastasis Cao et al., 2016

Prostate cancer 20µM cyclin D1, D2, and

E; WAF1/p21

In vitro LNCaP Inhibits cell proliferation;

Induces apoptosis

Gupta et al., 2002

20µM, 20,50

µg/kg

XIAP, c-IAP1,

c-IAP2/ Bcl-xL

and Bcl-2 and Bax

protein

In vitro, in vivo PC-3 and DU145 Induces cell cycle arrest and

apoptosis

Shukla et al., 2014b

20µM E-cadherin/ snail

and vimentin

In vitro DU145 Inhibited migration and

invasion; cell cycle arrest

Zhu et al., 2015

20 and 50 µg/kg IKK – IκBα In vivo Inhibits tumorigenesis

properties

Shukla et al., 2015b

20µM, 50 µg/ 50

µg/Kg

IKKα; NF-κB/p65 In vitro, In vivo PC-3 and 22Rv1 Inhibits cell proliferation,

invasion

Shukla et al., 2015a

25µM Smad2/3 and

Src/FAK/Akt

In vitro PC3-M and LNCaP

C4-2B

Inhibits cell proliferation and

metastases

Mirzoeva et al., 2014

25µM p21 and p27;

caspases-8,−3

and TNF-α;

In vitro PC3 Induces apoptosis and cell

cycle arrest; suppresses

stem cell migration

Erdogan et al., 2016

Lung cancer 20µM GLUT 1 In vitro H1299 and H460 Inhibits cell proliferation;

Induces apoptosis

Lee et al., 2016

(Continued)
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TABLE 1 | Continued

Cancer Dose (s) Target gene Model Type of cell line Effect (s) References

40µM PI3K/Akt In vitro A549 Inhibits cell proliferation,

migration, invasion

Zhu et al., 2017

Breast cancer 40µM p-JAK1, p-JAK2

and p-STAT3;

caspase-8,

caspase-3; PARP

In vitro BT-474 Inhibits cell proliferation;

Induces apoptosis

Seo et al., 2015a

40µM, 5, 25

mg/kg

cyclin A, cyclin B,

and

CDK1;p21WAF1/CIP1;

In vivo, In vitro MDA-MD-231 Induces cell cycle arrest Tseng et al., 2017

40µM caspase3, PARP

and Bax/Bcl-2

In vitro MDA-MB-231 and

T47D

Inhibits cell proliferation;

Indices apoptosis

Cao et al., 2013

30µM IFN-γ-; PD-L1;

STAT1

In vitro MDA-MB-468 and 4T1 Enhances the immune

responses

Coombs et al., 2016

40µM p-JAK2 and p-

STAT3; VEGF

In vitro SKBR3 Induces apoptosis Seo et al., 2015b

60µM caspase-8,

caspase-3 and

PARP; JAK2 and

STAT3

In vitro MDA-MB-453 Inhibits cell proliferation;

Induces apoptosis

Seo et al., 2014

Colorectal cancer 40µM Wnt/β-catenin In vitro SW480 Inhibits proliferation,

invasion and migration

Xu et al., 2016

25µM cyclin B1, Cdc2,

and Cdc25c

In vitro HCT116 Inhibits proliferation; Induces

autophagy and apoptosis

Lee et al., 2014

40µM, 20 mg/kg NEDD9 In vitro, in vivo DLD1 and SW480 Inhibits proliferation,

invasion and migration

Dai et al., 2016

40µM, 50 mg/kg TAGLN; MMP-9;

Akt

In vitro, in vivo SW480, DLD-1, and

LS174T

Inhibits proliferation,

invasion and migration

Chunhua et al., 2013

cell cycle progression in human prostate cancer LNCaP cells.
The expression level of some proteins like cyclin D1, D2, and
E and their activating partners CDK2, 4, and 6 were reduced
noticeably, while the expression of p21WAF1/CIP1 and p27KIP1

were boosted simultaneously by apigenin treatment (10µM).
The induction of p21WAF1/CIP1 seems to be transcriptionally
up-regulated and it was dependent on p53 (Gupta et al.,
2002). In addition, cell cycle arrest at G0/G1 as well as G2/M
checkpoints were triggered through treatment with apigenin
(100µM) in an oral squamous cell carcinoma cell line SCC-
25. Also, it was related to the decreased expression of cyclin
D1 and E, and the inactivation of CDK1 (Maggioni et al.,
2013).

Notably, cancer cells are able to acquire resistance to
chemotherapy-mediated cell cycle arrest. Administration of
apigenin is beneficial in suppressing chemoresistance, and
sensitizing cancer cells in chemotherapy-mediated cell cycle
arrest. It is held that apigenin (1–200µM) is able to induce cell
cycle arrest at the G2/M phase. Notably, in this study, it was
demonstrated that apigenin induces cell cycle arrest in a dose-
dependent manner, so that the highest concentration of apigenin
(200µM) induces cell cycle arrest at the S phase and the highest
inhibitory effect on the proliferation of imatinib-resistant cancer
cells (Solmaz et al., 2014). Taking everything into account, the
results presented reveal that apigenin may regulate cell cycle
progression in a dose-dependent and/or cell line specific manner
(Figure 2).

Apigenin and Programmed Cell Death
Apoptosis, a type of programmed cell death, involves energy-
dependent cascade events and diverse distinct morphological
characteristics (Elmore, 2007; Mortezaee et al., 2019d). There
are two main cascades involved in the apoptosis process: the
extrinsic (death receptor) pathway as well as the intrinsic
(mitochondrial) pathway (Chong et al., 2020). Apoptosis is a
vital procedure in which undesirable cells are removed under
physiological circumstances (Sun et al., 2020). An important
feature of cancer cells that distinguishes them from normal cells
is their escape from apoptosis (Deng et al., 2020). Therefore,
one of the imperative strategies to fight cancer cells and to treat
cancer is to stimulate apoptosis of these cells, in which they target
apoptotic pathways with chemotherapeutic agents (Liu et al.,
2020; Maruszewska and Tarasiuk, 2020). It was revealed that
apigenin can be considered as an influential factor in inducing
apoptosis through the intrinsic or extrinsic pathway of human
cancer cells.

The intrinsic apoptotic pathway is regulated via the Bcl-2
family of proteins, such as Bcl-2, Bcl-xL, Bcl-w, and Mcl-1,
which suppress this pathway, while Bad, Bak, Bax, Bid, and Bim
cause apoptosis (Billard, 2012; Vela and Marzo, 2015; Zheng
et al., 2016). Pro-apoptotic protein up-regulation and/or pro-
survival members down-regulation are the functions of apigenin
(20µM), in that way the intrinsic apoptotic cascade is induced.
An apoptosis event was caused through the treatment of the
androgen-refractory human prostate cancer cell lines PC-3 and
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FIGURE 2 | Effect of apigenin on autophagy in cancer. Apigenin affecting ROS generation, DNA damage, and cell cycle arrest could induce autophagy and cell cycle

arrest.

DU145 and also, it led to a decrease in cell feasibility triggered by
a decline in Bcl-2 and Bcl-xL and an enhancement in the active
form of the Bax protein, attended by dose-dependent prevention
of XIAP, c-IAP1, c-IAP2, and survivin proteins (Shukla et al.,
2014b). In addition, apigenin treatment (0–100µM) in human
promyelocytic leukemia HL-60 cells leads to a diminution in
mitochondrial outer membrane potential, releasing cytochrome
c from the mitochondria into the cytosol, and encouraging
both procaspase-9 processing and cell apoptosis through the
intrinsic apoptotic pathway (Wang et al., 1999). Furthermore,
apigenin has also been reported to induce apoptosis by altering
the ratio of pro-apoptotic to pro-survival mitochondrial proteins.
Ratio of Bax / Bcl-2 in favor of cell apoptosis is improved in
prostate cancer cells by the means of apigenin (10µM) (Gupta
et al., 2002). Obviously, apigenin alone is capable of inducing
mitochondrial-dependent apoptosis in various kinds of cancer
cells (Figure 3) (Das et al., 2012; Lim et al., 2016;Wang and Zhao,
2017).

Moreover, it seems that apigenin is advantageous in
boosting chemotherapy-mediated cell apoptosis via affecting
mitochondrial proteins. It is said that the administration of
apigenin (20µM) enhances the expression of the pro-apoptotic
factor Bim, while it decreases expression of Mcl-1. So, co-
administration of apigenin with a Bcl-2 inhibitor Navitoclax
promotes mitochondria-mediated cell apoptosis (Shao et al.,
2013). In addition to its role in inducing an intrinsic apoptotic
pathway, apigenin has a function in inducing the apoptosis
process in cells through an extrinsic apoptotic pathway or even

both the extrinsic and intrinsic pathways. To further examine
the role of apigenin in human breast cancer BT-474 cells, Seo
et al. carried out a series of experiments and it was reported
that apigenin treatment neither affected the levels of Bcl-2 and
Bax nor declined the mitochondrial membrane potential. On
the other hand, extrinsic, caspase-dependent apoptosis created
by up-regulating the levels of cleaved caspase-8 and cleaved
caspase-3 are induced through this compound treatment (20,
40, and 80µM) (Seo et al., 2015a). Chen et al., studied the
effects of apigenin (0–160µM) on non-small cell lung cancer
(NSCLC) cells and pointed out that in a p53-dependent manner,
the levels of death receptor 4 (DR4) and death receptor 5 (DR5)
were up-regulated. Thus, sensitizing NSCLC cells to TRAIL-
induced apoptosis. Furthermore, it was revealed that exposing
lung cancer cells to apigenin (0–160µM) induces apoptosis via
the up-regulation of pro-apoptotic factors Bad and Bax, and the
down-regulation of anti-apoptotic factors Bcl-xl and Bcl-2 (Chen
et al., 2016). In addition, a good example of the role of apigenin
in both intrinsic and extrinsic apoptosis pathways is observed
in human keratinocytes and organotypic keratinocytes, which
increases UVB-induced apoptosis through both pathways. Bax
localization and cytochrome c release were altered by apigenin (0,
10, and 20 µmol/L). Overexpression of the pro-survival protein
Bcl-2 and the dominant-negative form of Fas-associated death
domain protected against apigenin-induced apoptosis (Figure 4)
(Abu-Yousif et al., 2008).

Autophagy is a process known as type 2 non-apoptotic cell
death (Hazari et al., 2020). The sequestration of cytoplasmic
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FIGURE 3 | Effect of apigenin on the intrinsic pathway of apoptosis in cancer cells.

material into vacuoles for bulk degradation by lysosomal
enzymes is the feature of this regulated mechanism (Galluzzi and
Green, 2019). In other words, a cell digests its own cytoplasmic
materials within lysosomes and results in the decomposition
of macromolecules through this conserved dynamic process
(Korolchuk and Rubinsztein, 2011; Chaabane et al., 2013; Yang
and Klionsky, 2020). To date, there is a growing body of
evidence to suggest that the association between autophagy and
cancer is complicated and contradictory (Wen and Klionsky,
2019; Galluzzi and Kroemer, 2020). Autophagy performs various
functions in the body; during starvation, this mechanism serves
as a cell survival pathway by preparing recycled metabolic
substrates as well as keeping energy homeostasis (Sameiyan
et al., 2019). Besides, it results in cell death, in association
with an apoptosis pathway or as a backup mechanism (Nazim
et al., 2020). Apigenin-induced autophagy was first detected
in erythroleukemia TF1 cells. Apigenin exposure (0–200µM)
leads to the onset of autophagy lacking apoptosis (Ruela-de-
Sousa et al., 2010). Since then, more evidence demonstrated that
autophagy could be triggered by apigenin and also under diverse
conditions, it acts as tumor suppressive or tumor protective
(Sung et al., 2016; Salmani et al., 2017).

Investigating the impact of apigenin (20µM) on human
keratinocytes, Tong et al. reported that autophagy was induced
through AMPK activation by this chemo-preventive bioflavonoid

(Tong et al., 2012). Cao et al. performed a similar series
of experiments to show that in human breast cancer T47D
and MDA-MB-231 cells treated with apigenin (0–80µM), both
apoptosis and autophagy pathways were triggered through
the accumulation of acidic vesicular organelles (AVOs) and
LC3-II, a marker of Atg5/Atg7 dependent autophagy. In
addition, further studies have revealed that apigenin-induced
apoptosis is significantly enhanced during treatment with the
3-methyladenine (MA) autophagy inhibitor. It shows that
autophagy triggered by apigenin performs a tumor protective role
in apigenin-caused cytotoxicity (Cao et al., 2013). Similarly, Lee
et al. demonstrated that in human colon cancer HCT116 cells,
apigenin (0–50µM) simultaneously induces both apoptosis as
well as autophagy. Autophagy played a cell protective role in
apigenin-induced cell apoptosis as well (Lee et al., 2014).

Beclin-1 is able to regulate the dynamic autophagy procedure
through the formation of autophagosomes (Liang et al.,
2019; Vega-Rubín-de-Celis, 2019). In various kinds of cancers
including solid Ehrlich carcinoma, Beclin-1 is regularly down-
regulated. Gaballah et al. published a paper in which they
described that combining 5-FU with apigenin (100 mg/kg/day)
pointedly improved Beclin-1 compared to the vehicle-treated
control mice (Gaballah et al., 2017). Furthermore, according to
the study of Wang et al. autophagy is induced in macrophages
during apigenin treatment (10, 25, and 50µM), as evidenced
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FIGURE 4 | The effect of apigenin on extrinsic pathway of apoptosis.

by the further regulation of Beclin-1, Atg5, Atg7, and the
presence of LC3-II. Further, based on experiments, inhibition of
autophagy by 3-MA pretreatment remarkably boosted apigenin-
induced apoptosis. Also, signifying that the autophagy caused
by apigenin protected macrophages from apigenin-induced
cytotoxicity (Wang et al., 2015).

In contrast, through investigations into human papillary
thyroid carcinoma BCPAP cells, it was discovered that treatment
with apigenin (12.5, 25, and 50µM) leads to autophagic
cell death following p62 degradation, Beclin-1 accretion as
well as LC3 protein conversion. Interestingly, additional
examination demonstrated that apigenin-induced cytotoxicity
was significantly protected via co-treatment with 3-MA, which
indicated that apigenin-induced autophagy here is more likely to
be a tumor suppressor (Zhang et al., 2015). Together, according
to cancer cell types, autophagy has a diverse role in apigenin-
induced cytotoxicity.

In most reports, the function of apigenin-triggered autophagy
is to mediate the acquired resistance of cancer cells versus cell
apoptosis, evidenced as improved cell apoptosis encouraged by
apigenin when in cotreatment with autophagy inhibitors. Under
this circumstance, the autophagy performs cytoprotective tasks

in apigenin-induced cytotoxicity in cancer cells. In contrast,
in human papillary thyroid carcinoma BCPAP cells, autophagy
operates as an executioner through encouraging autophagic cell
death (Zhang et al., 2015).

As it was mentioned, apigenin is capable of inducing both
autophagy and apoptosis, as major arms of programmed cell
death (PCD). However, apigenin-mediated autophagy results in
the enhanced survival of cancer cells, and their resistance into
chemotherapy. This is due to the dual role of autophagy in cancer
cells. Increasing evidence demonstrates that autophagy works
like a double-edged sword in cancer cells, and it may function
as a pro-survival or pro-death mechanism (Huang et al., 2019b;
Wang et al., 2019b). In the case of apigenin, autophagy induction
is correlated with an increase in the survival of cancer cells, and
its down-regulation by autophagy inhibitors can pave the road to
effective cancer therapy.

Apigenin and Cancer Metastasis
Tumors are divided into benign and malignant types based on a
number of criteria including location and growth characteristics,
and tissue origin. Lack of migration is a prominent feature of
benign tumor cells. Unlike malignant tumor cells which are
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highly unstable and capable of metastasizing and attacking other
tissues to cause more lesions, benign tumor cells grow only
at the primary site of the tumor and cause lesions and can
be eliminated through clinical surgery. Most patients die with
varying grades of tumor metastasis, not in the clinical practice
of the primary disease. Currently, metastases, accompanied by
chemoresistance development as well as tumor recurrence, are
still key obstructions in operative cancer treatment (Murugan,
2019; Zhang, 2019; Zhuang et al., 2019). It was explored that
for in vitro cancer cells and in vivo animal models, apigenin can
suppress cancer cell migration and invasion (Chien et al., 2019;
Lee et al., 2019a; Tong et al., 2019).

Plant derived-natural compounds are able to target molecular
signaling pathways involved in cancer growth and metastasis
(Zhang et al., 2019; Liao et al., 2020). Accumulating data exhibit
that the PI3K/Akt signaling pathway plays a significant role
in cancer growth and metastasis. Inhibition of the PI3K/Akt
signaling pathway inhibits the malignant behavior of cancer cells,
and restricts their migration (Huang et al., 2019a; Zheng et al.,
2019). Tumor cell invasion and migration in a dose-dependent
manner are repressed via apigenin (0-20µM) in prostate cancer
DU145 cells (Zhu et al., 2015). Concerning the effect of apigenin
on A375 and C8161 melanoma cell lines, it was found that
40µM of this compound remarkably prevented cell migration
and invasion through impacting the AKT/mTOR pathway (Zhao
et al., 2017a). Also, an experiment of apigenin treatment (0–
40µM) in a human A549 lung cancer cell line revealed that this
compound was able to arrest Akt phosphorylation and target
the PI3K/AKT signaling pathway, leading to anti-migration and
anti-invasion effects (Zhou et al., 2017). In a study conducted by
Dai et al., it was shown that apigenin (0–50µM) could inhibit
cell migration, invasion, and metastasis through regulating the
NEDD9/Src/AKT cascade in the colorectal cancer cell lines
DLD1 and SW480 (Dai et al., 2016).

Moreover, in vitro study has shown that apigenin lowered
the migration and invasion of cancer cells by decreasing
FAK expression in human ovarian cancer A2780 cells. Also,
further experiments have revealed the spontaneous metastasis
suppression of A2780 cells implanted into the ovary of nude
mice in vivo by apigenin treatment (0–40µM) (Hu et al.,
2008). Additionally, cell proliferation and migration were
prohibited through apigenin exposure by up-regulating and
down-regulating transgelin and MMP-9 expression, respectively
via decreasing the phosphorylation of Akt. Therefore, tumor
growth and metastasis to the liver and lung were repressed by
apigenin treatment (Figure 5) (Lieben, 2017).

APIGENIN-LOADED NANOVEHICLES

Overcoming poor bioavailability and low solubility of apigenin
requires using carriers for targeted delivery of apigenin that
remarkably enhances the anti-tumor activity of apigenin
(Mahmoudi et al., 2019). Fortunately, different nanocarriers were
designed for the delivery of apigenin and for reducing the survival
and viability of cancer cells. On the other hand, as mentioned
before, resistance of cancer cells to chemotherapy is an increasing

challenge in the field of cancer therapy. Hence, using carriers
for protecting and delivering of biotherapeutic agents not only
ameliorates its anti-tumor activity but also sensitizes cancer cells
to the inhibitory effects of chemotherapeutic agents (Mahmoudi
et al., 2019; Jamaledin et al., 2020).

In light of this, several sorts of nanosized vehicles were
exploited to encapsulate and liberate apigenin at the targeted
site. Liposomes are ideal candidates for delivery of anti-tumor
drugs with satisfactory results at preclinical experiments. Since
liposomes contain a hydrophilic core and a hydrophobic bilayer,
this nanocarrier can be applied for the delivery of both
hydrophobic and hydrophilic drugs (Mickova et al., 2012; Sen
and Mandal, 2013). In respect to the capability of liposomes
in encapsulating several drugs, they can significantly improve
the therapeutic effects of their cargo (Hu and Zhang, 2012;
Gowda et al., 2013; Sen et al., 2014). It is noteworthy that
liposomes were used for the co-delivery of apigenin and 5-
fluorouracil in colorectal cancer therapy. Using liposomes is
correlated with an increase in the cytotoxicity of apigenin
and 5-fluorouracil against colorectal cancer cells (Sen et al.,
2019). Apigenin- and 5-fluorouracil-loaded liposomes are able to
efficiently inhibit angiogenesis and induce apoptosis in colorectal
cancer cells, leading to a decrease in the proliferation and
viability of colorectal cancer cells. It is worth mentioning that
using liposomes for the delivery of apigenin and 5-fluorouracil
significantly promotes the capability of these anti-tumor agents
in the up-regulation of AMPK, and the inhibition of the
Warbrug effect (Sen et al., 2019). The study demonstrates that
such nanocarriers enhance the anti-tumor activity of apigenin
and the efficacy of chemotherapy; in which, it exerts a more
inhibitory effect on the proliferation of cancer cells by the
induction of apoptosis, and by disrupting glycolysis metabolism,
and promoting the efficacy of targeting molecular pathways.
Apigenin-loaded liposomes have demonstrated great potential
in disrupting the cell membrane of cancer cells which is an
underlying mechanism for stimulation of cell cycle arrest at the
G2/M phase (Banerjee et al., 2017). In addition to colorectal
cancer, apigenin/tyroservatide-loaded liposomes were applied for
lung cancer therapy. It was shown that these delivery systems are
able to remarkably stimulate apoptosis and cell cycle arrest at the
G2 phase in A549 cells (Figure 6) (Jin et al., 2017). This is due to
providing targeted delivery and enhancing the accumulation of
apigenin in cancer cells.

Apigenin-loaded nanoparticles were applied in the
treatment of hepatocellular carcinoma that resulted in
enhanced cytotoxicity of apigenin against cancer cells.
This is due to increased availability of apigenin in blood
circulation and accumulation in the liver (Bhattacharya
et al., 2018). Interestingly, nanocarriers enhanced
cytotoxicity of apigenin against cancer cells without
affecting normal cells (high biocompatibility) (Jangdey et al.,
2019).

Surface functionalization of nanoparticles significantly
enhances their capability to target cancer cells. Surface
modification can be directed toward targeting special receptors
undergoing overexpression in cancer cells. For instance, a cluster
of the differentiation protein CD44 shows high expression in
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FIGURE 5 | The inhibitory effect of apigenin on the metastasis of cancer cells.

cancer cells, and sodium hyaluronate can be used for surface
modification of nanoparticles, and targeting CD44 in cancer
cells (Dosio et al., 2016). Such a strategy was employed for the
delivery of apigenin. It was reported that sodium hyaluronate
nano-assemblies are capable of enhancing the accumulation of
apigenin in lung cancer cells via targeting CD44 and providing
receptor-mediated endocytosis (Zhao et al., 2017b). The surface
decoration of nanocarriers using hyaluronic acid (HA) offers
the possibility of targeting CD44 receptors. On the other
hand, HA functionalization of nanovehicles can indeed change
physicochemical properties, alter stability, toxicity, and influence
nanoparticle biodistribution and efficiency in vitro and in vivo
(Wang et al., 2016; Xu et al., 2017; Alves et al., 2019). In light
of this, HA decorated-lipid nanoparticles were employed for
the delivery of anti-tumor therapeutics (Figure 7) (Mahmoudi
et al., 2019). The finding showed that co-delivery of apigenin

and docetaxel impose synergistic anti-cancer effects toward
A549 cells. In addition, surface coating lipid nanocarriers with
hyaluronic acid enhanced the cellular uptake in comparison
with pristine lipid NPs (Mahmoudi et al., 2019). Other carrier
systems based on HA (e.g., chemically crosslinked hydrogel
nanocomposites or in situ gel at body temperatures, known as
thermosensitive hydrogel) are other valuable options to deliver
biotherapeutics to the human body (Kim et al., 2018; Makvandi
et al., 2019, 2020; Tan et al., 2019).

Taking these findings into account, nanocarriers are
promising candidates in the delivery of apigenin for cancer
therapy. They are capable of exponentially improving the
cytotoxicity of apigenin toward tumor cells. Besides, they
promote bioavailability and cellular uptake of apigenin, leading
to an increase in the therapeutic efficacy of apigenin (Das et al.,
2013; Jangdey et al., 2017).
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FIGURE 6 | (A) Synergistic effects of apigenin-loaded TPGS liposomes and tyroservatide (YSV) in A549 cells. (B) Transmission electron microscopy (TEM) image of

apigenin-loaded D-alpha-tocopheryl polyethylene glycol (TPGS) liposomes. Diagram of tumor volumes (C) and morphology (D) after 15 days. Reprinted with

permission from Jin et al. (2017).

APIGENIN AND PANCREATIC CANCER
THERAPY

Dietary cancer prevention and chemoprevention are two main
diet-related prevention strategies in cancer studies (Singletary,
2000). Cancer chemoprevention uses synthetic, natural, or
biologic chemicals in the pharmacologic intervention struggling
against carcinogenesis (Tsao et al., 2004). However, dietary
cancer prevention is defined as a modified pattern of food
consumption along with lifestyle alteration that reduces cancer
risk (Schatzkin and Kelloff, 1995; Singletary, 2000). Recently,
food-based strategies for pancreatic cancer prevention have
been studied using epidemiological evidence. These studies
demonstrated an inverse relationship between vegetable and fruit
consumption and the risk of pancreatic cancer development
(Larsson et al., 2006; Polesel et al., 2010).

Apigenin is a flavone usually found in vegetables and fruit
such as citrus (e.g., grapefruit) (Cirmi et al., 2016). The fruits
and vegetables enriched in apigenin have shown an anti-
cancer effect. The outcomes are primarily attributed to their

anti-inflammatory and antioxidants effects (Madunić, Madunić
et al., 2018). Apigenin has free radical scavenging and anti-
inflammatory characteristics. It is also considered as an anti-
cancer agent, reducing the proliferation of cancer cells, while
having no effects on normal cells (Cirmi et al., 2016). Apigenin
has shown growth inhibitory properties in breast cancer via
apoptosis promotion via (a) activation of the caspase cascade;
(b) blocking NF-κB and STAT3 signaling in breast cancer cells
with HER2-overexpression; (c) eliminating both the PI3K and
Akt kinase activity and modulation of the p14ARF-Mdm2-p53
pathway (Way et al., 2004; Agrawal et al., 2006; Choi and Kim,
2009; Seo et al., 2012). We have summarized anti-pancreatic
cancer effects of apigenin and its glycosides below.

Molecular Pathways and Mechanisms
Apigenin, due to the stimulation of the production of reactive
oxygen species (ROS) (Shukla and Gupta, 2008) in solid and
hematological cancers, has shown some anti-cancer properties
(Granato et al., 2017). By way of illustration, one of the most
common strategies which is applied in both conventional and

Frontiers in Chemistry | www.frontiersin.org 12 October 2020 | Volume 8 | Article 829

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Ashrafizadeh et al. Apigenin and Pancreatic Cancer

FIGURE 7 | (A) Schematic illustration of hyaluronic acid-functionalized nanostructured lipid carriers (HA-NLCs) containing apigenin. (B) SEM images HA-NLCs. (C) In
vitro internalization of Rhodamine B encapsulated apigenin-nanostructured lipid carriers. (D) In vitro drug release of apigenin solution (APG), APG encapsulated-NLCs,

and HA-NLCs. Reprinted with permission from Mahmoudi et al. (2019).

non-conventional radio- and chemo-therapies is stimulating the
ROS generation with the aim of killing the cancer cells (Yang
et al., 2018). Several factors are involved in balancing the level of
the ROS in cells. NADPH-oxidases andmitochondrial complexes
which produce ROS, enzymes which have intervener roles in
antioxidant responses, e.g., superoxide dismutase (SOD) and
catalase, and enzymes involved in detoxifying of ROS such as
glutathione S-transferase (GST) are some well-known examples

of these factors (Kumari et al., 2018). The regulation in the
expression level of the anti-oxidant enzymes is mostly controlled
by the transcription nuclear factor erythroid 2 like2 (NRF2)
(Chatterjee et al., 2013). Therefore, redox resetting for surviving
tumor cells in anticancer drug treatment conditions is usually
induced by the tumor cells themselves (Liu et al., 2016). NRF2-
induced pathways have important roles in the chemotherapeutic
resistance of cancer cells (Rojo de la Vega et al., 2018).
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Tumor suppressor P53 is a prominent factor in responses
to anti-tumor therapies. The functional p53 pathway prevents
tumor development and growth; therefore, the p53 gene is
mutated in most of the tumors (Mantovani et al., 2019). The
“gain of function” mutation which prompt tumor cells to grow,
metastasize, and resist therapies is one of the most common
mutations in P53 genes (Bellazzo et al., 2018). Tp53 mutations
(mutp53) are very common in PDAC (Muller and Vousden,
2014). Mutp53 proteins usually would not become degraded
due to obtaining a mis-folded conformation; therefore, hyper-
stable proteins may accumulate in tumors (Alexandrova et al.,
2015). The most well-known factors affording mutp53 stability
are cellular chaperone heat shock proteins (HSP70 and HSP90)
which bind tomutp53 and prevent the degradation of this protein
with a double minute 2 homolog (MDM2) protein. The HSP90
expression level is increased in cancer cells in order to assist
in cancer cell survival; hence, HSP90 may be a potential target
in cancer therapy (Solarova et al., 2015). The heat shock factor
1 (HSF1) is the most predominant factor which controls the
heat shock response. HSF1 by contacting mutp53 may enhance
the HSF1-induced transcription program, which up-regulates
heat shock proteins (HSPs) in a positive feed-forward loop
that results in more maintenance of mutp53 (Li et al., 2014).
There may be an interaction between NRF2 and HSF1 in which
HSP and P62 are their mutual targets (Dayalan Naidu et al.,
2015). Furthermore, mutp53 may cooperate with the NRF2
with the aim of moderating the NRF2-mediated anti-oxidant
response (Lisek et al., 2018). It was shown that NRF2 induced
pancreatic carcinogenesis in mice with k-ras mutations and
mutp53 (Hamada et al., 2017).

Above all mutp53 is an essential target for anticancer therapy.
Accordingly, several mutp53 approaches were examined in
recent years such as applying strategies to mutp53 degradation
and/or repetition of the wild-type p53 (mutp53 as a dominant
negative effect prevents wild-type p53) (Schulz-Heddergott and
Moll, 2018). One possible strategy is to inhibit mutp53 by
autophagy (Garufi et al., 2014, 2015). Another one is to use the
zinc effect as a modifier in the mutp53 protein conformation,
or through natural compound capsaicin (Garufi et al., 2016).
Mutp53 despite the wtp53 suppresses autophagy which in turn
inhibits mutp53 degradation (Cordani et al., 2016). Realizing
the interaction between mutp53 and autophagy is essential for
an effective anticancer therapy. The effect of apigenin in the
cytotoxicity of PaCa44 and Panc1 cancer cells with various p53
mutations was assessed (Moore et al., 2001). As confirmed by
an experiment on the apigenin effect on the toxicity of two
pancreatic cell lines, PaCa44 and Panc1, which harbor various
p53 mutations, by Montani et al. (Gilardini Montani et al., 2019).
It was shown that the cytotoxic effect of apigenin on the Panc1
cell line is higher in comparison to its effect on PaCa44 cell lines.
It was shown that the stronger cytotoxic effect of apigenin (6,
12.5, 25, and 50µM) is due to a decrease in HSP90 and mutp53
expression, higher amounts of intracellular ROS, and mTORC1
suppression. In this study, it was recommend that targeting
mTOR-mutp53-NRF2-p62-HSP90 molecules may be useful for
overcoming the chemo-resistance of PC to apigenin (Gilardini
Montani et al., 2019).

It was shown that up-regulation of CK2 results in the
development of lymphomas and leukemia (Landesman-Bollag
et al., 1998; Channavajhala and Seldin, 2002; Seldin et al., 2008).
CK2-dependent signaling pathways are inhibited by apigenin.
Several biological activities were attributed to apigenin such
as anti-oxidant, anti-carcinogenic, anti-proliferative, and anti-
inflammatory activities (Patel et al., 2007). Recently, several
experiments focused on applying apigenin as a chemo-preventive
agent in various cancers (Mafuvadze et al., 2012). Apigenin may
lead to changes in regulatory T cells and effector T cells growth of
murine PC (Nelson et al., 2015).

From a dysregulation which was shown between phosphatase
1 (PP1) and Casein Kinase II (CK2), it was suggested that higher
CK2 expression controls the stability of the Ikaros. Furthermore,
it was shown that down-regulation of the Ikaros leads to a
reduction in CD4+ and CD8+ T cell percentages but augmented
CD4+CD25+ Tregs in tumor-bearing (TB) mice (Nelson et al.,
2017).

In a study, naïve mice splenocytes were treated with apigenin
in vitro when Panc02 cells were present which lead to an
evaluation of the Ikaros expression, like the activity of the
proteasome inhibitor MG132. TB mice cells were treated with
apigenin. In vivo results showed a decrease in tumor size and
an inhibition of the splenomegaly. Furthermore, apigenin (10
and 20µM) treatment leads to the reestablishment in production
of a few Ikaros isoforms, which are probably responsible for
the mild prevention of the CDK2 function in splenocytes
of the TB-apigenin mice. Complementary to the incomplete
reestablishment of the Ikaros expression, the percentage of the
CD4+ and CD8+ T cells have shown a considerable growth and
the percentage of Tregs have fallen into a significant decline in
TB-apigenin mice. Moreover, CD8+ T cells from TB-apigenin
mice compared to TB mice have shown additional production
of the IFN-γ and splenocytes of the TB-apigenin mice are more
susceptible to allogeneic CD8+ T cell responses. These findings
offer more support for the idea that Ikaros in a pancreatic cancer
model is controlled by CK2, and these results have shown that
apigenin is a potential therapy for murine PC (Nelson et al.,
2017).

Recently it was shown that hypoxia-inducible factor-1 α (HIF-
1α) is targeted by apigenin in several cancers such as, ovarian
cancer, prostate cancer, and lung cancer (Osada et al., 2004;
Liu et al., 2005). HIF-1α is a prominent transcription factor for
the transcription of the genes which are responsible for tumor
development and invasion under hypoxic conditions (Melillo,
2006). An increase in the expression level of HIF-1α is revealed in
several cancers which is a contributory factor for drug resistance
and higher mortality (Birner et al., 2001; Koukourakis et al.,
2006).

Hypoxia stimulates some changes in cellular metabolism,
resistance to apoptosis, and induces angiogenesis in PC cells
lines (Garcea et al., 2006). Pancreatic carcinomas compared to
benign tumors show higher levels of the expression of the HIF-1α
protein, more tumor proliferation, and less tumor differentiation
(Mabjeesh and Amir, 2007).

The HIF is a protein consisting of two αβ heterodimers.
The HIF-1α expression is stimulated by hypoxic conditions. The
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HIF-1β is constantly expressed (Garcea et al., 2006). Interaction
of the HIF-1 αβ heterodimer with the hypoxia response element
(HERs) leads to the stimulation of transcriptional activity. In
physiological conditions, HIF prolyl hydroxylases hydroxylated
the two prolyl residues of the HIF-1α protein and subsequently
interaction between this protein and the von Hippel-Lindau
(VHL) E3 ubiquitin ligase complex leads to proteasomal
destruction of HIF-1α (Ivan et al., 2001). On the other hand,
under hypoxic conditions, as the HIF prolyl hydroxylases are
inactivated, the HIF-1α, which is accumulated, dimerized with
HIF-1β which leads to hypoxic response gene transcription
(Garcea et al., 2006).

As a result of the increase in the expression level of the
HIF-1α gene in pancreatic cancer, several down-stream genes
are subsequently transcriptionally activated. Production of these
down-stream genes are necessary for angiogenesis, for example,
the vascular endothelial growth factor (VEGF) and also, for
glycolysis, the GLUT-1 glucose transporter (Lin et al., 2016;
Zambrano et al., 2019).

VEGF as a secreted protein is an inducer for tumor vessel
growth. The poor survival of patients with PC, low survival
after the surgery, and subsequently hepatic metastasis are directly
proportional to the serum level of the VEGF (Karayiannakis
et al., 2003). PC cells which were treated by VEGF show more
development and knock-out of the VEGF in pancreatic tumors
of animal models leads to a decrease in vascularity and growth
(Inoue et al., 2002).

The up-regulation of the glucose transporter (GLUT-1) is
directly proportional to the poor prognosis in several cancers
including ovarian, gastric, breast, and colorectal carcinomas
(Zambrano et al., 2019). Gene expression of the GLUT-1 is
correlated to the cancer metastasis in PC (Ito et al., 2004). The
Warburg effect which means augmented glucose consumption in
cancer cells was shown in solid tumors such as pancreatic cancers
(Mueckler, 1994). HIF-1α induces the glucose transporter GLUT-
1 expression under hypoxic conditions (Chen et al., 2001). The
correlation between HIF-1α and GLUT-1 in inducing cancer
development suggests GLUT-1 as a potential cancer therapy.
It was revealed that glucose transporter GLUT-1 is blocked
by apigenin (0–100µM) under normoxic conditions (Melstrom
et al., 2008).

In one study, the effect of apigenin on hypoxia responsive
genes in pancreatic cancer was performed by Melstrom et al.
(153). The expression level of the VEGF, HIF-1α, and GLUT-1
was examined in S2-013 human PC cells and CD18 cells which
were treated with apigenin (0–50µM) by an enzyme-linked
immunosorbent assay (ELISA), Western blot analysis, and real-
time RT-PCR in both normoxic and hypoxic conditions. GLUT-1
expression undergoes up-regulation in PC cells in comparison
to adjacent controls (P < 0.001). Expression of the VEGF,
HIF-1α, and GLUT-1 protein is stimulated in S2-013 PC cells
and CD18+ cells under hypoxic conditions. Hypoxia-induced
up-regulation of these three proteins is inhibited by apigenin
(50µM). Furthermore, apigenin obstructed the expression of
the GLUT-1 and VEGF mRNA under hypoxia conditions in
the mentioned cell lines. In normoxic and hypoxic conditions,
GLUT-1, HIF-1α, and VEGF mRNA transcription and protein

production both are suppressed by apigenin. This suggests
apigenin as a potential anti-cancer drug for the treatment of the
PC (Melstrom et al., 2011). Table 2 illustrates the therapeutic
effects of apigenin on PC cells.

Chemotherapy
Although a previous study offers an interesting strategy to inhibit
the resistance of PC cells with apigenin, increasing evidence
demonstrates that apigenin can be applied as a chemosensitizer.
Naturally occurring dietary compounds were highlighted due
to their positive effects on overcoming the resistance of tumor
cells to apoptosis (Johnson and de Mejia, 2011). The natural
flavonoid apigenin is a potential molecule for overcoming
chemoresistance in pancreatic cancer (Johnson and de Mejia,
2013). Serine/threonine kinase glycogen synthase kinase-3β
(GSK-3β) as a potential target for flavonoids is responsible for
major upstream regulator of the NF-κB transcriptional activity.
NF-κB enters the nuclei of the pancreatic cancer cells (Ougolkov
et al., 2005). Conventional chemotherapeutic agents refuse
apoptosis by stimulating the NF-κB pathway (Long et al., 2011).
GSK-3β activity is inhibited by apigenin (Johnson et al., 2011).
Furthermore, this flavonoid has an important role in suppressing
pancreatic cancer cell proliferation in vitro. Apigenin (0, 10,
25, and 50µM) activates apoptosis in pancreatic cancer cells
by suppressing the GSK-3β/NF-κB signaling pathway (Figure 8)
(Johnson and de Mejia, 2013).

According to the experiment conducted by Johnson et al.
the ability of the flavonoid apigenin to assist chemotherapeutic
drugs in inhibiting the proliferation of BxPC-3 pancreatic
cells was examined (Johnson and Gonzalez de Mejia, 2013).
An MTS cell proliferation assay with different concentrations
of the chemotherapeutic drugs (0–50µM) and concurrent
pretreatment or treatment of flavonoids (0, 6, 24, and
42 h) were conducted. Simultaneous treatment through the
chemotherapeutic drugs 5-fluorouracil (5-FU, 50µM), flavonoid
(13, 25, or 50µM), or gemcitabine (Gem, 10µM) for 60 h leads
to mostly less-than-additive effects (p < 0.05). Pretreatment for
24 h with 13µM of apigenin, followed by Gem for 36 h was ideal
for suppressing the proliferation of the cells. Pretreatment of cells
with 11–19µM of apigenin for 24 h leads to 59–73% growth
suppression when followed by Gem (10µM, 36 h). Pretreatment
of BxPC-3 human pancreatic cancer cells by low concentrations
of apigenin or Lut assist chemotherapeutic drugs in their anti-
proliferative properties (Figure 9) (Johnson and Gonzalez de
Mejia, 2013).

CONCLUSION AND OUTLOOK

Since, there have not yet been any reports of apigenin having
unfavorable metabolic reactions, involving it in the diet is
recommended. Bioactive compounds such as apigenin take part
in different metabolic pathways to exert their healing effects. The
pharmacokinetic behavior of these bioactive compounds affects
their bioactivity as well as tissue distribution. Naturally, apigenin
occurs in dimeric forms linked through C–C or C–O–C bonds.
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TABLE 2 | The therapeutic effects of apigenin on pancreatic cancer.

Dose (s) Target gene (s) Model Type of cell line Effect (s) References

0 to 100µM GLUT-1 In vitro CD18, S2-013 Reduces glucose uptake Melstrom et al., 2008

50µM Cdc6, Cdt1, and MCM7 In vitro CD18, S2013 Anti-tumor effects Salabat et al., 2008

6 to 50µM P53 In vitro Panc1, PaCa44 Overcomes the chemo-resistance Gilardini Montani et al., 2019

25 mg/kg Ikaros/ CK2α protein In vitro, in vivo Panc02 Anti-tumor effects Nelson et al., 2017

50 µg/kg Extracellular matrix proteins collagen

1A1 and fibronectin, transforming

growth factor-beta, and interleukin-6

In vitro, in vivo PSCs Anti-tumor effects Mrazek et al., 2015

0 to 80µm Caspase-3 In vitro AsPc-1, Panc-1,

MiaPaCa-2

Deceases the cancer cell growth,

Induces apoptosis

Wu et al., 2014

23 and

12µM;

71 and 41µM

Glycogen synthase kinase-3β/nuclear

factor kappa B

In vitro BxPC-3, PANC-1 Anti-tumor effects Johnson and Gonzalez de

Mejia, 2013

0 to 50µM nuclear GSK-3β and NF-κB, p65 In vitro BxPC-3 Induces apoptosis, Increases

anti-proliferative effects

Johnson and Gonzalez de

Mejia, 2013

50 µmol/L β-AR In vitro BxPC-3 and MIA

PaCa-2

Anti-tumor effects Pham et al., 2012

1 to 100µM Bcl-XL, PUMA, and p53 In vitro BxPC-3,

MiaPaCa-2

Anti-tumor effects, Induces apoptosis King et al., 2012

0 to 50µM HIF-1α, GLUT-1, and VEGF In vitro CD18 and S2-013 Decreases angiogenesis, and glucose

uptake

Melstrom et al., 2011

25µM pAkt and NF-JB In vitro CD18 and AsPC-1 Inhibits cell proliferation Strouch et al., 2009

6.25 to

100µM

cyclin A, cyclin B, phosphorylated In vitro cdc2 and cdc25 Inhibits cell growth Ujiki et al., 2006

0.1 to 10µM NAG-1 and p53 In vivo HCT-116 cells Decreases cell growth Yang et al., 2014

FIGURE 8 | Effect of apigenin on NF-κB signaling, and its upstream mediator GSK-3β in sensitizing pancreatic cancer cells to chemotherapy.

Various pharmacokinetic behaviors and healing effects have
been found in flavonoid aglycones and their glycosides. So, C-
glycosylation or O-glycosylation of apigenin may have effects
on its metabolism, and in turn, show impacts on both its
anti-oxidant potential and biological benefits. The decreased
anti-oxidant potential of apigenin via O-glycosylation has been
demonstrated in an in vitro assay (Cai et al., 2006). In
another study, Angelino et al. investigated the bioavailability
of the apigenin-C-glycosides. They reported no alteration
in the absorption of vitexin-2-O-xyloside (VOX) that is an

apigenin-8-C-glucoside in a rat model (Angelino et al., 2013).
Besides being hydrolyzed to the mono-glycoside, reduced, and
conjugated to make a bioavailable glucuronide, VOX also
undertakes enterohepatic recirculation. Over the last few years,
many studies pointed out the various pharmacological activities
and nutraceutical potential of apigenin. For instance, its anti-
oxidant properties are well-recognized and apigenin is also
considered as a therapeutic agent for different conditions such as
autoimmune disease, neurodegenerative disease, inflammation
as well as some types of cancers (Salehi et al., 2019). In
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FIGURE 9 | An overview of molecular pathways targeted by apigenin in pancreatic cancer therapy.

suppressing the proliferation of cancer cells, apigenin can induce
apoptotic cell death via increasing ROS generation, the down-
regulation of anti-apoptotic factors Bcl-2 and Bcl-xl as well as
the up-regulation of apoptotic factors Bax and Bim. Besides,
apigenin can induce cell cycle arrest at the G2/M and S phases.
In suppressingmetastasis of cancer cells, apigenin administration
interferes with the PI3K/Akt/mTOR signaling pathway as well as
the expression of MMP-9, as a factor involved in the progression
and invasion of cancer cells.

In comparison to the other structurally related flavonoids,
apigenin showed reduced intrinsic toxicity on normal cells.
Despite its importance and useful effects, there is not enough
literature on apigenin’s beneficial health potential for humans.
A good reason may be low solubility of apigenin in water
(1.35µg/mL) and its high permeability (Zhang et al., 2012).
These may hamper the in vivo studies into apigenin. There
are various strategies suggested to increase solubility, such as
several delivery systems (nanosuspension, polymeric micelles,
liposomes). These approaches, for example, show how solid
dispersion could improve the low solubility of therapeutic agents.
Furthermore, several injectable nanosized drug delivery systems
have been devised, demonstrating that nanocapsules may be a
good tactic to lengthen the pharmacological activity of apigenin.
Indeed, high metabolic transformation and low bioavailability of
some food components have been left as unsolved issues.

It was revealed that the administration of apigenin is beneficial
in enhancing the sensitivity of PC cells to chemotherapy. Besides,

apigenin affects molecular pathways such as HIF, GLUT-1, and
VEGF to disrupt the proliferation and malignant behavior of PC
cells. Also, additional molecular pathways and mechanisms (e.g.,
Wnt, miRs, lncRNAs, epithelial-to-mesenchymal transition) can
be considered as down-stream targets of apigenin, and can
be discussed in future studies. According to the information
presented in clinicaltrials.gov, today just one study has examined
the anti-tumor activity of apigenin in clinical trials. Its status is
suspended (NCT00609310) and it was supposed to evaluate effect
of apigenin on the recurrence of colorectal cancer cells. However,
we are still at the beginning stage and there will be more studies
in the future to investigate the anti-tumor activity of apigenin in
clinical trials.
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