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A B S T R A C T

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a member of the coronaviridae that causes
respiratory disorders. After infection, large amounts of inflammatory cytokines are secreted, known as the cy-
tokine storm. These cytokines can cause pulmonary damage induced by inflammation resulting in acute re-
spiratory distress syndrome (ARDS), and even death.

One of the therapeutic approaches for treatment of ARDS is a mesenchymal stem cell (MSC). MSCs suppress
inflammation and reduce lung injury through their immunomodulatory properties. MSCs also have the potential
to prevent apoptosis of the lung cells and regenerate them. But our suggestion is using MSCs-derived exosomes.
Because these exosomes apply the same immunomodulatory and tissue repair effects of MSCs and they don’t
have problems associated to cell maintenance and injections.

For investigation the hypothesis, MSCs should be isolated from tissues and characterized. Then, the exosomes
should be isolated from the supernatants and characterized. These exosomes should be injected into a transgenic
animal for COVID-19. In the final section, lung function assessment, histological examination, micro-CT, dif-
ferential leukocyte, viral load analysis, cytokine assay, and CRP level analysis can be investigated.

COVID-19 treatment is currently focused on supportive therapies and no vaccine has been developed for it.
So, numerous researches are needed to find potential therapies. Since the pathogenesis of this disease was
identified in previous studies and can cause lung injury with ARDS, investigation of the therapeutic approaches
that can suppress inflammation, cytokine storm and ARDS can be helpful in finding a novel therapeutic approach
for this disease.

Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a
member of the family coronaviridae that, like two other members of the
family, severe acute respiratory syndrome coronavirus (SARS-CoV) and
Middle East respiratory syndrome coronavirus (MERS-CoV), causes re-
spiratory disorders [1,2]. The virus was first detected in Wuhan, China,
on December 2019, and the disease caused by the virus, coronavirus

disease 2019 (COVID-19), was characterized as a pandemic on 11
March 2020 by the World Health Organization (WHO) [3,4].

SARS-CoV-2 is an RNA virus and has a variable number of open
reading frames (ORF) that can encode a number of structural proteins
such as M (matrix), E (envelope), N (nucleocapsid) and S (spike) protein
as well as a number of non-structural proteins. Among these structural
proteins, the S protein binds to the angiotensin-converting enzymes 2
(ACE2) present on the surface of human cells, especially the alveolar
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type II cells that highly express this receptor, and then, the virus enters
the host lung cells [5,6]. Effective immune responses against viral in-
fections depend on type I interferons (IFN-I) production from innate
immune cells and subsequently cell mediated immunity through T
helper 1 and cytotoxic T cells [5]. So, as the virus enters the cell, its
genome is recognized by various pattern recognition receptors (PRRs)
such as toll-like receptor-3 (TLR-3), TLR7-9, retinoic acid-inducible
gene-I (RIG-I), Melanoma-differentiation-associated gene 5 (MDA5),
and cyclic GMP-AMP synthase (cGAS), then, signaling pathways are
initiated. Following these incidences, large amounts of IFN-I and in-
flammatory cytokines are secreted [7–10]. Following these in-
flammatory conditions in the lungs, which also increase with the pro-
liferation of the virus, a sharp increase in inflammatory cytokines such
as interleukin-2 (IL-2), IL-7, IL-10, granulocyte-colony stimulating
factor (G-CSF), interferon-γ-inducible protein 10 (IP-10), monocyte
chemoattractant protein-1 (MCP-1), macrophage inflammatory protein-
1 alpha (MIP-1A), and tumor necrosis factor alpha (TNFα) have been
reported in patients with COVID-19, known as the cytokine storm [11].
This cytokine storm is similar to that seen in SARS and MERS and is
caused by the lack of proper regulation of inflammatory immune re-
sponses [12,13].

Clinical evidences demonstrated that this cytokine storm is the main
cause of acute respiratory distress syndrome (ARDS) in COVID-19
[5,12–14]. Pathogenic T cells produce inflammatory cytokines after
activation and subsequently inflammatory monocytes and other leu-
kocytes migrate to the lung [15]. Increased neutrophil counts have been
reported as a symptom in a number of patients [2]. These activated
immune cells may cause inflammation-induced pulmonary damage
leading to complications such as pneumonia, loss of lung function,
ARDS, and even death (Fig. 1A) [5,12–14]. Since ARDS is recognized as
one of the leading causes of mortality in patients and appears to be
caused by cytokine storm, suppression of this inflammation may de-
crease the inflammatory cytokine production and consequently reduce
the inflammation and lung injury. As it has been shown, the use of anti-
IL6 in patients with COVID-19-induced pneumonia can be useful and
has been approved in China [16]. Currently, there is no approved
treatment for SARS-CoV-2, and usually supportive treatments such as
muscle relaxants and ventilators were used for these patients [6,16,17].
Numerous therapeutic interventions have been performed to treat
ARDS, but since the mechanisms of damage in ARDS are complex and
diverse, it seems that therapeutic strategies that target a single pathway
or mediator can not be useful in achieving therapeutic outcome [17].
Therefore, interventions that target several aspects of im-
munopathogenesis and associated injuries, can be helpful to find the
appropriate treatment strategy.

Hypothesis

Numerous infectious agents, including bacteria (Streptococcus
pneumoniae, Staphylococcus aureus, Hemophilus influenzae), viruses
(SARS-CoV, MERS and SARS-CoV-2), fungi (Aspergillus species and
Cryptococcus species), parasites (Pneumocystis jiroveci), as well as non-
infectious agents such as pancreatitis, trauma, etc. can cause pneu-
monia and ARDS [18]. One of the therapeutic approaches for the
treatment of ARDS is mesenchymal stem cell (MSC) therapy that pre-
vious studies have shown satisfactory results about it [19–24]. MSCs are
multipotent cells that can be obtained from different tissues such as,
adipose tissue and bone marrow. These cells have a self-renewing ca-
pacity and can be differentiated into chondrogenic, osteogenic and
adipogenic lineages [25]. Several features of these cells have made
them an appealing candidate for the treatment of many diseases, such
as ARDS.

• Immunomodulatory properties: MSCs are able to alter the function
of the immune cells and modulate the immune response [17]. For
example, in LPS-induced ARDS animal models, it has been shown

that, MSCs suppress inflammation and reduce inflammation-induced
lung injury through their immunomodulatory properties. These cells
affect the macrophages by releasing prostaglandin E2 (PG-E2), and
reduce the production of inflammatory cytokines and increase IL-10
production. IL-10 reduced neutrophils recruitment to the lungs and
attenuated inflammatory cytokine production [20,22,24]. MSCs can
also increase regulatory T cells and alter the phenotype of macro-
phages from M1 to M2 [17].

• Tissue repair characteristic: MSCs have also the tissue repair po-
tential and can prevent apoptosis of the lung cells and regenerate
them, especially type II alveolar cells, by producing growth factors
such as keratinocyte growth factor (KGF), vascular endothelial
growth factor (VEGF), and hepatocyte growth factor (HGF). This
characteristic is important because people with ARDS develop pul-
monary fibrosis even after surviving the acute phase of the disease
[19,21,26]. MSCs can restore the epithelial protein permeability by
secretion of angiopoietin-1. These cells can increase phagocytosis
capacity of the macrophages by transferring the microvesicles [17].

• Some studies shown that MSCs could imply anti-viral activity. It was
shown that gammaherpesvirus-infected MSCs could limit the re-
plication of the virus after sensing its DNA by cGAS and initiation of
the STING-TBK1 signaling pathway. This pathway, that is resulted in
IFN-γ production, along with the IFN-γ independent manner could
be responsible for the anti-viral response of the MSCs [27]. In ad-
dition, some studies shown that IDO, which is expressed by MSCs,
could be responsible for the anti-viral activity of the MSCs [28–30].
IDO-positive MSCs triggered by inflammatory cytokines demon-
strated antimicrobial effector function against pathogens such as
viruses [28]. In a study performed in 2011, it was shown that IFN-γ
stimulated the expression of the IDO in MSCs and decreased the
replication of the CMV and HSV-1 [29].

In summary, it can be suggested that MSCs can be attractive can-
didates for improving COVID-19-induced ARDS and lung injury, due to
their immunomodulatory, tissue repair and anti-viral characteristics
(Fig. 1B).

But our suggestion is using the MSC-derived exosomes. Because it
has been shown that MSC-derived exosomes apply the same effects of
MSCs [31]. Khatri et al. performed an in vitro study and demonstrated
that the MSC-derived extracellular vesicles (MSC-EVs) transferred the
mRNAs and miRNAs into the lung epithelial cells and reduced the
apoptosis of these cells and inhibited influenza virus replication in
them. For the confirmation of the results, they used a pig model of the
influenza virus. It was shown that after MSC-EVs administration, the
replication of the virus in the lung, pro-inflammatory cytokines pro-
duction and virus-induced lung lesion were significantly decreased
[32]. In a study performed in 2018, intravenous injection of MSC-
exosomes reduced the TNF-α, IL-1β, NF-κB, and matrix metallopepti-
dase 9 in the lung. Another study mentioned that these exosomes could
decrease endothelial cell apoptosis and IL-6 production. An increase in
IL-10 production was also observed [33]. In addition to this, due to the
specific structure of the exosomes, miRNAs as well as various drugs can
be inserted into them. These miRNAs or drugs can target the specific
molecules inside the infected cells and diminish the local inflammation
or prevent apoptosis of the lung cells [34]. In a Song et al. study, it was
showed that pre-treatment of the MSCs with IL-1β augmented their
immunomodulatory effects, because their exosomes transfer the miR-
146a to the target cells [35]. Other advantages of the exosomes include
ease of access, lack of problems associated to cell maintenance and
injections, proper size, and finally the nature of their phospholipid
membranes, which enable them to fuse with the target cell membrane
and transfer the cargo into the cytoplasm. Additionally, this special
structure protects the contents of the exosomes from degradation [36].
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Testing the hypothesis

To investigate the effects of exosomes derived from MSCs, a study
can be performed according to the following steps:

At the first section of the study, MSCs should be isolated from tis-
sues. Different sources can be chosen such as adipose tissue, bone
marrow, Wharton jelly, and etc. Second, these cells will be cultured.
Then, the differentiation potential of homogenous population of
spindle-shaped MSCs will be determined using in vitro adipogenic and
osteogenic induction. In addition, the immunophenotype of MSCs will
be confirmed by the measurement of cell surface markers such as CD73,
CD90, CD105, CD14, CD45, CD34, and HLA-DR using flowcytometry.
After the adaptation of the cells with serum-free medium, the super-
natants of them can be collected. Then, a good manufacturing practice
(GMP)-grade method should be used for the isolation of the exosomes
from the supernatants, as a medicinal product [37]. The next step is the
characterization of the exosomes. For this purpose, the size distribution
of the isolated exosomes will be evaluated using dynamic light scat-
tering (DLS) NanoSight, and nanoparticle tracking analysis (NTA). The
morphology of these vesicles will be determined using scanning elec-
tron microscopy (SEM) and transmission electron microscopy (TEM)
analysis. In addition, the expression of exosome membrane specific
markers including CD9, CD63 and CD81 will be assessed using western
blot or flowcytometry.

The second section of the study is related to animal model pre-
paration and exosome injection to them. It is better to choose two ARDS
models that are induced by different conditions and compare them with
each other. For example, a hACE2 transgenic animal infected with
SARS-CoV-2 [38] and an LPS-induced ARDS animal [24]. Next, the
isolated exosomes should be injected into these animals. Intravenous or
intratracheal injection can be performed. It is suggested to use both of
these routes and compare them with each other. Injection program can
be designed like this: PBS, exosomes derived from other sources such as
fibroblasts, and MSC-exosomes (different doses).

In the final section of the study, the effects of exosome injection on
different groups should be measured. Lung function assessment can be
investigated through arterial oxygenation and static lung compliance
evaluation [22]. In addition to these, histological examination or micro-
CT can be done for assessment of the lung injury. Bronchoalveolar la-
vage (BAL) is an important sample for evaluating the effects of MSC-
exorcisms' on lung inflammation. After collection of the BAL sample,
differential leukocyte count can be done. For the monitoring of the viral
load, real time PCR is a beneficial technique. For evaluating the cyto-
kine profile, enzyme-linked immunosorbent assay (ELISA) can be
useful. Another sample is the blood, that differential leukocyte count,
inflammatory cytokines and C-reactive protein (CRP) level are the im-
portant data for evaluating MSC-exosomes effects on ARDS and cyto-
kine storm. All of these procedures can be performed in clinical trial

Fig. 1. Immunopathogenesis of the SARS-CoV-2 and the therapeutic potential of the MSC exosomes. (A) SARS-CoV-2 infects type II alveolar epithelial cells or other
target cells, which express ACE2. The influx of neutrophils, monocytes and T cells is induced by secretion of the chemokines. Accumulation of the inflammatory cells
leads to the production of large amounts of pro-inflammatory cytokines, that is known as cytokine storm. Cytokine storm is the main cause of ARDS in COVID-19.
These inflammatory responses may cause the apoptosis of the alveolar cells, lung fibrosis, edema, and organ failure. (B) MSCs and their exosomes suppress in-
flammation and reduce inflammation-induced lung injury through their immunomodulatory properties. These cells affect the macrophages and alter the phenotype
of macrophages from M1 to M2 by releasing PG-E2. MSCs also reduce the production of the inflammatory cytokines and increase IL-10 production. IL-10 reduces
neutrophils recruitment to the lungs. MSCs have also the tissue repair potential by producing KGF, VEGF, and HGF. These cells are involved in the pathogen clearance
through expressing IDO.
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studies after confirmation in animal models (Fig. 2).

Discussion

Since COVID-19 treatment is currently focused on supportive
therapies and no vaccine has been developed for it [6], numerous re-
search studies are needed to find potential therapies to control the virus
as soon as possible. Because SARS-CoV-2 has a high transmission po-
tential and spreads rapidly throughout the world and causes many
deaths. Since the pathogenesis of this disease was identified partially in
previous studies and there are similarities between its pathogenesis
with those of other viruses in this family and they can cause lung injury
with ARDS [1,5,14], investigation of the therapeutic approaches that
can suppress inflammation, cytokine storm and ARDS can be helpful in
finding a novel therapeutic approach for this disease. Therefore, the use
of MSCs as one of the immunomodulating and tissue regenerating cells
that have previously shown satisfactory effects on ARDS and cytokine
storms [19,21–24,39] could be considered. Since these cells exert their
effects in a variety of ways, such as exosomes secretion, the use of their
exosomes can be considered as a cell-free therapy [31], because these
exosomes can have anti-inflammatory effects on lung tissue by trans-
ferring mRNAs, miRNAs, and various proteins from its secretory cell to
the target cell [40]. As previously shown, these exosomes can reduce
inflammatory cytokines, increase regulatory cytokines and suppress

inflammation [34]. Monsel et al. also showed that MSC-exosomes could
increase the survival of alveolar type II cells by increasing intracellular
ATP levels [41]. So we introduced this hypothesis in order to perform
further studies in the future and hope to see satisfactory results.
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