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Abstract. Thanks to the rapid development of computer science, direct analyses have been 
increasingly used in the design of structures in lieu of member-based design methods using 
the effective length factor. In a direct analysis, the ultimate strength of a whole structure can 
be sufficiently estimated, so that the need for member capacity checks is eliminated. 
However, in complicated structural design problems where many structural analyses are 
required, the use of direct analyses requires an excessive computation cost. In such cases, 
Machine Learning (ML) algorithms are used to build metamodels that can predict the 
structural responses without performing costly structural analysis. In this paper, the support 
vector machine (SVM) algorithm is employed for the first time to develop a metamodel for 
predicting the ultimate strength of trusses using direct analysis. Several kernel functions for 
the SVM model, including linear, sigmoid, polynomial, radial basis function (RBF), are 
considered. A planar 39-bar nonlinear inelastic steel truss is taken to study the performance 
of the kernel functions. The results confirm the applicability of the SVM-based metamodel 
for predicting the ultimate strength of trusses. In particular, the RBF appears to be the best 
kernel among others. This investigation also provides a deeper understanding of the effect 
of the parameters on the efficiency of the kernel functions. 
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1. Introduction 
 
Allowable stress design (ASD) and load and resistance 

factored design (LRFD) have been widely used in the 
analysis and design of structures. Their major advantage is 
that they allow for an acceptable design of a structure with 
negligible computing resources through a two-stage 
design method. In the first stage, the forces of structural 
members are calculated by using a linear analysis. In the 
second stage, the members’ safety is checked by using 
provided equations in design codes in which inelastic and 
nonlinear behaviors of the structure are already considered. 
However, this indirect design approach is one of the 
principal disadvantages of ASD and LRFD since the 
interaction between structural members and the whole 
structure is not considered and then the structural stability 
is not checked. In contrast, direct analysis can directly 
predict structural nonlinear and inelastic behaviors such as 

P − , P −  , buckling, etc., and estimate the load-

carrying capacity of the structure. And then the member 
check is not required. With such advantages, direct 
analysis has been of the researchers’ interest [1-12]. These 
works also showed that using direct analysis can design a 
lighter structure compared to using conventional methods. 
Notwithstanding, direct analysis spends much greater 
computation efforts compared to ASD and LRFD, 
especially for complicated structural design problems such 
as optimization and reliability analysis which require lots 
of structural analyses. This issue is the major reason 
preventing the wide application of direct analysis in 
structural design in practice.  

To reduce computation efforts in such complicated 
structural design problems, using metamodel is considered 
as a powerful alternative since this approach can efficiently 
reduce the number of required time-consuming advanced 
analyses. A metamodel can be simply understood as an 
approximate function describing the relation between the 
input data and the output data. This means that the 
structural responses may be forecasted by using 
metamodels without performing a time-consuming direct 
analysis. With the rapid development of computer science, 
metamodels are easily developed for any problems of 
structural designs by using machine learning methods (ML) 
such as deep learning (DL), decision tree (DT), random 
forest (RF), gradient tree boosting (GTB), and support 
vector machine (SVM), etc. Up to now, several works on 
the application of ML in structural design have been 
published in the literature [13-21]. However, the 
application of ML to estimate the behaviors of the 
structure in lieu of direct analysis is still quite limited with 
few publications. For example, Truong et al. [22] used DL 
to estimate the ultimate load carrying of steel trusses. In 
Truong et al. [23], GTB was adopted in the safety 
evaluation of steel truss structures.   

A well-known ML method is the support vector 
machine (SVM), which was proposed by Vapnik in 1995 
[24]. Up to now, SVM is found as a supervised metamodel 
for solving regression and classification problems. SVM 
has been widely applied in many fields such as pattern 

recognition, damage identification, structural reliability 
analysis, structural health monitoring, etc [25-36]. The 
results of these works showed that SVM is robust for 
nonlinear and high-dimensional problems, and requires a 
small number of samples. So far, no study regarding the 
application of SVM in truss structure design using direct 
analysis has been published in the literature. As a 
consequence, the understanding of using SVM to predict 
the truss responses has several gaps. Furthermore, when 
using SVM, the kernel function plays an important role in 
the performance of the SVM model since it supports 
mapping the data to a greater dimensional space to get a 
better interpretation of the SVM model. Notwithstanding, 
several types of kernel functions can be used in SVM, for 
example, linear, polynomial, sigmoid, radial basis function, 
etc. Therefore, it is worth exploring the applicability of 
SVM as well as the efficiency of different kernel function 
types in predicting the behavior of nonlinear, inelastic 
truss structures. 

In this work, the application of SVM for the 
regression of ultimate strength of steel truss structures 
using direct analysis is studied for the first time. Moreover, 
we will present the comparison of the influence of 
different kernel functions on the performance of the SVM 
model used to predict the ultimate strength. For simplicity, 
a 39-bar planar steel truss is taken as the case study for the 
investigation. The ultimate strength of the truss is 
represented by the ultimate load factor (ULF) which is the 
ratio of the structural load-carrying capacity and applied 
loading. 

The paper’s rest is organized as follows. Section 2 
presents the data collection method. Section 3 briefly 
introduces the SVM algorithm and proposes a framework 
to estimate the truss ULF using direct analysis. In section 
4, the numerical results and discussions of the case study 
are presented. Finally, Section 5 draws conclusions and 
directions for further studies. 
 

2. Data Collection 
 
Without losing the generality, a 39-bar planar steel 

truss with the geometry presented in Fig. 1 is considered 
to illustrate the study presented in this paper. All bars are 
assumed to have the circle cross-section shape with the 
cross-sectional area in the range [645.16, 11290.3] (mm2). 
The yield strength of steel is 344.5 (Mpa) and the elastic 
modulus is 200 (Gpa). The horizontal and gravity loads are 
assumed at all nodes and equal to 150 and 200 (kN), 
respectively. In light of this, the SVM developed model 
has 39 input variables which are the cross-sectional areas 
of the bars, and 1 output variable that is the ULF of the 
truss. To develop the SVM model in this study, a data set 
including 5,000 samples is used. As shown later in the next 
sections, this number of samples is sufficient to build the 
SVM model for the prediction of the ULF of the truss. 
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The structural ULF is predicted by using the direct 

analysis method proposed by Thai and Kim [37] in this 
work because this method is highly accurate and robust to 
estimate the nonlinear inelastic behaviors of truss 
structures. Furthermore, yielding, buckling, reloading, and 
unloading failure mechanisms are considered by using the  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

nonlinear constitutive model proposed by Blandford [38]. 
Both compressive and tensile areas, elastic and inelastic 
regions are also considered. Nonlinear equations are 
solved by using the generalized displacement control 
method [39] which can adjust automatically the step size 
and self-adapt to the loading direction’s change. The detail 
of this direct analysis method can be found in [37, 40-43]. 

 
 

Fig. 1. 39-bar planar truss. 

 
 

Fig. 2. Histogram of ultimate load-factor data. 
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A database consisting of 5,000 samples is generated as 

follows. The input data which are 39 cross-sectional areas 
of the bars is randomly created in the range 
[645.16,11290.3] (mm2). And then, the above direct 
analysis is used to estimate the truss ULF. The histogram 
of 5,000 obtained ULF is presented in Fig. 2. As can be 
seen in this figure, the ULF of the truss is in the range 
[0.5;3.5] with an average value is about 2.1. 
 

3. Proposed SVM-based Framework to 
Estimate Truss ULF 

 
3.1. SVM Algorithm 

 
SVM was developed by Vapnik [24]. It is a supervised 

learning algorithm for solving regression and classification 
problems. For a classification problem, the basis of SVM 

is to find a hyperplane so that all data points n

ix R  in the 

same tag are on the same side of the plane and the distance 
between the nearest point of each tag to the hyperplane is 
the largest. In other words, the best hyperplane is found 
by maximizing the width of the margin. This basic idea is 
presented in Fig. 3 for a two-dimensional training set.  

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For such a regression problem in this study, the 

output (i.e., ULF) is a real number. Therefore, it becomes 
very difficult due to the infinite possibilities of hyperplanes. 
The framework to estimate the truss ULF by SVM is 
presented in the following. 

Assuming the model used in SVM as: 

 ( ) ( )T

i if x w h x b= +  (1) 

 

where ( )h  is the basic function, w  is the weight vector, 

and b  is the bias value. b  and w  are determined by 

minimizing the below-regularized error function: 
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where C is a constant parameter, E

 is an insensitive error 

function proposed by Vapnik [24] as 
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in which   is a pre-defined tolerance. To simplify Eq. (2), 

the slack variables n  and 
*

n  are used as the deviation of 

training data outside the  -zone. Eq. (2) is rewritten as 

 
 

Fig. 3. A hyperplane for a two-dimensional training set. 

 

Table 1. Formula and important parameters of SVM model using common kernels. 
 

Kernel Function Formular Parameter 

Linear ( ) ( ), ,n i n iK x x x x=  C  and   

Radial basis function (RBF) ( ) ( )2
, expn i n iK x x x x C= − − +  C  and   

Sigmoid ( ) ( )( ), tanh ,n i n iK x x x x r= +  C ,  , and r  

Polynomial ( ) ( )( ), tanh ,
d

n i n iK x x x x r= +  C ,  , r , and d  
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subject to: 

0n  , * 0n  , ( )i i iy f y   +−  + , ( )i i if y y   −−  + (5) 

This optimization problem can be solved by transforming 
it into a dual problem: 

( ) ( ) ( )*

1

,
N

n n n

n

y x K x x b 
=

= − +  (6) 

subject to: 0 n C  , *0 n C          (7) 

where 
n  and 

*

n  are the Lagrange multipliers, 

( ),  nK x x  is a kernel function. The kernel function is used 

to map the input data to a high dimensional space where 
it is easier to use linear separation. Obviously, the accuracy 

of the SVM model depends on C ,   and the kernel 

parameters. In this study, we consider four common 
kernels as presented in Table 1. 
 
3.2. SVM-based Procedure to Predict Truss ULF 

 
The SVM-based procedure for predicting the ULF of steel 
trusses is proposed as follows: 
 

 

 
 

Step 1: Develop dataset 
The data (obtained as in Section 2) is divided into two 

groups of training ( ),train trainX Y  and testing ( ),test testX Y . 

Data will then be scaled down to the range [0,1] as follows: 

 
max

scale i

i

i

x
x

x
=   (8) 
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scale i

i

y
y

y
=  (9) 

where 
max

ix  and 
maxy  are the maximum values of the 

input ix  and the output iy data, respectively. 

 
Step 2: Define a training model 
To build an SVM model, four main components need to 
be defined, including: (1) the loss function, (2) the type of 
the kernel, (3) the parameters for the kernel, and (4) the 
value of epsilon ( ). For predicting the ULF of the truss, 
the common loss function “least squares” is used. 
 
Step 3: Train the SVM model defined in Step 2 
The training data is used for training the SVM model, 
while the test data is used for evaluating the performance 
of the model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. Comparison of different kernel types. 
 

Kernel 
function 

Optimal parameters 
MSE R2 Adjusted R2 

C    r  d    

Linear 1.0 1.0 n/a n/a 0.01 0.00213 0.8564 0.8505 
RBF 1.0 0.1 n/a n/a 0.01 0.00123 0.9177 0.9143 

Sigmoid 10 0.001 1.0 n/a 0.01 0.00211 0.8582 0.8524 
Polynomial 100 1.0 1.0 3.0 0.01 0.00142 0.9042 0.9003 

 

 

 
 

Fig. 4. Effect of ε on the SVM model using RBF kernel. 
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The grid-search and k-fold methods (with k=5) are 
used to find the optimal parameters for the SVM model 
with different kernel functions. Grid-search is a robust 
method for hyperparameter tuning of an SVM model by 
evaluating all the possible combinations of 
hyperparameters. The k-fold is a cross-validation method 
where the data is divided into k equal-sized groups, and 
then k SVM models are trained by using each group as the 
test data and the remaining groups as the training data. 
The average performance of k models is considered as the 
final performance of the SVM model. For developing the 
SVM model, the programming language Python and the 
open-source software library Tensorflow are used. 

 
 

4. Results and Discussion 
 
Three factors are used to compare the efficiency of 

SVM models, including mean-squares-error (MSE), R2, 
and adjusted R2. The formulas of these indicators are as 
follows: 
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Where iy  and 'iy  are true and estimated values, 

respectively; y  is the mean value of iy ; N  is the number 

of samples; and, p  is the number of independent 

variables. 
 

4.1. The Effects of Kernel Functions 
 

In this section, the effects of four kernel functions 
such as linear, RBF, sigmoid and polynomial on the SVM 
model are studied. Corresponding to each kernel function, 

the optimal values for C ,  , r , d ,  and are calculated 

by using the grid-search method. The value lists of their 
parameters are [0.1, 1.0, 10, 100, 1000], [0.001, 0.01, 0.1, 
1.0], [0.01, 0.1, 1.0, 10, 100], [1, 2, 3, 5, 10], and 
[0.0001,0.001,0.01,0.1]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2 presents the obtained results for the 

considered truss structure, including the optimal 
parameters for each type of kernel function, MSE, R2, and 
adjusted R2. As can be seen from Table 2, RBF has the 
best performance since its MSE of 0.00123 is the smallest, 
and its R2 and adjusted R2 are the greatest. The second best 
one is “Polynomial” while “Linear” is the worst one. In 
light of this, in the next sections, RBF is chosen as the 
kernel of the considered SVM model. 

 
4.2. The Effects of Parameters of RBF Kernel 

 
The effects of the parameters of the SVM model using 

the RBF kernel are investigated. To do it, each parameter 
is changed while others are kept as the optimal values 
obtained above. The results are presented in Figs. 4, 5, and 
6 corresponding to the effect of  , C, and  . It should be 

noted that the computing time presented in these figures 
is for one running time using the k-fold method with k = 
5. It is shown that all parameters  , C, and  have 

influences on the performance of the SVM model using 
the RBF kernel. Figure 4 shows that   smaller than 0.01 

 
 

Fig. 5. Effect of C on the SVM model using RBF kernel. 
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is good enough for the SVM model. However, the 
computing time is slightly increased when   is decreased. 

Figure 5 indicates that the good range for C is [1,10]. 
In this range, computing time is increased when C 
increases. Note that C is a regularization parameter for 
SVM models. A smaller value of C means that the 
hyperplanes allow more misclassifications. Figure 6 shows 
that a good range for   is [0.01, 0.1].   affects the 

partitioning in the feather space. If it is too small, the 
model is too constrained and cannot forecast the 
complexity of the data and the model can be under-fitting. 
In contrast, if   is too great the model can be over-fitting. 

Furthermore, the computing time is significantly increased 
when   increases. 

 

 

 
 
 
4.3. The Effects of Parameters of RBF Kernel 
 

The performance of the optimal SVM model is 
presented in this section. The kernel is RBF with C = 1.0, 

 =0.1, and  =0.01. The data with 5,000 samples is 

divided into 2 data: training data with 4,000 samples and 
test data with 1,000 samples. One random training process 
is performed. The results for training data is as MSE = 

0.00044, R2 = 0.9699, and 2R = 0.9696. The results for test 

data is MSE = 0.00117, R2 = 0.9265, and 2R = 0.9235. 
Obviously, the trained model is very good when the value 

of MSE is small and both R2 and 2R  are very high. 
Figures 7 and 8 present the relationship between the 

exact and predicted values for training data and test data. 
In these figures, the fit functions are presented in the form 
of y = ax+b, where a is defined as the slope and b is the 
difference. A good model has a ≈ 1 and b ≈ 0. In light of 
this, Figs. 7 and 8 show that the trained model is very 
accurate for training data since a = 0.9634 and b = 0.0815. 
In addition, the R2 of 0.9703 is very high. The results for 
test data is also very good with a = 0.939, b= 0.1325 and 
R2 = 0.927. Therefore, it can be concluded that SVM is 
very robust for estimating the ultimate load-carrying 
capacity of steel trusses using direct analysis. 

 

5. Conclusion 
 
In this paper, an machine learning (ML) framework 

based on the support vector machine (SVM) algorithm to 
estimate the ultimate load factor of truss structures via 
direct analysis was presented for the first time. Four types 
of kernel functions, including linear, sigmoid, polynomial, 
radial basis function (RBF) for the SVM model were 
considered. The work used a 39-bar planar nonlinear 
inelastic steel truss to study the applicability and 
effectiveness of the proposed SVM model. The numerical 
results showed that the accuracy and stability of the SVM 
model are dependent on the type of kernel used and its 
parameter values. For the considered structure, the RBF 
kernel appeared to be the best type for the SVM model to 
predict the ULF of the truss. Regarding the SVM model 
using RBF, all parameters  , C, and   affected the 

performance of the SVM model. Moreover, each 
parameter had a good range for the performance of the 
SVM model. Particularly, these good ranges were obtained 
as:  (1)   not greater than 0.01, (2) C in [1,10], and (3)    

in [0.01, 0.1]. Besides, the computation cost was increased 
when   decreased, C, and   increased. The 

aforementioned results could provide a deeper 
understanding of the performance of the SVM method for 
predicting the ultimate strength of steel trusses using 
direct analysis. Further study should consider more 

 
 

Fig. 6. Effect of γ on the SVM model using RBF kernel. 
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examples, such as complex steel space trusses and frames, 
and the application of the proposed SVM-based 

framework in practical design problems of steel structures, 
like optimization or reliability assessment. 
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