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Abstract. The relevance of the study of the dynamic movements of structures consisting 
of a thin-walled shell and a viscoelastic cylindrical cavity mounted on it is due to their 
widespread application in modern technology. The mechanical system under consideration 
consists of two concentric cylindrical shells with a viscoelastic filler (or cylinder) between 
the shells. The filler and shell can be firmly attached to the outer and inner shells along the 
entire cylindrical surface. The basic equations of small oscillations of the shell theory and 
the three-dimensional viscoelasticity theory are used to describe the oscillations of the 
“shell-filler-shell” system with the exact satisfaction of the contact boundary. The main 
purpose of the work is to develop a method and algorithm for calculating the problems of 
propagation and absorption of natural waves in a mechanical "shell-filler-shell" mechanical 
system. A calculation method based on Müller, Gauss and orthogonal running methods 
was developed. The Kirchhoff-Love and Tymoshenko hypotheses are used for the 
cylindrical shell. For dissipative homogeneous and non-homogeneous mechanical systems, 
the variation of the real and imaginary parts of the complex phase velocity from different 
system parameters was studied. For sufficiently long waves, Kirchhoff-Love and 
Tymoshenko hypothesized that the phase velocities of the first form were found to be well 
matched. It was also found that it is possible to use shell equations for shortwave, taking 
into account the compression of the filler. It was found that the increase in filler thickness 
was particularly significant for the relatively small thickness of the filler. 
 
Keywords: Non-axisymmetric waves, three-layer cylindrical shell, phase velocity, wave number, filler. 
 

ENGINEERING JOURNAL Volume 25 Issue 7 
Received 10 June 2021 
Accepted 8 July 2021 
Published 31 July 2021 
Online at https://engj.org/ 
DOI:10.4186/ej.2021.25.7.97 



DOI:10.4186/ej.2021.25.7.97 

98 ENGINEERING JOURNAL Volume 25 Issue 7, ISSN 0125-8281 (https://engj.org/) 

1. Introduction 
 

One of the main directions in the development of 
modern industrial production is the widespread use of 
resource-saving design solutions and technologies that 
are directly related to the reduction of material 
consumption of these structures. To do this, it is 
necessary to study the dissipative properties of structural 
materials in general. Such structures are widely used in 
aircraft and missile construction [1, 2, 3]. This is primarily 
due to the fact that three-layer structures consisting of 
thin iscoelastic load-bearing layers and a deformable 
aggregate (polymeric material) have less weight with 
equal rigidity compared to the same structures with 
arbitrary thickness. The middle floor can also serve as a 
vibration insulator of the object. In addition, the middle 
layer can play the role of thermal insulator of the 
structure [4].  

In [5-8], the dynamic and static states of three-layer 
cylindrical structures with a filler are considered. Gas, 
water, and other elastic materials can be used as a filler. It 
is noted that the consideration of the inhomogeneity of 
the filler is not sufficiently studied. In particular, it is very 
important for practical calculations to study the dynamic 
state of three-layer structures, taking into account 
structural heterogeneity and viscoelasticity under 
vibration effects. A significant number of works are 
devoted to solving this problem [9-11].  

However, until now, no general methods have been 
developed for calculating structurally inhomogeneous 
layered cylindrical shells surrounded or filled with a linear 
continuous medium. A sufficiently detailed analysis of 
the state of the problem of vibrations of shells 
interacting with a liquid medium is contained in [12, 13, 
14], and for shells with an elastic filler – in [15]. The 
problems of oscillations in a system of shells with a filler 
are considered in [16, 17].  

In [18], the problem of propagation of eigenwaves in 
three-layer plates is investigated. The problem is posed in 
a refined formulation of the theory of plates and shells. 
The equations of the oscillatory processes of the filler are 
described by the Lame equations and for shells the shell 
equations obeying the Kirchhoff –Love hypotheses are 
used. The dispersion relations are constructed in the 
form of algebraic equations. The algebraic equations are 
solved numerically and the phase velocities for 
symmetric and antisymmetric waves are determined [19].  

Existing mathematical formulations of the problem 
and methods for calculating three-layer structures do not 
take into account the viscoelastic or rheological 
properties of materials.  

Thus, the development of methods for the dynamic 
calculation of three-layer shells based on dissipative- 
inhomogeneous mathematical models and their 
implementation in the form of computational algorithms 
represent actual problems of mechanics. In contrast to 
other works, this paper studies the propagation of non-
axisymmetric eigenwaves in viscoelastic three-layer 
cylindrical bodies when rigid (or sliding) contact 

conditions are met at the interface of the layers. A 
dispersion equation with a complex output parameter is 
obtained. The real and imaginary parts of the complex 
phase velocity as a function of the wave numbers and 
other parameters of the mechanical system are 
investigated. The behavior of the energy dissipation 
coefficient on the geometrical and physico-mechanical 
parameters of the structure is found. 
 

2. Methods 
 
2.1. Problem Statement and Basic Relations 
 

Consider the propagation of eigenwaves in infinitely 
long structures consisting of two outer shells, between 
which there is a viscoelastic filler. Equations of vibration 
of a viscoelastic cylindrical aggregate, in the coordinate 

system 𝑟, 𝜃, 𝑧 written as [20]. 
 

𝜇𝑠𝛻
2�⃗� + (�̃�𝑠 + 𝜇𝑠)𝑔𝑟𝑎𝑑𝑑𝑖𝑣�⃗� = 𝜌𝑠

𝜕2�⃗� 

𝜕𝑡2
 (1) 

 

where �⃗� (𝑢𝑟 , 𝑢𝜃 , 𝑢𝑧)- vector of displacement of points of 

the environment; 𝜌𝑠- density of the filler material: 
 

𝑔𝑟𝑎𝑑𝜑 =
𝜕𝜑

𝜕𝑟
�⃗� 𝑟 +

1

𝑟

𝜕𝜑

𝜕𝜃
�⃗� 𝜃 +

𝜕𝜑

𝜕𝑧
�⃗� 𝑧; 

 

𝑑𝑖𝑣�⃗� =
1

𝑟

𝜕𝑢𝜃

𝜕𝜃
+

1

𝑟

𝜕[𝑟𝑢𝑟]

𝜕𝑟
+

𝜕𝑢𝑧

𝜕𝑧
; 

 

𝛻2�⃗� =
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕�⃗⃗� 

𝜕𝑟
) +

1

𝑟2

𝜕2�⃗⃗� 

𝜕𝜃2 +
𝜕2�⃗⃗� 

𝜕𝑧2; 

 

�̃�𝑠𝜑(𝑡) = 𝜆0𝑠 [𝜑(𝑡) − ∫ 𝑅𝜆𝑠(𝑡 − 𝜏)𝜑(𝜏)𝑑𝜏
𝑡

0

] ; 

 

𝜇𝑠𝜑(𝑡) = 𝜇0𝑠 [𝜑(𝑡) − ∫ 𝑅𝜇𝑠(𝑡 − 𝜏)𝜑(𝜏)𝑑𝜏
𝑡

0

], (2) 

 

𝑅𝜆𝑠(𝑡 − 𝜏)   and 𝑅𝜇𝑠(𝑡 − 𝜏)  – relaxation cores; 

𝜆0𝑠, 𝜇0𝑠- instantaneous elastic modulus; 𝜑(𝑡)- arbitrary 

time function;  �⃗� 𝑟 , �⃗� 𝜃 , �⃗� 𝑧  - unit vectors by direction 

𝑟, 𝜃, 𝑧. 
The equations of motion of three-layer shells, which 

are usually used in calculations, are obtained using 
various assumptions related to the nature of the filler 
deformation [21].  

In order to assess the acceptability of the results 
obtained on the basis of these equations, when solving 
dynamic problems for three – layer cylindrical shells, a 
refined approach is proposed, when the motion of the 
filler is described by the dynamic equations of the theory 
of viscoelasticity (1), and the bearing layers are 
considered as thin shells, obeying the hypotheses of 
Kirchhoff-Love or Timoshenko. The contact between 
the carrier layers and the aggregate can be rigid or sliding. 
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Integro-differential equations of vibrations of shells 
(carrier layers) in vector and matrix form take the 
following form: 

 

𝐿𝑖𝑗 �⃗⃗� 𝑘 − ∫ 𝐿𝑖𝑗𝑅𝐸к(𝑡 − 𝜏)�⃗⃗� 𝑘(𝑟 , 𝜏)
𝑡

0

𝑑𝜏

=
(1 − 𝜈0к

2)

𝐺0кℎ0к
𝑞 к

+ 𝜌0к

(1 − 𝜈0к
2)

𝐺0к

𝜕2�⃗⃗� 𝑘
𝜕𝑡2

. 

 

(𝑘 = 1,2) 

(3) 

 

Here 𝜈0к - the Poisson's ratio of the shell, is 

considered a constant value 𝑈𝑘(𝑢𝑘 , 𝜗𝑘 , 𝑤𝑘)- vector of 
displacement of points of the median surface of the shell; 

index 𝑘 = 1 refers to the inner shell, and 𝑘 = 2- to the 

outer shell, 𝜌0к -is density of the carrier layer material, 

𝑞 к(𝑞𝑘𝑟 , 𝑞𝑘𝜃 , 𝑞𝑘𝑧) - external loads that are applied from 

the placeholder side or a specified external load; 𝑅𝐸𝑘(𝑡 −
𝜏)- the relaxation core of the k th carrier layer. Equations 
the movements of the cylindrical shell obtained on the 
basis of the Kirchhoff-Love hypotheses take the 
following form 

 

𝐿11 =
𝜕2

𝜕𝑧2
+

1 − 𝜈𝑘

2𝑅𝑘
2

𝜕2

𝜕𝜃2
− 𝜌𝑘

1 − 𝜈𝑘

2𝐺𝑘0

𝜕2

𝜕𝑡2
;  

 

 𝐿12 = 𝐿21 =
1 + 𝜈𝑘

2𝑅𝑘

𝜕2

𝜕𝑧𝜕𝜃
; 

 

𝐿13 = 𝐿31 ==
𝜈𝑘

𝑅𝑘

𝜕

𝜕𝑧
; 

 

𝐿22 =
1 − 𝜈𝑘

2𝑅𝑘
2

𝜕2

𝜕𝑧2
+

1

𝑅𝑘
2

𝜕2

𝜕𝜃2
− 𝜌𝑘

1 − 𝜈𝑘

2𝐺𝑘0

𝜕2

𝜕𝑡2
; 

 
 

𝐿33 =
ℎ𝑘

2

12
𝛻2𝛻2 +

1

𝑎𝑘
2 + 𝜌𝑘

1 − 𝜈𝑘

2𝐺𝑘0

𝜕2

𝜕𝑡2
; 

 

𝛻2𝛻2 =
𝜕4

𝜕𝑧4
+

2

𝑎𝑘
2

𝜕4

𝜕𝑧2𝜕𝜃2
+

1

𝑎𝑘
4

𝜕4

𝜕𝜃4
 

(4) 

 

Here 𝑅𝑘-is the radius of the middle surface, ℎ𝑘-is the 

thickness, 𝐺𝑘0 -is the instant modulus of elasticity. 
 
Load vector’s components: 
 

{𝑞𝑘𝑟 , 𝑞𝑘𝜃 , 𝑞𝑘𝑧} = −
1 − 𝜈𝑘

2𝐺𝑘0ℎ𝑘

{𝑝𝑟𝑘 + 𝑞𝑟𝑘 , 𝑝𝜃𝑘

+ 𝑞𝜃𝑘 , 𝑝𝑧𝑘 + 𝑞𝑧𝑘} 

(5) 

 

Here 𝑞𝑟𝑘,𝑞𝜃𝑘,𝑞𝑧𝑘- radius of the middle surface of the 

carrier layer; 𝑝𝑟𝑘 ,𝑝𝜃𝑘 ,𝑝𝑧𝑘 - the intensity of the external 
specified load in the corresponding direction. At the 
contact of the shells with the filler, the conditions of 
sliding contact are met. When using the Kirchhoff-Love 
hypotheses, these boundary conditions will take the 
form: 

 

𝑟 = 𝑅𝑘:      𝑢𝑟 = 𝑤𝑘;   𝜎𝑟𝑧 = 𝜎𝑟𝜃 = 0; 
 

𝑟 = 𝑅1: 𝜎𝑟𝑟 = −𝑞𝑟1; 𝑟 = 𝑅1: 𝜎𝑟𝑟 = −𝑞𝑟2.     
(6) 

 
 (6) 

It is assumed that the contact of the shells (bearing 
layers) with the deformable aggregate occurs along the 
median surfaces of the layers. If the hard contact 
conditions are met at the boundary of the shells with the 
filler, then the following equalities are assumed: 

 

𝑢𝑟 = 𝑤𝑘; 𝑢𝜃 = 𝜗𝑘; 𝑢𝑧 = 𝑢𝑘; 
 
𝜎𝑟𝑟 = ∓𝑞𝑟𝑘; 𝜎𝑟𝜃 = ∓𝑞𝜃𝑘; 𝜎𝑟𝑧 = ∓𝑞𝑧𝑘; 

(7) 

 

The minus and plus signs correspond to 𝑘 = 1 and 

𝑘 = 2 , accordingly. If we use the hypotheses of 
Timoshenko, then we get the same five equations. In the 
study of the natural oscillations of the mechanical system 
under consideration, the components of a given load 

𝑝𝑟𝑘 , 𝑝𝜃𝑘 , 𝑝𝑧𝑘 accepted as zero. 
It is assumed that the integral terms in expressions (2) 

and (3) are sufficiently small. In this case, the amplitudes 

of the ratio 𝜙(𝑡) = 𝜓(𝑡)𝑒−𝑖𝜔𝑅𝑡 , a slowly changing 

function of timе,  𝜔𝑅-the actual value. The assumption 
made will allow us to apply the freezing procedure [22, 
23] and, then the relations (2) are replaced by the 
following approximate relations 
 

�̄�𝑠[𝜑(𝑡)] = 𝜆0𝑠[1 − 𝛤𝑠𝜆
𝐶(𝜔𝑅) − 𝑖𝛤𝑠𝜆

𝑆 (𝜔𝑅)]; 

 

�̄�𝑠[𝜑(𝑡)] = 𝜇0𝑠[1 − 𝛤𝑠𝜇
𝐶 (𝜔𝑅) − 𝑖𝛤𝑠𝜇

𝑆 (𝜔𝑅)]; 

 

�̄�𝑘[𝜑(𝑡)] = 𝐺0𝑘[1 − 𝛤𝐺𝑘

𝐶 (𝜔𝑅) − 𝑖𝛤𝐺𝑘

𝑆 (𝜔𝑅)],    

(8) 

 
where 
 

𝛤𝑠𝜆
𝐶(𝜔𝑅) = ∫ 𝑅𝑠𝜆(𝜏) 𝑐𝑜𝑠 𝜔𝑅 𝜏𝑑𝜏

∞

0

, 𝛤𝑠𝜇
𝐶(𝜔𝑅)

= ∫ 𝑅𝑠𝜇(𝜏) 𝑐𝑜𝑠 𝜔𝑅 𝜏𝑑𝜏
∞

0

, 

 

𝛤𝑠𝜆
𝑆(𝜔𝑅) = ∫ 𝑅𝑠𝜆(𝜏) 𝑠𝑖𝑛 𝜔𝑅 𝜏𝑑𝜏

∞

0

, 𝛤𝑠𝜇
𝑆(𝜔𝑅)

= ∫ 𝑅𝑠𝜇(𝜏) 𝑠𝑖𝑛 𝜔𝑅 𝜏𝑑𝜏
∞

0

, 

(9) 
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The Rzhanitsin-Koltunov kernel 𝑅𝑠𝜆(𝑡) = 𝑅𝑠𝜇(𝑡) =
𝐴𝑒−𝛽𝑡

𝑡1−𝛼   was used in the calculations. From Eq. (1) and (3) 

with substitution of expressions (8) and (9): 
 

�̄�𝑠𝛻
2�⃗� + (�̄�𝑠 + �̄�𝑠)𝑔𝑟𝑎𝑑𝑑𝑖𝑣�⃗� = 𝜌𝑠

𝜕2�⃗� 

𝜕𝑡2
 (10) 

 

�̄�𝑖
𝑘
𝑖
�⃗⃗� 𝑘 =

(1 − 𝜈0к
2)

𝐺0кℎ0к
𝑞 к + 𝜌0к

(1 − 𝜈0к
2)

𝐺0к

𝜕2�⃗⃗� 𝑘
𝜕𝑡2

 (11) 

 

Here is the differential operator  �̄�𝑖
𝑘
𝑖
[𝜑(𝑡)] =

𝐿𝑖𝑗
𝑘 (1 − (𝑅𝑖𝑗

𝑘𝛿𝑖𝑗)
−1), [𝜑(𝑡)] − Kronecker symbols) and 

𝑅𝑖𝑗
𝑘 (𝑅11

𝑘 = 𝑅22
𝑘 = 𝑅33

𝑘 = �̄�𝑘[𝜑(𝑡)])  - a third-order 

diagonal matrix for the Kirchhoff-Love hypotheses. And 
also for the Timoshenko hypotheses, the order of the 
diagonal matrix is five. Thus, we obtain a system of 
differential equations (10), (11) with complex coefficients, 
which is solved under the boundary conditions (6) and 
(7). Next, we study the behavior of eigenvalues and 
waveforms (spectral problem) in viscoelastic layered 
cylindrical bodies at given values of wave numbers [24, 
25]. 

 
2.2. Non-axisymmetric Waves in a Three-Layer 

Cylindrical Shell 
 
The main purpose of the study is to estimate the wave 

effect of the number of waves in the circumferential 
direction on the phase velocities of wave propagation 
and the dissipative properties of a mechanical system. In 
the non-axisymmetric case, the longitudinal-transverse 
waves and the torsion waves are connected. Their 
propagation velocities are determined from a single 
general dispersion equation. 

For the non-axisymmetric case, the solutions of Eq. 
(11) are sought in the form 
 

{𝑢𝑘 , 𝑤𝑘 , 𝑢𝑧 , 𝑢𝑟}

= ∑{𝑢𝑘,𝑛, 𝑤𝑘,𝑛, 𝑈𝑛𝑧(𝑟), 𝑈𝑛𝑟(𝑟)} 𝑐𝑜𝑠( 𝑛𝜃) 𝑒𝑥𝑝 𝑖 (𝜉𝑧

∞

𝑛=0

− 𝜔𝑡) ; 
 

{𝜐𝑘 , 𝑢𝜃}

= ∑{𝜐𝑘,𝑛, 𝑈𝑛𝜃(𝑟)} 𝑠𝑖𝑛( 𝑛𝜃)

∞

𝑛=0

𝑒𝑥𝑝 𝑖 (𝜉𝑧 − 𝜔𝑡) 

(12) 

 

Here  𝑢𝑘,𝑛, 𝜗𝑘,𝑛, 𝑤𝑘,𝑛, 𝑈𝑛𝑧(𝑟), 𝑈𝑛𝜃(𝑟), 𝑈𝑛𝑟(𝑟) - the 

amplitudes of the displacements of the shell and the 

filler, respectively, 𝜉 = 2𝜋/𝜆𝑓- wave number, 𝜔 = 𝜔𝑅 +

𝑖𝜔𝐼 = 𝑐𝑓𝜉 - complex frequency, 𝜆𝑓 , 𝑐𝑓  - length and 

complex phase velocity, n is the number of waves in the 
circumferential direction. 

Substituting (12) into (1), we obtain the following 
system of algebraic equations with complex coefficients 

 

((𝜉2 +
1 − 𝜈0𝑘

2𝑎𝑘
2 𝑛2) − 𝜌𝑘

1 − 𝜈0𝑘

2�̄�𝑘

𝜔2) 𝑢𝑘.𝑛

+ 𝑖𝜉
(1 + 𝜈0𝑘)𝑛

2𝑎𝑘
𝜗𝑘.𝑛 + 𝑖𝜉

𝜈0𝑘

𝑎𝑘
𝑤𝑘.𝑛

= 0; 
 

𝑖𝜉
(1 + 𝜈0𝑘)𝑛

2𝑎𝑘
𝑢𝑘.𝑛

+ [
1 − 𝜈0𝑘

2
(𝜉2 − 𝜌𝑘

1 − 𝜈0𝑘

2�̄�𝑘

𝜔2)

+
𝑛2

𝑎𝑘
2] 𝜗𝑘.𝑛 +

𝑛2

𝑎𝑘
2 𝑤𝑘.𝑛 = 0,    

 

𝑖𝜉
𝜈0𝑘

2𝑎𝑘
𝑢𝑘.𝑛 +

𝑛

𝑎𝑘
2 𝜗𝑘.𝑛

+ [
ℎ𝑘

2

12
(𝜉2 +

𝑛2

𝑎𝑘
2)

2

− 𝜌𝑘

1 − 𝜈0𝑘

2�̄�𝑘

𝜔2 +
1

𝑎𝑘
2]𝑤𝑘.𝑛

== −
1 − 𝜈0𝑘

2�̄�𝑘ℎ𝑘

𝑞𝑟𝑘,𝑛
0 .                            

 

(13) 

 
From (13), we express the amplitudes of the loads 

that are transmitted to the filler through the amplitudes 
of the displacements of the points of the median surfaces 
of the bearing layers: 
 

𝑞𝑟𝑘,𝑛
0 = −

2�̄�𝑘𝑘
2

1 − 𝑣0𝑘
𝑓𝑘

𝑤𝑘,𝑛

ℎ𝑘
; 𝑓𝑘

= 𝑒3 − 𝑣0𝑘𝜂
2
𝑒6

∈𝑘
2 +

𝑛2

∈𝑘
4

𝑒5

𝑒4
; 

 

∈𝑘= {

𝑎1

𝑎2
= 1 − 𝑘1𝑘2, 𝑖𝑓 к = 1,  𝑘𝑠 = ℎ𝑠/ℎ2

1,    𝑖𝑓  𝑘 = 2.
 

 

𝑒1 = (1 −
1 − 𝑣0𝑘

3
𝑐0
2) 𝜂2 +

1 − 𝑣0𝑘

2

𝑛2

∈𝑘
2 ; 

 

𝑒2 =
1 − 𝑣0𝑘

2
(1 −

2

3
𝑐0
2) 𝜂2 +

𝑛2

∈𝑘
2 ; 

 

𝑒3 =
𝑘2

12
(𝜂2 +

𝑛2

∈𝑘
2) +

1

∈𝑘
2 −

1 − 𝑣0𝑘

3
𝑐0
2𝜂2; 

 

𝑒4 =
(1 + 𝑣0𝑘)

2

12

𝑛2𝜂2

∈𝑘
2 − 𝑒2; 

 

𝑒5 = 1 −
𝑣0𝑘(1 + 𝑣0𝑘)𝜂

2

2𝑒1
; 

 

(14) 
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𝑒6 =
(1 + 𝑣0𝑘)𝑒5

2𝑒1𝑒4

𝑛2

∈𝑘
2 +

𝑣0𝑘

𝑒1
, 

 

𝑘 = 1,2 

𝜂 = 𝜉ℎ2/𝑘2 , 𝑘𝑘 = ℎ𝑘/𝑎2 , с0𝑘 = 𝑐𝑓(
3𝜌𝑘

2𝐺0𝑘
) , с0 = 𝜔/𝜉 , 

𝑘𝑠- filler thickness 
All dimensionless parameters are entered here 

according to (14). Assuming in (13), we arrive at the 
problem for axisymmetric propagation of eigenwaves on 
a three-layer cylindrical body [26]. 

To integrate the equations of motion of the 
placeholder, we introduce potential functions 

(𝜑𝑛, 𝜓𝑛 , 𝜒𝑛) [27] 
 

𝑈𝑛(𝑟) = 𝑖𝜉𝜑𝑛 +
𝑑2𝜓𝑛

𝑑𝑟2
+

1

𝑟

𝑑𝜓𝑛

𝑑𝑟
−

𝑛2

𝑟2
𝜓𝑛; 

 

𝑉𝑛(𝑟) = −
𝑛

𝑟
𝜑𝑛 + 𝑖𝜉

𝑛

𝑟
𝜓𝑛 −

𝑑𝜒𝑛

𝑑𝑟
; 

 

𝑊𝑛(𝑟) =
𝑑𝜓𝑛

𝑑𝑟
− 𝑖𝜉

𝑑𝜓𝑛

𝑑𝑟
+

𝑛

𝑟
𝜒𝑛 

(15) 

 
Substituting (15), taking into account (11), in (7), we 

obtain for potential functions the Bessel equation 
 

𝑑2𝛥𝑛𝑗

𝑑𝑟2 +
1

𝑟

𝑑𝛥𝑛𝑗

𝑑𝑟
− [

𝑛2

𝑟2 + (1 − �̄�𝑝𝑠𝑗
2 )𝜉2] 𝛥𝑛𝑗 = 0,  

 

(𝑗 = 1,2,3) 

(16) 

 

Here 𝛥𝑛1 = 𝜑𝑛, 𝛥𝑛2 = 𝜓𝑛 , 𝛥𝑛3 = 𝜒𝑛, 𝑀𝑝𝑠1
2 = �̄�𝑝1

2 𝑀𝑝
2 , 

𝑀𝑝𝑠2
2 = �̄�𝑠2

2 𝑀𝑠
2 , 𝑀𝑝𝑠3

2 = �̄�𝑠3
2 𝑀𝑠

2 , 𝑀𝑝1
2 = 𝐺𝐼𝑝 , �̄�𝑠2

2 =

𝐺𝐼𝑠 , �̄�𝑠3
2 = 𝐺𝐼𝑠 , 𝑀𝑝 = 𝑐𝑓/𝑐𝑠𝑝 , 𝑀𝑠 = 𝑐𝑓/𝑐𝑠𝑠 , 𝐺𝐼𝑝 = 1 −

𝛤𝐺𝑝
𝑐 (𝜔𝑅) − 𝑖𝛤𝐺𝑝

𝑠 (𝜔𝑅), 𝐺𝐼𝑠 = 1 − 𝛤𝐺𝑠
𝑐 (𝜔𝑅) − 𝑖𝛤𝐺𝑠

𝑠 (𝜔𝑅) , 

𝑐𝑠𝑝
2 =

2𝐺0𝑝(1−𝜈𝑠)

𝜌𝑠(1−2𝜈𝑠)
, 𝑐𝑠𝑠

2 =
𝐺0𝑝

𝜌𝑠
, 𝐺0𝑝 - moments modulus of 

elasticity. 
The general solutions of Eq. (16) have the form: 

 

𝛥𝑛𝑗(𝑟, 𝜉) = 𝐴𝑛𝑗(𝜉)𝐽𝑛(𝑚𝑗𝜉𝑟)

+ 𝐵𝑛𝑗(𝜉)𝑁𝑛(𝑚𝑗𝜉𝑟) 
(17) 

 

Here  𝑚𝑗 = √1 − 𝑀𝑝𝑠𝑗
2 , 𝐴𝑛𝑗(𝜉), 𝐵𝑛𝑗(𝜉)– is constants. 

Stress amplitudes of filler: 
 

𝜎𝑟𝑟,𝑛 = �̄�𝑠 (
𝑑2𝜑𝑛

𝑑𝑟2
+

1

𝑟

𝑑𝜑𝑛

𝑑𝑟
−

𝑛2

𝑟2
𝜑𝑛 − 𝜉2𝜑𝑛))

+ 2�̄�𝑠 (
𝑑2𝜑𝑛

𝑑𝑟2
− 𝑖𝜉

𝑑2𝜓𝑛

𝑑𝑟2

+
𝑛

𝑟

𝑑𝜓𝑛

𝑑𝑟
−

𝑛

𝑟2
𝜒𝑛) ; 

 

𝜎𝑟𝑥,𝑛 = �̄�𝑠 (2𝑖𝜉
𝑑𝜑𝑛

𝑑𝑟
+

𝑑3𝜑𝑛

𝑑𝑟3
+

1

𝑟

𝑑2𝜓𝑛

𝑑𝑟2

−
𝑛2 + 1

𝑟2

𝑑𝜓𝑛

𝑑𝑟
+

2𝑛2

𝑟3
𝜓𝑛

+ 𝜉
𝑑𝜓𝑛

𝑑𝑟
+ 𝑖

𝑛𝜉

𝑟
𝜒𝑛) ; 

 

𝜎𝑟𝜃,𝑛 = �̄�𝑠 (
2𝑛

𝑟
(
𝜑𝑛

𝑟
−

𝑑𝜑𝑛

𝑑𝑟
) + 𝑖

2𝑛𝜉

𝑟

𝑑𝜓𝑛

𝑑𝑟
−

𝑖
2𝑛

𝑟2 𝜓𝑛 +
1

𝑟

𝑑𝜒𝑛

𝑑𝑟
− −

𝑛2

𝑟2 𝜒𝑛 −
𝑑2𝜒𝑛

𝑑𝑟2 ). 

(18) 

 
Equation (17) substituting into (18): 

 

𝑑𝑒𝑡𝑛‖𝑎𝑖𝑗‖ = 0(𝑖, 𝑗 = 1, . . . ,6), (19) 

 
where the elements of the determinant are calculated by 
the formulas: 

𝑎11 = 𝑚1𝜂𝑠1 −
𝑛

∈1
𝑠2; 

 

𝑎12 = −(𝑚1𝜂𝑠4 +
𝑛

∈1
𝑠5) ; 

 

𝑎13 = (𝑚2𝜂𝑠7 −
𝑛

∈1
𝑠8) 𝑡1; 

 

𝑎14 = (𝑚2𝜂𝑠10 +
𝑛

∈1
𝑠11) 𝑡1; 

 

𝑎15 =
𝑛𝑠8

2 ∈1
; 

 

𝑎16 = −
𝑛𝑠11

2 ∈1
; 

 

𝑎21 = 𝑚1𝜂 − 𝑛𝑠3; 
 

𝑎21 = 0; 
 

𝑎22 = −𝑚1𝜂 − 𝑛𝑠6; 
 

𝑎23 = (𝑚2𝜂 − 𝑛𝑠9)𝑡1; 
 

𝑎24 = (𝑚2𝜂 + 𝑛𝑠12)𝑡1; 
 

𝑎25 =
𝑛𝑠9

2
; 
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  𝑎26 = 𝑛[𝑚2𝜂 ∈1 𝑠1 − (𝑛 − 1)𝑠2]; 
 

𝑎31 = 0; 
 

𝑎32 = −𝑛[𝑚2𝜂 ∈1 𝑠4 − (𝑛 − 1)𝑠5]; 
 

𝑎33 = 𝑛[𝑚2𝜂 ∈1 𝑠7 − (𝑛 − 1)𝑠8]; 
 

𝑎34 = 𝑛[𝑚2𝜂 ∈1 𝑠10 + (𝑛 − 1)𝑠11]; 
 

𝑎35 = 𝑚2𝜂 ∈1 𝑠7 + [𝑛(𝑛 − 1) +
𝑚2

2𝜂2 ∈1
2

2
] 𝑠8; 

 

𝑎36 = 𝑚2𝜂 ∈1 𝑠10 − [𝑛(𝑛 − 1) +
𝑚2

2𝜂2 ∈1
2

2
] 𝑠11; 

 

𝑎41 = 0; 
 

𝑎42 = −𝑛[𝑚2𝜂 − (𝑛 − 1)𝑠6]; 
 

𝑎43 = 𝑛[𝑚2𝜂 − (𝑛 − 1)𝑠9]; 
 

𝑎44 = 𝑛[𝑚2𝜂 − (𝑛 − 1)𝑠12]; 
 

𝑎45 = 𝑚2𝜂 − [𝑛(𝑛 − 1) +
𝑚2

2𝜂2

2
] 𝑠9; 

 

𝑎46 = 𝑚2𝜂 − [𝑛(𝑛 − 1) +
𝑚2

2𝜂

2
] 𝑠12; 

 

𝑎51 = 𝑚1𝜂𝑡5𝑠1 + (𝑡1𝜂
2 + 𝑡6)𝑠2; 

 

𝑎52 = −𝑚2𝜂𝑡5𝑠4 + (𝑡1𝜂
2 + 𝑡6)𝑠5; 

 

𝑎53 = 𝑚2𝜂𝑡5𝑠7 + (𝑚2
2𝜂2 + 𝑡6)𝑠8; 

 

𝑎54 = 𝑚2𝜂𝑡5𝑠10 − (𝑚𝑠
2𝜂2 + 𝑡6)𝑠11; 

 

𝑎55 =
𝑛

∈1
[𝑚2𝜂𝑠7 − (

𝑛 − 1

∈1
− 𝑡2𝑡3) 𝑠8] ; 

 

𝑎56 =
𝑛

∈1
[𝑚2𝜂𝑠10 + (

𝑛 − 1

∈1
− 𝑡2𝑡3) 𝑠11] ; 

 

𝑎61 = 𝑚1𝜂𝑡7 + (𝑡1𝜂
2 + 𝑡8)𝑠3; 

 

𝑎62 = −𝑚1𝜂𝑡7 + (𝑡1𝜂
2 + 𝑡8)𝑠6; 

 

𝑎63 = 𝑚2𝜂𝑡7 + (𝑚𝑠
2𝜂2 + 𝑡8)𝑠9; 

 

𝑎64 = 𝑚2𝜂𝑡7 − (𝑚𝑠
2𝜂2 + 𝑡8)𝑠12; 

 

𝑎65 = 𝑛[𝑚2𝜂 − (𝑛 − 1 + 𝑡2𝑡4)𝑠9]; 
 

𝑎66 = 𝑛[𝑚2𝜂 + (𝑛 − 1 + 𝑡2𝑡4)𝑠12]; 

 

𝑡1 =
1 + 𝑚𝑠

2

2
; 

 

𝑡2 =
𝑘𝛾

1 − 𝑣
; 

 

𝑡3 = 𝑓1; 
 

𝑡4 = 𝑓2; 
 

𝑡7 = 1 − 𝑡2𝑡4; 
 

𝑡5 =
1

∈1
+ 𝑡2𝑡3; 

 

𝑡6 =
𝑛(𝑛 − 1)

∈1
2 −

𝑛

∈1
𝑡2𝑡3; 

 

𝑡8 = 𝑛(𝑛 − 1) + 𝑛𝑡2𝑡4; 
 

𝑠1 =
𝑁𝑛+1(𝑚1𝜂 ∈1)

𝑀𝑛+1(𝑚1𝜂)
; 

 

𝑠2  =
𝑁𝑛(𝑚1𝜂 ∈1)

𝑁𝑛+1(𝑚1𝜂)
; 

 

𝑠3 =
𝑁𝑛(𝑚1𝜂)

𝑁𝑛+1(𝑚1𝜂)
. 

 

Coefficients  𝑠4. . . 𝑠6 correspond to the coefficients 

 𝑠1. . . 𝑠3 if instead of functions  𝑁𝑛(𝑥) substitute 

functions   𝐽𝑛(𝑥) , coefficients  𝑠7. . . 𝑠9  and   𝑠10. . . 𝑠12  
determined by the formulas for the 

coefficients  𝑠1. . . 𝑠3 and  𝑠4. . . 𝑠5 if instead of  𝑚 

substitute 𝑚2. The relative thickness of the aggregate 𝑘𝑠 
and the number of waves in the circumferential direction 
were varied. 

 

3. Results and Discussions 
 

To solve the transcendental equation (19), the 
Muller method is used, and at each iteration of the 
Muller method, the Gauss method is used with the 
allocation of the main element [21]. The dispersion 
characteristics are understood as the dependence of the 
phase velocity on the wave number for different 
parameters of the mechanical system. This method is 
suitable for multilayer cylindrical bodies. The program is 
written in C++. 

To calculate the Bessel and Neumann functions of a 
complex argument of any order, the argument z = x+iy 
was replaced by exponential functions in the form: 

 

𝑧 = 𝜌𝑒𝑖𝜑; 𝜌 = √𝑥2 + 𝑦2,⥂⥂⥂⥂ ф = а𝑟𝑐𝑡𝑔
𝑦

𝑥
. 

and obtained: 
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𝐽0(𝜌𝑒𝑖𝜑) = ∑(−1)𝑘
(
𝜌
2
)
2𝑘

(𝑘!)2
𝑒2𝑘𝜑

∞

𝑘=0

= 𝑈0(𝜌,ф) + 𝑖𝑉0(𝜌, ф); 

𝑈0(𝜌, ф) = ∑(−1)𝑘
(
𝜌
2
)
2𝑘

(𝑘!)2
𝑐𝑜𝑠 2 𝑘ф = 𝑈0(𝜌, ф)

∞

𝑘=𝑜

, 

𝑉0(𝜌,ф) = ∑ (−1)𝑘
(
𝜌

2
)
2𝑘

(𝑘!)2
𝑠𝑖𝑛 2 𝑘ф = 𝑈0(𝜌,ф)∞

𝑘=𝑜 .   

(20) 
For series (20), the remainder does not exceed the 

first discarded term. If we choose for U0(p, ф) and V0(p, 
ф) 26 terms of the series (polynomials of the 50 th degree 

in ), then the error modulo will be less than the 

maximum value of which (for  <10) is approximately 
1.5 ×10-17. 
 
Table 1. Some values of the Bessel function depending 
on the argument (ф =100). 
 

Z J0 (z) V0(z) 

0.0 0.99041 -0.00021 -1.97937 0.11159 

0.1 0.99765 -0.00085 -1.53476 0.11269 

0.2 0.99062 -0.00340 -1.08176 0.11597 

0.3 0.97895 -0.00761 -0.80837 0.11999 

 
Some values of the Bessel function depending on the 

argument (ф =100) are given in Table 1.  
For complex roots, the Muller method simplifies 

calculations and provides faster convergence than the 
Bairstow method if the roots are close to each other [27, 
28]. When using the Muller method, quadratic 
interpolation is applied, which leads to iterations of the 
form: 

𝑍[𝑗+1]  =  Z[𝑗]] - (𝑍[𝑗] - Z[j-1] )
2C𝑗

𝐵jj
24𝐴𝑗𝐶𝑗

𝑠𝑖𝑔𝑛𝐵 

where 

𝐴𝑗 = 𝑔𝑖𝑓𝑖 − 𝑔𝑖(1 + 𝑔𝑖)
2𝑓𝑗−1 + 𝑔𝑖𝑓𝑖−2; 

 

𝐵𝑗 = (2𝑔𝑖 + 1)𝑓𝑗
2 − (1 + 𝑔𝑖)

2𝑓𝑗−1 + 𝑔𝑖𝑓𝑖−2; 

 

𝐶𝑗 = (𝑔𝑖 + 1)𝑓𝑖;  𝑓𝑖 = 𝑓(𝑧[1]); 
 

𝑔𝑖 =
𝑧[𝑗 − 𝑧[𝑗−1]

𝑧[𝑗−1] − 𝑧[𝑗−2]
; 

 

𝑗 = 0,1,2 
 

To start the solution, you can put 𝑧[0] = 𝑧00;  𝑧
[1] =

𝑧01;  𝑧
[2] = 𝑧02 .  

where 𝑧00, 𝑧01, 𝑧02 - are solutions of the problem in 
the elastic formulation. 

The calculation results for relaxation kernel   𝑅(𝑡) =

𝐴𝑒−𝛽𝑡/𝑡1−𝛼  , and for values of parameters:  𝐴 =
0,048; 𝛽 = 0,05; 𝛼 = 0,1 , are shown in Fig. 1. Figure 1 

shows the dependences of the change in the phase 

velocity (real- 𝑐𝑅  and imaginary- 𝑐𝐼 ) from 𝛽𝑎  ( 𝛽𝑎 =
𝐺0/𝐺𝑠0; 𝐺01 = 𝐺02 = 𝐺0 ) for different values 𝑛  ( 

n=1,2,..8), when 𝑘𝑠 = 10 , for 𝑘 = 1, 𝑘𝑠 = 5  and 𝑘 =
2, 𝑘𝑠 = 3 . 

 

 
 
Fig. 1. Dispersion dependences for different numbers of 
waves in the circumferential direction (rigid contact). 
 

The solid lines correspond to the first radial mode of 
motion, and the dashed lines correspond to the damping 
coefficient (n=1,2...8). As follows from this graph, for 

sufficiently long waves (𝛽𝑎 ≥ 13), the real parts of the 

dispersion curves of the first mode for different ones 𝑛 
coincide. This allows us to conclude that the first 
resonant velocities for the problem of the effect of a 
moving load on a three-layer shell with axisymmetric and 
non-axisymmetric loads coincide. In all the considered 

cases of changing 𝑛 , the variance curves coincide. The 
energy dissipation in the non-axisymmetric oscillation at 

(𝛽𝑎 ≥ 12) coincides with differences of up to 10%. In 
the same drawing, the dashed curve refers to the special 
case where the inner shell is absolutely rigid. As 
calculations have shown, for such a shell with a rigid 
core, the first mode of motion does not exist, and the 
second (axial) mode is the lowest; moreover, the 
dispersion curves coincide for all of them. 

The results of calculations based on equation (19) in 

the case of 𝑅(𝑡) = 0and n=0 are compared with  the 
calculations obtained using the numerical method of 
difference schemes given in [29]. The real parts of the 
complex phase velocity obtained from [29] coincide with 
our results with a difference of up to 10%. The results of 

the work at 𝑅(𝑡) = 0 and 𝑛 ≠ 1were compared with the 
works [30, 31]. The behaviour of the change in the phase 
velocity almost coincides with Fig. 1 (differs by up to 
5%). 

Similar dependences for 𝑘𝑠 = 20 are shown in Fig. 2. 
Here, the difference between symmetric and 
axisymmetric waves of the first mode is more significant, 

but with an increase in 𝑛 the minima of the dispersion 
curves do not change, but only they shifted towards 
longer waves. Consequently, the resonant velocities can 
be determined from the solution of the corresponding 
axisymmetric problem. For the second mode, the phase 

velocities at different 𝑛 coincide. With an increase in the 
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thickness of the filler, the phase velocity of the first 
mode increase, the second- decrease. 

 

 
 
Fig. 2. Model dispersion curves (sliding contact). 
 

Figures 3 and 4 show graphs of the change in phase 

velocities for a three-layered shell from 𝜂 , hard and 

sliding contact in case of thicker filler  𝑘𝑠 = 30.  Fig. 3 
shows the dispersion curves of a rigid contact, and Fig. 4 
shows- a sliding contact. The solid lines- is the first axial 
mode, the dashed lines- the damping coefficient of the 
axial mode of motion at different values of the number 
of waves in the circumferential direction. 
 

 
 
Fig. 3. Changing the phase velocity for a rigid contact. 
 

 
 
Fig. 4. Change in phase velocity for sliding contact. 
 

As in the case of the exact solution, for 𝜂 ≤ 12 there 
is a significant difference in the dispersion curves of the 

first mode at different 𝑛 ; for the second mode, the 
curves coincide, and for the third mode, with increasing 

𝑛 the minima decrease and they shift towards shorter 
waves. In determining the first (lowest) resonant velocity, 
one can also use the results of the axisymmetric solution. 

Figure 5 shows graphs of the effect of the filler 

thickness  𝑘𝑠(𝑘𝑠 = ℎ𝑠/𝑅)  on the phase velocity of the 

first mode at different values 𝜂 for the rigid contact (�̄� =
𝜌0/𝜌𝑠, 𝜌1 = 𝜌2 = 𝜌0, �̄� = 25  ). The picture shows 1-

𝜂 = 25, 2-𝜂 = 50, 3-𝜂 = 75. The solid line corresponds 
to the real, dashed lines - the imaginary parts of the phase 
velocity.  

 

 
 
Fig. 5. Influence of the filler thickness on the phase 
velocity of the first mode at different wave numbers 
(hard contact). 

 
It can be seen that as the filler thickness increases, the 

real and imaginary parts of the phase velocity gradually 

increase and for 𝑘𝑠 ≥ 13approach the asymptotic. 

 
4. Conclusions 

 
A mathematical formulation of the problem of 

propagation of non-axisymmetric eigenwaves on a 
viscoelastic three-layer cylindrical body is proposed. The 
calculation method, algorithm and programs for 
calculating the dynamic behavior of a three-layer 
structure are developed. Formally, the dispersion 
equations have the same form as the corresponding 
dispersion equations for the elastic layer, but, unlike the 
latter, they are complex. Therefore, the dispersion 
equations in the case of a viscoelastic aggregate do not 
have complex conjugate roots. The absence of complex-
conjugate roots leads to a violation of the symmetry of 
the frequency spectrum of the three-layer structure. 

As calculations have shown, for a shell with a rigid 
core, the first mode of motion does not exist, and the 
second (axial) mode is the lowest; moreover, the 
dispersion curves coincide for all of them. 

In the case of short waves, there is a limit value of the 
complex phase velocity for all numbers of waves . The 
damping coefficient at the sliding contact is a non-
monotonic function of the wavenumber. 
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