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Abstract. A sentence is typically treated as the minimal syntactic unit used to extract valuable information
from long text. However, in written Thai, there are no explicit sentence markers. Some prior works use machine
learning; however, a deep learning approach has never been employed. We propose a deep learning model for
sentence segmentation that includes three main contributions. First, we integrate n-gram embedding as a local
representation to capture word groups near sentence boundaries. Second, to focus on the keywords of depen-
dent clauses, we combine the model with a distant representation obtained from self-attention modules. Finally,
due to the scarcity of labeled data, for which annotation is difficult and time-consuming, we also investigate
two techniques that allow us to utilize unlabeled data: Cross-View Training (CV'T) as a semi-supervised learn-
ing technique, and a pre-trained language model (ELMo) to improve word representation. In the experiments,
our model reduced the relative error by 7.4% and 18.5% compared with the baseline models on the Orchid and
UGWC datasets, respectively. Ablation studies revealed that the main contributing factor was adopting n-gram
features, which were further analyzed using the interpretation technique and indicated that the model utilizes
the features in the same way that humans do.
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1. Introduction

Machine translation, automatic text summarization, depen-
dency parsing, and semantic parsing are useful for process-
ing, analyzing, and extracting meaningful information from
text. These tasks require a basic unit that has a simple gram-
matical structure to reduce the tasks’ complexity. For ex-
ample, dependency parsing [1], which extracts a syntactic
structure for language understanding, needs to consider ev-
ery word pair in the text to assign a relation. Thus, the com-
plexity of dependency parsing depends on the input text’s se-
quence length. If the text is segmented into smaller parts, the
task will be easier to perform. However, the basic unit should
be not only as small as possible but also required to be com-
plete in itself. For instance, if the basic unit is too short and
does not contain sufficient information, many meaningful
relations in dependency parsing will not be extracted inside
the basic unit. Thus, the basic unit should be small yet con-
tain complete meaning to make the mentioned tasks more
efficient.

A sentence is raised as a basic unit because a sentence is al-
ways complete in itself. Moreover, a sentence can also be eas-
ily extracted from raw text because the sentence boundaries
in English are easily identified by a period (“.”) [2]. Many
prior works require a sentence to perform their tasks. For ex-
ample, in machine translation, a sentence pair is required for
supervised training [3, 4, 5]. Meanwhile, many automatic
text summarization works treat a sentence as one item of in-
formation and select the important ones to be summarized
[6, 7, 8]. Dependency parsing also requires a sentence as an
input text to extract its syntactic structure that the machine
understands [1, 9, 10].

However, there is no explicit end-of-sentence marker
for identifying the sentence boundary in some written lan-
guages, such as Thai, Arabic, Khmer, and Lao [11]. There-
fore, extracting sentences from raw text in these languages is
not trivial. For example, “He wishes to buy 4 ingredients for
cooking an omelet. Therefore, he goes shopping and buys
an egg, milk, salt, and pepper.” The text can be segmented
with a period “.” into two sentences “He wishes to buy 4 in-
gredients for cooking a fried egg.” and “Therefore, he goes
shopping and buys an egg, milk, salt, and pepper.” Mean-
while, in Thai, the same text is “andeinsinsdediulszneu
4 pghedmiuiliFer fofue3dudelys un nde wazndnlve.”
Note that there is no punctuation or even a word to indicate
where the text should be segmented. Although most Thai
people usually use a space character as a sentence boundary,
the illustrated text shows that only one out of six space char-
acters is a sentence boundary. Therefore, there is no explicit
marker for identifying sentence boundaries to segment the
text, especially for the exemplified case.

Prior works on Thai sentence segmentation have
adopted traditional machine learning models to predict

The authors

where a sentence boundary is in the text.

of [11, 12, 13] proposed traditional models to determine
whether a considered space is a sentence boundary based on
the words and their part of speech (POS) near the space. Al-
though a space is usually considered essential as a sentence
boundary marker in Thai, approximately 23% of the end
of sentences is not a space character in a news domain cor-
pus [14]. Thus, Zhou N. et al. [14] proposed a conditional
random field (CRF)-based model with n-gram features to
predict which word is the sentence boundary. This work
considered Thai sentence segmentation as a sequence tag-
ging problem similar to named entities recognition and part-
of-speech tagging. Each word in the text will be classified
whether it is the end of a sentence or not, as shown in Fig. 1.
With a CRF module [15], the model extracts sentence-level
tag information, where each prediction in a sequence con-
siders the previous predicted tags instead of only the input
words. Meanwhile, the n-gram [16], which is an input fea-
ture, is constructed from a combination of words around
the considered position. This method achieves the state-of-
the-art result for Thai sentence segmentation and achieves
greater accuracy than other models by approximately 10%
on the Orchid dataset [17].

Several deep learning approaches have been applied in
various tasks of natural language processing (NLP), includ-
ing the long short-term memory (LSTM) [18], self-attention
[19], and other models. To tackle the sequence tagging prob-
lem, Huang Z. et al. [20] proposed a deep learning model
called Bi-LSTM-CRF, which integrates a CRF module to
gain the benefit of both deep learning and traditional ma-
chine learning approaches. In their experiments, the Bi-
LSTM-CRF model achieved an improved level of accuracy
in many NLP sequence tagging tasks, such as named en-
tity recognition, POS tagging and chunking. This model
is also used as a base (backbone) model for many works
that achieve promising accuracy in sequence tagging tasks.
[21, 22, 23, 24, 25]

In this work, two models are chosen as baseline mod-
els. First, the Bi- LSTM-CRF model is adopted as our base-
line and backbone model because many sequence tagging
works also apply the model as a backbone model and yield
respectable performance. Second, the CRF model, which
achieved the best result on the Thai sentence segmentation
task [14], is also treated as another baseline model to com-
pare with prior works.

This work makes three contributions to improve Bi-
LSTM-CREF for Thai sentence segmentation. These contri-
butions apply the suitable deep learning modules carefully
to tackle various problems of this task. Each contribution is
described as follows.

First, we propose adding n-gram embedding to Bi-
LSTM-CRF due to its success in [14]. To integrate n-gram
features in Bi-LSTM-CRE, the feature is embedded into a
dense embedding vector trained along with the model. With
the n-gram embedding addition, it can extract a local repre-
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What should I do?
o i gala Ay
() (tham) (jan naj) (khréb)
sb

Fig. 1. An example of a labeled paragraph. Here, sb represents a sentence boundary.

sentation from n-gram embedding, which helps in capturing
word groups that exist near a sentence boundary. Although
Jacovi A. etal. [26] reported that a convolutional neural net-
work (CNN) can be used as an n-gram detector to capture
local features, we chose n-gram embedding over a CNN due
to its better accuracy, as will be shown in Section B.

Second, we propose adding distant representation to the
model via a self-attention mechanism[19], which can focus
on the keywords of dependent clauses that are far from the
considered word. Self-attention has been used in many re-
cent state-of-the-art models, most notably the transformer
[19] and Bidirectional Encoder Representations from Trans-
formers (BERT) [27]. BERT has outperformed Bi-LSTM
on numerous tasks, including question answering and lan-
guage inference. Therefore, we choose to use self-attention
modules to extract distant representations along with local
representations to improve model accuracy.

Third, we also apply two techniques to utilize unlabeled
data: semi-supervised learning and a pre-training method,
which are essential for low-resource languages such as Thai,
for which annotation is costly and time-consuming. The
first technique is semi-supervised learning [28]. Many semi-
supervised learning approaches have been proposed in the
computer vision [29, 30] and natural language processing
[31, 32, 33] fields. Our choice for semi-supervised learn-
ing to enhance model representation is Cross-View Training
(CVT) [33]. Clark K. et al. [33] claim that CVT can im-
prove the representation layers of the model, which is our
goal. However, CV'T was not designed to be integrated with
self-attention and CRF modules; consequently, we provide
a modified version of CVT in this work.

Instead of using only CVT to improve the representa-
tion with unlabeled data, the pre-training method is also
adopted in our model. There are many proposed pre-trained
language models in the field of NLP [27, 34, 35]. BERT [27]
or other variant models of BERT are usually a part of the
state-of-the-art methods for many tasks [21, 36, 37]. How-
ever, BERT models require a large amount of GPU mem-
ory in the training process. Therefore, ELMo, which needs
less GPU memory than BERT [38], is chosen in this work
due to our resource limitations. Note that some variants of
BERT models are also optimized for less memory usage but
require additional techniques, such as knowledge distillation
[38] and factorized embedding parameterization [39], which
requires further investigation on the Thai corpus.

In conclusion, we propose three contributions, which

are summarized as follows:

* Local representation is extracted from n-gram em-
bedding to capture word groups around a sentence
boundary and improve the accuracy of sentence seg-
mentation.

* A self-attention mechanism is adopted as a distant
representation to capture the keywords of dependent
clauses that are far from the considered word.

* To utilize unlabeled data, semi-supervised learning
and a pre-training method are adopted to improve the
model generalization.

Based on the three contributions above, the experi-
ment was conducted on two Thai datasets, Orchid [17] and
UGWC [40], to evaluate our Thai sentence segmentation
model. In this case, our model achieves F1 scores of 92.5%
and 89.9% on Orchid and UGWC, respectively, and it out-
performs all the baseline models. Moreover, we also perform
ablation studies, which add each proposed contribution se-
quentially to observe their individual effect on the perfor-
mance. The ablation studies found that local representation
(n-grams) yields the largest improvement on Thai sentence
segmentation; thus, its effect is further analyzed using inter-
pretation techniques.

There are five sections in the remainder of this paper.
Section 2 reviews the related works on Thai sentence seg-
mentation, English punctuation restoration and introduces
the original CV'T. Section 3 describes the proposed model
architecture and the integration of cross-view training. The
datasets, implementation process and evaluation metrics are
explained in Section 4. The results of the experiments are dis-
cussed in Section 5. Finally, Section 6 concludes the paper.

2. Related Works

This section includes three subsections. The first subsection
concerns Thai sentence segmentation, which is the main fo-
cus of this work. The task of English punctuation restora-
tion, which is similar to our main task, is described in the
second subsection. The last subsection describes the original
Cross-View Training initially proposed in [33].

2.1. 'Thai Sentence Segmentation

In most languages, a sentence boundary can be determined
via a specific character. For example, a period is used as a
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marker to identify a sentence boundary in English. How-
ever, In Thai and other languages (Arabic, Khmer, and Lao),
texts do not contain markers that definitively identify sen-
tence boundaries. Therefore, segmenting text in those lan-
guages into sentences cannot be performed simply by split-
ting a text at some specific characters.

Although there is no marker for definitively identifying
the sentence boundary in Thai, Thai people write the text
using a space as a vital element that separates text into sen-
tences. Thus, a space is an important signal for splitting the
text into sentences. However, there are three ways that spaces
are used in this context [41]: before and after an interjection,
before conjunctions, and before and after numeric expres-
sions. Therefore, segmenting the text into sentences using
a space in Thai is not trivial and cannot be solved by only a
rule-based strategy.

Previous works from [12, 13, 11] have focused on disam-
biguating whether a space functions as the sentence bound-
ary. These works extract contextual features from words
and POS around the space. Then, the obtained features
around the corresponding space are input into traditional
machine learning models to predict whether space is a sen-
tence boundary. Moreover, to improve the model accuracy,
Thai grammar rules [42, 43] are also integrated with the sta-
tistical models.

Although a space is usually considered essential as a sen-
tence boundary marker, approximately 23% of the end of
sentences is not a space character in a news domain corpus
[14]. Hence, there are prior works that consider this task
as a sequence tagging problem [14, 44]. In other words, a
space is only considered as one of the possible candidates
for a sentence boundary. Zhou N. et al. [14] proposed a
word sequence tagging CRF-based model in which all words
can be considered as candidates for the sentence bound-
ary. The CREF-based model [15], which is extracted from
n-grams around the considered word, achieves a F1 score of
91.9%, which is approximately 10% higher than the F1 scores
achieved by other models [11, 12, 13] on the Orchid dataset,
as mentioned in [14]. Nararatwong R. et al. [45] extend
this model using a POS-based word-splitting algorithm to in-
crease identifiable POS tags, resulting in better model accu-
racy. Because the focus of this work is adjusting the POS as
a postprocessing method, which is an input of the model in-
stead of proposing a new sentence segmentation model, this
work will not be considered in this paper.

In this work, we apply the concept of word sequence
tagging and compare it with two baselines: the CRF-based
model with n-gram features, which is currently the state-of-
the-art for Thai sentence segmentation, and the Bi-LSTM-
CRF model, a common deep learning model for sequence

tagging tasks.

2.2. English Punctuation Restoration

Most languages use a symbol that functions as a sentence
boundary; however, a few do not use sentence markers in-
cluding Thai, Arabic, Lao and Khmer. Thus, few studies
have investigated sentence segmentation in raw text. How-
ever, studies on sentence segmentation, which is sometimes
called sentence boundary detection, are still found in a
speech recognition field [46]. The typical input to speech
recognition model is simply a stream of words. If two sen-
tences are spoken back to back, by default, a recognition en-
gine will treat it as one sentence. Thus, sentence boundary
detection is also considered a punctuation restoration task in
speech recognition because when the model attempts to re-
store the period in the text, the sentence boundary position
will also be defined.

Punctuation restoration not only provides a minimal
syntactic structure for natural language processing similar
to sentence boundary detection but also dramatically im-
proves the readability of transcripts. Therefore, punctuation
restoration has been extensively studied. Many approaches
have been proposed for punctuation restoration that use dif-
ferent features, such as audio and textual features. Moreover,
punctuation restoration is also considered to be a different
machine learning problem, such as word sequence tagging
and machine translation.

Focusing only on textual features, there are two main
approaches, namely, word sequence tagging and machine
translation. For the machine translation approach, punc-
tuation is treated as just another type of token that needs
to be recovered and included in the output. The methods
in [47, 48, 49] restore punctuation by translating from un-
punctuated text to punctuated text. However, our main
task, sentence segmentation, is an upstream task in text pro-
cessing, unlike punctuation restoration, which is considered
a downstream task. Therefore, the task needs to operate
rapidly; consequently, we focus only on the sequence tagging
model, which is less complex than the machine translation
model.

In addition to those machine translation tasks, both tra-
ditional approaches and deep learning approaches must solve
a word sequence tagging problem. Of the traditional ap-
proaches, contextual features around the considered word
were used to predict the following punctuation in the n-gram
[50] and CRF model approaches [51, 52]. Meanwhile, in
the deep learning approaches, a deep convolutional neural
network [53], a T-LSTM (Textual-LSTM) [54] and a bidi-
rectional LSTM model with an attention mechanism, called
T-BRNN [55], have been adopted to predict a punctuation
sequence from the word sequence. Meanwhile, Kim S. [56]
proposed integrating layerwise multi-head attention in a Bi-
LSTM to improve the model’s accuracy and outperform the
previous one. YiJ. et al. [21] adopt the pre-training method
to improve the accuracy of the model. This work selects the
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Bi-LSTM-CREF as a backbone model. Meanwhile, the input
words are embedded by a pre-trained BERT before feeding
to the backbone model. Because POS tags are helpful for
this task, POS tags are always fed to the model in this task.
However, POS tags are generated from the machine learning
model which is usually error-prone. Thus, Yi J. et al. [21]
also adopted adversarial transfer learning to imitate the effect
of an error from predicted POS tags. As a result, their pro-
posed model gains a 9.2 % F1 score improvement compared
to prior works.

In our work, a Bi-LSTM and an attention module are
also added to the model. To enhance the sentence segmen-
tation model, we also applied a pre-training method, which
achieves a significant improvement in English punctuation
restoration. However, instead of using BERT similar to [21],
we apply contextual text representations (ELMo) to leverage
information from the unlabeled data due to our resource lim-
itations.

2.3.  Cross-View Training

CVT [33] is a semi-supervised learning technique whose goal
is to improve the model representation using a combination
of labeled and unlabeled data. During training, the model is
trained alternately with one mini-batch of labeled data and
B mini-batches of unlabeled data.

Labeled data are input into the model to calculate the
standard supervised loss for each mini-batch and the model
weights are updated regularly. Meanwhile, each mini-batch
of unlabeled data is selected randomly from the pool of all
unlabeled data; the model computes the loss for CVT from
the mini-batch of unlabeled data. This CVT loss is used to
train auxiliary prediction modules, which see restricted views
of the input, to match the output of the primary prediction
module, which is the full model that sees all the input. Mean-
while, the auxiliary prediction modules share the same inter-
mediate representation with the primary prediction module.
Hence, the intermediate representation of the model is im-
proved through this process.

Similar to the previous work, we also apply CVT to a se-
quence tagging task. However, our model is composed of
self-attention and CRF modules, which were not included
in the sequence tagging model in [33]. The previous CVT
was conducted on an LSTM using the concepts of forward
and backward paths, which are not intuitively acquired by
the self-attention model [19] attending all words of an input
at the same time.

Moreover, the output used to calculate CVT loss was
generated by the softmax function, which does not operate
with CRF. Thus, in our study, it is necessary for both the
primary and auxiliary prediction modules to be constructed
differently from the original modules.

DOI:10.4186/¢j.2021.25.6.15

3. Proposed Method

In this section, we describe our proposed method in two sub-
sections. The first subsection specifies the model architec-
ture and the details of each module. Our first and second
contributions, which are local and distant representations,
are mainly described in this subsection. Meanwhile, the sec-
ond subsection expounds on how the model is trained with
unlabeled data through the modified CV'T and using ELMo,
which is our third contribution.

3.1. Model Architecture

In this work, the model predicts the tags § =
[y1,92, .-+, Yn|, Yy € Y for the tokens in a word se-
quence & = [z1, X2, ..
and x4, y¢ denote the token and its tag at timestep ¢, respec-

., x| where N is the sequence size

tively. The word sequence is fed into the model at the same
time to provide sequential information of the input text to
the model. Each token x; consists of a word, its POS and
its type. There are five defined word types: English, Thai,
punctuation, digits, and spaces.

The tag set Y is populated based on the considered task.
In Thai sentence segmentation, the assigned tags are sb and
nsb; sb denotes that the corresponding word is a sentence
boundary considered as the end of a sentence, while and n.sb
denotes that the word is not a sentence boundary.

Our model architecture is based on Bi-LSTM-CREF, as
shown in Fig. 2. The model is divided into three modules.
The first, low-level module, consists of two separate struc-
tures: local (n-gram features) and distant (self-attention)
structures. This module is designed to utilize an unlabeled
dataset via cross-view training, which will be described in
Section 3.2. The module gives the two separate outputs
from two structures, which are only concatenated to feed
to the next module. Meanwhile, the second module, which
is the high-level module, will combine these two outputs to
produce the higher-level representation from a stack of Bi-
LSTM and self-attention, which helps the model learn the
context from the whole word sequence. The final module,
the prediction module, is responsible for predicting the tags
. Each module is described more completely in the next
three subsections.

3.1.1. Low-level Module

A sequence of word tokens is input into the low-level
module. The input tokens pass through two structures.
The first structure generates sequence of local represen-
tation vectors Rypeqr = [Fl,locala FQ,locala cee aFN,local]
which is embedding vectors of n-gram features. After
obtaining a sequence of representation vectors, the lo-
cal representation vectors are fed to the Bi-LSTM to ob-
tain the recurrent representation vectors Ryecyrrent

[Tl,recurrenta T2 recurrents - - - TN,Tecurrent]) as shown in
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nsb nsb nsb sb nsb nsb sb
Prediction (%) T T T T T T T
| CRF |
Virtual logit (7) Pt F 1t 1 1
Fully Connected
Prediction module
High-level representation (E) T T T T T T T
’ Self-attention ‘
| Stack Bi-LSTM |
High-level module
Low-level representation (7) T T T T T T T
| Bi-LSTM |
Self-attention
Ngram embedding
Local structure Distant structure
Low-level module
Word token (7) Ft t 1t 1t 1t 1
1 have a  problem please contact me

Fig. 2. Model architecture that integrates local and distant representation. This model is composed of three main mod-

ules: a low-level module, a high-level module and a prediction module. In the low-level module, two structures (local and

distant) are responsible for extracting different features.

(1):
Rrecurrent = BiLSTM(Rlocal) (1)
The second structure generates low-level distant rep-
resentation vectors Ryjstant = [Tl,distantv T2, distanty « -
, TN distant] Which produced by Self-attention. Then, the
recurrent and distant representation vectors are concate-
nated to form the low-level representation vector R =
[71, 72, ..., Tn], as shown in (2), where @ represents a con-
catenation between two vectors:

— —

t = Tt,recurrent 2] Tt,distant

()

Local structure This structure is shown as the left sub-
module of the low-level module in Fig. 2. It extracts the
local representation vectors Rypeq.  Its input tokens are
used to create n-gram tokens, which are unigrams x4, bi-
grams (&g, Tp), and trigrams (x4, Tp, ). Each n-gram to-
ken is represented as an embedding vector, which is clas-
sified as a unigram embedding vector €y, a bigram em-
bedding vector €p; or a trigram embedding vector €.
Each vector €y,qm is mapped from a token by gram em-
bedding Embedding, ..., (), which is a concatenated vec-
tor of the word embedding Wordgp,m (), POS embedding
POSgram () and type embedding Typegram (), as shown in

(3):

20

Embeddinggram (%) = Weram () & POSgram () 3)
@ Typegram ()
Unigram  embedding  vector ~Embedding, . ()

is included along with contextual pre-trained vector
ELMoyy; (z) from ELMo, as shown in (4):

= Wuni(x) D POSuni(x)
® Typeuni(z) & ELMoyni(x)

Embeddingi(z) @

Each n-gram token at timestep ¢ is generated by the previ-
ous, present and next token (z¢—1, &4, Z¢+1) and embedded
into vectors as shown in (5), (6), and (7) for unigram, bigram,
and trigram consecutively.

gt,uni = Embeddinguni(xt) (5)
€;bi = Embeddingy,; (21, x¢) (6)
€t tri = Embeddingi(xi—1, T, T441) (7)

At each timestep ¢, a local representation vector 7% jocqi
is combined from the n-gram embedding vectors generated
from the context around z;. A combination of embedding
vectors, which is used to construct alocal representation vec-
tor, is shown in (8). A combination consists of the unigram,
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bigram, and trigram embedding vectors at timesteps ¢ — 1,
tand ¢t + 1 and it is a concatenation of all the embedding
vectors:

T't,local =€t—1,uni @ €t,uni @ E€t+1,uni
D €t—1,b6i D €tpi D €ry1,bi

(8)

® et—1,tri D €ttri D €41,6r4

Distant structure The distant structure, which is a self-
attention module SelfAttention, is shown in Fig. 2 on the
right side of the low-level module. The structure extracts
low-level distant representation vectors R g;stant from a se-
quence of unigram embedding vectors E,,;, as shown in (9).
In this work, the self-attention mechanism is similar to the
one used in Transformer [19], which is widely used in NLP
tasks [36, 57, 58]. The self-attention module is a scaled dot-
product attention [19], where key, query, and value vectors
are the linear projections of the unigram embedding vectors
shown in Fig. 3. The linear transformations for key, query,
and value are learned separately and updated in the model
through backpropagation. The output vector, which is the
scaled dot-product attention at each timestep, is concate-
nated with the input vector €} yy; and projected by a linear
transformation. This projected vector is the output vector of
aself-attention module, which is a low-level distant represen-
tation vector.

R yistant = SelfAttention(E,,;)

(©)

3.1.2. High-level Module

The low-level representation vectors R are used as the input
for this module, which outputs the high-level representation
vectors H whose calculation is shown in (10). The high-level
module, as shown in Fig. 2, is composed of a stacked bidi-
rectional LSTM (StackBiLSTM) and a self-attention mod-
ules. A stacked bidirectional LSTM contains K layers of
bidirectional LSTMs in which the output from the previ-
ous bidirectional LSTM layer is the input of the next bidi-
rectional LSTM layer. The self-attention part of this struc-
ture is the same as that in the low-level distant structure. The
self-attention module helps to generate the high-level distant
representation vectors that are output by the high-level mod-
ule.

H = SelfAttention(StackBiLSTM(R)) (10)

3.1.3. Prediction Module

The prediction module is the last module. It includes two
layers: a fully connected layer (NN) and a CRF layer (CRF).
In the fully connected layer, the output vectors from the
high-level module are projected by a linear transformation as
shown in (11). The purpose of this layer is to create the vir-
tual logit vectors G = [§1, G2, ..., Gn], which represent the
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probability distribution for CVT, as discussed in Section 3.2.
Therefore, the number of dimensions of logits equals the
number of possible tags in each task:

i = NN(h,) (11)

The CREF layer is responsible for predicting the tag y; of
a token at each timestep, as shown in (12). The layer receives
a sequence of virtual logit vectors (G) as input and then de-
codes them to a sequence of tags ¥ using the Viterbi algo-
rithm [S9].

i = CRF(G) (12)

3.2. Training Process

To train the sentence segmentation model, the process is
split into two steps. First, the language model (ELMo) is
trained with unlabeled data. The pre-trained language model
is treated as a part of input vectors for the model. We pre-
train ELMo on our unlabeled dataset. The second step is
to train the model with CVT for the sentence segmentation
problem, which described as follows.

As discussed in Section 2.3, CV'T requires primary and
auxiliary prediction modules for training with unlabeled
data to improve the representation. Thus, we construct both
types of prediction modules for our model. The flow of unla-
beled data, which is processed to obtain a prediction by each
module, is shown in Fig. 4. The output of each prediction
module is transformed into the probability distribution of
each class by the softmax function and then used to calculate
Losscyr, as shown in (13).

1

T ZDKL (ﬁd,primary ’ p%,local )

Losscyr = D]
teD

+ DKL (ﬁt,primar‘y, ﬁt,distant)
(13)
The Losscyr value is based on the Kullback—Leibler
divergence (KL divergence, Dxr,) between the probability
distribution of the primary p; primary output and those of
two auxiliary modules, P} jocar and Py gistant, where t €
[1,...,N]. To calculate the loss, the KL divergence at
each timestep is averaged when the timesteps are dropped
timesteps D, which is described in Section 3.2.2. The cal-
culation of the primary output (D} primary) and both auxil-
iary outputs (Dt jocar and Dt distant), which are used in the
Losscy calculation, are described in the following subsec-
tions.

3.2.1. Primary Prediction Module

In [33], the output of the primary prediction module is ac-
quired from the last layer and used to predict tags. How-
ever, our model uses a CRF layer to decode the tags instead

ENGINEERING JOURNAL Volume 25 Issue 6, ISSN 0125-8281 (http://engj.org/) 21



DOI:10.4186/¢j.2021.25.6.15

output sequences

T

Linear

!

Scaled-Dot Product Atttention

key f  query

T

value T

Linear

Linear

Linear

L

J

|

input sequences

Fig. 3. The architecture of a self-attention module. This module mainly contains Scaled-Dot Product Attention, which

requires three inputs: Key, Query and Value. Those inputs are generated from the same input sequence but projected by

different linear transformations.
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Fig. 4. Two auxiliary predictions (P} jocar and Py distant) are obtained from the local and distant structures in the low-level
module. The primary prediction P primary is obtained from the virtual logit vector g;

of the softmax function. Thus, in semi-supervised learn-
ing, the probability distribution of the primary prediction
module should be acquired from the CRF layer. However,
the Viterbi algorithm, which is used for decoding, gives only
the best combination for the prediction, but does not pro-
vide the probability distribution. Normally, the distribution
from the CRF is calculated by a forward-backward algorithm
[60] which is time consuming. To reduce the training time,
the probability distribution of the primary prediction mod-
ule Dt primary is obtained from the output of the softmax
function (Softmax), whose input is a virtual logit vector g;,
as shown in (14).

Dt primary = Softmax(g;) (14)

22

3.2.2. Auxiliary Prediction Module

Two auxiliary views are included to improve the model. The
first view is generated from a recurrent representation vec-
tOr Tt recurrent to acquire the local probability distribution
Dt local>, where t € [1, ..., N|. The second view is generated
from the low-level distant representation vectors ¢ g;stant to
acquire the probability distribution of a distant structure in
the low-level module P} gistant, where t € [1,..., N]. By
generating the views from these representation vectors sepa-
rately, the local and distant structures in the low-level mod-
ule can improve equally.

Although both representation vectors are used sepa-
rately to create auxiliary views, the input of each structure
is still not restricted, unlike [33], where the input is re-
stricted to only previous or future tokens. Because BERT,
which is trained by the masked language model, outperforms
OpenAI GPT-2 [61], which uses an autoregressive approach
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for training as reported in [27], we adopt the concept of
the masked language model [62] to obtain both auxiliary
views. This approach allows the representation to fuse the
left and the right context, which results in a better repre-
sentation. By using the masked language model, some to-
kens at each timestep are randomly dropped and denoted as
removed tokens (REM OV ED); then, the remaining to-
kens are used to obtain auxiliary predictions in the dropped
timesteps D = {d € N|d is a dropped timestep}, as shown
in Fig. 5. The details of both auxiliary prediction modules
are described below.
Local auxiliary module ~ For recurrent representation vec-
tors, if one of the tokens is dropped, the related n-gram to-
kens that include the dropped tokens will also be dropped.
For example, if () is dropped, (x¢—1,2¢) and (24, T441)
will also be dropped as removed tokens in the case of a
bigram. The remaining n-gram tokens are then used to
obtain the recurrent representation vectors at the dropped
timesteps. Then, the vectors are provided as an input to the
softmax function to obtain the probability distribution of
the first auxiliary prediction module, as shown in (15).

ﬁd,local = SOftmaX(NN(Fd,recurrent)) (15)

Distant auxiliary module In the other auxiliary predic-
tion module, a sequence of the low-level distant representa-
tion vectors is generated and some tokens are dropped. This
sequence of vectors is also input into the Softmax function,
just as in the first auxiliary prediction module, and the out-
put is another probability distribution, which is the second
auxiliary prediction, as shown in (16).

ﬁd,distant = SOftmaX(NN(Fd,distant)) (16)

3.3. Interpretation Process

In this section, we discuss our method to interpret our model
decision process by identifying important n-gram features.
These selected features can be compared to the human anno-
tations or the label of the dataset in order to further analyze
the model.

The process of interpretation is inspired by a gradient
technique [63]. The intuition of this method is to identify
how the change in each feature affects the model. Simonyan
K. et al. [63] shows that the score, which indicates the effect
of the change in each feature, can be derived from a gradient
of the feature. Therefore, the gradient of the feature can indi-
cate the importance of the feature in the model. This method
is widely used in many NLP tasks [64, 65]. In this work, the
model interpretation is discovered via the gradient of n-gram
features.

Based on (8), nine types of features, which are unigram,
bigram, and trigram at timesteps t—1, ¢ and ¢ + 1, are used
as input features for our model. Thus, the gradient of these
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nine types of n-gram features are calculated. The gradient
V€ +pos,gram is the derivative of the output of the model y
with respect to €4 pos,gram Where gram € {uni, bi, tri}
is the token type and pos € {—1,0, +1} is the relative po-
sition from the current timestep, as shown in (17).

dy

e (17)
86t+pos,g7’am

vgt—i—pos,gram =
After that, the score of each feature uos gram is calcu-
lated, as shown in (18). The score is the summation of all the
gradients of tokens T4 pos gram that are Upos gram over all
timesteps t € {1, ..., N} in all documents D. This score is
used to measure the importance of each feature. When the
summed gradient of the feature is high, that feature is impor-
tant in contributing to the model’s predictions. On the other
hand, if the summed gradient of a feature is low, that feature
is not necessary for the model’s prediction.

D N
Score (upos,gram) = Z Z Vé;f—l—pos,gram
t=1
where Tt4-pos,gram = Upos,gram
(18)
To compare the model to humans, two lists of tokens are
created from the computed score and labels. Then, the in-
tersection of both lists is used to compare the similarity. The
first list T]%‘f;lié)m includes the top 500 features which have

the highest computed score Score(tpos,gram ) from the gra-

dient. The second list TI(;l(?Sb,ZQam contains of top 500 fea-

tures with the highest frequency as a sentence boundary in
the training set. After that, the features in the intersection
between two lists are counted, as shown in (19), where || A||
is a number of instances in a set A. The counted number
Count (pos, gram) will be used for further analysis in Sec-
tion 5.1.1.

Count (pos, gram) = | Tegram N Tyovgram| (19)

4. Experimental Setup

4.1. Datasets

Two datasets are used in the experiments as described in the
following subsections. The structure of the datasets is the
same as the one illustrated in Fig. 1. Each passage of the
datasets is segmented into a word sequence. In this case, the
method for word segmentation in each dataset is different
and will be described in the following subsections. Then,
each word is tagged manually by a human if the word is the
end of a sentence or not.

The statistics of the preprocessed data are shown in Ta-
ble 1, including the number of sequences, the number of
words, and the number of vocabulary words in each dataset.
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Losscyr
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T T T

I have

(REMOV ED) problem

T T T

please (REMOVED) us

Fig. 5. Words are dropped (denoted as (REM OV E D)) randomly. Those positions are used to calculate Losscy7 and
update the auxiliary prediction modules to improve the model.

Table 1. The number of passages and vocabulary words in each dataset. The labeled and unlabeled data are separately

counted and shown in the rows.

Dataset Orchid (Thai) UGWC (Thai)

# passages #words #vocab | #passages  #words  #vocab
Labeled data 3,427 685,319 17,047 48,374 1,242,118 46,463
Unlabeled data - - - 96,777 40,431,319 81,932
Labeled + Unlabeled data - - - 145,151 41,673,437 109,415

Note: There are no unlabeled data in the Orchid dataset due to the lack of the same word segmentation and POS tag set.

4.1.1. Orchid [17]

This dataset is a Thai part-of-speech-tagged dataset contain-
ing 10,864 sentences. In the corpus, text was separated into
paragraphs, sentences, and words hierarchically by linguists.
Each word was also manually assigned a POS by linguists. A
sample paragraph in this dataset is shown in Fig. 6 These data
include no unlabeled data with the same word segmentation
and POS tag set. Hence, we do not execute CV'T on this
dataset.

Our data preprocessing on the ORCHID corpus was
similar to that in [14]: all the comments are removed, and
the data are partitioned into 10 parts containing equal num-
bers of sentences to support 10-fold cross-validation. Each
training set is split into one part used for validation and the
rest is used for model training. Subsequently, all the words
in each dataset are concatenated and then separated into se-
quences with 200 words per instance. Each sequence always
begins with the first word of a sentence. If a sequence ends
with an unfinished sentence, the next sequence starts with
that complete sentence.

4.1.2. UGWC (User-Generated Web Content) [40]

This Thai dataset includes many types of labeled data useful
in sentence segmentation tasks. The raw text was generated
by users having conversations in the financial domain and
were acquired mainly by crawling social sites. The labeled
data for sentence segmentation were manually annotated by
linguists using the definitions in [40]. A sample paragraph in
this dataset is shown in Fig. 7

At the time of this study, the dataset was extended from

thatin [40]; the data were collected from January 2017 to De-
cember 2017. The labeled dataset includes 48,374 passages.
To support semi-supervised learning, the first 3 months of
data (96,777 passages) are unlabeled.

Because the data stem from social media, some existing
text cannot be considered a part of any sentence, such as
product links, symbols unrelated to sentences, and space be-
tween sentences. These portions were not originally anno-
tated as sentences by the linguists. However, in this work,
we treat these portions as individual sentences and tag the last
word of each fraction as the sentence boundary.

For evaluation purposes, the collection of passages in this
dataset is based on 5-fold cross-validation, similar to the pre-
vious work [40]. The passages are treated as input sequences
for the model. For each passage, word segmentation and
POS tagging are processed by the custom models from this
dataset.

4.2. Implementation Details

Before mapping each token included in the unigram, bigram,
and trigram to the embedding vector, we limit the minimum
frequency of occurring words that are not marked as an un-
known token. There are 2 parameters set for the unigram
Cword and the remaining Cy,gpqm, respectively. We found
that model accuracy is highly sensitive to these parameters.
Therefore, we use a grid search technique to find the best
value for both parameters for the model.

We apply two optimizers used in this work: AdaGrad
[66] and Adam [67], whose learning rates are set to 0.02.
To generalize the model, we also integrate L2 regularization
with an alpha of 0.01 to the loss function for model updat-
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Translated: System design. Abstract. This research work is intended to develop a prototype of software for a process-oriented simulation.
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Translated: In a telephone design, the procedure is shown in the following flowchart. The study on the detail of the existing telephone.
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Translated: An environment that is simulated will be the artificial process environment. Its basic element is a process.
Fig. 6. Labeled paragraphs in Orchid dataset. Here, sb represents a sentence boundary.
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Translated: Open an account for the first time. How much fee for the registration if I want a normal debit card?
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Translated: I want to change the number. What should I do?

Fig. 7. Labeled paragraphs in UGWC dataset. Here, sb represents a sentence boundary.

ing. Moreover, to mitigate the overfitting problem, dropout
[68] is applied to the local representation vectors, recurrent
representation vectors, between all bidirectional LSTMs and
enclosed by the self-attention mechanism in the high-level
module. The dropout ratio of each part is shown in Section
A,

During training, both the supervised and semi-
supervised models are trained until the validation metrics
stop improving; the metric is the sentence boundary F1
score.

CVT has three main parameters that impact model accu-
racy. The firstis the drop rate of the masked language model,
which determines the number of tokens that are dropped
and used for learning auxiliary prediction modules as de-
scribed in Section 3.2. The second is the number of unla-
beled mini-batches B used for training between supervised
mini-batches. Third, rather than using the same dropout
rate for the local representation vectors, a new dropout rate
is assigned.

For other hyperparameters, the details are given in Sec-
tion A, such as the hidden size of each layer and dropout rate.
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4.3, Evaluation

During the evaluation, each task is assessed using different
metrics based on previous works. For Thai sentence seg-
mentation, three metrics are used in the evaluation: sentence
boundary F1 score, non-sentence boundary F1 score, and
space correct [14]. In this work, we mainly focus on the
performance of sentence boundary prediction and not non-
sentence boundary prediction or space prediction. There-
fore, we make comparisons with other models regarding only
their sentence boundary F1 scores. In calculating the F1
score, the positive class is defined as the sentence boundary,
and the negative class is defined as the non-sentence bound-
ary. The equation for the sentence boundary F1 score metric
is shown in (20), where #(A) is the number of A and tp, fp,
and fn are true positive, false positive, and false negative, re-
spectively.

tpg, = #(Correctly predicted sentence boundaries)

[ps, = #(Incorrectly predicted sentence boundaries)

fng = #(Incorrectly predicted non-sentence boundaries)
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precisiong, = _ s
* tpsb + fpsb
tPsp
recallgy, = ——22——
° tpsb + fnsb

2 X precisiong, X recallg,

Fl,sb = (20)

precisiong, + recallg

S. Results and Discussions

We report and discuss the results of our two tasks in four
subsections. The first and second subsections include the
effect of local representation and distant representation, re-
spectively. The impact of CVT and ELMo is explained in the
third subsection. The last subsection presents a comparison
of our model and all the baselines. Moreover, we also con-
duct paired t-tests to investigate the significance of the im-
provement from each contribution, as shown in Section C.

5.1. Effect of Local Representation

To find the effect of local representation, we compare a stan-
dard Bi-LSTM-CRF model using our full implementation
on the model that includes n-gram embedding to extract
local representations. In (2), the standard Bi-LSTM-CRF
model is represented as Bi-LSTM-CRF (row (e)), while the
models with local features are represented as +local (row
(£))-

The results in Table 2 show that using n-grams to ob-
tain the local representation improves the F1 score of the
model from 90.9% (row (e)) to 92.4% (row (f)) on the Orchid
dataset and from 87.6% (row (e)) to 88.7% (row (f)) on the
UGW(C dataset. These results occur because there are many
word groups that can be used to signal the beginning and end
of a sentence in Thai. For instance, "wé|p3u” (Iéw | k rép) is
a word group that is usually located at a sentence boundary
in Thai. The model with local representation can detect a
sentence boundary at "a3u" (k"rdp) that is followed by "u&v"
(1é:w), as shown in Fig. 8, while the model without local rep-
resentation cannot detect the word as a sentence boundary.
To elaborate the details of these word groups, the result of
an interpretation process will be further analyzed in the next
section.

5.1.1. Interpretation of Local Representation

In this section, our model is interpreted and analyzed via
the method presented in Section 3.3. Count (pos, gram),
which refer how similarity between the model and human, is
calculated over the training set of each corpus, as shown in
Table 3.

In UGWC section of Table 3, the result indicates that
the model mostly focuses at the end of the sentence more
than the beginning of the sentence due to the lower num-
+1.
In the intersection list from UGWC at the relative position

ber of focused features at the relative position pos =

pos = —1,0, the features found near sentence boundaries
are usually final particles, e.g., "ug|Az" (nd | k"4), "uga3u’ (nd |
k"rip), "ae|asu” (lozy | k"rdp), "uda|nsu” (é:w |k rép), and oth-
ers. These features are usually used at the ends of sentences to
indicate the formality level. Meanwhile, the intersection list
at the relative position pos = +1 are composed of greeting
words and ”Thank you” phrases that are always at the begin-
vouAn (Thank you)'

"o

ning of sentence, e.g., "adad (Hello)",
and others.

In contrast, in Orchid, the model focuses more at the
beginning of sentence. The features can be categorized into
two groups. First, the content words, such as topics ("unAnge
(abstract)", "umi (introduction)’), are focused due to their
high frequency caused by the similar structure between doc-
uments. The second group is the function words, such as
"Hussi] (as follows)', "raanaiy (as shown below)" and "ot
(as follows)", which are simply classified as the end of para-
graphs or sentences.

Asaresult, the models of both datasets focus on different
types of features due to the different writing styles. Despite
these findings, our model is able to learn and utilize these
n-grams features, which are also used by humans to decide
where the sentence boundary is. Therefore, usinglocal repre-
sentation to capture n-grams features attains more improve-
ment over other contributions.

5.2. Effect of Distant Representation

The effect of this contribution can be found by comparing
the model that integrates the distant representation and the
model that does not. The model with distant features inte-
grated is represented as +-local + distant (row (g)) in both
tables. In this case, the distant representation is composed
of the self-attention modules in both the low- and high-level
modules, as shown in Fig. 2.

From the combination of local and distant representa-
tions, the results in 2 show that the distant feature improves
the accuracy of the model on all datasets compared to the
model with no distant representation. The F1 scores of
the sentence segmentation models improved slightly, from
92.4% and 88.7% (row (f)) to 92.5% and 88.8% (row (g)) on
the Orchid and UGWC datasets, respectively.

This also illustrates that the model can be improved by
adding the self-attention modules to Bi-LSTM layers. In
conclusion, the results have shown that each of the proposed
modules have a positive effect on the overall performance.

5.3. Effect of Cross-View Training (CVT) and ELMo

To identify the improvement from CV'T, we compared the
models that use different training processes: standard super-
vised training (+ local + distant), CVT (+ local +
distant + CVT), and CVT + ELMo (+ local +
distant + CVT+ ELMo). The model trained with CVT
improves the accuracy in terms of the F1 score, as shown in
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Table 2. The result of Thai sentence segmentation for each model. For the Orchid dataset, we report the average of each
metric on 10-fold cross-validation. Meanwhile, average metrics from 5-fold cross-validation are shown for the UGWC

dataset.
Model Orchid UGWC
precision (%) recall (%) F1(%) | precision (%) recall (%) F1(%)

(2) POS-trigram [12] 744 798  77.0 ; ;

(b) Winnow [13] 92.7 77.3 84.3 -

(c) ME [11] 86.2 83.5 848 : ; i
(d) CRF (Thai baseline) [14] 94.7 89.3 91.9 87.4 82.7 85.0
ine (e) Bi-LSTM-CRF [20] 92.1 89.7 90.9 87.8 87.4 87.6
(f) + local 93.1 91.7 92.4 88.4 89.0 88.7
(g) + local + distant 93.5 91.5 92.5 88.8 88.8 88.8
(h) + local + distant + CVT - - 88.9 89.0 88.9
(i) + local + distant + CVT + ELMo - - 88.8 91.0 89.9

Note: The CVT model is not tested on the Orchid dataset because of the lack of unlabeled data.
§ wu ud AU Swdu 9 1 &

(mi)) (nam) (Iéw) (k"rép)(r¥m ton)(c™) (nwiy) (I4:n)

Bi-LSTM-CRF

sb

+ local

sb sb

Translated: I got it for a long time. It’s start from one million.

Fig. 8. An example of sentence boundary prediction by a normal Bi-LSTM-CRF and by the model with local representa-
tion (+local). Here, sb indicates that the word is predicted as the sentence boundary.

Table 3. The number of features in the intersection of two lists that is created from the interpretation score and labels.

Type of n-gram (gram) Relative Position (pos)
Orchid UGWC
-1 0 +1 -1 0 +1
Unigram 51 64 117|203 171 152
Bigram 6 22 54 | 162 165 3
Trigram 45 98 56 | 206 75 28

2 (row (g) vs row (h)). Additionally, adding ELMo provides
more improvement on the F1 score (row (h) vs row (i)).

This experiment was conducted only on the UGWC
dataset because no unlabeled data are available in the Or-
chid dataset, as mentioned in Section 4.1.1. The model
trained with CV'T improves the F1 score slightly, from 88.8%
(row (g)) to 88.9% (row (h)) on the UGWC dataset. Mean-
while, adding ELMo, we also gain the improvement from
88.9%(row (h)) to 89.9%(row (i)). As a result, utilizing un-
labeled data from both methods enhances the model perfor-
mance significantly.

5.4. Comparison with Baseline Models

Our model is superior to all the baselines on both Thai sen-
tence segmentation datasets, as shown in Table 2. On the

ENGINEERING JOURNAL Volume 25 Issue 6, ISSN 0125-8281 (http:

Orchid dataset, the supervised model that includes both lo-
cal and distant representation was adopted for comparison
with the baseline model. Our model improves the F1 score
achieved by CRF-ngram, which is the state-of-the-art model
for Thai sentence segmentation in Orchid, from 91.9% (row
(d)) to 92.5% (row (g)). Meanwhile, in the UGWC dataset,
our CVT model with ELMo (row (h)) achieves an F1 score
of 89.9%, which is higher than the F1 score of both the
baselines (CRF-ngram and Bi-LSTM-CRF (rows d and e,
respectively)). Thus, our model is now the state-of-the-art
model for Thai sentence segmentation on both the Orchid
and UGWC datasets.
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5.5.

Discussion

We have shown that incorporating local and global informa-
tion with CVT can be used to improve the Thai sentence
segmentation task. However, we would like to note that our
proposed method assumes no idiosyncrasies specific to the
Thai language, might be able to improve other languages or
tasks as well. For example, one might consider the tasks of
Elementary Discourse Unit (EDU) and clause segmentation
which can help downstream tasks such as text summarization
and machine translation by providing the minimal syntactic
units.

Moreover, to overcome the scarcity of labeled data in
Thai, all available sentence segmentation datasets, such as
ORCHID, UGWC, and the recently released LST20 [69],
should be integrated. However, the annotation criteria of
the datasets are different making the task non-trivial. One
possible venue for exploration is to use multi-criteria learn-
ing to utilize the shared information in all datasets. This
method was successfully applied to Chinese word segmen-
tation, which has a similar problem [70, 71].

6. Conclusions

In this paper, we propose a novel deep learning model for
Thai sentence segmentation. This study makes three main
contributions. The first contribution is to integrate a local
representation based on n-gram embedding into our deep
model. This approach helps to capture word groups near
sentence boundaries, allowing the model to identify bound-
aries more accurately. Second, we integrate a distant repre-
sentation obtained from self-attention modules to capture
sentence contextual information. This approach allows the
model to focus on the initial words of dependent clauses (i.c.,
“Before”, ”If”, and "Although”). The last contribution is an
adaptation of CV'T, which allows the model to utilize unla-
beled data to produce eftective local and distant representa-
tions.

The experiment was conducted on two Thai datasets,
Orchid and UGWC. Our model achieves F1 scores of 92.5%
and 89.9% on the Orchid and UGWC datasets, constitut-
ing a relative error reduction of 7.4% and 18.5%, respec-
tively. Based on our contributions, the local representation
has the highest impact on the Thai corpus.From the inter-
pretation process, the local representation revealed that it
captures phrases that frequently occurred near the sentence
boundary, which is usually the approach used by humans to
recognize the boundary.
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Appendix A Hyperparameters

The hyperparameter values were determined through a grid search to find their optimal values on the different datasets. All
the hyperparameters for each dataset are shown in Table 4. The optimal values from the grid search depend on the task. For
Thai sentence segmentation, the hyperparameters are tuned to obtain the highest sentence boundary F1 score.

Appendix B Comparison of CNN and n-gram models for local representation

Jacovi A. etal. [26] proposed thata CNN can be used as an n-gram detector to capture local text features. Therefore, we also
performed an experiment to compare a CNN and n-gram embedded as local structures. The results in Table S show that
the model using the embedded n-gram yields greater improvement than the one using an embedded CNN on the Orchid
and UGWC datasets.

Appendix C  Statistical Tests for Thai sentence segmentation

To prove the significance of the model improvements, we compared the cross-validation results using paired t-tests to obtain

the p-values, which are shown in Table 6 for the Orchid dataset and Table 7 for the UGWC dataset.
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Table 4. Model hyperparameters for each dataset.

Model Orchid UGWC
Cuword 2 2
Cngram 2 2
Optimizer AdaGrad | AdaGrad
Learning rate 0.02 0.02
Batch size 16 16
Early stopping patience 5 5
Unigram embedding size (Text) 64 64
Unigram embedding size (POS and Type) 32 32
Bigram & Trigram embedding size (Text) 16 16
Bigram & Trigram embedding size (POS and Type) 8 8
LSTM hidden size 25 25
Number of LSTM layers in high-level module (K) 2 2
Self-attention output size 50 50
Number of Low-level self-attention layers

Number of High-level self-attention layers 1

Low-level self-attention projection size 64 64
High-level self-attention projection size 25 25
Local embedding dropout 0.30 0.30
Dropout between layers 0.15 0.15
Dropped rate of masked language model - 0.30
Number of unlabeled mini-batch B - 1
Dropout of the unlabeled input - 0.50
Hidden size of LSTM in ELMo - 4096
Number of layers of LSTM in ELMo - 2

Table 5. Comparison between a CNN and n-gram embedding for local representation extraction.

Model ORCHID | UGWC
Bi-LSTM-CRF 90.9% 87.6%
Bi-LSTM-CREF + n-gram 92.4% 88.7%
Bi-LSTM-CRF + CNN 91.2% 87.9%

Table 6. The improvement of each contribution on the Orchid dataset results shown as p-values from paired t-tests.

Model + local ‘ + local/distant ‘
CRF +0.47% % 0.42% (0.009) | +0.54% + 0.36% (0.002)
Bi-LSTM-CRF +1.53% £ 0.399% (<0.001) | +1.60% + 0.39% (<0.001)
+local ; +0.07% + 0.22% (0.370)

Note: The number in the table reflects the percentage of improvement from the rows compared

with the columns. The number shows the average and its standard deviation of the improvement.

Moreover, the number in parentheses is the p-value computed from a paired t-test.
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Table 7. The improvement of each contribution on the UGWC dataset results shown as p-values from paired t-tests

DOI:10.4186/¢j.2021.25.6.15

Model ‘ +local ‘ +local/distant ‘ +local/distant/CVT ‘ +local/distant/CVT/ELMo
CRF +3.66% + 0.16% | +3.77% £ 0.20% +3.92% % 0.20% +4.87% £ 0.25%
(<0.001) (<0.001) (<0.001) (<0.001)
Bi-LSTM-CRF +1.09% = 0.14% | +1.20% £ 0.20% +1.34% £ 0.14% +2.29% * 0.16%
(<0.001) (<0.001) (<0.001) (<0.001)
+local - +0.11% £ 0.14% +0.26% £ 0.06% +1.21% £ 0.10%
; (0.182) (0.001) (<0.001)
+local/distant - - +0.15% £ 0.12% +1.10% £ 0.14%
; - (0.065) (<0.001)
+local/distant/CV'T - - - +0.95% + 0.05%
- - - (<0.001)

Note: The number in the table reflects the percentage of improvement from the rows compared with the columns. The number shows the

average and its standard deviation of the improvement. Moreover, the number in parentheses is the p-value computed from a paired t-test.
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