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ABSTRACT Penicillin binding protein 2a (PBP2a)-dependent resistance to b-lactam anti-

biotics in methicillin-resistant Staphylococcus aureus (MRSA) is regulated by the activity of

the tricarboxylic acid (TCA) cycle via a poorly understood mechanism. We report that

mutations in sucC and sucD, but not other TCA cycle enzymes, negatively impact b-lactam

resistance without changing PBP2a expression. Increased intracellular levels of succinyl

coenzyme A (succinyl-CoA) in the sucC mutant significantly perturbed lysine succinylation

in the MRSA proteome. Suppressor mutations in sucA or sucB, responsible for succinyl-CoA

biosynthesis, reversed sucC mutant phenotypes. The major autolysin (Atl) was the most

succinylated protein in the proteome, and increased Atl succinylation in the sucC mutant

was associated with loss of autolytic activity. Although PBP2a and PBP2 were also among

the most succinylated proteins in the MRSA proteome, peptidoglycan architecture and

cross-linking were unchanged in the sucC mutant. These data reveal that perturbation of

the MRSA succinylome impacts two interconnected cell wall phenotypes, leading to

repression of autolytic activity and increased susceptibility to b-lactam antibiotics.

IMPORTANCE mecA-dependent methicillin resistance in MRSA is subject to regulation

by numerous accessory factors involved in cell wall biosynthesis, nucleotide signal-

ing, and central metabolism. Here, we report that mutations in the TCA cycle gene,

sucC, increased susceptibility to b-lactam antibiotics and was accompanied by signif-

icant accumulation of succinyl-CoA, which in turn perturbed lysine succinylation in

the proteome. Although cell wall structure and cross-linking were unchanged, signifi-

cantly increased succinylation of the major autolysin Atl, which was the most succi-

nylated protein in the proteome, was accompanied by near complete repression of

autolytic activity. These findings link central metabolism and levels of succinyl-CoA

to the regulation of b-lactam antibiotic resistance in MRSA through succinylome-

mediated control of two interlinked cell wall phenotypes. Drug-mediated interfer-

ence of the SucCD-controlled succinylome may help overcome b-lactam resistance.

KEYWORDS MRSA, TCA cycle, antibiotic resistance, beta-lactams, succinyl-CoA,

succinylome

S
taphylococcus aureus can establish infections in humans in a wide range of meta-

bolic niches due to several signal transduction pathways, as well as virulence genes
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encoded in its genome. Significant advances have been made in the study of bacterial

virulence factors and their functions in human disease. However, we have only just

begun to understand the metabolic pathways required for bacterial proliferation in the

host and their contribution to antibiotic resistance.

The blaZ-encoded b-lactamase hydrolyses the b-lactam ring in penicillin, conferring

penicillin resistance in S. aureus (1). Methicillin resistance is mediated by alternative

penicillin-binding protein 2a (PBP2a), encoded by mecA (2) located on a mobile genetic

element, the staphylococcal chromosome cassette (SCCmec) (3, 4). PBP2a has low affinity

for b-lactam antibiotics and thus is able to cross-link peptidoglycan (PG) strands even in

the presence of b-lactam antibiotics and in this manner confers resistance (2). Methicillin-

resistant S. aureus (MRSA) strains are resistant to methicillin, as well as to all the other

b-lactam antibiotics (1, 2), consequently making infections with MRSA difficult to treat.

b-Lactam resistance in S. aureus is typically expressed heterogeneously within a given

population (5). The majority of cells within a heterogeneous population exhibit suscepti-

ble or borderline susceptible resistance to b-lactams. A subpopulation of approximately

0.1% can survive antibiotic treatment and, upon reexposure to the antibiotic, a homoge-

neously resistant population emerges (5). The mechanisms underpinning this switch

from heterogeneous resistance (HeR) to homogenous resistance (HoR) are associated

with accessory mutations outside mecA (6). High-level b-lactam resistance is accompa-

nied by significant energy demands that impose a fitness cost on the cell (7, 8).

The activity of the tricarboxylic acid (TCA) cycle is an important source for the generation

of NADH, and therefore membrane potential, during aerobic respiration. In addition, the TCA

cycle generates metabolic intermediates that are then used in various other pathways in the

cell. The genes encoding enzymes for the TCA cycle are repressed when preferred nutrients,

such as glucose, remain available in the surrounding medium (9). Once post-exponential

growth is reached and glucose is depleted from the medium, TCA cycle gene expression is

derepressed in S. aureus (10–12). The activity of the TCA cycle has previously been linked to

b-lactam resistance in S. epidermidis, where a dysfunctional TCA cycle is common among

clinical isolates and is associated with alterations in the cell envelope and increased tolerance

to b-lactams (13). In S. aureus, TCA cycle activity regulates ATP levels, which controls toler-

ance to several antibiotics, including b-lactams (12). Increased TCA cycle activity to fuel cell

wall biosynthesis has also been shown to accompany mutations that enable the transition

from the HeR to HoR phenotypes (14, 15). Furthermore, disruption of the TCA cycle via muta-

tions in acn and citZ has been reported to block the production of HoR mutants (14, 15).

Post-translational modification (PTM) of proteins is one of the most effective mech-

anisms in diversifying protein function and regulation (16). PTMs can change the

charge and structure of a protein, thus affecting activity, as well as the ability to inter-

act with other proteins/binding partners (17, 18). Lysine is a basic residue that is critical

for protein structure and function (19). The side chain of lysine in particular can be

modified by a variety of PTMs, including phosphorylation (20), succinylation (21–23),

ubiquitination (24), methylation (25), acetylation (16, 26), and lipoylation (27).

Relatively little is known about PTMs in S. aureus metabolism and antibiotic resistance,

and advances in our understanding of these systems will generate new insights into

fundamental cellular processes and virulence mechanisms and potentially identify new

therapeutic targets.

In the present study, we report that mutations in the succinyl coenzyme A (succi-

nyl-CoA) synthetase genes, sucC and sucD, lead to increased susceptibility to b-lactam

antibiotics in MRSA strain JE2. The impact of these mutations on growth was measured

and compared to other TCA cycle mutants. The relative intracellular concentrations of

metabolites from the pyruvate node of glycolysis and the TCA cycle were measured,

and PG architecture and autolytic activity compared in the sucC mutant and wild-type

JE2. We describe the first profile of the lysine succinylome in MRSA and the impact of

the sucC mutation on the global succinylome. Our data reveal that increased accumu-

lation of succinyl-CoA from the TCA cycle increases susceptibility to b-lactam
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antibiotics and reduces autolytic activity via perturbation of global lysine succinylation

in MRSA.

RESULTS

TCA cycle genes sucC and sucD control resistance to b-lactam antibiotics in

MRSA. A screen of the Nebraska Transposon Mutant Library (NTML) (28) revealed that

the TCA cycle mutants, NE569 (sucC::Tn) and NE1770 (sucD::Tn) were more susceptible

to cefoxitin (Fig. 1A and B) and oxacillin (Fig. 1C; Table 1) compared to wild-type JE2.

Other mutations in TCA cycle genes did not affect susceptibility to oxacillin (Table 1),

specifically implicating sucCD-encoded succinyl-CoA synthetase in b-lactam resistance.

The oxacillin MICs of the sucC and sucD mutants in Mueller-Hinton agar (MHA) were 2

to 4mg/ml, compared to 32 to 64mg/ml for JE2, as measured using M.I.C.Evaluator

(Fig. 1C) and agar dilution assays (Table 1). Both mutants also exhibited reduced

growth in Mueller-Hinton broth (MHB) in the absence of antibiotic (Fig. 1D). Phage

80a-mediated backcross of the sucC::Tn allele into JE2, USA300 FPR3757 (4), and clini-

cal MRSA strain DAR173 (29, 30) was accompanied by increased susceptibility to oxacil-

lin (Fig. 1E to G; Table 1). In addition, both NE569 and NE1770 were successfully com-

plemented by the sucCD genes carried on plasmid pLI50 (Table 1). The sucC and sucD

genes are separated by only 21 bp, suggesting that they are organized in an operon

(Fig. 1H) and that the transposon insertion in sucC is likely to have a polar effect on

sucD expression. Consistent with this, NE569 was complemented by psucCD but not by

plasmids carrying sucC (psucC) or sucD (psucD) alone (Table 1 and Fig. 1H). NE1770 was

complemented by psucCD and partially complemented by psucD, but not by psucC

(Table 1 and Fig. 1H).

HoR mutants of NE569 (sucC) have mutations in relA and relQ. Expression of the

HoR phenotype is dependent on activation of the (p)ppGpp-mediated stringent

response (31–34). SucCD, succinyl-CoA synthetase, produces GTP, which is a substrate

for (p)ppGpp synthesis by the RelA/SpoT homolog (RSH), RelP, and RelQ, raising the

possibility that the NE569 (sucC) or NE1770 (sucD) mutations may negatively affect

(p)ppGpp production. To investigate the possible relationship between the impact of

sucCD mutations and the stringent response, the ability of JE2, NE569, and NE1770 to

produce HoR mutants on brain heart infusion (BHI) agar supplemented with oxacillin

100mg/ml was compared. Two stable NE569 HoR mutants, designated sucC HoR1 and

sucC HoR2 with oxacillin MICs .256mg/ml (see Fig. S1A in the supplemental material),

were genome sequenced. sucC HoR1 had a single nucleotide deletion, frameshift

mutation in relA (Table 2; see also Fig. S1B), while sucC HoR2 had a nonsynonymous

point mutation, resulting in an A178V substitution in RelQ (Table 2; see also Fig. S1C).

The N-terminus of RelA contains (p)ppGpp hydrolase and synthase domains, while

mutations in the C-terminal domain deregulate synthase activity (35–37). The NTML

relA mutant, NE1714, contains a transposon insertion in the C-terminal domain and is

associated with increased b-lactam resistance, presumably due to increased (p)ppGpp

synthase activity (Table 1). To investigate the impact of the relA::Tn mutation on b-lac-

tam susceptibility in NE569, a relA sucC double mutant was constructed. First, the

erythromycin resistance (Ermr) marker in NE569 was swapped for a kanamycin resist-

ance (Kanr) marker, as described in Materials and Methods, to generate sucC::Tn-Kanr.

The sucC::Kanr allele was then transduced into NE1714 using phage 80a. Similar to the

sucC HoR mutants, the oxacillin MIC of the relA sucC double mutant was also .256mg/

ml (Table 1). RelQ contains a (p)ppGpp synthase domain only and has previously been

implicated in adaptation to vancomycin- and ampicillin-induced cell wall stress (38). A

relQ mutant is not available in the NTML, indicating that this gene may be essential

and that the RelQ A178V substitution in sucC HoR2 may enhance ppGpp synthase activ-

ity to promote a HoR phenotype. Given that previous studies have demonstrated the

role of ppGpp synthase mutations in the HoR phenotype (5, 38, 39), these data suggest

that increased b-lactam susceptibility in the sucCD mutants is not related to impaired

GTP/ppGpp production.
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FIG 1 Mutation of sucC or sucD increases b-lactam susceptibility in MRSA and impairs growth in MHB. (A) sucCD-

encoded succinyl-CoA synthetase catalyzes the conversion of succinyl-CoA to succinate in the TCA cycle. sucAB-

encoded a-ketoglutarate dehydrogenase catalyzes conversion of a-ketoglutarate to succinyl-CoA, and sdhAB-encoded

succinate dehydrogenase converts succinate to fumarate. (B) Measurement of JE2, NE569, and NE1770 cefoxitin

susceptibility by disk diffusion assay. (C) M.I.C.Evaluator measurement of oxacillin MICs for JE2, NE569, and NE1770. (D)

Growth of JE2, NE569 (sucC), and NE1770 (sucD) in MHB (no antibiotic supplementation) at 37°C. CFU were

enumerated at 1-h intervals for 12 h. The data are the average of three independent experiments, and error bars

represent standard deviations. (E) JE2, NE569 (sucC::Tn), and JE2 sucC::Tn transductants 1 and 2 spot-inoculated onto

MHA and MHA oxacillin (OX) at 1, 2, 4, and 16 mg/ml. (F) DAR173, NE569, and DAR173 sucC::Tn transductants 1 and 2

spot inoculated onto MHA and MHA OX at 1, 2, 4, and 16 mg/ml. (G) USA300, NE569, and USA300 sucC::Tn

transductants 1 and 2 spot inoculated onto MHA and MHA OX at 1, 2, 4, and 16 mg/ml. These assays were repeated

three times, and a representative image is shown. (H) Chromosomal organization of the sucCD locus, including the

locations of transposon insertions in NE569 (sucC) and NE1770 (sucD). The parts of the sucCD operon carried on

psucCD, psucC, and psucD used in complementation experiments are indicated.
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Mutations in sucA and sucB reverse NE569 (sucC) mutant phenotypes. Faster-

growing, more-pigmented suppressor mutants were readily observed among colonies

of NE569 grown on MHA (Fig. 2A). Three of these suppressor mutants were isolated

and comparison of their genomic DNA sequences to NE569 identified mutations in ei-

ther sucA or sucB (Table 2). The sucA gene, which encodes 2-oxoglutarate dehydrogenase

E1 subunit, is found in a two-gene operon with sucB, which encodes dihydrolipoyl succi-

nyltransferase E2 subunit. Together, SucAB catalyze the synthesis of succinyl-CoA, the

substrate for SucCD complex (Fig. 1A). A single nucleotide variant (SNV) leading to a

Ser9STOP codon in sucA was present in sucC suppressor 1, sucC suppressor 2 had a SNV

leading to a Ile361Thr substitution in SucB, and sucC suppressor 3 had a 46-bp deletion in

sucB. The possible significance of additional SNVs in the tatD and hflX genes of sucC sup-

pressors 1 and 2, respectively, is unknown. However, all three sucC suppressor mutants

TABLE 1 Oxacillin MICs of strains described in this study

Strain and relevant details Oxacillin MIC (mg/ml)a

Wild type and sucC and sucDmutants

JE2 32–64

NE569 (sucC::Tn) 2–4

NE1770 (sucD::Tn) 4

Complemented sucC and sucDmutants

NE569 psucC 0.5

NE569 psucD 1

NE569 psucCD 32

NE1770 psucC 0.5

NE1770 psucD 16

NE1770 psucCD 32

Transduction of sucC::Tn into JE2, DAR173 and USA300

JE2 sucC::Tn transductant 1 2–4

JE2 sucC::Tn transductant 2 2–4

DAR173 64

DAR173 sucC::Tn transductant 1 2–4

DAR173 sucC::Tn transductant 2 2–4

USA300 32–64

USA300 sucC::Tn transductant 1 4

USA300 sucC::Tn transductant 2 4

Other TCA cycle mutants

NE547 (sucA) 32

NE1391 (sucB) 32

NE626 (sdhA) 32

NE808 (sdhB) 32

NE594 (gltA) 32

NE861 (acn) 32

NE491 (icd) 32

NE427 (fumC) 64

sucC, sucA, and sdhAmutants and sucC suppressor mutants

sucC::Tn-Kanr 4

sucC sucA double mutant 64

sucC sdhA double mutant 8

sucC suppressor 1 64

sucC suppressor 2 64

sucC suppressor 3 64

sucC HoR and sucC relA double mutants

sucC HoR1 .256

sucC HoR2 .256

NE1714 (relA) .256

sucC relA double mutant .256

aMeasured by agar dilution assays.
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exhibited wild-type levels of oxacillin resistance (Table 1 and Fig. 2B), implicating the

sucA and sucBmutations in this phenotype.

The sucC suppressor 1 mutant, which was chosen for more detailed analysis, also exhib-

ited wild-type growth in MHB (Fig. 2C). Similarly, in chemically defined media supplemented

with glucose (CDMG), the NE569 growth defect was reversed by the sucA suppressor muta-

tion (Fig. 2D). However, both NE569 and sucC suppressor 1 were unable to grow in chemi-

cally defined media lacking glucose (CDM) (Fig. 2E), which is consistent with previous results

showing growth in CDM is dependent on an intact TCA cycle (9).

FIG 2 sucC suppressor mutation is accompanied by restoration of wild-type colony morphology,

oxacillin resistance and growth in MHB and CDMG, but not CDM. (A) JE2, NE569 (sucC), and isolated

sucC suppressor 1 grown on MHA for 48 h at 37°C. Red arrow indicates faster growing, more

pigmented suppressor mutant of NE569. (B) M.I.C.Evaluator measurement of oxacillin MIC for sucC

suppressor 1. Three independent measurements were performed and a representative image is

shown. (C to E) Growth of JE2, sucC (NE569), and sucC suppressor 1 in MHB (C), CDMG (D), or CDM

(E). Growth was measured by enumerating the number of CFU/ml at 2-h intervals in flask cultures.

The data presented are the averages of at least three independent experiments, and error bars

represent the standard deviations.
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Extension of these experiments to NTML mutants revealed no change in oxacillin sus-

ceptibility in NE547 (sucA) and NE1391 (sucB) (Table 1). Using phage 80a to disrupt sucA in

the sucC mutant restored wild-type colony morphology, oxacillin resistance, and growth

(Fig. 3A to C). For control purposes, a sucC sdhA double mutant was also constructed. The

succinate dehydrogenase complex SdhAB catalyzes the conversion of the SucCD product,

succinate, to fumarate (Fig. 1A). Mutations in sdhA or sdhB did not impact susceptibility to

oxacillin (Table 1) and the sucC sdhA double mutant exhibited the same colony morphol-

ogy, oxacillin resistance, and growth characteristics as the sucC mutant (Fig. 3A, B, and D).

Taken together, these data demonstrate that mutations in sucA or sucB overcome the

b-lactam susceptibility and growth defects of the sucCmutant.

Succinyl-CoA is significantly increased in the sucC mutant. Liquid chromatogra-

phy-tandem mass spectrometry (LC-MS/MS) was used to quantify the accumulation of

intracellular metabolites from the TCA cycle and the pyruvate node of glycolysis in

NE569 (sucC), NE569 psucCD, and sucC suppressor strain 1 collected from late-

FIG 3 Mutation of sucA, but not sdhA, in the sucC background restores wild-type colony

morphology, b-lactam resistance, and growth phenotypes. (A) Colony morphologies of JE2, NE569

(sucC), NE547 (sucA), NE626 (sdhA), sucC sucA, and sucC sdhA strains grown for 24 h on MHA. (B) M.I.C.

Evaluator measurement of oxacillin MICs for sucA sucC and sdhA sucC strains. Three independent

measurements were performed for each strain, and a representative image is shown. (C) Growth of

JE2, NE569 (sucC), NE547 (sucA), and sucA sucC strains. (D) Growth of JE2, NE569, (sucC), NE626 (sdhA),

and sdhA sucC strains. Growth experiments were performed in MHB at 37°C, and CFU/ml were

enumerated at 1-h intervals for 12 h. All data presented are the average of three independent

experiments, and error bars represent the standard deviations.
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exponential-phase cultures grown aerobically in MHB. Consistent with the predicted

impact of a sucC mutation, succinyl-CoA levels were significantly increased in NE569

(Fig. 4). Furthermore, accumulation of succinyl-CoA in the sucC mutant was accompa-

nied by a concomitant decrease in the levels of succinate (Fig. 4). Succinyl-CoA was

reduced to wild-type levels in sucC suppressor 1 and the complemented sucC mutant,

implicating accumulation of this metabolite in sucC-dependent modulation of b-lac-

tam resistance. The levels of a-ketoglutarate were also significantly increased in sucC

suppressor 1 compared to JE2, NE569, and NE569 psucCD (Fig. 4), supporting the con-

clusion that the SucA Ser9STOP mutation in this strain has impaired a-ketoglutarate de-

hydrogenase activity. Mutation of sucC also impacted the glycolytic pathway as evi-

denced by significantly reduced phosphoenol pyruvate (PEP) and increased levels of

pyruvate (Fig. 4). The levels of acetyl-CoA were also significantly reduced in the sucC

mutant (Fig. 4), as were citrate and isocitrate, albeit not significantly, further demon-

strating the impact of this mutation on TCA cycle homeostasis.

Mutation of sucC significantly impacts the global MRSA proteome. Similar to

acetyl-CoA, succinyl-CoA can react with the NH3
1 group located on the lysine side

chain of proteins in general resulting in the succinylation of this residue in a pH- and

concentration-dependent manner (21, 40). This PTM has been shown to occur exten-

sively in prokaryotes (22, 23, 40–43), and a recent study demonstrated that a murine

succinate dehydrogenase mutation altered succinyl-lysine distribution in chromatin

(44). Here, the accumulation of succinyl-CoA measured in the sucC mutant NE569

prompted us to investigate the global distribution of succinyl-lysines by analyzing the

bacterial proteome and succinylome using LC-MS/MS.

For these experiments, cells were collected from JE2 and NE569 cultures grown to

exponential and stationary phase as described in Materials and Methods. The global

proteome analysis (the workflow is summarized in Fig. S2A in the supplemental mate-

rial) quantified approximately 90% (n=2,283) of the 2,607 predicted S. aureus proteins.

After principal-component analysis and batch correction, JE2 early exponential and ex-

ponential-phase samples were found to be largely the same but significantly different

from JE2 stationary-phase samples (see Fig. S2B). Compared to JE2, 381 proteins were

significantly upregulated in NE569 during exponential growth (see Fig. S2C) and 330

proteins were upregulated in stationary phase (see Fig. S2D), including proteins

involved in PG biosynthesis, cell wall organization, and cell division. Significantly down-

regulated proteins in NE569 during exponential-phase (307 proteins) and stationary-

phase (187 proteins) growth included virulence regulators (e.g., SaeS, SaeR, SarR, SarZ,

and AgrB), components of type VII secretion systems, hemolysins, leukotoxins, and

immune evasion/inactivation proteins (e.g., Spa, Sbi, SraP, and PsmA1) (see Fig. S2C

and D), suggesting that virulence of the sucC mutant may be attenuated.

Global patterns of protein succinylation were increased in the sucC mutant. In

total 9,545 peptides with succinylated lysine residues (P , 0.05, A-Score. 13) (45, 46)

were identified. Peptides that could not be quantified in .75% of samples were disre-

garded, leaving 5,762 succinylated-lysine peptides derived from 1,000 unique proteins.

The abundance of approximately 58% of the succinylated peptides (3,340) was signifi-

cantly modulated across the conditions tested (ANOVA [analysis of variance] adjusted

P , 0.05) (Fig. 5A). Hierarchical clustering revealed that while most of the changes in

the succinylome were growth phase dependent, succinylated peptides in clusters 1

and 2 were more abundant in NE569 compared to JE2 in the stationary phase and

were associated with “penicillin binding,” “cytolysis,” “cell wall,” “amidase activity,”

“transferase activity transferring acyl-groups,” “response to oxidative stress,” and “met-

alloendopeptidase activity” (Fig. 5B).

The median number of succinylated peptides per protein was 3, and 670 proteins

had ,5 succinylated peptides. Intriguingly, the top 40 most succinylated proteins

(Fig. 5C) had .20 succinyl peptides each, which represented .20% of all succinylated

peptides. Consistent with a recent study in S. epidermidis (23), numerous proteins

involved in glycolysis and the TCA cycle were highly succinylated. The major autolysin

(Atl) was the most succinylated protein in JE2 and NE569, with the mecA-encoded

sucCD-Dependent Control of b-Lactam Resistance in MRSA ®
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FIG 4 Mutation of sucC alters the central metabolism in S. aureus. JE2, NE569 (sucC), sucCcomp (NE569 psucCD), and sucCsupp (sucC suppressor 1, which has a

SucA Ser9STOP mutation) strains were grown aerobically in MHB. The cells were harvested in the exponential phase (6 h), and intracellular metabolites

associated with the pyruvate node and TCA cycle were analyzed by LC-MS/MS. The metabolites included in the analysis are indicated in the TCA cycle

pathway, along with their associated enzymes. The slit arrow indicates a predicted break in the TCA cycle due to mutation of sucC in NE569. n= 3; cps,

count per second. The image was created using Biorender.com.
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penicillin binding protein 2a (PBP2a) and PBP2 also among the 40 most succinylated

proteins (Fig. 5C). Atl had 102 succinylated peptides quantified, mapping to 82 succi-

nyl-lysine sites, of which 12 showed significantly higher levels of succinylation in the

sucCmutant in the stationary phase (Student t test, P, 0.05) (Fig. 5D).

Mutation of sucC does not affect mecA transcription, PBP2a expression, or

peptidoglycan structure and cross-linking. LightCycler RT-qPCR analysis revealed

that the relative expression of mecA was not significantly affected in NE569 compared

to JE2 in BHI media or in BHI media supplemented with oxacillin 0.5mg/ml (Fig. 6A).

Western blotting also revealed similar PBP2a levels in JE2, NE569, and NE569 psucCD

FIG 5 Mutation of sucC perturbs lysine succinylation in the S. aureus proteome. (A) Heatmap depicting the quantifiable succinyl-lysine peptides

significantly modulated (ANOVA adjusted P , 0.05) derived from the proteomes of JE2 and NE569 (sucC) collected during early-exponential-, exponential-,

and stationary-phase growth. The hierarchical clustering was performed with the Ward method and Euclidean distances. (B) Gene ontology enrichment

analysis of succinylated peptides within and shared between heat map clusters. (C) The 40 most succinylated proteins in S. aureus, as indicated by the

number of succinylated peptides per protein. (D) Amino acid sequence of Atl highlighting all succinylated lysine residues in gray and lysine residues with

significantly increased succinylation in NE569 (sucC) versus JE2 in red.
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FIG 6 Mutation of sucC does not affect mecA transcription, PBP2a expression or peptidoglycan

structure. (A) Comparison of mecA transcription relative to gyrB measured by LightCycler RT-qPCR in JE2

and NE569 (sucC) grown to exponential phase in BHI or BHI supplemented with 0.5mg/ml oxacillin.

Experiments were repeated at least three times, and standard deviations are shown. Student t test

analysis revealed no significant differences between either strain or in the presence of absence of

oxacillin. (B) Western blotting of PBP2a in JE2, NE569 (sucC), NE569 psucCD, and MSSA strain 8325-4

(negative control). Total protein was extracted from cells collected during the exponential phase of

growth in MHB plus 2% NaCl supplemented with 0.5mg/ml oxacillin, with the exception of 8325-4,

which was grown without oxacillin. A portion (8 mg) of total protein was separated on a 7.5% Tris-

glycine gel, transferred to a polyvinylidene difluoride membrane, and probed with anti-PBP2a antibody

(1:1,000 dilution), followed by horseradish peroxidase-conjugated protein G (1:2,000 dilution) and

(Continued on next page)
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grown in MHB with 2% NaCl at 35°C supplemented with 0.5mg/ml oxacillin (Fig. 6B).

MSSA strain 8325-4 was included as a mecA-negative control.

Quantitative PG compositional analysis was performed using UPLC analysis of mura-

midase-digested muropeptide fragments extracted from exponential- or stationary-

phase cultures of JE2, NE569, and sucC suppressor 1 grown in MHB or MHB supple-

mented with oxacillin 3mg/ml or 32mg/ml. The PG profiles of all three strains were

similar under all growth conditions tested (see Fig. S3 in the supplemental material).

Supplementation of MHB with oxacillin was associated with significant changes in mur-

opeptide oligomerization and reduced cross-linking, but these effects were the same

in all strains (Fig. 6C). Interestingly, although PBP2a is the second most succinylated

protein in the S. aureus proteome (Fig. 5C) and contains 40 succinylated lysine residues,

only the lysine residue K47, which is not located near to the enzyme active site or dime-

rization domains, showed increased succinylation in the sucC mutant (MassIVE ID

MSV000086976 and MassIVE ID MSV000086971), perhaps making it unlikely that this

PTM influences the transpeptidase activity of this enzyme in NE569.

Mutation of sucC does not impact susceptibility to the lipoteichoic acid synthase

inhibitor Congo red or the alanylation inhibitor D-cycloserine. Experiments compar-

ing the susceptibility of JE2 and NE569 to Congo red revealed no differences as evi-

denced by similar CFU counts, although the morphology of the sucC mutant was

drastically changed (see Fig. S4). Similarly, the D-cycloserine (DCS) MIC for JE2 (32mg/

ml) was not significantly different from NE569, NE569 psucCD, or sucC suppressor 1,

all of which had DCS MICs of 16 to 32mg/ml. Congo red is a selective inhibitor of lipo-

teichoic acid synthase (LtaS) activity (47), while DCS blocks the D-alanine racemase

and D-alanine ligase enzymes required for the production of D-alanine (48, 49), an

important precursor for PG, wall teichoic acid (WTA), and lipoteichoic acid (LTA) bio-

synthesis. Our data already showed that PG structure was unaffected by the sucC

mutation (Fig. 6C), and these observations further suggest that altered expression or

stability of WTA and LTA may not be involved in the reduced b-lactam susceptibility

of NE569.

Autolytic activity is impaired in the sucC mutant. The 12 lysine residues in Atl

that exhibited increased levels of succinylation in the sucC mutant were evenly distrib-

uted throughout the protein, including within the amidase and glucosaminidase

domains (Fig. 5D). To investigate whether altered succinylation of Atl impacted its en-

zymatic activity, Triton X-100-induced autolysis was compared in JE2, NE569, NE569

psucCD, sucC suppressor 1, the sucC sucA double mutant, and the NE460 (atl) mutant.

Autolytic activity was strikingly reduced in the sucC mutant compared to JE2, and this

phenotype was complemented to wild-type levels in NE569 psucCD and reversed in

the sucC/sucA and the sucA Ser9STOP suppressor mutant strains (Fig. 7). Indeed, Triton

X-100-induced autolysis was similar in NE569 and NE460 (Fig. 7). These data suggest

that the increased succinylation of the 12 lysine residues in Atl is associated with

blocked autolytic activity by interfering with proteolytic cleavage of Atl or the activity

of the amidase or glucosaminidase PG hydrolases. Although mutation of atl in several

MRSA strains, including the HoR strain COL, was previously associated with reduced re-

sistance to methicillin (50), the oxacillin MIC of NE460 (32mg/ml) was similar to the par-

ent strain JE2. Mutation of Sle1, which like Atl is required for daughter cell separation

after cell division, has previously been reported to reduce autolytic activity (51) and

increase MRSA susceptibility to oxacillin (52). Succinyl-PTM of the Sle1 K200 residue was

significantly increased in NE569 compared to JE2 (Student t test, P , 0.05) (Fig. 7B).

FIG 6 Legend (Continued)

colorimetric detection with a BioRad Opti-4CN substrate kit. Three independent experiments were

performed, and a representative blot is shown. (C) Relative proportions of cell wall muropeptide fractions

based on oligomerization and relative cross-linking efficiency in peptidoglycan extracted from JE2, NE569

(sucC), and sucC suppressor 1 grown to exponential phase in MHB or MHB supplemented with oxacillin

at 3 or 32mg/ml. PG analysis from NE569 (sucC) is shown only at 3mg/ml oxacillin because 32mg/ml

exceeds its MIC. Each profile shown is a representative of three biological replicates. Significant

differences were determined using a Student t test (**, P, 0.01; ***, P, 0.001; ****, P , 0.0001).
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Overall, our data reveal that accumulation of succinyl-CoA in the sucC mutant nega-

tively impacts two interconnected cell wall-associated phenotypes: autolysis and sus-

ceptibility to b-lactam antibiotics.

DISCUSSION

The TCA cycle is centrally involved in the production of biosynthetic precursors, reduc-

ing potential and energy. Here, we report that mutations in sucC and sucD genes encoding

the a and b subunits of succinyl-CoA synthetase, which catalyzes the conversion of succi-

nyl-CoA to succinate, significantly increased susceptibility to b-lactams. The sucC and sucD

mutants grew as smaller, less-pigmented colonies on MHA and exhibited impaired growth

in MHB. Genetically blocking the production of succinyl-CoA in the sucCmutant by mutat-

ing sucA or sucB reversed the growth and b-lactam susceptibility phenotypes. In contrast,

mutation of sdhA in the sucC mutant had no phenotypic impact. Succinyl-CoA levels were

significantly increased in the sucCmutant and were restored to wild-type levels by psucCD

complementation or mutation of sucA.

The accumulation of succinyl-CoA in the sucC mutant perturbed global protein suc-

cinylation, which is an important PTM previously described in several pathogens (21,

22, 43), including S. epidermidis (23). Although several PBPs, including mecA-encoded

PBP2a, were among the proteins with the highest number of succinyl-lysines, PG archi-

tecture and cross-linking were unchanged in the sucC mutant, even under oxacillin

stress when mecA expression is increased. The absence of structural changes in PG also

indicates that the accumulation of succinyl-CoA does not impact b-lactam resistance

via altered biosynthesis of lysine, which is an important component of the cell wall

(53). Succinyl-CoA is used in the biosynthesis of lysine from aspartate and in

Corynebacterium glutamicum disruption of the sucCD locus, and the resulting accumu-

lation of succinyl-CoA was accompanied by overproduction of lysine (54). It is difficult

to envisage how increased lysine accumulation would reduce b-lactam resistance, and

in any event the unchanged PG structure in the sucC mutant does not implicate lysine

biosynthesis in this phenotype. Succinyl-CoA synthetase activity generates GTP, which

is a substrate for RelA, RelP, and RelQ enzymes that produce the stringent response

alarmone (p)ppGpp. (p)ppGpp plays a central role in the control of MRSA b-lactam

FIG 7 Increased succinylation of lysine residues in Atl and Sle1 is associated with reduced autolytic

activity. (A) Triton X-100-induced autolysis of JE2, NE569 (sucC), sucC suppressor 1, sucC sucA double

mutant, NE569 psucCD, and NE460 (atl) strains. The strains were grown to an OD600 of 0.5 in MHB at

37°C before being washed in cold PBS and resuspended in 0.1% Triton X-100 with the OD600 adjusted

to 1. The OD600 was monitored at 30-min intervals, and autolysis was expressed as a percentage of

the initial OD600. The experiments were repeated at least three times, and error bars represent the

standard deviations. (B) Amino acid sequence of Sle1 highlighting the K200 lysine residue (within a

LysM domain [shaded gray]) that is significantly more succinylated in NE569 (sucC) versus JE2 in red.
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resistance (31–34). However, the ability of the sucC mutant to produce stable HoRs

with mutations in relA or relQ suggests that intracellular GTP is not limited in the sucC

and sucD mutants or associated with reduced b-lactam resistance. Metabolomic analy-

sis further revealed significantly reduced levels of acetyl-CoA in the sucC mutant, rais-

ing the additional possibility that the acetylome may also have been perturbed. In this

context, changes in PG acetylation have also been implicated in autolysis and antibi-

otic resistance (55), and future comparison of the acetylome and succinylome in sucCD

mutants to identify proteins that are modified by both PTMs may provide further

insights into how these mutations impact resistance.

The reduced pigmentation of the sucCD mutants may be a consequence of altered

production of the S. aureus carotenoid staphyloxanthin, composed of a glucose residue

esterified with a 30-carbon carboxylic acid chain and a 15-carbon fatty acid (56). In S.

aureus most fatty acids are odd-numbered branched-chain fatty acids (57). The b-oxi-

dation of odd-numbered fatty acids generates acetyl-CoA and propionyl-CoA, the latter

of which can be converted to succinyl-CoA. Interestingly, staphyloxanthin-derived lip-

ids interact with flotillin to form functional membrane microdomains required for oli-

gomerization and activity of PBP2a (58). In contrast to the reduced pigmentation, the

proteomic analysis revealed increased levels of staphyloxanthin biosynthetic enzymes

in the sucC mutant (MassIVE ID MSV000086976 and MassIVE ID MSV000086971), per-

haps reflecting efforts by the sucCmutant to compensate for reduced pigmentation.

The discovery that Atl was the most succinylated protein in the MRSA proteome

and that 12 of the 82 succinyl-lysines were significantly more succinylated in the sucC

mutant suggested a potential connection to reduced b-lactam resistance. Fisher and

Mobashery recently proposed a model in which the bactericidal activity of b-lactams is

the result of deregulated Atl activity at the cell division septum (59). Our data showing

that autolytic activity was significantly reduced in the sucC mutant and that the oxacil-

lin MIC of the atl transposon mutant NE460 was unchanged are not consistent with

this possibility. Furthermore, previous work in our laboratory linked increased autolytic

activity with increased b-lactam resistance. Specifically, atl transcription was activated

in a HoR mutant of USA300 LAC (oxacillin MIC. 256mg/ml), which exhibited signifi-

cantly increased autolytic activity, and growth of USA300 LAC in sub-MIC oxacillin was

also associated with significantly increased autolysis (60). Thus, while it seems clear

that autolysis and b-lactam susceptibility are interconnected, the precise mechanistic

interactions between these two phenotypes needs to be elucidated further.

Processing of the Atl proprotein, produces a signal peptide, a propeptide, a N-ace-

tylmuramoyl-L-alanine amidase (AM) enzyme, and a C-terminally located endo-b-N-

acetylglucosaminidase enzyme (GL) (61). The region between the AM and GL catalytic

domains contains three repeat regions (R1 to R3) with GW-dipeptide motifs required

to target Atl proprotein to the equatorial ring on the cell surface during cell division

(62). None of these 12 lysine residues exhibiting increased succinylation are in the AM

catalytic domain, 5 are in the GL catalytic domain, 2 are in the propeptide region, and

the remaining 5 are in the R1 and R2 regions. The single lysine residue (K200) of Sle1

that is more succinylated in the sucCmutant is located in a LysM cell wall hydrolase do-

main and may be important for activity of the enzyme.

Susceptibility to the LtaS inhibitor Congo red was unchanged in the sucC mutant,

indicating that increased b-lactam susceptibility may not be associated with impaired

expression or stability of WTA or LTA. Similarly, susceptibility to the alanylation inhibi-

tor DCS was the same in the wild-type and sucC mutant. Given that D-alanine is an im-

portant component of PG, this observation is consistent with the absence of any

changes in PG structure in the sucC mutant. Furthermore, because D-alanine is an im-

portant component of WTA and LTA, unchanged susceptibility to DCS does not point

to roles for these cell envelope glycopolymers in sucC-dependent b-lactam susceptibil-

ity. Nevertheless, given that almost 58% of all quantifiable succinylated peptides were

significantly changed in the sucC mutant, we propose a model in which perturbation

of the succinylome likely modulates the activity of multiple enzymes, including Atl and
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Sle1, that collectively control growth and interconnected cell envelope characteristics

such as autolysis and susceptibility to b-lactam antibiotics (Fig. 8). The U.S. Food and

Drug Administration-approved anticancer drug streptozotocin specifically targets suc-

cinyl-CoA synthetase in human cells to limit proliferation (63) and is used primarily to

treat tumors that cannot be surgically removed. The findings described here may open

the door to the possibility of sensitizing MRSA to b-lactam antibiotics using com-

pounds that specifically target succinyl-CoA synthetase or protein succinylation gener-

ally within the cell.

MATERIALS ANDMETHODS

Bacterial strains and growth conditions. Bacterial strains and plasmids used in this study are listed

in Table S1 in the supplemental material. Escherichia coli strains were cultured in Luria-Bertani (LB) broth

or LB agar. S. aureus strains were grown in Mueller-Hinton broth (MHB), Mueller-Hinton agar (MHA), tryp-

tic soy broth (TSB), brain heart infusion (BHI), tryptic soy agar (TSA), chemically defined medium (CDM),

and CDM supplemented with glucose (CDMG) and, where indicated, supplemented with erythromycin

(Erm) at 10mg/ml, chloramphenicol (Cm) at 10mg/ml, ampicillin (Amp) at 50mg/ml, or kanamycin (Km)

at 75mg/ml. For growth experiments in MHB, 25 or 50ml of MHB in 250-ml flasks were used for a 10:1 or

5:1 flask/volume ratio, respectively. Overnight cultures in MHB were used to inoculate the media at a

starting optical density at 600 nm (OD600) of 0.01, and flasks were incubated at 37°C shaking at 200 rpm.

For CDM and CDMG growth experiments, overnight cultures were grown in TSB, washed once in 5ml of

phosphate-buffered saline (PBS), and used to inoculate 25ml of CDMG or CDM in a 250-ml flask to a

starting OD600 of 0.05. Flasks were incubated at 37°C with shaking at 200 rpm. For all growth experi-

ments, CFU were enumerated in serially diluted 20-ml aliquots removed from flask cultures. At least

three biological replicates were performed for each strain, and average data are presented. For experi-

ments to compare growth in MH and in MH supplemented with 5% glucose, cultures were grown at

37°C in 250-ml flasks with 50ml of media and shaking at 200 rpm.

Cefoxitin disk diffusion assays and MIC measurements. Cefoxitin disk diffusion susceptibility test-

ing was performed in accordance with Clinical and Laboratory Standards Institute (CLSI) guidelines (64).

MIC measurements by broth microdilution or agar dilution were performed in accordance with CLSI

methods for dilution susceptibility testing of staphylococci (65). Disk diffusion and MIC results were

interpreted using CLSI standard M100, and strains were classified as susceptible or resistant (66). For oxa-

cillin MIC measurement, M.I.C.Evaluator (Oxoid) strips were used in accordance with manufacturer

guidelines. Strains were grown at 37°C on MHA for 24 h, 5 to 6 colonies were resuspended in 0.85% sa-

line and adjusted to a 0.5 McFarland standard. The suspension was swabbed evenly three times across

the surface of an MHA 2% NaCl plate (4-mm agar depth). An M.I.C.Evaluator strip was applied, followed

by incubation for 24 h at 35°C. Three independent measurements were performed for each strain.

FIG 8 Suggested model for succinylome-controlled regulation of two interconnected cell wall-

associated phenotypes, namely, autolysis and b-lactam susceptibility, in MRSA. Image created with

Biorender.com.
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Genomic DNA extraction and whole-genome sequencing. Genomic DNA extraction, sequencing

by MicrobesNG (http://www.microbesng.uk), and analysis were performed as described previously (67).

Wild-type JE2 reads were aligned against the published USA300 FPR3757 genome sequence (RefSeq

accession number NC_007793.1) and assembled into a contig. USA300 FPR3757 annotation and base

numbering were transferred onto the wild-type JE2 sequence. The reads for sucC suppressor strains and

sucC HoR strains were then mapped onto the assembled JE2 sequence. High-frequency (70%) and good-

quality base changes were identified using the CLC Genomics Workbench software package (version

20.0.2). Sequence data for NE569 (sucC), sucC HoR1, sucC HoR2, and sucC suppressors 1, 2, and 3 are

available from the European Nucleotide Archive (project PRJEB43960, accession numbers ERS6142066 to

ERS6142071).

Genetic manipulation of S. aureus. Phage 80a was used to transduce the transposon insertion

from NE569 into JE2, DAR173, and USA300 to ensure that background mutations were not responsible

for the antibiotic resistance phenotype, as described previously (67). Transposon insertions were verified

using PCR amplification of target loci.

A 1,680-bp fragment encompassing the sucC gene and a 2,610-bp fragment, including both sucC

and sucD, were PCR amplified from JE2 genomic DNA using the primers INF_sucC_F/INF_sucC_R and

INF_sucCD_F/INF_sucCD_R, respectively (see Table S2 in the supplemental material) and cloned into the

E. coli-Staphylococcus shuttle vector, pLI50, using Clontech infusion cloning kit 2. The psucCD plasmid

was digested with HpaI and SpeI and treated with T4 DNA polymerase (Roche) and deoxynucleoside tri-

phosphates to create a blunt-end fragment that was religated using T4 ligase (Roche). The resulting plas-

mid, designated psucD, contained a 627-bp deletion at the 59 end of the sucC gene, with only the sucD

gene remaining intact. Recombinant plasmids were first transformed into cold-competent E. coli HST08

(supplied with the Clontech infusion cloning kit) before being transformed by electroporation into the

restriction-deficient S. aureus strain RN4220 and finally into NE569 and NE1770.

The sucC sucA, sucC sdhA, and sucC relA double mutants were generated by first exchanging the

sucC::Tn containing an Ermr cassette in NE569 for a transposon containing a Kanr cassette, generating

strain sucC::Tn-Kanr. This was performed by allelic exchange, using the plasmid pKAN and a method

described previously (68). Genomic DNA extraction and PCR using the primers suc_F and sucC_R was

carried out to verify the allelic exchange process.

To construct the sucC relA double mutant, the sucC::Tn-Kanr was transduced into NE1714 and trans-

ductants were selected on TSA with 75mg/ml kanamycin. To construct sucC sucA and sucC sdhA double

mutants, the sucA::Tn allele from NE547 and the sdhA::Tn allele of NE626 were each transduced into

sucC::Tn-Kanr using phage 80a, and transductants were selected on TSA with 10mg/ml erythromycin.

PCR was used to verify the transposon insertions in the double mutants using primers for sucC, relA,

sucA, and sdhA (Table S2).

RNA purification and real-time RT-PCR. Cultures were grown in BHI media to midexponential

phase. Harvested cells were pelleted and immediately stored at –20°C in RNAlater (Ambion) to ensure

maintenance of RNA integrity. RNA was extracted according to the manufacturer’s guidelines using an

RNA Mini-Extraction kit (Sigma). RNA integrity was examined visually by agarose gel electrophoresis and

RNA concentration was determined using a Qubit Fluorometer 4 (Qiagen). Quantitative reverse tran-

scription-PCR (RT-qPCR) was used to measure mecA transcription on the Roche LightCycler 480 instru-

ment using a LightCycler 480 SYBR green kit (Roche) with the primers mecA1_Fwd and mecA1_Rev (see

Table S2), as described previously (49). The gyrB gene amplified with the primers gyrB_Fwd and

gyrB_Rev (see Table S2) served as an internal standard. Each RT-qPCR experiment was performed three

times, and average data are presented, including standard deviations.

PBP2a Western blot analysis. Overnight MHB cultures were used to inoculate 25ml of MHB plus

2% NaCl, with or without 0.5mg/ml oxacillin, to a starting OD600 of 0.05, followed by incubation at 35°C

(with 200-rpm shaking) until an OD600 of 0.8 was reached. The cells were then pelleted and resuspended

in PBS to an OD600 of 10, and PBP2a Western blot analyses were performed as described previously (67).

Three independent experiments were performed and a representative blot presented.

Isolation of sucC suppressor mutants. For experiments comparing the growth of JE2 and the sucC

mutant NE569, aliquots removed from 25-ml MHB cultures grown in 250-ml flasks were serially diluted,

and the CFU were enumerated on MHA. Suppressor mutants of NE569 were readily identified on MHA

due to their larger colony size and deeper pigmentation, which contrasted with the smaller, pale colony

morphology of parental NE569. Three suppressor mutants (1, 2, and 3) were chosen for further analysis.

DNA extraction and PCR verification of the Bursa aurealis transposon using the primers sucC_F and

sucC_R (see Table S2) was performed to verify the presence of the sucC transposon insertion.

Comparative genome sequence analysis was used to identify the suppressor mutations.

Oxacillin resistance population analysis. Population analysis profiles (PAPs) was generated as

described previously (69). Overnight cultures were grown in BHI, adjusted to an OD600 of 1, and 10-fold

serially diluted from 1021 to 1027, and a 20ml aliquot of each dilution was plated onto a series of BHI

agar plates supplemented with oxacillin at 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, or 128mg/ml. The CFU were

enumerated after overnight incubation at 37°C, and the results were expressed as the CFU/ml at each

oxacillin concentration. Average data from three independent experiments are presented.

Isolation of homogeneously resistant mutants. Overnight cultures of NE569 were grown in BHI,

adjusted to an OD600 of 1, serially diluted, plated onto BHI agar supplemented with 100mg/ml oxacillin,

and incubated at 37°C to isolate HoR mutants. The CFU were enumerated on BHI agar to calculate the

rate of HoR mutant production. HoR mutants were passaged for 14 days in antibiotic-free BHI broth to

identify stable mutants that were then verified using PAPs and oxacillin MIC measurements. The experi-

ments were performed twice, and the results of a representative experiment are presented.
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LC-MS/MS metabolite analysis of NE569 (sucC), NE569 psucCD, and sucC suppressor 1. For LC-

MS/MS analysis, samples were prepared as previously described (70). Briefly, strains were inoculated in

MHB to an OD600 of 0.06 and grown aerobically (250 rpm, 37°C) for 6 h. Culture volumes corresponding

to OD600 of 10 were harvested and rapidly filtered through a membrane (0.45mm; Millipore). The cells

on the membrane were washed twice with 5ml of cold saline and immediately quenched in ice-cold

60% ethanol containing 2mM Br-ATP as an internal control. The cells were mechanically disrupted using

a bead homogenizer set to oscillate for three cycles (30 s) of 6,800 rpm with a 10-s pause between each

cycle. Cell debris was separated by centrifugation at 13,000 rpm. The supernatant containing intracellular

metabolites were lyophilized and then stored at 280°C.

A triple-quadrupole-ion trap hybrid mass spectrometry (Sciex) connected with a Waters ultraperform-

ance liquid chromatography I-class (UPLC) system was used for the metabolite analysis. The chromato-

graphic separation was performed by ionic liquid chromatography using a Column XSELECT HSS XP

(150mm! 2.1mm inner diameter; 2.5-mm particle size), and a binary solvent system with a flow rate of

0.250ml/min was used for chromatographic separation. Mobile phase A was composed of 10mM tributyl-

amine, 10mM acetic acid, 5% methanol, and 2% 2-propanol; mobile phase B was 100% methanol. The col-

umn was maintained at 40°C, and the autosampler was maintained at 7°C. The A/B solvent ratio was main-

tained at 90/10 for 1min, followed by a gradual increase in B to 65% for 10min. Solvent B was increased to

90% over next 1min, which was maintained for 4min. The gradient was again reduced to 90/10 (A/B)

within 0.5min and was equilibrated for 5.5min before the next run. A QTRAP 65001 mass spectrometry

system (Sciex) operated in negative-ion mode was used for targeted quantitation in multiple reaction moni-

toring (MRM) mode. MRM details for each analyte are listed in Table S3 in the supplemental material. The

electrospray ionization parameters were optimized for a 0.25-ml/min flow rate and were as follows: an elec-

trospray ion voltage of24,400 V, a source temperature of 400°C, a curtain gas of 40, and gas 1 and 2 of 40

and 45 lb/in2, respectively. Analyzer parameters were optimized for each compound using manual tuning.

Proteomics sample preparation and analysis. Cells were collected from four biological replicates

of JE2 and NE569 (sucC) flask cultures grown to exponential and stationary phases in MHB. Due to differ-

ent growth characteristics and CFU/ml in wild-type and sucC mutant cultures (see Fig. S1), JE2 and

NE569 cells were collected after 3 and 4 h, respectively, for exponential growth and after 10 and 12 h,

respectively, for stationary-phase growth. As an added control four biological replicates of JE2 cells were

also collected after 3 h (early exponential phase). Cell pellets were collected promptly from culture sam-

ples and snap-frozen in liquid nitrogen.

The cell pellets from all 20 samples were lysed, denatured, and digested with trypsin before being la-

beled with tandem mass tags (TMT) using TMT11plex, as described previously (71). Because there were 20

samples and only 11 channels in the TMT11plex kit, an equal concentration of peptides from all the cell pel-

lets was mixed to generate a reference sample used for normalization purposes. Two samples from each cell

pellet were labeled with different isobaric labels and placed in each of the two TMT sets, the channel 131C

was reserved for the reference sample. The peptide samples were cleaned-up by C18 solid-phase extraction

(SPE). An immunoaffinity purification was performed using the PTMScan acetyl-lysine motif (Ac-K) kit (Cell

Signaling Technology, Danvers, MA) to bind acetyl peptides, thereby enriching succinyl-lysine peptides in

the unbound fraction, which was cleaned-up using a C18 SPE and fractionated (into 12 fractions) using high-

pH reverse-phase chromatography as described previously (72). Peptides were analyzed by reverse-phase

separation (C18) coupled with a QExactive HF-X mass spectrometer. The instrument .raw files generated

were deposited and are available at MassIVE data repository (MassIVE ID MSV000086976 and MassIVE ID

MSV000086971). Raw MS data were searched with MS-GF1 (73) against UniProt/Swiss-Prot S. aureus data-

base (UP000001939) bovine trypsin and human keratin sequences. Methionine oxidation and succinylation

were set as dynamic modifications, and cysteine alkylation and TMT labeling of N termini and lysines were

set as static modifications. The identified spectra were filtered based on their MS-GF1 scores, resulting in a

false discovery rate of ,1%. For quantitative analysis, the TMT reporter ion intensities were extracted with

MASIC (74). Intensities were normalized to reference channel intensity. Analytes were considered for quantifi-

cation when reporters were observed for at least three-quarters of the samples per given condition. The sub-

sequent data were processed using the package RomicsProcessor (http://doi.org/10.5281/zenodo.3956544).

Briefly, the data were log2 transformed, median centered, and batch corrected using the sva ComBat method

(75), before missing values were imputed using random values drawn from a normal distribution down-

shifted by 2 standard deviations with a width of 0.5 standard deviation similar to the Perseus imputation

method (76). ANOVA and Student t tests were used to determine significance. The DAVID modified Fisher

exact test (EASE score) (77) was used to measure significant enrichment of Gene Ontology (GO) terms in pro-

teins whose abundance was altered by the sucCmutation.

Peptidoglycan analysis. Wild-type JE2, NE569, and sucC suppressor 1 were grown in MHB and in

MHB supplemented with oxacillin at 3 or 32mg/ml. For each strain and growth condition tested, inde-

pendent quadruplicate 50-ml cultures were grown in flasks at 37°C with 200 rpm shaking to an OD600 of

0.5, and cell pellets were collected promptly and snap-frozen in liquid nitrogen. PG was extracted from

the samples as described previously (49, 78). This analysis of wild-type JE2 PG was also used as a part of

a separate study (67) and is reported again here for comparison to NE569 and sucC suppressor 1. Mass

spectrometry (MS) was performed on a Waters XevoG2-XS QTof mass spectrometer. Structural character-

ization of muropeptides was determined based on their MS data and MS/MS fragmentation pattern,

matched with the PG composition and structure reported previously (79–82).

Autolytic activity assays. Samples (200 ml) from overnight cultures were inoculated into 20ml of

TSB, grown at 37°C (200 rpm) to an OD600 of 0.5, washed with 20ml of cold PBS, resuspended in 5ml of

cold PBS, and then adjusted to an OD600 of 1. Then, 1 ml of the cell suspension was transferred to a cuv-

ette, and Triton X-100 was added at a final concentration of 0.1% (vol/vol). The initial OD600 was recorded
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before incubation at 37°C with shaking (200 rpm). Thereafter, the OD600 was recorded every 30min for 4

h, and autolytic activity is expressed as a percentage of the initial OD600. NE460 (atl::Tn) was used as a

control, and at least three biological replicates were performed for each strain.

Data availability. Proteomic .raw files generated during this study are available at MassIVE data re-

pository (MassIVE ID MSV000086976 and MassIVE ID MSV000086971). The UniProt/Swiss-Prot S. aureus

database (UP000001939) was used as a reference for the proteomic analysis.

Whole-genome sequence data are available from the European Nucleotide Archive (project

PRJEB43960, accession numbers ERS6142066 to ERS6142071). The SAUSA300_FRP3757 (TaxID:451515)

reference genome sequence is available from the National Center for Biotechnology Information.
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