

University of Nebraska Medical Center DigitalCommons@UNMC

Posters: 2021 Summer Undergraduate Research Program

Summer Undergraduate Research Program

Summer 8-12-2021

Should BRAFV600E be Incorporated into Treatment Recommendations for Thyroid Cancer?

Madelyn R. Fitch University of Nebraska Medical Center

Whitney S. Goldner MD University of Nebraska Medical Center

Benjamin Swanson MD, PhD University of Nebraska Medical Center

Abbey L. Fingeret MD University of Nebraska Medical Center

Oleg Shats MS University of Nebraska Medical Center

See next page for additional authors

Follow this and additional works at: https://digitalcommons.unmc.edu/surp2021

Recommended Citation

Fitch, Madelyn R.; Goldner, Whitney S. MD; Swanson, Benjamin MD, PhD; Fingeret, Abbey L. MD; Shats, Oleg MS; and Kotwal, Anupam MBBS, "Should BRAFV600E be Incorporated into Treatment Recommendations for Thyroid Cancer?" (2021). *Posters: 2021 Summer Undergraduate Research Program.* 55.

https://digitalcommons.unmc.edu/surp2021/55

This Poster is brought to you for free and open access by the Summer Undergraduate Research Program at DigitalCommons@UNMC. It has been accepted for inclusion in Posters: 2021 Summer Undergraduate Research Program by an authorized administrator of DigitalCommons@UNMC. For more information, please contact digitalcommons@unmc.edu.

Author Madelyn R. Fitch; Whitney S. Goldner MD; Benjamin Swanson MD, PhD; Abbey L. Fingeret MD; Oleg Shats MS; and Anupam Kotwal MBBS

Summer Undergraduate Research Program

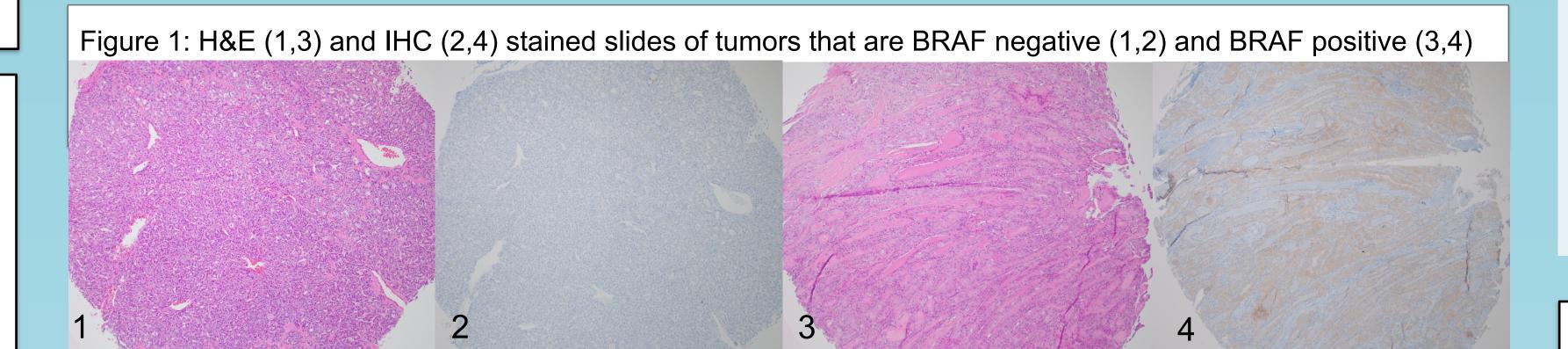
Should BRAFV600E be incorporated into treatment recommendations for thyroid cancer?

Madelyn Fitch, Benjamin Swanson, MD, PhD¹, Abbey L. Fingeret, MD², Oleg Shats, MS⁴, Anupam Kotwal, MBBS³, Whitney S. Goldner, MD³

University of Nebraska Medical Center, Omaha, NE: ¹Department of Pathology and Microbiology, ²Department of Surgery, ³Department of Internal Medicine Division of DEM, ⁴Buffett Cancer Center

INTRODUCTION

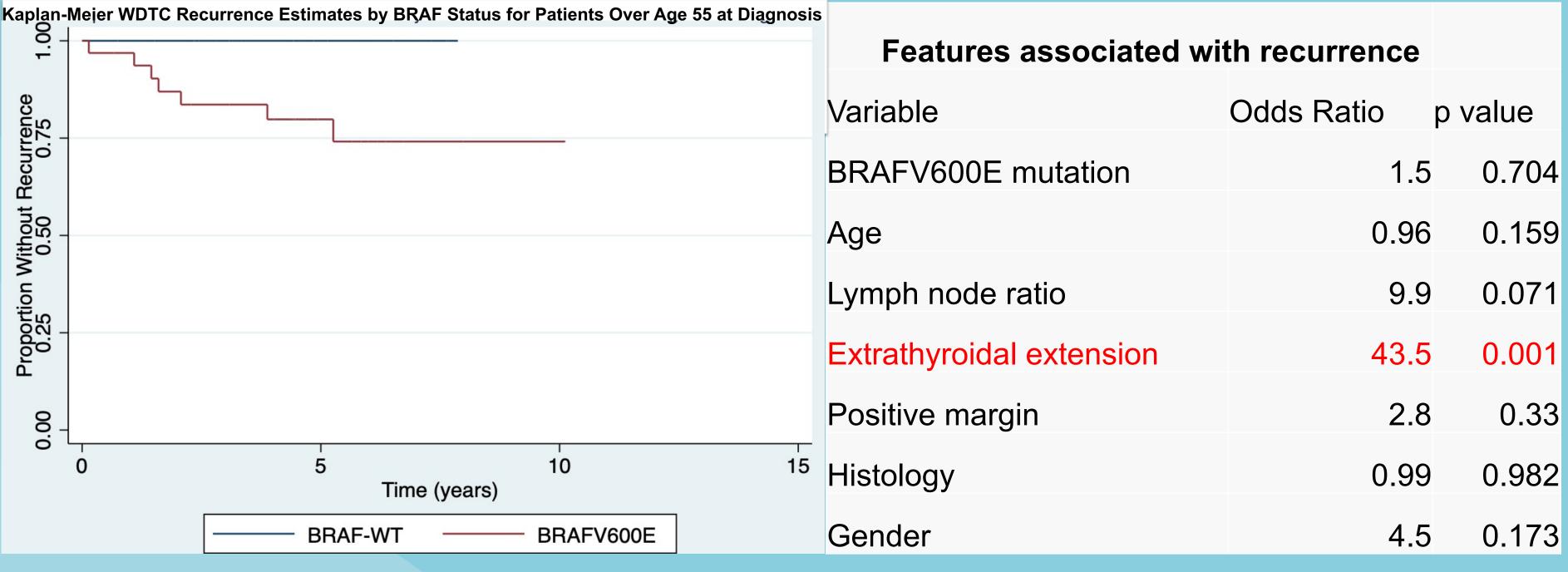
- Around 90% of thyroid cancers are papillary thyroid carcinomas (PTC)¹
- PTC has a recurrence rate of around 20%¹
- Mortality rate for PTC is low at around 5%²
- Extrathyroidal extension, multifocality, positive margins, and lymph node metastases are predictors of more aggressive PTC⁴
- BRAFV600E occurs in 60% of PTCs³
- There is controversy whether BRAFV600E is an independent predictor of aggressiveness⁵


HYPOTHESIS

BRAFV600E is not an independent predictor of recurrence and outcomes in PTC

METHODS

- Specimens and clinical data were obtained from the ICARE2 biospecimen and bioinformatics registry at UNMC
- Adult patients with PTC treated with surgery and greater than 6 months of post-operative follow-up were included
- Tissue microarrays (TMA) were made from well-differentiated tumors
- Immunohistochemistry for BRAFV600E was performed on all TMAs, positive cytoplasmic staining was inferred to represent the BRAF mutation
- BRAFV600E expression was calculated by an H-score: staining intensity (0-3) multiplied by quantity of staining (% positive)
- Statistical analysis was performed using Pearson Chi squared, Fisher's exact, and Wilcoxon rank-sum tests to determine factors associated with BRAFV600E
- Multivariable logistic regression used to determine independent factors associated with recurrence
- A Kaplan-Meier analysis was performed to assess for recurrence over time by BRAF status


Table 1: Clinical/Demographic variables o	nical/Demographic Variables of Patients with PTC by BRAF Status				
	AII	BRAF WT	BRAFV600E	P-Value	
Patients	160	65	95		
Age, years, mean (SD)	45.5 (14.2)	42.3 (14.3)	47.6 (13.7)	0.0259	
Age over 55, n (%)	43 (26.9)	11 (16.9)	32 (33.7)	0.019	
Gender, female, n (%)	125 (78.12)	56 (86.2)	69 (72.3)	0.042	
Body mass index, kg/m^2, mean (SD)	31.41 (7.0)	30.4 (6.8)	32.1 (7.1)	0.108	
Tumor size, cm, mean (SD)	2.0 (1.4)	2.2 (1.6)	1.9 (1.3)	0.1833	
Histology				0.0002	
FV Papillary thyroid carcinoma, n (%)	35 (22)	24 (36.9)	11 (11.7)		
Papillary thyroid carcinoma, n (%)	124 (78)	41 (63.1)	83 (88.3)		
Lymphocytic thyroiditis, n (%)	56 (35)	22 (33.9)	34 (35.8)	8.0	
Extrathyroidal Extension, n (%)	34 (28.1)	9 (18.4)	25 (34.7)	0.049	
Multifocality, n (%)	60 (37.5)	20 (30.8)	40 (42.1)	0.15	
Positive margins, n (%)	22 (14)	4 (6.4)	18 (19.2)	0.033	
Vascular Invasion	16 (11)	10 (16.4)	6 (7.1)	0.079	
Lymphatic Invasion	17 (11.4)	9 (14.3)	8 (9.3)	0.32	
Lymph node size, cm, mean (SD)	1.6 (1.3)	1.8 (1.4)	1.5 (1.3)	0.6531	
Lymph node ratio, n, mean (SD)	0.19 (0.32)	0.13 (0.3)	0.23 (0.33)	0.0106	
Extranodal extension, n (%)	21 (18.8)	9 (22.5)	12 (16.7)	0.45	
Follow-up time, years, mean (SD)	6.0 (2.9)	6.1 (3.2)	6.0 (2.6)	0.91	

	All	BRAF WT	BRAFV600E	P-Value
Patients	160	65	95	
T stage				0.58
T1a, n (%)	34 (21.4)	14 (21.5)	20 (21.3)	
T1b, n (%)	44 (27.7)	18 (27.7)	26 (27.7)	
T2, n (%)	35 (22)	18 (27.7	17 (18.1)	
T3, n (%)	44 (27.7)	14 (21.5)	30 (31.9)	
T4a	2 (1.3)	1 (1.5)	1 (1.1)	
N stage				0.015
N0, n (%)	101 (63.5)	49 (75.4)	52 (55.3)	
N1a, n (%)	35 (22)	9 (13.85)	26 (27.7)	
N1b, n (%)	23 (14.5)	7 (10.8)	16 (17)	
M stage				0.81
M0, n (%)	156 (994)	62 (98.1)	92 (97.9)	
M1, n (%)	3 (1.91)	1 (1.59)	2 (2.13)	
AJCC 8 stage				0.0042
I, n (%)	111 (69.8)	63 (96.9)	77 (81.9)	
II, n (%)	15 (9.4)	2 (3.1)	16 (17)	
III, n (%)	1 (0.63)	0 (0)	1 (1.1)	

	All	BRAF WT	BRAFV600E	P-Value
ATA risk category				0.018
Low, n (%)	77 (48.7)	40 (61.5)	37 (39.8)	
Intermediate, n (%)	66 (41.8)	19 (29.2)	47 (50.5)	
High, n (%)	15 (9.5)	6 (9.2)	9 (9.7)	
Radioactive iodine treatment, n (%)	82 (51.3)	29 (44.6)	53 (55.8)	0.17
Recurrence, n (%)	22 (13.8)	6 (9.2)	16 (16.9)	0.17
Recurrence time, years, mean, (SD)	1.9 (2.0)	0.84 (0.94)	2.3 (2.1)	0.0487
Mortality, n (%)	6 (3.8)	2 (3.1)	4 (4.3)	0.7
Response to therapy				n 93

Response to therapy				0.93
Excellent, n (%)	112 (70.4)	45 (70.3)	67 (70.5)	
Indeterminate, n (%)	31 (19.5)	12 (18.8)	19 (20)	
Biochemically incomplete, n (%)	14 (8.8)	6 (9.4)	8 (8.4)	
Structurally incomplete, n (%)	2 (1.3)	1 (1.6)	1 (1.1)	

Conclusion

- BRAFV600E is not an independent predictor of recurrence in this cohort
- BRAFV600E is associated with extrathyroidal extension, male gender, age, positive surgical margins, lymph node ratio, histology, ATA risk category, N stage, and AJCC 8 stage in univariate analysis
- Response to therapy is no different in BRAFV600E and WT groups

PMID: 23571588: PMCID: PMC3791140

 Multivariable analysis showed only extrathyroidal extension as an independent predictor of recurrence

Current treatment recommendations based on risk of recurrence appear to be appropriate and should not incorporate BRAFV600E as an independent variable

References

1- Zhu G, Deng Y, Pan L, et al. Clinical significance of the BRAFV600E mutation in PTC and its effect on radioiodine therapy. Endocr Connect. 2019 Jun;8(6):754-763. doi: 10.1530/EC-19-0045. PMID: 31071680; PMCID: PMC6547306.

2- Xing M. BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr Rev. 2007 Dec;28(7):742-62. doi: 10.1210/er.2007-0007. Epub 2007 Oct 16. PMID: 17940185.

4- Oler G, Cerutti JM. High prevalence of BRAF mutation in a Brazilian cohort of patients with sporadic papillary thyroid carcinomas: correlation with more aggressive phenotype and decreased expression of iodide-metabolizing genes. Cancer. 2009 Mar 1;115(5):972-80. doi: 10.1002/cncr.24118. PMID: 19152441.

5- Kim TH, Park YJ, Lim JA, Ahn HY, Lee EK, Lee YJ, Kim KW, Hahn SK, Youn YK, Kim KH, Cho BY, Park DJ. The association of the BRAF(V600E) mutation with prognostic factors and poor clinical outcome in papillar thyroid cancer: a meta-analysis. Cancer. 2012 Apr 1;118(7):1764-73. doi: 10.1002/cncr.26500. Epub 2011 Aug 31. PMID: 21882184.