

University of Nebraska Medical Center DigitalCommons@UNMC

Posters: 2021 Summer Undergraduate Research Program

Summer Undergraduate Research Program

2021

Radiomics: Medical Imaging Can Predict Pancreatic Cancer Patient Outcome

Kiersten M. Preuss UNMC- SURP

Follow this and additional works at: https://digitalcommons.unmc.edu/surp2021

Recommended Citation

Preuss, Kiersten M., "Radiomics: Medical Imaging Can Predict Pancreatic Cancer Patient Outcome" (2021). *Posters: 2021 Summer Undergraduate Research Program*. 1. https://digitalcommons.unmc.edu/surp2021/1

This Poster is brought to you for free and open access by the Summer Undergraduate Research Program at DigitalCommons@UNMC. It has been accepted for inclusion in Posters: 2021 Summer Undergraduate Research Program by an authorized administrator of DigitalCommons@UNMC. For more information, please contact digitalcommons@unmc.edu.

Summer Undergraduate Research Program

predict PDAC metastases.

<u>Radiomics</u>

- Gain features from high-throughput extraction to construct models
- Goals:

Pancreatic ductal adenocarcinoma (PDAC)

- Most common type of pancreatic cancer
- chemotherapy
- year on average

extraction, feature selection, and model building.

Radiomics: Medical Imaging Can Predict Pancreatic Cancer Patient Outcome

Kiersten Preuss; Subhan Iqbal; Jeffrey Wong, MS; Michael Baine, MD PhD; Paul Grandgenett, PhD; Michael Hollingsworth, PhD; Chi Lin, MD PhD; Chi Zhang, PhD; Yu Shi, PhD; Luke Krajewski, BS; Dandan Zheng, PhD Department of Radiation Oncology - University of Nebraska Medical Center

nd (cont.)	Materia
2) patient within cohort is 5 metastases (69 patients) gnosis (60 patients) urvival days after diagnosis (67 patients)	<u>Feature Extraction</u> • 982 features extracted • Examples: shape of tumo • Program used: Slicer Rac
Patient Cohort	<u>Analysis</u> • Involves feature selection • Use machine learning to • Usually about 3 – 15 fea • 70% of data is used to m • After adjustment of the r
11-15' Unknown of Metastases	 <u>Feature Extraction Results</u> Most features extracted vertication features (Figure 4.) Texture feature cate Glcm, gldm, glrlm, glsz Often pancreatic cate studies find texture feat prediction models 2,2,2 kernel size applied features extracted in Slicer parameters
nd Methods	
ice to later extract features from this region of licer for 3D model	Figure 4. Pie chart of extra categories.
• 1	The next steps for the proje would be able to predict me and could be used for non-i model could provide a quic
B: 4: RECO VENOUS	 (1) Rizzo, S.; Botta, F.; Raimondi, S.; Origg image analysis. <i>European radiology experin</i> (2) Cassinotto, C.; Chong, J.; Zogopoulos, O. B. Resectable Pancreatic Adenocarcinoma: <i>European Journal of Radiology</i> 2017, 90, 1 (3) Fedorov, Andriy Beichel, Reinhard Kalp Christian Jennings, Dominique Fennessy, Fi 3D Slicer as an image computing platform for

terials and Methods (cont.)

xtracted pe of tumor, intensity of tumor, smooth/rough Slicer Radiomics

re selection and modeling earning to identify significant features 3 - 15 features are selected used to make a model, 30% of data is used to test the model ent of the model, it can be verified on new outside data

Future Work

the project include feature selection and model building. If radiomics predict metastases, it would be more cost-effective, easily accessible, for non-invasive prognosis and optimal treatment prediction. Our vide a quick way for clinicians to risk assess PDAC patients.

References

ondi, S.; Origgi, D.; Fanciullo, C.; Morganti, A. G.; Bellomi, M. Radiomics: the facts and the challenges of liology experimental **2018**, 2, 36.

Zogopoulos, G.; Reinhold, C.; Chiche, L.; Lafourcade, J.-P.; Cuggia, A.; Terrebonne, E.; Dohan, A.; Gallix, enocarcinoma: Role of CT Quantitative Imaging Biomarkers for Predicting Pathology and Patient Outcomes. *gy* **2017**, 90, 152–158.

Reinhard|Kalpathy-Cramer, Jayashree|Finet, Julien|Fillion-Robin, Jean-Christophe|Pujol, Sonia|Bauer, ue|Fennessy, Fiona|Sonka, Milan|Buatti, John|Aylward, Stephen|Miller, James V.|Pieper, Steve|Kikinis, Ron ting platform for the Quantitative Imaging Network. Magnetic Resonance Imaging 2012, 30, 1323-1341.