
Differential Monitoring - Technical Report?

Fabian Muehlboeck[0000−0003−1548−0177]

and Thomas A. Henzinger[0000−0002−2985−7724]

IST Austria, 3400 Klosterneuburg, Austria {fabian.muehlboeck, tah}@ist.ac.at

Abstract. We argue that the time is ripe to investigate differential mon-
itoring, in which the specification of a program’s behavior is implicitly
given by a second program implementing the same informal specification.
Similar ideas have been proposed before, and are currently implemented
in restricted form for testing and specialized run-time analyses, aspects
of which we combine. We discuss the challenges of implementing differ-
ential monitoring as a general-purpose, black-box run-time monitoring
framework, and present promising results of a preliminary implementa-
tion, showing low monitoring overheads for diverse programs.

Keywords: Run-time verification · Software engineering · Implicit spec-
ification

1 Introduction

Run-time verification has a major advantage on static verification: it is easier to
decide whether one particular run of a program conforms to a specification than
reasoning about all possible runs. While some run-time verification frameworks
are based on similar techniques as static approaches [3, 16], run-time verification
also allows us to focus on end-to-end properties of the program, by checking
the correctness of the response of a program to some input while ignoring its
inner workings. Such a black-box approach is especially appealing if the pro-
gram source is unavailable, or untrusted. However, for long-running and stateful
programs, which transform input streams into output streams, the complete
specification of the program’s end-to-end behavior may itself become compli-
cated and can amount to essentially writing the program a second time, often
in a more cumbersome language that is also slower to execute.

Differential monitoring is the idea of running different versions of the same
program in parallel, duplicating any external inputs and merging any outputs
after checking them for equivalence. In this way, each program acts as an end-to-
end specification for the other. On a system with enough idle hardware resources,
this represents a natural method for improving software quality and security
through redundancy and over-engineering.

The underlying idea is not new — it dates back to the 1960s [8, 9] under
the name of n-version programming. The closest current incarnation of this
concept is called n-version execution [4, 26, 40, 11], where the system calls of

? Supported in part by Austrian Science Fund (FWF) grant Z211-N23 (Wittgen-
stein Award).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IST Austria: PubRep (Institute of Science and Technology)

https://core.ac.uk/display/478543878?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 F. Muehlboeck and T. Henzinger

the executed programs need to match (almost) exactly. Hence, the differences
between the programs must be minimal and typically are variations on possible
memory layouts to catch (often security-related) memory over/underflow errors,
or updated versions of the original program that should largely behave the same.

In contrast, differential testing [32, 15, 24] exploits true diversity of implemen-
tations to find bugs with respect to a common specification, e.g. for compilers [41]
or SQL-databases [39]. However, differential testing mainly applies to finite (and
not necessarily parallel) runs in a controlled environment.

We argue that the time is ripe to explore the idea of running and moni-
toring truly diverse versions of the same program in parallel: the two versions
could be written by independent development teams, in different languages, im-
plementing different algorithms, against a common input-output interface. In
this way, run-time monitoring can increase the trust in the correctness of pro-
grams and program updates without looking into the internals of the different
implementations: if both independent implementations yield the same results,
our confidence increases that the results are correct. On the other hand, if the
monitor discovers a run-time discrepancy, a warning can be issued. This set-up
presupposes, of course, that the duplication and monitoring can be done with
little overhead. This can be the case, for example, if there are available hardware
resources such as unused cores (/nodes) on a processor (cluster), or if the gain
in confidence is worth the extra hardware, such as in safety-critical applications
(where redundancy has long been a dominant paradigm) or in finance.

In comparison to traditional run-time monitoring, no formal specification of
the program is needed in order to monitor it: on any given input, the expected
outputs of one implementation are generated by the second implementation,
and vice versa. The main overhead of differential monitoring comes from code
comparing these outputs. Given sufficient operating system support, much of
this work can be done when the program is paused anyway, such as during
file operations. Preliminary benchmarks on a modified Linux kernel to monitor
such file operations show very low overheads from monitoring and merging the
outputs, even if the two implementations are written in different languages.

The main challenge for differential monitoring is that one implementation
may overconstrain the expected behavior of the other implementation, mainly
due to acceptable non-determinism and differences in timing, but also due to
acceptable differences in system calls. Therefore, a differential monitor may also
need a specification of how the output streams of two equivalent implementa-
tions may differ for the same input stream, and how the monitor can check and
enforce such an equivalence run-time, for example, by delaying an implementa-
tion to let the other implementation catch up. The complexity of the monitor
is proportional to the amount of acceptable differences in a program’s behav-
iors. The specification and monitoring/enforcement of equivalence relations on
input/output traces is an important area for future work; for now, we describe
a relatively simple version of our vision, and how to extend it in the future.
The main goal of the present paper is to demonstrate that for a practical def-
inition of behavioral equivalence —essentially, trace equality where individual



Differential Monitoring - Technical Report 3

inputs/outputs can be delayed by the monitor— the equivalence monitoring can
be performed on real systems with a very modest overhead.

In summary, differential monitoring is a low-cost, black-box, on-line, and
end-to-end run-time verification method requiring redundant hardware but no
or little formal specification. These properties make it ideal for scenarios where
one seeks to gain confidence in or improve the quality of continuously running
software by using otherwise unused or easily obtainable hardware resources.

The rest of the paper is organized as follows:

– In Section 2, we review the current state of the art in related fields, and
discuss how differential monitoring builds upon and extends it.

– In Section 3, we discuss the logical setup of differential monitoring and its
main challenges.

– Finally, in Section 4, we present the results of preliminary experiments on
differentially monitored programs written in different languages.

2 Background and Related Work

n-Version Programming/Execution Running several versions of the same
program in parallel to improve software reliability dates back to the 1970s [8,
9, 14, 20, 30, 18]. Chen and Avizienis [8, 9] rely on the cooperation of the vari-
ous versions of the program: part of the process of n-version programming is
to specify interesting kinds of data, and points of synchronization where each
version explicitly presents that data to a coordinator process, who then judges
which versions have produced correct data (via some voting mechanism, for ex-
ample) and which need to either be aborted or otherwise corrected. Once this
coordination step is complete, the (correct) versions can resume their work.

Modern works on n-version execution [4, 12, 6, 26, 40, 11, 33] follow this model
in the sense that system calls and their arguments are the synchronization points
and interesting data, respectively. Thus, correct versions of the same program
generate the same sequence of system calls with the same arguments, including
not only outputs, but also any form of reads: only one process actually reads; the
results are shared with the others. This naturally side-steps the main challenges
of differential monitoring we discuss in Section 3. However, it requires the differ-
ent versions to be very closely related, to a point where it is implausible for the
versions to be developed independently, or in different programming languages.

Though limited in this way, n-version execution can be used to guard against
memory-related safety and security problems by varying memory layouts of data
structures, including the stack, between versions [4, 12, 26, 40]. Another scenario
in which two programs are related sufficiently closely are program updates: n-
version execution can be used to have an oracle for regression testing, and also
to update running programs in the middle of processing requests [6, 33].

While the core idea of differential monitoring is the same as that of n-version
programming, the technical and theoretical environment is vastly different to-
day, and our proposed blueprint and the challenges we discuss in Section 3 reflect
this. Like n-version execution, we focus on the interactions of programs with the



4 F. Muehlboeck and T. Henzinger

environment rather than arbitrary program state in order to both provide a
less intrusive interface and exploit modern hardware/operating system architec-
ture, but unlike n-version execution, we seek to recover the idea of truly diverse
implementations.

Differential Testing Differential Testing [32, 24, 15] is a well-known technique
to test programs for which multiple versions exist. A large number of automati-
cally generated test inputs are fed to n > 1 supposedly equivalent programs. Any
differences detected in their output indicate possible bugs that need to be inves-
tigated. This technique has been fruitfully applied to finding bugs in Javascript
debuggers [31], C compilers [41], and SQL databases [39, 37, 36].

DiffStream [27] is a framework supporting differential testing of stream out-
puts, which is closely related to our implementation of differential monitoring.
They key technical difference is that differential monitoring does not only track
and compare a set of (potentially unbounded) streams, but also needs to help
programs stay in sync (see Section 3). For system calls and other events, the
atomicity of stream elements can itself be in need of specification, as one system
call may be equivalent to a sequence of several other ones. Finally, DiffStream
ignores the question of what to output for equivalent but unequal streams.

Knight and Leveson [28, 29] took issue with the claim that independently
produced programs contain independent errors. Their experiments showed that
faults exhibited by programs written independently by different programmers
to the same specification are not completely independent. As a result, n-version
execution has dropped high-level correctness claims, instead focusing on targeted
variations (which are thus not independent of each other) of a program, and thus
finding errors related to those variations. On the other hand, differential testing
shows that a large variety of bugs can be found (and eliminated) by simply
comparing the outputs of different but supposedly equivalent programs.

Run-Time Verification/Monitoring Run-time verification (RV) is the gen-
eral area of monitoring and possibly enforcing that a given program satisfies
some properties, typically related in some way to the program’s overall correct-
ness [25, 2]. In RV, a program generates a trace of interesting events, and a
specification of the program’s behavior allows us to build a monitor that checks
such a trace of interesting events for whether it (possibly or definitely) conforms
to the specification. A considerable body of work exists on various specification
languages based on linear temporal logic and similar logics [34, 7, 13, 1, 5, 23],
and there are specification languages specifically for properties of streams [38],
but these languages are interpreted over individual traces, rather than tuples
of traces produced by supposedly equivalent programs. Especially in the area
of security, languages like Hyper-LTL [10] are used on sets of traces (or, often-
times, pairs of traces). However, similar to n-version execution, hyperlogics are
usually interpreted over sets (or pairs) of traces that are generated by multiple
executions of a single (often reactive or otherwise nondeterministic) program.



Differential Monitoring - Technical Report 5

Program 1

Program 2

Equivalence 
Checker

Output 
Processor

Input 
Processor

Input 2

Input 1

Output 2

Output 1

Output 2

Output 1

Verdict

Environment

Output
Input

Monitor State

* * *

Fig. 1. The Logical Parts of Differential Monitoring

In process algebra, there has been much work on trace equivalence and other
equivalence relations for comparing individual behaviors [21, 22, 19], but com-
paratively little attention to the online monitoring and enforcement of these
equivalences. The definition of distinguishability in DiffStream [27] echoes some
of our concerns. Interestingly, enforcement [17] has been a concern of n-version
programming [8, 9], which implements it by voting among the different versions.

3 Challenges

The goal of differential monitoring is to provide a low-cost, black-box, end-
to-end run-time verification method, where the low cost relates to both the
effort required in terms of specification and any run-time overhead caused by
monitoring. There are two key challenges here: first, that an executable program
may over-specify the desired behavior of the other program; second, how much
“enforcement” a differential monitor may perform, say, by delaying or reordering
inputs to the monitored programs, and by “merging” outputs of the monitored
program (e.g., interpolation of different outputs, or voting for n ≥ 3 programs).
These challenges are two sides of the same coin, with the monitor trying to ensure
that the monitored programs run independently as if they were running alone,
yet are kept sufficiently in sync to produce equivalent results. A more advanced
differential monitor may adjust scheduling decisions by the operating system, or
try to synchronize the effects of some otherwise nondeterministic system calls.

Figure 1 shows the logical parts of a differential-monitoring setup: typically,
a program would receive its inputs from and send its outputs to some environ-
ment, including the rest of the system it is running on as well as any network
or other devices it has access to. The differential monitor inserts itself into this
relationship on both ends, and additionally does this for two programs at once.
The input processor is the part of the monitor that handles any input the mon-
itored programs receive. By default, it simply duplicates any inputs it receives
and forwards them to both programs. The equivalence checker receives the out-
puts of both programs and checks them for equivalence, which by default simply



6 F. Muehlboeck and T. Henzinger

means equality. Finally, the output processor produces the output that is finally
sent to the environment. If equivalence is defined as equality, its default behav-
ior is to send the output of one of the programs to the environment as long as
the equivalence checker’s verdict is positive, and some error message aborting
the programs when the verdict becomes negative. However, for more complex
notions of input processing, output equivalence, output merging, and error han-
dling can be specified. All three components may communicate with each other
via some notion of monitor state.

Each program may expect to see the effects of its output in the environment.
Thus the monitor may have to slow down the inputs and/or outputs of the faster
program to let the slower program catch up. In general, a differential monitor
should prevent either program from being confronted with an environment state
it does not expect, keeping up the illusion that it is running alone. Beyond using
additional memory to buffer input or output elements as in DiffStream [27],
differential monitors may need additional power and resources to ensure that
the different programs’ interactions with their environment do not get too out-
of-sync. Kallas et al. [27] already recognized that some parts of the output (for
example, timings and random numbers) may have to be relaxed or ignored for
equivalence checking, though deciding on the “merged” output may be harder.

In differential monitoring, the program specification is replaced by the moni-
tor specification, which ought to be simpler. All three components of a differential
monitor have to be accompanied by a specification defining exactly when and
how to defer, transform, deem equivalent, and merge any inputs or outputs. The
precise form and power of such specifications, and of the monitors implementing
them (e.g., their memory needs), will be an interesting area of research, as will
be the automatic synthesis of differential monitors from formal specifications.

4 Experimental Results

In this section, we report on experiments evaluating the feasibility of differential
monitoring and the overheads it causes in practice based on a simple framework.

Experimental Setup To test the basic overheads of running two programs
side-by-side, duplicating inputs and comparing outputs, we modified a current
version of the Linux kernel to support an additional system call that activates
monitoring for a pair of processes and any of their children. In particular, we
watch the basic file operations of these processes. When a file is opened, we
determine whether its operations need to be monitored. For example, regular
files opened in a read-only fashion can be ignored and any further interactions
of the programs with them incur no overhead. On the other hand, non-seekable
files (pipes, the user’s terminal, etc.) need the monitor to provide the same data
to both processes. Finally, files opened for writing are monitored to ensure that
both programs write the same data to them.

In terms of our model from Section 3, the input processor duplicates all
inputs (mostly reads from the standard input) by buffering the result of the



Differential Monitoring - Technical Report 7

faster reader to also provide it to the second process. The equivalence checker
checks the bytes written out for equality; neither monitored writes nor reads need
to match exactly in terms of how many bytes are read/written in a single system
call — the monitor will proceed as far as possible. The input processor holds up
the faster program by not returning from the write system call until all bytes a
process wanted to write have been matched and sent to the environment. If the
output of the two programs does not match, the monitor aborts both programs—
this is of course the most extreme measure that could be taken, but suffices for
our goal of measuring overheads in the case where both programs are correct. We
did test that our monitor indeed stops programs that do not produce equivalent
output, and does so before actually printing that output.

Our benchmarks often write a large number of small output lines in rapid
succession. For this case, an optional, experimental optimization allows the faster
program to continue execution until it gets too far ahead, buffering writes in
the meantime. This is valid when programs do not need to see the effects of
their outputs on the environment immediately and expect the writes to always
succeed, as is the case for our test programs, or, for example, web servers. In
general, a monitor specification would specify in what cases this optimization
can be applied. By default, our benchmarks run without this optimization.

This simple prototype of course does not capture the full complexity of the
specifications eventually needed to run more complex programs side-by-side, but
it lets us explore the overheads of what we believe are the most common cases
in differential monitoring. To this end, we wrote several small benchmark pro-
grams in C, Java, and Python, sometimes using different algorithms between the
programs, and ran them in various pairings and alone to compare the slowdowns
caused by our monitor. Here, we present these benchmarks and the results of
our measurements. As the relevant metric we compare, for each pairing of pro-
grams, the wall-clock time of running the pairing against the wall-clock time of
the slower program (which is a natural lower bound for the pairing). All bench-
marks were run on a minimal Gentoo installation using our modified kernel on
an Intel(R) Core(TM) i5-4690K processor with 16GiB RAM and a mid-level
SSD.

Main Benchmark: Primes Consider verifying programs that should answer
queries about whether a given number n is prime or what the nth prime number
is. Any black-box attempt to verify the outputs of such a program invariably
needs to do a similar amount of work as the original program.

For this benchmark, we picked two algorithms to determine primality: the
Sieve of Eratosthenes and the Baillie-PSW [35] primality test. We implemented
the former in C and the latter in Java. The programs have two modes. In inter-
active mode, they accept a stream of queries for either the n-th prime number or
whether a given number n is prime, and produce a corresponding answer. In non-
interactive mode, they simply enumerate all the primes up to a certain index,
in our case up to the 10 000th prime. For that mode, we also included another
Java (“Java-E”) and a Python implementation of the Sieve of Eratosthenes.



8 F. Muehlboeck and T. Henzinger

In
te

ra
ct

iv
e

Program 1 Program 2 WT-1 WT-2 WT Overhead WT-O Overhead-O

S
m

l
Q

s C C 3.11s 3.11s 3.13s 0.56% 3.13s 0.69%
C Java 3.11s 3.82s 3.87s 1.31% 3.80s -0.33%
Java Java 3.82s 3.82s 3.84s 0.69% 3.92s 2.74%

L
rg

Q
s C C 1.83s 1.83s 1.87s 1.94% 1.84s 0.35%

C Java 1.83s 2.32s 2.36s 1.79% 2.33s 0.63%
Java Java 2.32s 2.32s 2.48s 7.17% 2.33s 0.56%

N
o
n
-I

n
te

ra
ct

iv
e

Program 1 Program 2 WT-1 WT-2 WT Overhead WT-O Overhead-O

C C 0.40s 0.40s 0.43s 8.06% 0.42s 4.53%
C Java 0.40s 0.66s 0.69s 4.80% 0.67s 2.74%
C Java-E 0.40s 0.28s 0.56s 39.80% 0.47s 17.63%
C Python 0.40s 4.22s 4.25s 0.75% 4.32s 2.35%
Java Java 0.66s 0.66s 0.77s 17.75% 0.69s 5.10%
Java Java-E 0.66s 0.28s 0.77s 16.68% 0.68s 3.66%
Java Python 0.66s 4.22s 4.42s 4.72% 4.33s 2.70%
Java-E Java-E 0.28s 0.28s 0.38s 33.33% 0.31s 7.94%
Java-E Python 0.28s 4.22s 4.32s 2.31% 4.35s 3.20%
Python Python 4.22s 4.22s 4.49s 6.48% 4.33s 2.57%

Fig. 2. Benchmark Results for Primes

Figure 2 shows the average running times (in seconds) of 20 runs for each lan-
guage on its own (WT-1/WT-2) and in a paired monitored setting (WT), and the
corresponding overhead. For the interactive mode, in one run we generated 300
queries with n < 4 000, and in the other, we generated 10 000 such queries with
n < 500, trading off internal computation time vs. interaction with the system.
As we see, the overhead is negligible for the fewer requests where both programs
spend more time simply computing the response, while it is still relatively low
for programs where our monitoring code is invoked more often. The overheads
for the non-interactive version are significantly higher — they are writing signif-
icantly more lines than the interactive version in less time; the write-buffering
optimization mentioned above (results shown in the “-O” columns) drastically
improves our results. Overall, Java seems to suffer the most from being run side-
by side with another program; however, this is also true for just running the
Java program twice at the same time without monitoring. We believe the cause
to be the optimization behavior of the JVM, which spawns around 12 threads
for these single threaded applications. In so far as the negative overhead of the
C/Java pairing is not a measuring artifact, it is likely for similar reasons as the
negative overheads for the Echo benchmark discussed below.

Sort For this benchmark, we implemented Insertion-Sort in C, Merge-Sort in
Java, and Quicksort in Python. In interactive mode, they accept three sorts of
commands: one to add a number to a currently maintained list, one to print
the list in sorted order, and one to clear the maintained list. The input we
generate for interactive mode sorts the list on roughly every 10th command, and



Differential Monitoring - Technical Report 9

In
te

ra
ct

iv
e

Program 1 Program 2 WT-1 WT-2 WT Overhead WT-O Overhead-O

C C 1.47s 1.47s 1.56s 6.54% 1.49s 1.77%
C Java 1.47s 1.52s 2.62s 72.63% 1.57s 3.19%
C Python 1.47s 1.51s 2.05s 35.78% 1.55s 2.85%
Java Java 1.52s 1.52s 2.77s 81.91% 1.60s 5.13%
Java Python 1.52s 1.51s 3.81s 150.46% 1.64s 8.19%
Python Python 1.51s 1.51s 2.28s 50.81% 1.55s 2.55%

N
o
n
-I

n
te

ra
ct

iv
e Program 1 Program 2 WT-1 WT-2 WT Overhead WT-O Overhead-O

C C 5.55s 5.55s 5.84s 5.23% 5.74s 3.52%
C Java 5.55s 0.52s 6.22s 12.07% 5.84s 5.24%
C Python 5.55s 0.54s 5.88s 5.96% 5.67s 2.30%
Java Java 0.52s 0.52s 1.11s 114.45% 0.75s 44.70%
Java Python 0.52s 0.54s 1.26s 132.56% 0.70s 29.61%
Python Python 0.54s 0.54s 0.84s 54.80% 0.64s 17.34%

Fig. 3. Benchmark Results for Sort

clears it after roughly every 6 of those, which makes for relatively short lists,
but still a high output-to-input ratio. In non-interactive mode, the programs
read in a list of 100 000 numbers from a file, sort it, and print the result. As an
interesting variation, we give each program a different permutation of the same
list — as this does not affect the results of sorting those lists, the programs still
produce the same out. In this way, this benchmark simulates different ways in
which programs may keep private data. The net result of this setup is that the
programs do a batch of reading first (except for the C program, whose insertion
sort is running while reading the list), followed by a large burst of writes (this is
also true for the C program). As we can see in Figure 3, the high rates of writes
for both modes can cause quite extreme overheads, which again can be brought
down significantly with our write-buffering optimization.

Further Benchmarks We only briefly describe our other two benchmark pro-
grams here. More details on them can be found in Appendix A.

Echo Echo was intended to be a worst-case benchmark for our framework: the
programs written in C, Java, and Python simply read text from the standard
input line by line and write it back to the standard output, thus maximally using
both our input-splitting and output-comparing facilities. Overheads for Echo
reached 67.50% for two Java programs (10.26% for two C programs), which fell
to 10.05% (−1.24% for C-C) using our writer-buffering optimization. The same
optimization made all other pairings produce negative overhead, as it turned out
that the programs were now parallelizing the reading IO operations.

Mod-Squares Mod-squares was designed to simulate single-threaded computa-
tional activity that is not parallelizable and works in constant memory, thus
eliminating any sort of resource constraints other than the extra computation



10 F. Muehlboeck and T. Henzinger

and coordination caused by the monitor. At its core, it simply squares a (hard-
coded constant) number some number of times, always modulo some other num-
ber. The highest overhead, again in the Java-Java pairing, was 34.42% (the C-C
pairing had 4.20%), which the write-buffering optimization reduced to 7.45% (or
0.22% for C-C).

Discussion Our benchmarks tested a general framework to monitor the IO
operations of programs written in different programming languages. Previous
work would have been unable to do so, as works in multi-version execution [40,
26] depend on the programs making the exact same system calls, which would
already be violated by the Java and Python virtual machines’ startup activities,
while DiffStream [27] works on a different level of abstraction and does not
consider having to delay outputs. The overheads we saw for our main benchmark
are relatively low, and naturally somewhat related to the ratio of work a program
does to how often it interacts with its environment and thus the monitor. The
other benchmarks we ran consider various worst-case scenarios with extremely
heavy interaction with the monitor; overheads in these benchmarks go up to
150% in extreme cases. These extreme overheads go down to 45% with our
write-buffering optimization, showing that there is much room for optimizations
both in our basic implementation and in exploiting monitoring specifications to
allow for more efficient processing of those particular cases.

5 Conclusion

Differential Monitoring has the potential to be a comparatively light-weight
runtime-verification method that is able to check programs’ end-to-end behav-
ior in an efficient way, simply through redundancy and overengineering. Similar
efforts have both a long history and recent activity, and the ubiquitousness of
multi-core hardware suggests that the approach can be applied in many scenar-
ios without too much of a performance penalty. For complicated programs, the
lack of formal specification is not absolute, but turned upside down: a differ-
ential monitor may need a specification of two programs potential differences,
which should be comparatively small in any case. The precise formalisms for
such a specification will draw heavily on existing work on runtime monitoring
but pose some interesting challenges on their own, including for their eventual
implementation. However, we believe that these challenges can be overcome,
thereby significantly adding to the toolbox that runtime verification offers its
users to increase the quality of software.

Acknowledgements

The authors would like to thank Borzoo Bonakdarpour, Derek Dreyer, Adrian
Francalanza, Owolabi Legunsen, Matthew Milano, Manuel Rigger, Cesar Sanchez,
and the members of the IST Verification Seminar for their helpful comments and
insights on various stages of this work, as well as the reviewers of RV’21 for their
helpful suggestions on the actual paper.



Differential Monitoring - Technical Report 11

References

1. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.E.: Quantified
Event Automata: Towards Expressive and Efficient Runtime Monitors. In: FM
2012. Lecture Notes in Computer Science, vol. 7436, pp. 68–84. Springer (2012).
https://doi.org/10.1007/978-3-642-32759-9 9

2. Bartocci, E., Falcone, Y. (eds.): Lectures on Runtime Verification - Introductory
and Advanced Topics, Lecture Notes in Computer Science, vol. 10457. Springer
(2018). https://doi.org/10.1007/978-3-319-75632-5

3. Bauer, A., Leucker, M., Schallhart, C.: Runtime Verification for LTL and TLTL.
ACM Transactions on Software Engineering and Methodology 20(4) (Sep 2011).
https://doi.org/10.1145/2000799.2000800

4. Berger, E.D., Zorn, B.G.: DieHard: Probabilistic Memory Safety for Unsafe Lan-
guages. In: PLDI 2006. p. 158–168. Association for Computing Machinery, New
York, NY, USA (2006). https://doi.org/10.1145/1133981.1134000

5. Bonakdarpour, B., Navabpour, S., Fischmeister, S.: Time-triggered run-
time verification. Formal Methods in System Design 43(1), 29–60 (2013).
https://doi.org/10.1007/s10703-012-0182-0

6. Cadar, C., Hosek, P.: Multi-version software updates. In: HotSWUp 2012. pp. 36–
40 (2012). https://doi.org/10.1109/HotSWUp.2012.6226615

7. Chen, F., Rosu, G.: Parametric Trace Slicing and Monitoring. In: TACAS 2009.
Lecture Notes in Computer Science, vol. 5505, pp. 246–261. Springer (2009).
https://doi.org/10.1007/978-3-642-00768-2 23

8. Chen, L., Avizienis, A.: N-version programming: A fault-tolerance approach to
reliability of software operation. In: FTCS 1978. vol. 1, pp. 3–9 (1978)

9. Chen, L., Avizienis, A.: N-version programming: A fault-tolerance approach to
reliability of software operation. In: FTCS 1995, ’Highlights from Twenty-Five
Years’. p. 113ff (1995). https://doi.org/10.1109/FTCSH.1995.532621

10. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,
C.: Temporal Logics for Hyperproperties. In: POST 2014. pp. 265–284. Springer
Berlin Heidelberg, Berlin, Heidelberg (2014). https://doi.org/10.1007/978-3-642-
54792-8 15

11. Coppens, B., Sutter, B.D., Volckaert, S.: Multi-variant execution environ-
ments. In: Larsen, P., Sadeghi, A. (eds.) The Continuing Arms Race: Code-
Reuse Attacks and Defenses, pp. 211–258. ACM / Morgan & Claypool (2018).
https://doi.org/10.1145/3129743.3129752

12. Cox, B., Evans, D., Filipi, A., Rowanhill, J., Hu, W., Davidson, J., Knight,
J., Nguyen-Tuong, A., Hiser, J.: N-Variant Systems: A Secretless Frame-
work for Security through Diversity. In: USENIX-SS 2006. USENIX As-
sociation, USA (2006), https://www.usenix.org/conference/15th-usenix-security-
symposium/n-variant-systems-secretless-framework-security-through

13. Demri, S., Lazic, R.: LTL with the freeze quantifier and register au-
tomata. ACM Transactions on Computational Logic 10(3), 16:1–16:30 (2009).
https://doi.org/10.1145/1507244.1507246

14. Elmendorf, W.: Fault-Tolerant Programming. In: FTCS 1972. pp. 79–83 (1972)
15. Evans, R.B., Savoia, A.: Differential Testing: A New Approach to Change De-

tection. In: ESEC-FSE companion 2007. pp. 549–552. Association for Computing
Machinery, New York, NY, USA (2007). https://doi.org/10.1145/1295014.1295038

16. Falcone, Y., Fernandez, J., Mounier, L.: What can you verify and enforce at run-
time? International Journal on Software Tools for Technology Transfer 14(3), 349–
382 (2012). https://doi.org/10.1007/s10009-011-0196-8



12 F. Muehlboeck and T. Henzinger

17. Falcone, Y., Mariani, L., Rollet, A., Saha, S.: Runtime Failure Prevention and
Reaction. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification -
Introductory and Advanced Topics, Lecture Notes in Computer Science, vol. 10457,
pp. 103–134. Springer (2018). https://doi.org/10.1007/978-3-319-75632-5 4

18. Fischler, M.A. et al.: Distinct Software: An Approach to Reliable Computing. In:
2nd USA-Japan Computer Conference. pp. 1–7 (1975)

19. Fokkink, W.J.: Introduction to Process Algebra. Texts in Theoretical Computer
Science. An EATCS Series, Springer (2000). https://doi.org/10.1007/978-3-662-
04293-9

20. Girard, E., Rault, J.: A Programming Technique for Software Reliability. In: IEEE
Symposium on Computer Software Reliability. pp. 44–50 (1973)

21. van Glabbeek, R.J.: The Linear Time-Branching Time Spectrum (Extended Ab-
stract). In: CONCUR 1990. Lecture Notes in Computer Science, vol. 458, pp.
278–297. Springer (1990). https://doi.org/10.1007/BFb0039066

22. van Glabbeek, R.J.: The Linear Time - Branching Time Spectrum II. In: CONCUR
1993. Lecture Notes in Computer Science, vol. 715, pp. 66–81. Springer (1993).
https://doi.org/10.1007/3-540-57208-2 6

23. Grigore, R., Distefano, D., Petersen, R.L., Tzevelekos, N.: Runtime Verification
Based on Register Automata. In: TACAS 2013. Lecture Notes in Computer Science,
vol. 7795, pp. 260–276. Springer (2013). https://doi.org/10.1007/978-3-642-36742-
7 19

24. Groce, A., Holzmann, G., Joshi, R.: Randomized Differential Testing as a Prelude
to Formal Verification. In: ICSE 2007. p. 621–631. IEEE Computer Society, USA
(2007). https://doi.org/10.1109/ICSE.2007.68

25. Havelund, K., Reger, G., Rosu, G.: Runtime Verification Past Experiences and
Future Projections. In: Steffen, B., Woeginger, G.J. (eds.) Computing and Software
Science - State of the Art and Perspectives, Lecture Notes in Computer Science,
vol. 10000, pp. 532–562. Springer (2019). https://doi.org/10.1007/978-3-319-91908-
9 25

26. Hosek, P., Cadar, C.: VARAN the Unbelievable: An Efficient N-Version Execution
Framework. In: ASPLOS 2015. p. 339–353. Association for Computing Machinery,
New York, NY, USA (2015). https://doi.org/10.1145/2694344.2694390

27. Kallas, K., Niksic, F., Stanford, C., Alur, R.: DiffStream: Differential Output
Testing for Stream Processing Programs. PACMPL 4(OOPSLA) (Nov 2020).
https://doi.org/10.1145/3428221

28. Knight, J.C., Leveson, N.G.: An Experimental Evaluation of the Assumption of
Independence in Multiversion Programming. IEEE Transactions on Software En-
gineering 12(1), 96–109 (Jan 1986). https://doi.org/10.1109/TSE.1986.6312924

29. Knight, J.C., Leveson, N.G.: A Reply to the Criticisms of the Knight & Leve-
son Experiment. ACM SIGSOFT Software Engingeering Notes 15(1), 24–35 (Jan
1990). https://doi.org/10.1145/382294.382710

30. Kopetz, H.: Software Redundancy in Real Time Systems. In: IFIP Congress 1974.
pp. 182–186. North-Holland (1974)

31. Lehmann, D., Pradel, M.: Feedback-Directed Differential Testing of Interactive De-
buggers. In: ESEC/FSE 2018. pp. 610–620. Association for Computing Machinery,
New York, NY, USA (2018). https://doi.org/10.1145/3236024.3236037

32. McKeeman, W.M.: Differential Testing for Soft-
ware. Digital Technical Journal 10(1), 100–107 (1998),
http://www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10num1art9.pdf



Differential Monitoring - Technical Report 13

33. Pina, L., Andronidis, A., Hicks, M., Cadar, C.: MVEDSUA: Higher Availability
Dynamic Software Updates via Multi-Version Execution. In: ASPLOS 2019. pp.
573–585. ACM (2019). https://doi.org/10.1145/3297858.3304063

34. Pnueli, A., Zaks, A.: PSL Model Checking and Run-Time Verification Via Testers.
In: FM 2006. Lecture Notes in Computer Science, vol. 4085, pp. 573–586. Springer
(2006). https://doi.org/10.1007/11813040 38

35. Pomerance, C., Selfridge, J.L., Wagstaff, S.S.: The pseudoprimes to 25 ·109. Math-
ematics of Computation 35(151), 1003–1026 (1980)

36. Rigger, M., Su, Z.: Detecting Optimization Bugs in Database Engines via Non-
Optimizing Reference Engine Construction. In: ESEC/FSE 2020. pp. 1140–
1152. Association for Computing Machinery, New York, NY, USA (2020).
https://doi.org/10.1145/3368089.3409710

37. Rigger, M., Su, Z.: Finding Bugs in Database Systems via Query Partitioning.
PACMPL 4(OOPSLA) (Nov 2020). https://doi.org/10.1145/3428279

38. Sánchez, C.: Online and Offline Stream Runtime Verification of Synchronous Sys-
tems. In: RV 2018. Lecture Notes in Computer Science, vol. 11237, pp. 138–163.
Springer (2018). https://doi.org/10.1007/978-3-030-03769-7 9

39. Slutz, D.R.: Massive Stochastic Testing of SQL. In: VLDB 1998. pp. 618–622.
Morgan Kaufmann (1998), http://www.vldb.org/conf/1998/p618.pdf

40. Volckaert, S., Sutter, B.D., Baets, T.D., Bosschere, K.D.: GHUMVEE: Efficient,
Effective, and Flexible Replication. In: FPS 2012. Lecture Notes in Computer
Science, vol. 7743, pp. 261–277. Springer (2012). https://doi.org/10.1007/978-3-
642-37119-6 17

41. Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and Understanding Bugs in C
Compilers. In: PLDI 2011. pp. 283–294. Association for Computing Machinery,
New York, NY, USA (2011). https://doi.org/10.1145/1993498.1993532



14 F. Muehlboeck and T. Henzinger

In
te

ra
ct

iv
e

Program 1 Program 2 WT-1 WT-2 WT Overhead WT-O Overhead-O

C C 0.64s 0.64s 0.71s 10.26% 0.64s -1.24%
C Java 0.64s 0.64s 0.94s 46.19% 0.64s -0.31%
C Python 0.64s 0.64s 0.86s 33.51% 0.62s -3.34%
Java Java 0.64s 0.64s 1.07s 67.50% 0.70s 10.05%
Java Python 0.64s 0.64s 1.05s 64.15% 0.62s -3.90%
Python Python 0.64s 0.64s 0.96s 49.34% 0.61s -5.69%

Fig. 4. Benchmark Results for Echo

I-
a
ct

iv
e Program 1 Program 2 WT-1 WT-2 WT Overhead WT-O Overhead-O

C C 0.68s 0.68s 0.71s 4.20% 0.70s 2.87%
C Java 0.68s 0.76s 0.93s 21.07% 0.81s 6.28%
Java Java 0.76s 0.76s 1.03s 34.42% 0.82s 7.72%

N
-I

-a
ct

iv
e Program 1 Program 2 WT-1 WT-2 WT Overhead WT-O Overhead-O

C C 2.68s 2.68s 2.73s 1.60% 2.69s 0.22%
C Java 2.68s 2.63s 3.04s 13.10% 2.78s 3.39%
Java Java 2.63s 2.63s 3.01s 14.57% 2.82s 7.45%

Fig. 5. Benchmark Results for Modsquares

A Detailed Benchmark Results

A.1 Additional Benchmarks

Echo Echo was intended to be a worst-case benchmark for our framework: the
programs written in C, Java, and Python simply read from the standard input
line by line and write it back to the standard output, thus maximally using both
our input-splitting and output-comparing facilities.

Figure 4 shows the results for running echo on 100 000 lines of inputs drawn
from a selection of a few random lines of text. By default, the overheads are
indeed somewhat heavy. However, our write-buffering optimization eliminates
almost all of them (modulo the Java anomaly we already mentioned). In fact,
the monitored instances of echo run slightly faster than the single unmonitored
programs. The reason for that lies in the design of the benchmark: only one
process actually reads from the input, while the other gets a buffered result.
Using the write-buffering optimization, a process can run ahead and already
read the next input for the second process. As they will likely switch places
some times, this amounts to them parallelizing the (not cost-free) read operation,
effectively reading the input faster than a single-threaded program would.

Mod-Squares Mod-squares was designed to simulate single-threaded compu-
tational activity that is not parallelizable and works in constant memory, thus
eliminating any sort of resource constraints other than the extra computation
and coordination caused by the monitor. At its core, it simply squares a (hard-



Differential Monitoring - Technical Report 15

In
te

ra
ct

iv
e

Program 1 Program 2 WT-1 WT-2 WT Overhead WT-O Overhead-O

C C 1.47s 1.47s 1.56s 6.54% 1.49s 1.77%
C Java 1.47s 1.52s 2.62s 72.63% 1.57s 3.19%
C Python 1.47s 1.51s 2.05s 35.78% 1.55s 2.85%
Java Java 1.52s 1.52s 2.77s 81.91% 1.60s 5.13%
Java Python 1.52s 1.51s 3.81s 150.46% 1.64s 8.19%
Python Python 1.51s 1.51s 2.28s 50.81% 1.55s 2.55%

N
o
n
-I

n
te

ra
ct

iv
e Program 1 Program 2 WT-1 WT-2 WT Overhead WT-O Overhead-O

C C 5.55s 5.55s 5.84s 5.23% 5.74s 3.52%
C Java 5.55s 0.52s 6.22s 12.07% 5.84s 5.24%
C Python 5.55s 0.54s 5.88s 5.96% 5.67s 2.30%
Java Java 0.52s 0.52s 1.11s 114.45% 0.75s 44.70%
Java Python 0.52s 0.54s 1.26s 132.56% 0.70s 29.61%
Python Python 0.54s 0.54s 0.84s 54.80% 0.64s 17.34%

Fig. 6. Benchmark Results for Sort

coded constant) number some number of times, always modulo some other num-
ber. In interactive mode, it takes queries consisting of a pair of numbers, the
first being the number of squaring operations and the second a modulus to use
— it then returns the result of the repeated squaring operation. We generate
10 000 queries, each for some random number of up to 10 000 squarings. In non-
interactive mode, it enumerates the first 20 000 squarings of our constant, similar
to the non-interactive mode of primes.

Figure 5 shows the results for both modes. The short running times of the
interactive mode for 10 000 queries means that each query was handled within a
rather short time, hence the program more heavily interacted with the monitor.
However, as we see, the write-buffering optimization reduces those overheads
significantly. The overheads are less severe for the non-interactive mode, where
programs even without monitoring take about four times as long to emit twice
the output of the interactive mode. Even so, the write-buffering optimization
reduces the overheads to quite low levels.

Sort For this benchmark, we implemented Insertion-Sort in C, Merge-Sort in
Java, and Quicksort in Python. In interactive mode, they accept three sorts of
commands: one to add a number to a currently maintained list, one to print
the list in sorted order, and one to clear the maintained list. The input we
generate for interactive mode sorts the list on roughly every 10th command, and
clears it after roughly every 6 of those, which makes for relatively short lists,
but still a high output-to-input ratio. In non-interactive mode, the programs
read in a list of 100 000 numbers from a file, sort it, and print the result. As an
interesting variation, we give each program a different permutation of the same
list — as this does not affect the results of sorting those lists, the programs still
produce the same out. In this way, this benchmark simulates different ways in
which programs may keep private data. The net result of this setup is that the



16 F. Muehlboeck and T. Henzinger

programs do a batch of reading first (except for the C program, whose insertion
sort is running while reading the list), followed by a large burst of writes (this is
also true for the C program). As we can see in Figure 6, the high rates of writes
for both modes can cause quite extreme overheads, which again can be brought
down significantly with our write-buffering optimization.

In
te

ra
ct

iv
e

Program 1 Program 2 WT-1 WT-2 WT Overhead WT-O Overhead-O

S
m

l
Q

s C C 3.11s 3.11s 3.13s 0.56% 3.13s 0.69%
C Java 3.11s 3.82s 3.87s 1.31% 3.80s -0.33%
Java Java 3.82s 3.82s 3.84s 0.69% 3.92s 2.74%

L
rg

Q
s C C 1.83s 1.83s 1.87s 1.94% 1.84s 0.35%

C Java 1.83s 2.32s 2.36s 1.79% 2.33s 0.63%
Java Java 2.32s 2.32s 2.48s 7.17% 2.33s 0.56%

N
o
n
-I

n
te

ra
ct

iv
e

Program 1 Program 2 WT-1 WT-2 WT Overhead WT-O Overhead-O

C C 0.40s 0.40s 0.43s 8.06% 0.42s 4.53%
C Java 0.40s 0.66s 0.69s 4.80% 0.67s 2.74%
C Java-E 0.40s 0.28s 0.56s 39.80% 0.47s 17.63%
C Python 0.40s 4.22s 4.25s 0.75% 4.32s 2.35%
Java Java 0.66s 0.66s 0.77s 17.75% 0.69s 5.10%
Java Java-E 0.66s 0.28s 0.77s 16.68% 0.68s 3.66%
Java Python 0.66s 4.22s 4.42s 4.72% 4.33s 2.70%
Java-E Java-E 0.28s 0.28s 0.38s 33.33% 0.31s 7.94%
Java-E Python 0.28s 4.22s 4.32s 2.31% 4.35s 3.20%
Python Python 4.22s 4.22s 4.49s 6.48% 4.33s 2.57%

Fig. 7. Full Benchmark Results for Primes

Primes For this benchmark, we picked two algorithms to determine primality:
the Sieve of Eratosthenes and the Baillie-PSW [35] primality test. We imple-
mented the former in C and the latter in Java. The programs have two modes.
In interactive mode, they accept a stream of queries for either the n-th prime
number or whether a given number n is prime, and produce a corresponding
answer. In non-interactive mode, they simply enumerate all the primes up to
a certain index, in our case up to the 10 000th prime. For that mode, we also
included another Java (“Java-E”) and a Python implementation of the Sieve of
Eratosthenes.

Figure 7 shows the average running times (in seconds) of 20 runs for each
language on its own (WT-1/WT-2) and in a paired monitored setting (WT),
and the corresponding overhead. For the interactive mode, in one run we gen-
erated 300 queries with n < 4 000, and in the other, we generated 10 000 such
queries with n < 500, trading off internal computation time vs. interaction with
the system. As we see, the overhead is negligible for the fewer requests where
both programs spend more time simply computing the response, while it is still
relatively low for programs where our monitoring code is invoked more often.



Differential Monitoring - Technical Report 17

The overheads for the non-interactive version are significantly higher — they
are writing significantly more lines than the interactive version in less time, so
we also ran it under the write-buffering optimization mentioned above (results
shown in the “-O” columns), which drastically improves our results. Overall,
Java seems to suffer the most from being run side-by side with another pro-
gram; however this is also true for just running the Java program twice at the
same time without monitoring. We believe the cause to be the optimization be-
havior of the JVM, which spawns around 12 threads for these single threaded
applications. In so far as the negative overhead of the C/Java pairing is not a
measuring artifact, it is likely for similar reasons as the negative overheads for
the echo benchmark.


