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Nitrate triggered phosphoproteome changes
and a PIN2 phosphosite modulating root
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Abstract

Nitrate commands genome-wide gene expression changes that
impact metabolism, physiology, plant growth, and development. In
an effort to identify new components involved in nitrate responses
in plants, we analyze the Arabidopsis thaliana root phosphopro-
teome in response to nitrate treatments via liquid chromatography
coupled to tandem mass spectrometry. 176 phosphoproteins show
significant changes at 5 or 20 min after nitrate treatments.
Proteins identified by 5 min include signaling components such as
kinases or transcription factors. In contrast, by 20 min, proteins
identified were associated with transporter activity or hormone
metabolism functions, among others. The phosphorylation profile
of NITRATE TRANSPORTER 1.1 (NRT1.1) mutant plants was signifi-
cantly altered as compared to wild-type plants, confirming its key
role in nitrate signaling pathways that involves phosphorylation
changes. Integrative bioinformatics analysis highlights auxin trans-
port as an important mechanism modulated by nitrate signaling at
the post-translational level. We validated a new phosphorylation
site in PIN2 and provide evidence that it functions in primary and
lateral root growth responses to nitrate.
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Introduction

Nitrogen (N) is the mineral nutrient required in the greatest

amounts by plants. N is often scarce in natural and agricultural

systems, constituting a major factor limiting plant growth and

agricultural yield. During the last 50 years, global demand for

synthetic N fertilizers has dramatically increased in response to

growing agricultural demand. Depending on soil conditions and

plant species, less than 50% of the applied N fertilizer is taken up

by crops. Excess N may contaminate aquatic systems (Robertson &

Vitousek, 2009) or be released into the atmosphere as N oxide gases

(Crutzen et al, 2008; Davidson, 2009), both leading to detrimental

effects on the environment and human health.

The relevance of N for plants is exemplified by its effects on leaf

growth (Wir�en et al, 2000), senescence (Vanacker et al, 2006), root

system architecture (Zhang et al, 1999; Vidal et al, 2010), and

flowering time (Mar�ın et al, 2010; Gras et al, 2018). Due to its

importance, plants have evolved sophisticated mechanisms to adapt

to fluctuating N availability. Furthermore, growth and developmen-

tal processes can be regulated by varying the amount of N supplied

to plants. For instance, exogenous nitrate applications stimulate

lateral root elongation, enabling root growth and colonization in

nitrate-rich soil patches (Zhang & Forde, 1998; Gojon et al, 2009).

However, high nitrate concentrations reduce primary and lateral

root elongation under homogeneous growth conditions (Zhang et al,

2007). Nitrate is the main form of inorganic N for plants in natural

and agricultural soils (Crawford & Forde, 2002; Guti�errez, 2012).

Besides its nutritional role, nitrate acts as a signaling molecule that

regulates several genes involved in a wide range of biological

processes (Guti�errez et al, 2006; Vidal & Guti�errez, 2008). With

advances in genomic technologies and system approaches, thou-

sands of nitrate-responsive genes have been identified in Arabidop-

sis thaliana roots and shoots (Wang et al, 2003; Scheible et al, 2004;

Wang et al, 2004; Guti�errez et al, 2007, 2008; Gaudinier et al, 2018;

Varala et al, 2018; Brooks et al, 2019). These N-responsive genes

include nitrate transporters, nitrate reductase (NR) and nitrite reduc-

tase (NiR), putative transcription factors, and stress response genes,

as well as genes whose products play roles in glycolysis, N metabo-

lism, and hormone pathways. Moreover, nitrate elicits local and

systemic signals to synchronize its availability with plant growth
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and development (Ruffel et al, 2011, 2016; Chen et al, 2016; Ohkubo

et al, 2017; Poitout et al, 2018). Although transcriptional responses

activated by nitrate have been described in great detail, it is clear

that regulation at the post-translational level is key for N responses

(Liu & Tsay, 2003; Liu et al, 2017).

The role of protein phosphorylation in response to nitrate was

initially identified in post-translational modifications in N metabo-

lism. The activity of NR, the enzyme that catalyzes the first step of

nitrate reduction, is modulated by protein phosphorylation and then

inhibited by 14-3-3 protein interaction (Bachmann et al, 1996;

Kaiser et al, 2002). Studies in spinach leaves using 32P labeling and

kinase assays demonstrated that the regulation of NR by light/dark

and photosynthetic activity involves protein phosphorylation

(Huber et al, 1992; MacKintosh, 1992). A subsequent study showed

that a 14-3-3 family protein interacts with and inactivates phospho-

rylated NR in the presence of covalent ions (Bachmann et al, 1996;

Athwal & Huber, 2002). Earlier experiments also indicated that

changes in gene expression in response to nitrate treatments require

kinase and phosphatase activities. In maize leaves for example,

treatments with inhibitors of calmodulin-dependent protein kinases

repress nitrate induction of genes encoding nitrate assimilatory

enzymes such as NR, NiR, glutamine synthetase 2 (GS2), and ferre-

doxin glutamate synthase (Fd-GOGAT) (Sakakibara et al, 1997).

Conversely, inhibition of protein phosphatases blocked the nitrate

response of NR, NIR, and GS2 (Sakakibara et al, 1997). In another

study, pharmacological inhibitors of serine–threonine protein phos-

phatase and tyrosine protein kinases repressed the nitrate-induced

accumulation of transcripts for NR and NiR in barley leaves

(Sueyoshi et al, 1999). These early experiments suggested that

changes in the status of protein phosphorylation were important for

the regulation of gene expression in response to nitrate treatments.

The discovery that a kinase protein complex can directly phos-

phorylate the nitrate transceptor NRT1.1/NPF6.3 demonstrated that

phosphorylation plays an important role in nitrate signaling. Under

low-nitrate conditions, NRT1.1/NPF6.3 is phosphorylated in a thre-

onine residue (T101) by CIPK23-CBL9 complex (CIPK, CLB-

interacting protein kinase; CBL, calcineurin B-like protein), shifting

into a high-affinity nitrate transporter (Liu & Tsay, 2003; Ho et al,

2009). In contrast, at high-nitrate levels, NRT1.1/NPF6.3 is dephos-

phorylated at T101 and turns into a low-affinity transporter. Experi-

ments with a mutant mimicking the phosphorylated form of the

transceptor showed the importance of this phosphorylation for the

regulation of gene expression at low nitrate concentrations (Ho

et al, 2009). Phosphorylation of NRT1.1/NPF6.3 also appears to

play a role in the modulation of auxin transport and repression of

lateral root emergence under low-nitrate conditions (Bouguyon

et al, 2015, 2016). Conversely, the dephosphorylated form of

NRT1.1/NPF6.3 is critical for upregulation of NITRATE TRANS-

PORTER 2.1 (NRT2.1) gene expression in response to nitrate (Ho

et al, 2009; Bouguyon et al, 2015). Bouguyon et al, (2015) studied

different mutant alleles of NRT1.1/NPF6.3 (T101D, T101A, and

P492L substitution) and proposed a different NRT1.1/NPF6.3-

dependent signaling mechanism. The short-term induction of

NRT2.1 at high nitrate is negatively affected by T101D substitutions

but not by P492L and T101A. Long-term regulation of NRT2.1 tran-

scripts at high nitrate and repression of lateral root emergence at

low nitrate showed an opposite pattern, where signaling was

suppressed by both T101A and P492L mutations but not affected by

T101 substitution. Another kinase involved in signaling is CIPK8

(Hu et al, 2009). In cipk8 mutants, the rapid induction of genes or

primary nitrate response was strongly reduced (40–65% of WT

levels), particularly in the low-affinity phase (Hu et al, 2009). Both

CIPK8 and CIPK23 are rapidly induced by nitrate treatments and

down-regulated in the chl1-5 and chl1-9 mutants, respectively (Ho

et al, 2009; Hu et al, 2009). More recently, the calcium sensor CBL1

and the protein phosphatase 2C (ABA-insensitive) ABI2 were also

identified as components of this signaling pathway, which regulates

NRT1.1/NPF6.3 transport and sensing (L�eran et al, 2015). The

calcium sensor CBL1 also interacts with CIPK23, and this complex

was dephosphorylated by ABI2 (L�eran et al, 2015).

In higher plants, CBL/CIPK complexes sense and decode Ca2+

signals, triggering specific transduction pathways (reviewed by

Kudla et al, 2010). Recent studies have shown that Ca2+ plays a role

in nitrate signaling transduction and is important for the primary

nitrate response in Arabidopsis roots (Riveras et al, 2015). Calcium

is a key secondary messenger that triggers changes in signaling

pathways, including changes in phosphorylation levels (Dodds &

Rathjen, 2010; Hashimoto & Kudla, 2011). More recently, results

published by Liu et al, (2017) have contributed to our understand-

ing of the relationship between Ca2+ signaling and the first layer of

transcriptional regulators. They used the luciferase (LUC) reporter

gene NIR-LUC, which exhibits a physiological nitrate response in

transgenic Arabidopsis plants, to identify three CPKs (CPK10,

CPK30, and CPK32) that activated the NIR-LUC reporter in an effec-

tive and synergistic manner. Additionally, CPK10, CPK30, and

CPK32 phosphorylated the transcription factor NIN-LIKE PROTEIN

7 (NLP7) in a Ca2+-dependent manner (Liu et al, 2017), suggesting

that CPK-NLP signaling is a key regulator of primary nitrate

responses (Liu et al, 2020). All these studies provide evidence that

NRT1.1/NPF6.3, calcium, and phosphorylation of target proteins

are key elements of a signaling pathway involved in the nitrate

response.

Global-scale proteomic analysis performed in Arabidopsis seed-

lings, mostly shoot organs, showed that nitrogen starvation and

resupply (nitrate or ammonium) modulates protein phosphorylation

over a time course of 30 min (Engelsberger & Schulze, 2012). In

general, proteins such as receptor kinases and transcription factors

change their phosphorylation levels after nitrogen resupply at 5–

10 min (fast response). Proteins involved in protein synthesis and

degradation, central and hormone metabolism showed changes in

their phosphorylation level after 10 min (late response). Another

study showed that nitrate deprivation affects both protein abun-

dance and phosphorylation status (Menz et al, 2016). Nitrate depri-

vation assays revealed that some proteins, mostly involved in

transport, contain sites that are dephosphorylated early in the

response (Menz et al, 2016).

In this study, we performed quantitative time-course analyses of

the Arabidopsis root phosphoproteome in response to nitrate via

liquid chromatography coupled to tandem mass spectrometry detec-

tion (HPLC-MS/MS). We chose to focus on root-phosphoproteomics

profiling in response to nitrate for several reasons: (i) phosphopro-

teomics and proteomics studies describe phosphorylation levels as

more dynamic and mainly independent of protein abundance (Hut-

tlin et al, 2010; Walley et al, 2013, 2016), suggesting that many

proteins are regulated by phosphorylation independent of their

changes in protein abundance. (ii) Previous global studies of N
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treatment focused on the proteome and phosphoproteome in

Arabidopsis seedlings, which interrogates mostly shoot tissues

(Engelsberger & Schulze, 2012; Menz et al, 2016). In order to search

for new N-regulatory factors, our experimental approach focused on

Arabidopsis roots because early sensing and responses to N supply

occur in the roots. Several studies have shown that HPLC-MS/MS

provides accurate estimates of dynamic phosphorylation levels

in vivo (Umezawa et al, 2013; Zhang et al, 2013; Zhang et al, 2014;

Lin et al, 2015).

We used HPLC-MS/MS to identify phosphorylated proteins

with differential profiles in response to nitrate treatments at 5 or

20 min. We found that the nature of these phosphorylated

proteins differed significantly from those encoded by genes impli-

cated in nitrate via transcriptomic studies. We found different

types of phosphoproteins changing at 5 or 20 min after nitrate

treatments. Interestingly, the large majority of these changes

depend on NRT1.1/NPF6.3. Kinases and transcription factors were

over-represented at 5 min, while proteins involved in protein

binding and transporter activity were common by 20 min of

nitrate treatments. We found several phosphoproteins involved in

auxin transport, including the auxin efflux carriers PIN2 and

PIN4. We validated the role of PIN2 and found dephosphorylation

of PIN2 to be important for modulation of root system architec-

ture in response to nitrate. Our analysis reveals that the nitrate

signaling pathway mediated by NRT1.1/NPF6.3 leads to important

changes in protein phosphorylation patterns and proposes new

players that participate in the developmental responses to nitrate

in plants.

Results

Phosphoproteome analysis of Arabidopsis roots in response to
nitrate treatments

In an effort to identify new components involved in nitrate

responses in plants, we performed large-scale mass spectrometry-

based phosphoproteome experiments following nitrate treatments in

Arabidopsis roots. A. thaliana (L.) Columbia-0 (Col-0) seedlings

were grown hydroponically, with a full nutrient solution (Murashige

and Skoog basal medium without N) containing 1 mM ammonium

as the only N source for 14 days (time 0, see experimental proce-

dures). Two-week-old plants were treated with 5 mM KNO3 or KCl,

as control. We and other laboratories have used this experimental

setup in prior studies because it elicits robust primary nitrate

responses in Arabidopsis plants (Guti�errez et al, 2006; Gifford et al,

2008; Vidal et al, 2010; Alvarez et al, 2014; Riveras et al, 2015). A

label-free high-performance liquid chromatography–tandem mass

spectrometry (HPLC-MS/MS) method was used to identify changes

in protein phosphorylation at 5 or 20 min after nitrate treatments.

We chose these time points because they have shown to be effective

in describing transient and persistent protein phosphorylation

responses (Engelsberger & Schulze, 2012; Lin et al, 2015). More-

over, this experimental design allows for comparison with transcrip-

tomics data obtained using the same experimental conditions (Vidal

et al, 2010; Alvarez et al, 2014; Riveras et al, 2015). For phospho-

proteome analysis, we used a previously validated experimental

pipeline (Facette et al, 2013; Walley et al, ,2013, 2016). Briefly,

phosphopeptides were enriched using cerium oxide affinity capture

and analyzed with a HPLC-MS/MS instrument (Appendix Fig S1).

The spectra were assigned to specific peptide sequences by the

MASCOT search engine (FDR < 0.1%). We quantified the relative

abundance of each phosphoprotein using average normalized spec-

tral counts (nSPCs) of the total number of spectral-peptide matches

to protein sequences in two–three independent biological replicates

for each treatment condition. In total, we identified and measured

6,560 unique phosphopeptides which unambiguously mapped to

2,048 phosphoprotein groups (Dataset EV1). The majority of identi-

fied phosphopeptides (82%) were phosphorylated in a single

residue (Appendix Fig S2A). The relative distribution of each phos-

phorylated residue—80% serine, 18% threonine, and 2% tyrosine

(Appendix Fig S2B)—was consistent with prior plant phosphopro-

teomic studies (Lan et al, 2012; Umezawa et al, 2013; Menz et al,

2016). The identified phosphopeptides were mapped and grouped in

phosphoprotein groups, where proteins that shared peptides were

clustered together. A group leader was assigned to each group,

based on having the highest number of peptide identifications;

throughout the remainder of the article, “phosphoproteins” is

synonymous with “group leaders”. The majority of the identified

phosphoproteins present one (50%), two (25%), or three (12%)

phosphorylated peptides (Appendix Fig S2C) with similar distribu-

tions of phosphorylated residue (69% Ser, 28% Thr, and 3% Tyr;

Appendix Fig S2D). We recognized phosphoproteins across several

biological process, subcellular compartments, and cellular functions

based on the Gene Ontology (GO) classification (Appendix Fig S3).

No overrepresented GO categories were observed when comparing

against the Arabidopsis genome, showing that our experimental

strategy was unbiased with regard to annotated protein functions,

subcellular locations, or biological processes and represents an

unbiased Arabidopsis proteome sampling.

To identify nitrate-regulated phosphoproteins in Arabidopsis

roots, the phosphoproteomics dataset was filtered by quality follow-

ing the workflow described in DEP (Zhang et al, 2018) and MSnBase

(Gatto & Lilley, 2012) packages using R/Bioconductor (Huber et al,

2015). Reverse hits and phosphoproteins with missing values in

several experimental conditions were eliminated (see Materials and

Methods for details). We obtained a dataset with 34% of missing

values, after which quantile normalization, data imputation using

random draws from a Gaussian distribution centered to the minimal

value in each experimental condition and a log2 transformation

were applied (Database EV2). Then, we performed a two-way

ANOVA statistical analysis (significance: P < 0.05). We considered

nitrate treatment (N), time (Ti), and the interaction between nitrate

and time (N-Ti) as the factor for the ANOVA models. We identified

120 (N), 197 (Ti), and 106 (N-Ti) phosphoproteins that were signifi-

cantly affected under our experimental conditions. The group whose

phosphoprotein levels depend on nitrate (significant P value for N

or N-Ti) were selected for further analysis and their ANOVA model

was examined (Fig EV1A). We found 54 phosphoproteins regulated

at 5 min after nitrate treatments, 36 of which were induced (Fig 1A,

Dataset EV3). We found 145 phosphoproteins differentially regu-

lated at 20 min, 102 of which were induced by the nitrate treat-

ments. The large majority of phosphoproteins were found to be

nitrate-regulated at only one time-point, indicating that most

changes in the phosphoproteome are transient with an early (5 min)

and late (20 min) component in response to nitrate treatments
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(Fig 1A and 1B). Three previous studies characterized the phospho-

proteome in response to nitrate depletion (Engelsberger & Schulze,

2012) or nitrate resupply (Menz et al, 2016; Wu et al, 2017)

(Fig 1C). Response to nitrate resupply resulted in 15 and 34

common phosphoproteins, while nitrate deprivation in 7 common

proteins. We observed an overlap of 4 phosphoproteins between all

experiments using the Sungear tool (Poultney et al, 2007), which

shows few phosphoproteins common to nitrate studies. These

proteins were mostly associated with nitrate metabolism, such as

transporters (NRT2.1; ammonium transporter 1.3, AMT1.3) and

nitrate reductase 2 (NIA2). The comparison of the phosphoproteins

identified here with transcriptome data revealed that 95% of the

phosphoproteins are encoded by genes that do not change expres-

sion at the mRNA level (Fig EV1B). We compared our results with

an integrated analysis of available root microarray data under

contrasting nitrate conditions (27 experimental datasets correspond-

ing to 131 arrays (Canales et al, 2014)). This study identified a

group of 2,286 nitrate-responsive genes regulated at transcription

levels. Only 10 of these genes were found in our phosphoproteomic

dataset.

In summary, our phosphoproteome analysis identified new genes

coding for phosphoproteins involved in nitrate responses.

Functional enrichment in the phosphoproteome reveals
distinctive signaling and regulatory processes occurring in early
and late responses to nitrate

To evaluate the biological significance of the phosphoproteome

patterns observed in response to nitrate, hierarchical clustering

analysis was performed on the phosphoprotein dataset at 5 and

20 min following nitrate treatments in Col-0 roots (Figs 2 and EV2).

In order to identify the most prominent functional categories

affected, we searched for overrepresented biological terms in each

cluster using the BioMaps program (Katari et al, 2010) and the

PANTHER classification system (Mi et al, 2018, 2019) (significance:

P < 0.05, corrected by FDR). This analysis highlighted several

signaling, regulatory, or metabolic functions differentially associated

with early (5 min) and late (20 min) components in response to

nitrate treatments. “Nucleic acid binding” category was overrepre-

sented in cluster 6 (Figs 2 and EV2G), containing phosphoproteins

A C

B

Figure 1. Characterization of the phosphoproteome profile in Arabidopsis roots in response to nitrate.

Venn diagrams show the overlap of transient (5 min) and more persistent (20 min) changes in phosphoprotein relative abundance after 5 mM nitrate treatments
compared with each control condition (5 mM KCl) in Arabidopsis roots.

A Overlap of phosphoproteins that were “up-regulated” by nitrate at 5 min (dark yellow) and 20 min (light yellow)
B Overlap of phosphoproteins that were “down-regulated” by nitrate at 5 min (blue) and 20 min (light blue).
C Identification of common phosphoproteins with published phosphoproteome datasets in response to nitrate deprivation (Menz et al, 2016; Wu et al, 2017) or nitrate

resupply (Engelsberger & Schulze, 2012). In the Sungear figure, vertices represent the different phosphoprotein sets identified in different studies. The circles with
arrows within the square represent different intersections among the phosphoprotein studies and the size is proportional to the number of proteins in that circle. The
position and the arrows of the circle indicated which vertices or data sets the proteins belong to. The largest circles on the perimeter indicate most of the
phosphoprotein are associated with only one experiment.
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that increase their levels at 5 min and do not change at 20 min. This

cluster also includes previously undescribed transcription factors

(TFs) in the N-response cascade in diverse transcriptomic studies

(Guti�errez et al, 2008; Gaudinier et al, 2018; Varala et al, 2018;

Brooks et al, 2019; Alvarez et al, 2020). In contrast, cluster groups

containing mostly phosphoproteins that changed their levels at

20 min in response to nitrate were enriched in the functional

categories: “RNA binding” and “protein binding” (clusters 3 and 4,

Figs 2 and EV2C and D). We also found increases in phosphoprotein

levels in NRT2.1 and AMT1-3 only at 20 min following nitrate treat-

ment. Increased abundance of the phosphopeptide Ser501, corre-

sponding to NRT2.1, was observed at 20 min after nitrate treatment.

This site is localized in a C-terminal phosphorylation hotspot (phos-

phorylation site database and predictor Phosphat4.0 (Heazlewood

Figure 2. Functional analysis of the phosphoproteome profile reveals signaling and regulatory processes occurring in early and late response to nitrate.

The Figure shows a hierarchical clustering of nitrate phosphoproteins with differential abundance at 5 or 20 min in response to nitrate. Phosphoproteins were clustered
using the Euclidean distance method with average linkage. The resulting clusters are shown as a heat map, where vertical bars and numbers to the right of the map
denote the group (composed of all terminal nodes in the hierarchical tree) of phosphoprotein (correlation > 0.9) with a selected profile in early (5-min) or late (20-min)
nitrate response (log 2 fold-change for each phosphoproteins upon nitrate treatment are referred to KCl-treated samples). Functional Gene Ontology (GO) categories
significantly enriched (hypergeometric test with FDR, P < 0.05) in each cluster are highlighted to the right of the group.

Source data are available online for this figure.
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et al, 2007; Durek et al, 2010)) and was also identified in nitrate

deprivation experiments with an opposite phosphorylation

response (Menz et al, 2016). Also, phosphopeptides for AMT1.3

with phosphorylation at Thr-464 and Ser487 were identified as

“up-regulated” by nitrate treatments at 20 min. The phosphoryla-

tion of both sites inhibits transport function (Lanquar et al, 2009)

and was also identified as phosphopeptides in nitrate deprivation

(Menz et al, 2016) and resupply (Engelsberger & Schulze, 2012)

experiments. We also observed that nitrate strongly increased

levels of phosphorylated nitrate reductase NIA2 at the highly

conserved and regulatory site Ser534 (Su et al, 1996). These results

are consistent with previous studies and suggest overall regulation

of N metabolism by phosphorylation of key players by 20 min

after nitrate treatments.

Other group of clusters showed enrichment in process involved

in nitrate response, with different profiles at 5 min and 20 min.

Clusters 1 and 10 (Figs 2 and EV2A and J) were enriched in “trans-

port activity” and showed phosphoproteins with opposite regula-

tion. Clusters 2, 4, and 5 showed phosphoproteins associated with

microRNA processing, phosphoinositide, and phosphatidylinositol

binding functions. Phosphoinositides can act in signaling pathways

and serve as precursors for phospholipase C (PLC)-mediated signal-

ing. A previous study in our laboratory implicated a PLC activity in

the nitrate signaling pathway (Riveras et al, 2015). Our results are

consistent with these results and show that PLC2, represented by

the phosphopeptide Ser280, was identified as up-regulated in

response to nitrate at 20 min (in Cluster 4). Cluster 11 (Figs 2 and

EV2K) is interesting for nitrate responses because it includes compo-

nents involved in a classical process regulated by nitrate in

Arabidopsis roots. Auxin transport is a biological function enriched

in this group, which is consistent with auxin pathways being modu-

lated by nitrate (Guti�errez et al, 2006; Vidal et al, 2013). Several

reports indicate that auxin acts as regulator of root system architec-

ture in response to nitrate availability (Vidal et al, 2010, 2013; Ma

et al, 2014).

Overall, our dataset captures the dynamic effects of N signaling

on phosphoproteome profiles, which implicate a cascade of

nonoverlapping processes in early and late responses. The earliest

steps in the N phospho-dynamics were involved in signal transduc-

tion and transcription factor activity. In contrast, the later phospho-

protein dataset was enriched in metabolic, transferase, and

transport processes (Appendix Table S1). These temporal mecha-

nisms show a transition of phosphorylation dynamics from phos-

phoproteins essential to signaling networks to proteins associated

with biological processes involved in nitrate response.

NRT1.1/AtNPF6.3 is essential for transient phosphoprotein
changes in response to nitrate treatments

The only nitrate sensor described to date is the nitrate transporter,

NRT1.1/NPF6.3 (Ho et al, 2009; Wang et al, 2009). In order to

understand the importance of NRT1.1/NPF6.3 for nitrate-elicited

changes in the phosphoproteome observed, we analyzed the phos-

phoproteomic profile of roots treated with 5 mM KNO3 or KCl (con-

trol) in a nrt1.1-null background (mutant chl1-5), using the same

experimental conditions described above. 74% of phosphoproteins

were detected in both datasets, yet only 4% of the nitrate-

phosphoproteome response observed in wild-type plants was

maintained in the chl1-5 mutant (Fig 3, Dataset EV4). Moreover,

96% of phosphoprotein levels were altered in the chl1-5 mutant

plants. This result indicates that this gene is important for modulat-

ing protein phosphorylation in response to nitrate, in addition to its

established role as nitrate transceptor. Intriguingly, we found 32

phosphoproteins that changed levels in response to nitrate at 5 min

in the chl1-5 mutant as compared to wild-type plants (ANOVA

P < 0.05; Appendix Table S3), with 22 induced phosphoproteins.

These changes suggest an alternative nitrate-sensing mechanism

that can also impact protein phosphorylation. In the absence of

NRT1.1 function, the balance between this alternate signaling mech-

anisms may be disrupted resulting in anomalous phosphorylation

patterns. Examples of phosphoproteins affected in chl1-5 include

signaling pathway components such as brassinosteroid signaling

positive regulator 1 (BZR1), signal responsive 1 SR1, and a phos-

phatidylinositol signaling-related protein.

Our analysis indicates that NRT1.1/NPF6.3 is critical for main-

taining the Arabidopsis phosphoproteome in response to nitrate

availability. It also denotes that NRT1.1/NPF6.3 function is

required for rapid changes in phosphorylation of key proteins in

response to nitrate in Arabidopsis roots. For example, phosphory-

lated peptides that map to proteins associated with nitrogen meta-

bolism (NRT2.1, AMT1-3, and NIA2) were identified in chl1-5

mutant roots, but their levels were not affected in response to

nitrate.

Figure 3. Characterization of the phosphoproteome profile in response
to nitrate in roots of Arabidopsis (Col-0) or chl1-5 mutant plants.

Percentage of nitrate-phosphoproteome responses at 5 min in wild-type
plants that were maintained in chl1-5-mutant plant roots.
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Network analysis reveals regulatory subnetworks connected to
transcription factors and potential kinases in response to nitrate

To uncover key biological processes modulated by changes in phos-

phorylation, we performed a multinetwork analysis with our phos-

phoproteomics data. We generated this network by integrating

different levels of information, including protein–protein interac-

tions from BioGRID (Oughtred et al, 2018), predicted protein–DNA

interactions of Arabidopsis TFs (DapSeq) (Weirauch et al, 2014;

Bartlett et al, 2017), Arabidopsis metabolic pathways (KEGG), and

miRNA-RNA, as described previously (Guti�errez et al, 2006). We

also integrated kinase-substrate predictions and identified the most

significant phosphorylation motifs and their predicted kinase fami-

lies from our phosphoproteomic datasets using the Motif-X algo-

rithm (Schwartz & Gygi, 2005) and the PhosPhAt Kinase-Target

interactions database (Zulawski et al, 2012) (Appendix Fig S3). We

used the Cytoscape (Shannon et al, 2003) software to visualize the

resulting network, wherein genes that encoded each phosphoprotein

were represented as nodes linked by edges that signify any of the

functional relationships annotated in the various databases

indicated above. We generated a network of 196 nodes with 502

interactions (Fig 4). Although the majority of these genes are not

regulated by nitrate at the mRNA level, they form a highly intercon-

nected network which includes potential regulatory transcription

factors and kinase components. We identified network modules

using the community cluster (GLay) algorithm in ClusterMaker tool

(Su et al, 2010; Morris et al, 2011), which recognizes network

domains with densely connected nodes. They are connected by

multiple edges, including protein–protein, protein–DNA, and meta-

bolic interactions (described in legend to Fig 4). This result suggests

that the products of these genes form connected biological modules

that are coordinately regulated at the (post-)translational level. This

network included several TFs with a high number of regulatory

links. The most connected were the Trihelix transcription factor 1

(GTL1), the WRKY DNA-binding protein 65 (WRKY65), and the

RELATED TO VERNALIZATION 1 (RTV1) transcription factors,

which had not previously been characterized in the context of

nitrate response. Intriguingly, GTL1 regulates root hair growth in

Arabidopsis (Shibata et al, 2018), which has recently been described

as a biological process modulated by nitrate treatments under the

Figure 4. Gene network of nitrate-modulated phosphoproteins.

A network for the phosphoproteins (encoded genes) and putative kinases family was represented as nodes with color and shapes assigned according to function (e.g.,
blue squares: metabolic encoded genes, green triangle: transcription factors or gray hexagon: kinase families). Edges connecting nodes represent functional interactions:
transcription factor/TARGET (gray solid arrow), protein–protein (blue solid line), miRNA–RNA (cyan solid line), metabolic (gray solid line with open arrow), or predicted
kinase–substrate control (orange dashed line) interactions are coded with indicated colors. Arrowheads in the edges indicate directionality of the interaction. The size of
the triangle or hexagon is proportional to the number of targets of the TF or putative kinase family, respectively. The network was grouped by topology using
ClusterMaker tool in Cytoscape. The distance between nodes was optimized for visualization purposes.
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same experimental conditions (Canales et al, 2017). A previous

study indicated that WRKY65 interacts at the protein level with the

mitogen-activated protein kinase 10 (MAPK10), which binds with

the lateral organ boundaries domain 16 (LBD16), LBD18, and

LBD29 transcription factors (Popescu et al, 2008; Feng et al, 2012).

These LBDs are inducible by auxin and play a role in the formation

of lateral roots. In addition, MAPK10 interacted with other genes

involved in the auxin response (Popescu et al, 2008), while LBD29

regulated genes involved in auxin transport, including auxin efflux-

carriers PIN1 and PIN2 (Feng et al, 2012). This evidence suggests

that WRKY65 could be involved in nitrate–auxin signaling crosstalk.

These three TFs appear to coordinate different subnetworks largely

involved in auxin transport and nitrogen metabolism. Consistent

with this observation, analysis of over-represented gene ontology

annotations highlights the importance of auxin transport (Fig EV3).

Other over-represented biological functions in our network were

mRNA binding and splicing, regulation of translation, and kinase

activity (Fig EV3).

Overall, this network analysis highlights a potential role of multi-

ples TFs in linking the N signal and regulatory nitrate responses that

show significant enrichment for key functions in signaling pathways

and validates the important role auxin plays in the nitrate response

of root system architecture.

PIN2 is important for modulation of root system architecture in
response to nitrate treatments

Auxin is a key phytohormone in plants, involved in growth and

developmental responses. Several reports have shown that auxin

mediates root developmental responses to nitrate availability

(Guti�errez et al, 2006; Walch-Liu et al, 2006; Krouk et al, 2010;

Vidal et al, 2010; Mounier et al, 2013; Vidal et al, 2013; Ma et al,

2014). Nitrate can regulate auxin biosynthesis, transport, and accu-

mulation. In response to nitrate, several auxin-related modules are

regulated, including the upregulation of auxin receptor AUXIN

SIGNALING F-BOX 3 (AFB3) and the feedback regulation by miR393

(Vidal et al, 2010, 2013). This auxin signaling component in

response to nitrate is implicated in both primary and lateral root

growth (Vidal et al, 2010). Other important evidence comes from

the analyses of the Arabidopsis transcriptomic response upon nitrate

treatments. They show that several genes involved in auxin trans-

port are affected, including auxin efflux carriers PIN1, PIN4, and

PIN7 (Guti�errez et al, 2006; Vidal et al, 2013). Moreover, the nitrate

transceptor NRT1.1/NPF6.3 not only senses and transports nitrate

but can also transports auxin, this process is modulated by NRT1.1

phosphorylation dynamics (Zhang et al, 2019) and regulates auxin-

localization patterns and lateral root elongation (Krouk et al, 2010).

Consistent with these prior observations, auxin transport was

conspicuous throughout our entire phosphoproteomic analysis

(Figs 2 and 4). PIN phosphorylation has been shown to be essential

for auxin transport and distribution (Friml et al, 2004; Michniewicz

et al, 2007; Huang et al, 2010; Zhang et al, 2010; Weller et al, 2017;

Barbosa et al, 2018). PINs phosphorylation in conserved serine and/

or threonine of the central loop controls intracellular trafficking,

recycling, and polar membrane localization of PIN proteins (Review

by Barbosa et al, 2018). Previous studies indicate that PIN polar

localization explains auxin fluxes and distribution patterns, which

could mediate differential growth in diverse plant tissue such as

roots (Benkov�a et al, 2003; Weller et al, 2017). To validate the rele-

vance of phosphorylation in auxin transport and its connection with

nitrate response, we chose the auxin efflux carrier PIN2 (identified

in our experimental dataset) due to its potential role in linking

nitrate and changes in root system architecture (RSA). We found an

uncharacterized PIN2 phosphorylation site (Ser439) at the end of

the hydrophilic cytoplasmic loop (C-loop, Fig 5A). Its phosphopep-

tide levels decreased by close to 75% in response to nitrate treat-

ments by 5 min (Fig 5B). PIN2 belongs to the PIN-FORMED protein

family of auxin transporters and is the principal component mediat-

ing basipetal auxin transport in roots (Luschnig et al, 1998; M€uller

et al, 1998). This polar auxin transport is essential for root gravit-

ropism (M€uller et al, 1998) and lateral root formation (Laskowski

et al, 2008). Intriguingly, we detected only one phosphorylated

peptide for PIN2 in response to nitrate. Protein sequence alignment

indicated that this phosphosite is highly conserved in different plant

species representing gymnosperm and mono- and dicotyledonous

plant lineages of seed plants (Fig 5A). This phosphopeptide has also

been described as down-regulated after auxin treatment but its func-

tion remains an open question (Zhang et al, 2013).

As a first step to understand the function of PIN2 phosphoryla-

tion in the nitrate response, we performed a Phos-tag Western blot

analysis to confirm the changes in PIN2 phosphorylation after

nitrate treatment (Figs 5C and EV4). We detected two, fast and slow

mobility (red and white asterisk in Fig 5C, respectively), PIN2-

specific bands indicating the presence of two phospho-populations

in response to nitrate: one less and another more phosphorylated

PIN2. In contrast, only one slow-mobility band corresponding to the

more phosphorylated PIN2 subpopulation could be observed at time

0 (ammonium-supplied roots) or under control conditions (KCl-

treated roots) (white asterisk, Fig 5C). To assess whether these

changes in PIN2 phosphorylation status are a result of a change in

protein abundance, we analyzed PIN2-GPF protein levels by

Western blot under our experimental conditions. We introgressed

the construct PIN2::PIN2-GFP (PIN2wt-GFP) into the pin2 loss-of-

function mutant plant eir1-1 (Roman et al, 1995). No differences in

protein levels were observed in roots treated with nitrate as

compared to roots at control condition (KCl) (Figs 5D and EV4). To

understand the function of this specific PIN2 phosphosite Ser439,

we also analyzed the protein levels in pin2 null mutant comple-

mented with phospho-null (PIN2::PIN2S439A-GFP) or phospho-mimic

(PIN2::PIN2S439D-GFP) versions of PIN2-GFP. Similarly, PIN2 protein

concentrations were similar when our experimental conditions

mimicked PIN2 phospho-modifications (Figs 5D and EV4). More-

over, no regulation at the mRNA level was observed in PIN2 during

nitrate responses (Fig 5E). These results indicated that nitrate regu-

lates PIN2 at the post-translational level, causing dephosphorylation

of PIN2 at a specific phosphosite.

Next, we evaluated the role of PIN2 in root system architecture

(RSA) in response to nitrate treatments. We grew wild-type (Col-0)

and pin2 mutant (eir1.1) plants for 2 weeks on ammonium as sole

N source (time 0) and evaluated RSA after nitrate treatments. We

measured primary root length 3 days after 5 mM KNO3 or KCl treat-

ments. As expected for this experimental setup, we found that

nitrate-treated wild-type plants developed shorter primary roots as

compared to KCl-treated plants, consistent with earlier results indi-

cating that nitrate treatments inhibit primary root elongation under

these experimental conditions (Vidal et al, 2010) (Fig 6A). However,
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primary roots of eir1-1 plants were not significantly inhibited by

nitrate treatments as compared to wild-type plants. We also

analyzed the density of lateral roots in response to nitrate treat-

ments. In wild-type plants, nitrate treatments increased the number

of lateral roots (emerged and initiating) as compared with KCl treat-

ments (Fig 6B). In contrast, the lateral root response to nitrate treat-

ment was altered in the eir1-1 mutant and the density of lateral

roots was significantly reduced as compared with wild-type plants

(Fig 6B). These results show that PIN2 plays an important role in

modulating RSA in response to nitrate treatments. Accordingly,

Ötvös et al, (2021) recently reported that PIN2 plays an important

function regulating distinct root growth patterns in response to dif-

ferent nitrogen sources and concentrations.

PIN2 dephosphorylation of Ser439 plays a role in modulating the
root system architecture in response to nitrate treatments

To understand the function of the PIN2 phosphosite identified in

this study, we analyzed the pin2 null mutant eir1-1 complemented

with phospho-null (S439A) or phospho-mimic (S439D) versions of

A

D

B

C

E

Figure 5. Nitrate regulates PIN2 phosphorylation levels.

A Schematic representation of the phosphosite (Ser439) identified in PIN2 in our study. PIN2 protein possesses three specific regions: a region with five transmembrane
segments (residues 1–163), a central hydrophilic loop extending from residue 164 to 482 and a region with five additional transmembrane segments (residues 483–
647). Protein alignment with PIN2 or PIN-like proteins from different species indicates conservation of the serine residue in eudicot, monocot, and gymnosperm
species. The red arrow highlights the S439 in the central loop of PIN2 proteins in different plants. The size of each protein in amino acids and the percentage of
identity against the Arabidopsis PIN2 are indicated.

B Levels of PIN2 phosphopeptide in our experiments. Bars represent the mean plus standard error of replicates (2 biological replicates for nitrate treatments at 20 min
(Col-0 roots) and 3 biological replicates for all other experimental conditions). Each independent biological replicate consisted of a pool of 4.500 roots collected from
Arabidopsis plants grown independently under the same experimental conditions. The asterisk indicates statistically significant differences in phosphoproteomic
analysis (multiple t-test comparison without testing corrections, assuming same variance, P < 0.05).

C Detection of phosphorylation PIN2 by Phos-tag Western blotting. Arabidopsis plants (Col-0) were growth in ammonium as only nitrogen source and treated with
5 mM KNO3 or 5mM KCl as control. Total protein from roots were analyzed in SDS–PAGE using Phos-tag to detect changes in phosphorylation status.
Immunoblotting was performed with PIN2 antibody. Total proteins isolated from eir1.1 roots were used as a negative control. White and red asterisks indicate a slow-
or fast-mobility band corresponding to a more or less phosphorylated PIN2, respectively.

D Western blot against PIN2 protein comparing nitrate-treated (KNO3) and control (KCl) condition in Arabidopsis roots for all genotypes eir1-1 mutant background was
complemented with PIN2::PIN2wt-GFP (PIN2wt), PIN2::PIN2S439D-GFP (PIN2S439D phospho-mimic point mutation), or PIN2::PIN2S439A-GFP (PIN2S439A, phospho-null point
mutation).

E Time-course analysis of PIN2 mRNA levels in response to nitrate treatments in Arabidopsis roots. Bars represent the mean plus standard deviation of 3 biological
replicates.

Source data are available online for this figure.
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PIN2-GFP. As PIN2 plays an important role in root gravitropism, we

evaluated the gravitropic curvature in wild-type, eir1-1 mutant

plants, and PIN2-GFP transgenic plants. All seedlings were germi-

nated and grown in MS media in the absence of nitrate for 7 days,

and then, they were transferred to agar plates with or without

nitrate. Agar plates were rotated 90° and root curvature was

measured at 24 h. As expected, pin2 mutant plants showed an

agravitropic phenotype. Both PIN2S439D-GFP and PIN2S439A-GFP were

able to rescue the agravitropic phenotype of eir1-1 mutant plants.

This result indicates that the phosphorylation status of PIN2 at S439

is not relevant for root gravitropic responses in Arabidopsis

(Appendix Fig S4). This result also indicates that phosphorylation at

S439 does not impair all PIN2 functions.

Next, we evaluated the RSA in response to nitrate treatments in

the same phospho-mimicking (PIN2S439D-GFP) or phospho-null

(PIN2S439A-GFP) genotypes and compared it to wild-type plants.

Plants were grown for 2 weeks on ammonium as sole N source and

then treated with 5 mM KNO3 or KCl for three days. Complementa-

tion of the eir1-1 mutant with a wild-type version of PIN2 (PIN2wt)

restored normal RSA responses to nitrate (Fig 7). Eir1-1 mutant

plants complemented with PIN2S439A showed RSA changes similar to

wild-type plants in response to nitrate treatments, albeit slightly less

pronounced. Three days after nitrate treatments, primary root

growth was inhibited 42% by nitrate in the PIN2S439A-GFP genotype

as compared with nitrate-treated wild-type plants (Fig 7A). Simi-

larly, lateral root density in PIN2S439A-GFP plants increased 47% as

compared to wild-type plants in response to nitrate treatments

(Fig 7B). In contrast at the end of the 3-day treatment, the primary

root length and lateral root density did not differ between nitrate or

KCl treatment in eir1-1 mutant plants complemented with PIN2S439D-

GFP. This result, comparable to the response in eir1-1 roots, indicates

that regulation of PIN2 phosphorylation status at S439 is necessary

for normal RSA modulation in response to nitrate treatments.

PIN2 phosphosite regulates polar plasma membrane localization
in response to nitrate

To explore the impact of nitrate-regulated phosphorylation of PIN2

on cellular localization, we examined the subcellular localization

pattern in PIN2-GFP genotypes with phosphosite substitutions.

PIN2WT-GFP proteins were accumulated at the plasma membrane of

epidermal and cortical cells, as previously described (Fig 8A)

(M€uller et al, 1998). PIN2WT-GFP fluorescence signal increased in

epidermal and cortical cells 2 h after nitrate treatments as compared

to roots in control conditions (roots without nitrate treatments,

Fig 8A). Interestingly, mutations at S439 altered this pattern.

PIN2S439A-GFP plants showed higher fluorescence in the plasma

membrane even without nitrate treatment as compared to PIN2wt-

GFP or PIN2S439D-GFP (Fig 8A). The total fluorescence in all experi-

mental conditions analyzed here was similar (Fig 8B). In response

to nitrate, PIN2WT-GFP and PIN2S439A-GFP were accumulated at the

plasma membrane of epidermal and cortical cells at comparable

levels (Fig 8C and D). On the contrary, PIN2S439D-GFP plants

showed lower levels at epidermal and cortical cells in response to

nitrate treatments as compared to PIN2WT-GFP or PIN2S439A-GFP

(Fig 8C and D).

A B

Figure 6. PIN2 is essential for nitrate regulation of primary root growth and lateral root density.

A Primary root length of Col-0 wild-type plants or eir1-1 mutant plants was measured using the ImageJ program 3 days after 5 mM KNO3 or KCl treatments. Tukey box
plot show results from 3 independent biological replicates per experimental condition (n = 10–15 roots each replicate).
The box plot shows the data within the interquartile range (25th and 75th percentiles) and a solid black line represents the
median. Whiskers show maximum and minimum values no further than 1.5× IQR (interquartile range). Outlier data are plotted individually. Asterisk indicates
statistically significant difference between analyzed by unpaired, two-tailed and assuming equal variance t-test (**P < 0.01).

B Number of initiating and emerging lateral roots of Col-0 or eir1-1 mutant plants were counted using light microscopy 3 days after 5 mM KNO3 or KCl treatments.
Tukey box plot show results from 3 independent biological replicates per experimental condition (n = 10–15 roots each replicate). The box plot shows the data within
the interquartile range (25th and 75th percentiles) and a solid black line represents the median. Whiskers show maximum and minimum values no further than 1.5×
IQR (interquartile range). Asterisk indicates statistically significant difference between analyzed by unpaired, two-tailed and assuming equal variance t-test
(**P < 0.01).

Source data are available online for this figure.
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These results indicate that PIN2 phosphorylation status at S439

is important for a correct subcellular localization pattern in response

to nitrate treatments. Moreover, these results indicate that post-

translational control impinging upon PIN2 localization is required

for RSA changes in response to nitrate treatments.

Discussion

A key plant nutrient, N also acts as a signal that regulates a myriad

of plant growth and developmental processes. Nitrate, a main N

source in natural and agriculture soils, elicits genome-wide changes

in gene expression for thousands of genes involved in various

biological functions. Nitrate responses have been characterized in

great detail at the transcriptome level. However, post-translational

modifications have not been characterized in detail. In this study,

we evaluated phosphoproteomic profiles in Arabidopsis roots in

response to nitrate treatments. We focused on characterizing early

nitrate-elicited changes in protein phosphorylation. Protein phos-

phorylation and dephosphorylation play a central role in modulating

protein function in plant signaling pathways involved in a wide

range of processes relating to hormones, nutrients, and responses to

stress (Lan et al, 2012; Umezawa et al, 2013; Zhang et al, 2013,

2014; Lin et al, 2015; Vu et al, 2016).

Our analysis demonstrated that early and late changes in phos-

phoprotein levels occur in response to nitrate in roots. Furthermore,

we identified candidates for nitrate signaling and biological functions

underlying the nitrate response in roots. Interestingly, the majority

of proteins and corresponding genes identified in our analysis have

not been previously associated with nitrate responses. The

phosphoproteomic profile was characteristic of each time-point,

showing dynamic changes in phosphorylation patterns in response

to nitrate treatments. Early changes in phosphorylation levels

(5 min) mainly affected proteins associated with gene regulation,

including transcription factors and splicing process. These results

are consistent with rapid and dynamic N responses observed at the

mRNA level described in previous studies (Vidal et al, 2013; Gaudi-

nier et al, 2018; Varala et al, 2018; Brooks et al, 2019). Recent studies

have identified new transcription factors (Gaudinier et al, 2018;

Varala et al, 2018; Brooks et al, 2019) involved in the control of gene

expression by nitrate. Interestingly, the majority of the transcription

factors that we detected as differentially phosphorylated had not

been identified as part of the nitrate response. The phosphopro-

teomic response to nitrate at 20 min revealed a group of different

phosphoproteins, mostly involved in protein binding and transport.

In this dataset, we found proteins known to be involved in nitrogen

response as differentially phosphorylated, including the high-affinity

nitrate transporter NRT2.1 (Engelsberger & Schulze, 2012; Menz

et al, 2016) and AMT1.3 (Lanquar et al, 2009). In our experimental

conditions, site T464 in AMT1.3 was phosphorylated. Since phos-

phorylation of this site inhibits ammonium transport (Lanquar et al,

2009), the increased phosphorylation status at this site may be

related to the fact that our experimental conditions focused on

nitrate transport in Arabidopsis roots. We also identified phospho-

proteins associated with signaling pathways and transcription

factors, uncovering regulatory networks linked to transcriptomic

changes occurring later in the response to nitrate. Changes in phos-

phoprotein patterns improve our understanding of signaling mecha-

nisms that connect nitrate transporters/sensors with transcriptomic

responses and other biological processes. The small overlap between

A B

Figure 7. PIN2 dephosphorylation at S439 is important for modulation of primary root growth and lateral root density in response to nitrate treatments.

Four different genotypes were used in these experiments: Arabidopsis Col-0, eir1-1 mutant background complemented with PIN2::PIN2wt-GFP (PIN2wt), PIN2::PIN2S439D-
GFP (PIN2S439D phospho-mimic point mutation), or PIN2::PIN2S439A-GFP (PIN2S439A, phospho-null point mutation). All genotypes were grown hydroponically as described
in Methods and treated with 5 mM nitrate or KCl.

A Primary root length of the different genotypes was measured using the ImageJ program 3 days after 5 mM KNO3 or KCl treatments. Tukey box plot show results from
3 independent biological replicates per experimental condition (n = 8–10 roots each replicate). The box plot shows the data within the interquartile range (25th and
75th percentiles) and a solid black line represents the median. Whiskers show maximum and minimum values no further than 1.5x IQR (interquartile range). Outlier
data are plotted individually. Asterisk indicates statistically significant difference between means analyzed by unpaired, two-tailed and assuming equal variance t-test
(*P < 0.05, **P < 0.01).

B Number of initiating and emerging lateral roots for all genotypes were counted using light microscopy 3 days after 5 mM KNO3 or KCl treatments. Tukey box plot
show results from 3 independent biological replicates per experimental condition (n = 8–10 roots each replicate). The box plot shows the data within the
interquartile range (25th and 75th percentiles) and a solid black line represents the median. Whiskers show maximum and minimum values no further than 1.5× IQR
(interquartile range). Outlier data are plotted individually. Asterisk indicates statistically significant difference between means analyzed by unpaired, two-tailed and
assuming equal variance t-test (*P < 0.05, **P < 0.01).

Source data are available online for this figure.
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the phosphoproteomic studies to date highlights the importance of

ours and additional future studies to address this important aspect of

post-translational modifications in response to N signals in plants.

NRT1.1/NPF6.3 is the main nitrate sensor described to date (Liu

& Tsay, 2003; Ho et al, 2009). Interestingly, we observed important

differences in the phosphoproteome of chl1-5 mutant as compared

to wild-type plants in response to nitrate treatments. These results

emphasize that NRT1.1/NPF6.3, calcium, and kinases/phosphatases

make up the canonical nitrate signaling pathway of Arabidopsis

roots. Intriguingly, chl1-5 mutant plants show differences in phos-

phoprotein levels as compared to wild-type plants. The small

number of proteins identified in the absence of NRT1.1 function

suggests an alternative nitrate signaling pathway exists. Alternative

nitrate sensor candidates exist, such as NRT2.1, which acts as a

repressor of lateral root initiation in response to nitrate, a role

shown to be independent of nitrate uptake (Little et al, 2005).

Recent evidence showed that NRT1.1/NPF6.3 and PLC activity

are required for nitrate-induced increases in cytoplasmic Ca2+ levels

(Riveras et al, 2015). Our results indicated that PLC2 phosphopro-

tein levels increased in response to nitrate. Nitrate signaling path-

ways also involve CBL–CIPK complex and CPK–NLP regulatory

network (Liu et al, 2020). Furthermore, we identified the molecular

function “kinases” as overrepresented in our network analyses and

potential phosphoprotein kinases that change its abundance in

response to nitrate. The levels of two phosphoproteins involved in

MAPK cascades (MKP1 and MKK2) were regulated by nitrate under

our experimental conditions. A previous study identified a MAPK

kinase cascade under nitrate resupply conditions, where MKP1 was

also found phosphorylated under low-affinity nitrate uptake (Wu

et al, 2017). Consistent with these results, we found the overrepre-

sented the MAPK motif in nitrate-regulated phosphopeptides,

suggesting a role of MAPKs in response to N availability.

The transcriptomic nitrate response was not mirrored at phos-

phoproteomic levels. This lack of correlation between mRNA and

protein or phosphoprotein levels has been documented in other

nitrogen-phosphoproteomic studies (Engelsberger & Schulze, 2012;

A B

C

D

Figure 8. PIN2 phosphorylation at S439 is important for modulation of protein localization in response to nitrate treatments.

Three different genotypes were used in these experiments. eir1-1 mutant background complemented with PIN2::PIN2wt-GFP (PIN2wt), PIN2::PIN2S439D-GFP (PIN2S439D

phospho-mimic point mutation), or PIN2::PIN2S439A-GFP (PIN2S439A, phospho-null point mutation). All genotypes were grown hydroponically as described in Methods and
treated with 5 mM nitrate for 2 h.

A Confocal microscopy using Zeiss Airyscan microscope and Zeiss-blue3.1 software was used to visualize PIN2 in Arabidopsis roots. “e” denotes epidermis and “c”
cortex. Scale bar = 20 µm.

B–D Tuckey box plots show PIN2-GFP fluorescence intensity quantification (number of roots analyzed per experimental conditions = 8–10; arbitrary units, a.u.) at the
total cell membrane in roots (B), and from epidermal (C) and cortex (D) plasma membrane in the different genotypes. The box plot shows the data within the
interquartile range (25th and 75th percentiles) and a solid black line represents the median. Whiskers show maximum and minimum values no further than 1.5×
IQR (interquartile range). Outlier data are plotted individually. Letters denote statistically significant difference between means as determined by one-way ANOVA
followed by Tukey HSD post hoc test (P < 0.05).

Source data are available online for this figure.
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Menz et al, 2016), plant responses to different stimulus (Walley

et al, 2013, 2016), and responses in other organisms (Vogel &

Marcotte, 2012). Furthermore, post-translational regulation does not

always require a change in gene expression or de novo protein

synthesis. Post-translational control could be faster, allowing rapid

adaptation to environmental changes (Zhang et al, 2015). Interest-

ingly, the genes coding for nitrate-modulated phosphoproteins iden-

tified in this study are highly co-expressed across many different

experimental conditions but not regulated by nitrate treatments

(Obayashi et al, 2014). This finding suggests that this group of genes

is functionally related and regulated at the mRNA level in response

to several endogenous or exogenous cues. In the context of nitrate

responses, the products of these genes are regulated at the post-

translational level, uncovering a new layer of control that enables

signal crosstalk and fine-tuning. The analysis of mRNA levels in

response to nitrate under a number of experimental conditions (27

experimental datasets corresponding to 131 array, Canales et al,

2014) revealed that most of the phosphoprotein encoding genes

regulated by nitrate exhibit high mRNA levels. Specifically, 63%

have greater than average mRNA levels. Only 10% of them display

low mRNA levels. This finding suggests the genes coding for phos-

phoproteins that we identified are expressed and susceptible to

regulation by phosphorylation. Modulation at the phosphoprotein

level would be a regulatory layer independent of the nitrate-

mediated changes in mRNA levels. Our results also highlight the

need for integrated analysis with a multi-omics approach to deci-

pher plant responses to environmental cues.

Moreover, our phosphoproteomic analysis was performed assum-

ing most proteins were not differentially expressed, and the most

significant missing values were produced because they are below or

around the detection limit. Missing values are expected in phospho-

proteomics experiments using MS/MS methodology mainly due to

sensitivity issues and biological factors, including a low abundance

and transitory nature of phosphorylated proteins (Zhang et al, 2018).

Two approaches to deal with missing values are removing proteins

that have insufficient samples for analysis (i) or using an imputing

method for the missing values (ii). The first approach involved

perform the analyses on a limited part of the dataset and unnecessarily

Figure 9. Schematic model of the role of PIN2 and phosphorylation in root nitrate responses.

Nitrate treatments increase cytosolic calcium levels which interact with calcium-binding proteins such as kinases in the nitrate signaling pathway. Kinases
phosphorylate protein targets such as transcription factors that can mediate changes in gene expression in response to nitrate treatments. Nitrate can also cause
dephosphorylation of specific proteins. We showed nitrate treatments promote PIN2 dephosphorylation at S439 which impact membrane localization and polarity of the
PIN2 protein. This post-translational regulatory mechanism is important for modulation of primary root growth and lateral root density in response to nitrate
treatments. Arrows and bar-headed solid lines represent activation or inhibition in response to nitrate, respectively. Dashed arrows indicate proposed connections. A
working model (depicted in synopsis image) was constructed with the BioRender.com software.
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excluding data. Thus, replace the missing values with a selected strat-

egy avoids apparent mathematic problems (infinite fold-change

values) or excludes a large part of the data. We selected the MinProp

method explicitly designed for the low-abundant nature of these

absences and impute the left-censored data appropriately. The main

limitation of this approach is that missing values can also occur

throughout the entire range of values and left-censored methods had

been described as less effective with this type of missing values (Lazar

et al, 2016). Thus, imputing below a detection limit may inappropri-

ately take values too small and influence statistical analysis.

It is now clear that auxin plays a central role in the plant root

response to changes in nitrate availability. Nitrate regulates primary

root growth, lateral root initiation, and elongation. Auxin in turn is

key during root development (Laskowski et al, 2008), particularly in

initiation and growth of lateral roots (Benkov�a et al, 2003). Several

reports show that auxin signaling, biosynthesis, transport, and accu-

mulation are affected during nitrate responses (Krouk et al, 2010; Ma

et al, 2014), and transcriptomic analyses demonstrate that genes

involved in auxin response are controlled by nitrate (Guti�errez et al,

2006; Vidal et al, 2010, 2013). The main nitrate transporter NRT1.1/

NPF6.3 can also transport auxin (Krouk et al, 2010; Mounier et al,

2013; Zhang et al, 2019). A recent study also showed that NRT1.1/

NPF6.3 negatively regulates the TAR2 auxin-biosynthetic gene and

the LAX3 auxin-influx transport gene at low nitrate concentrations,

repressing lateral root development (Maghiaoui et al, 2020). These

results suggest that an interplay between nitrate signaling and auxin

transport occurs at different levels (Krouk et al, 2011; Krouk, 2016;

Vega et al, 2019). Consistent with these findings, we found that the

molecular function “auxin transport” was overrepresented in our

cluster and network analyses. We showed that dephosphorylation of

PIN2 in a novel phosphosite is a part of a regulatory mechanism for

RSA responses triggered by nitrate. The phosphorylation/dephospho-

rylation of PIN proteins at specific sites (serine or threonine) located

in their higher loops has been shown to play important roles in modu-

lating PIN functions (Michniewicz et al, 2007; Dhonukshe et al, 2010;

Huang et al, 2010; Weller et al, 2017), including trafficking (Ganguly

et al, 2014). We showed that phosphorylation/dephosphorylation of

PIN2 at S439 is important for PIN2 plasma membrane localization in

epidermal and cortical cells in response to nitrate. Previous studies

have shown that changes in PIN2 membrane localization and polarity

interfere with PIN2 function in auxin transport with an impact on

RSA during alkaline stress (Xu et al, 2012) or low phosphate (Kumar

et al, 2015). In addition, recent studies showed that kinase cascade

modules 30-PHOSPHOINOSITIDE-DEPENDENT PROTEIN KINASE 1

(PDK1)-D6 PROTEIN KINASEs (D6PK) and PDK1-AGC1 kinase

PROTEIN KINASE ASSOCIATED WITH BRX (PAX) regulate auxin

distribution through PIN phosphorylation (Tan et al, 2020; Xiao &

Offringa, 2020). The phosphorylation of PIN affects PIN-mediated

auxin transport, which controls plant growth (Tan et al, 2020) and

other developmental processes (Xiao & Offringa, 2020). These results

suggest that PIN phosphorylation is part of a regulatory switch that

strictly controls the directional transport of auxin and subsequent

growth or developmental processes.

Our results suggest a model (Fig 9) in which nitrate promotes

dephosphorylation of PIN2, which then impacts localization and

auxin transport. Modulation of PIN2 function could affect growth of

primary and lateral roots for optimal nutrient uptake. Beyond this

new regulatory mechanism involving PIN2 protein, our

phosphoproteomics results identify novel proteins, which may be

interesting targets for future studies or biotechnological develop-

ments for improved nitrogen use efficiency or crop yield.

Materials and Methods

Plant material and growth conditions

Arabidopsis thaliana (L.) Heynh. Columbia-0 accession plants were

used as wild-type genotype in all experiments. The transgenic lines

PIN2::PIN2wt-GFP, PIN2::PIN2S439D-GFP and PIN2::PIN2S439A-GFP

were introduced into eir1-1 background (pin2 null mutant plants),

using strategies described previously. PIN2 lines were generated by

Gybson assembly as described (Gibson et al, 2009) using pGREEN

backbone vector (Hellens et al, 2000). PIN2::PIN2wt-GFP line was

generated by insertion of mGFP5 into PIN2 coding sequence at

nucleotide 1,215 from ATG (between Thr405 and Arg406) (Luschnig

et al, 1998; Xu & Scheres, 2005). For PIN2 promoter, 2,178 bp

upstream of the start codon was used. For the generations of PIN2::

PIN2S439D-GFP and PIN2::PIN2S439A-GFP lines, Serine 439 was

replaced by aspartate (PIN2S439D) or alanine (PIN2S439A) by site-

directed mutagenesis using Gibson Assembly.

Seeds were sterilized using 50% chlorine solution for 7 min and

washed with sterile distilled water three times. Then, 1,500 Arabidop-

sis seedlings were placed into a hydroponic system (Phytatrays) with

MS-modified basal salt media without N (Phytotechnology Laborato-

ries, M531) supplemented with 1 mM ammonium as the only N

source. Plants were grown under long-day photoperiods (16 h light/

8 h dark and a temperature of 22°C) for 14 days using a plant growth

incubator (Percival Scientific, Inc.). At day 15, plants were treated with

5 mM KNO3 or 5 mM KCl for different time periods as indicated, using

a protocol described previously (Vidal et al, 2010). For the phenotypic

study of root response to nitrate, plants were grown as described

above and were treated with 5 mM KNO3 or 5 mM KCl for 3 days.

Root architecture analysis

For root phenotyping, plants were scanned in plates using an Epson

Perfection V700 Photo scanner, and root length was measured using

Fiji (v1.52). Initiating and emerging lateral roots were analyzed

using DIC optics on a Nikon Eclipse 80i microscope, as described

(Vidal et al, 2010). The data were statistically analyzed in the

GraphPad Prism 8.0 Program.

Protein extraction, phosphopeptide enrichment, and mass
spectrometry analysis

Proteins were isolated from 1 g of frozen tissue per sample in each

experimental condition (2 biological replicates for nitrate treatments at

20 min (Col-0 roots) and 3 biological replicates for all other experi-

mental conditions). Each biological replicate consisted of a pool of

4.500 roots collected from Arabidopsis plants grown in independent

experiments under the same experimental conditions. Sample prepara-

tion and protein extraction were performed using previously described

methods (Walley et al, 2013, 2016). Phosphopeptide enrichment was

performed using 1% (w/v) colloidal CeO2 into an acidified peptide

solution at 1:10 (w/w). Mass spectrometry (MS) and peptide
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identification were based on protocols described previously (Facette

et al, 2013). Briefly, the generated spectra were analyzed on LTQ Velos

linear ion trap tandem mass spectrometer (Thermo Electron) and

phosphorylation sites were identified into a specific amino acid within

a peptide by using the variable modification localization score in

Agilent Spectrum Mill software (Chalkley & Clauser, 2012). Proteins

were grouped based on their shared, common phophopeptides using

principles of parsimony to address redundancy in proteins. Proteins

classified within the same group share the same subset of phospho-

peptides (Dataset EV5 and EV6). Phosphorotein levels were quantified

using spectral counting, as described previously (Walley et al, 2013,

2016). MS data were normalized using the total number of spectral

counts (nSPC) for each MS run. Expressed phosphoproteins were

defined by at least one SPC, after the application of quality score cutoff

in MS analysis, in minimum two of the tree biological replicates. Phos-

phoproteins with reverse protein sequence hit against the Arabidopsis

genome or quantified in only one experimental condition were also

eliminated, following the proteomic analysis pipeline described in DEP

(Zhang et al, 2018) and MSnBase (Gatto & Lilley, 2012) packages in R/

Bioconductor (Huber et al, 2015). To identify nitrate-regulated phos-

phoproteins in Arabidopsis roots, raw data were log-transformed,

quantile normalized, and the missing values were replaced by random

draws from a Gaussian distribution centered to minimal value in the

sample processing each experimental conditions using DEP in RStudio

(https://rstudio.com) and MEV (http://mev.tm4.org/) software. This

imputation method was selected based on the fact missing values in

our dataset were mainly on the left tail of the value distribution. The

group of proteins with missing values showed low-intensity values

(median value 2.36 in base log2) as compared with proteins without

missing values (median value 3.89 in base log2). Two-way analysis of

variance (significance: P < 0.05) was performed using RStudio. For

ANOVA, we used a model with abundance Y of a given phosphopro-

tein i calculated as Yi = b0 + b1N + b2Ti + b3N-Ti + e, where b0 is the

global mean, and where b1, b2, and b3 are the effects of the nitrate

treatment, the time and the interaction between these two factors (N–

Ti), respectively. The variable e corresponds to the unexplained vari-

ance. We selected the group of phosphoproteins significantly affected

by N or N–Ti (P < 0.05, Dataset EV3), and we organized them based

on changes at 5 or 20 min in response to nitrate. Encoded genes for

phosphoproteins showing a similar pattern were analyzed and visual-

ized using the average linkage hierarchical clustering performed in

Cluster 2.11 software, as described (Eisen et al, 1998).

Gene network analysis

Arabidopsis encoded genes from our phosphoproteomics data were

used. The gene network was generated by integrating different infor-

mation, including protein–protein interactions from BioGRID

(Oughtred et al, 2018), predicted protein–DNA interactions of

Arabidopsis TFs (DapSeq) (Weirauch et al, 2014; Bartlett et al,

2017), Arabidopsis metabolic pathways (KEGG), and miRNA-RNA,

as described previously (Guti�errez et al, 2006). This analysis also

included predicted regulatory connections between phosphoproteins

that we detected and kinase families. A kinase-substrate analysis,

identifying the most significant phosphorylation motifs and their

predicted kinases was performed using the Motif-X algorithm

(Schwartz & Gygi, 2005) and PhosPhAt Kinase-Target interactions

database (Zulawski et al, 2012, 2014). The resulting network was

visualized using CYTOSCAPE software (Shannon et al, 2003). Clus-

ter and Gene Ontology analysis into the network were achieved with

ClusterMaker (Morris et al, 2011), ClueGO (Bindea et al, 2009), and

Bingo (Maere et al, 2005) tools for biological networks in cytoscape.

Phos-Tag PAGE and Western immunoblotting

Affinity-based SDS–PAGE identification of phosphorylated PIN2

isoforms was performed based on the protocols by Komis et al, (2014)

and the protocol given by the Phos-tag manufacturer (FUJIFILM Waco

Chemicals) with slight modifications. Arabidopsis seedlings were

grown on modified MS plates with ammonium as the only N source

for 7 days. Next, seedlings (n ≥ 40) were transferred to 5 mM nitrate

amended agar plates and were incubated for 6 h in light. Root samples

were collected and homogenized in liquid N2 and then extracted with

extraction buffer—50 mM Tris–HCl, pH 7.5, 150 mM NaCl, 0.5%

Triton X-100, 10 µMMG-132, and 0.1 mM PMSF—supplemented with

protease and phosphatase inhibitor cocktails (Roche). Buffer volumes

were adjusted to fresh weight (100 µl/100 mg tissues). Homogenized

samples were centrifuged (4⁰C, 15 min, 19,098 g), and the supernatant

was aliquoted (50 µg protein/20–25 µl) and incubated at 45°C for

5 min in the presence of SDS loading buffer. Next, samples were

loaded onto an acrylamide, Bis-Tris/HCl gel containing 50 µmol/l

Phos-tagTM (AAL-107) pendant and Zn2+ as cation. Electrophoresis

was run at 15 mA/gel for 5–6 h or until the proteins are nicely sepa-

rated (usually until the 25 kDa prestained protein marker just exit the

gel assembly). Next, gels were incubated for 30 min in transfer buffer

containing 10 mM EDTA and were blotted to PVDF membranes using

Tris/Glycine transfer buffer (25 mM Tris, 192 mM Glycine, 5%

methanol). After blocking with 5% milk in TBST, the membrane was

probed with a-PIN2 antibody (1:1,000) for 2 h (RT) followed by a-
rabbit IgG-HRP (1:15,000) (Amersham) for 1 h (RT). In Western blot

analysis, the membrane was probed with monoclonal GFP-antibody

Living Colors� (1:5,000) for 2 h (RT) followed by a-mouse IgG-HRP

(1:10,000) for 1 h (RT). After treating the membrane with Supersignal

West Femto western chemiluminescent HRP substrate (Thermo Fisher

Scientific), luminescent signals were detected using a liquid nitrogen-

cooled charge-coupled device camera (Bio-Rad). Digital images were

analyzed, and signals were quantified using the Fiji software.

Confocal microscopy and image analysis

eir1-1 mutants complemented with PIN2::PIN2wt-GFP, PIN2::

PIN2S439A-GFP, PIN2::PIN2S439D-GFP were grown in modified MS

plates with 1 mM ammonium as the only N source. 2-week-old

plants were treated with 5 mM nitrate or without treatment (control

conditions) for 2 h. Roots were stained with propidium iodide (PI)

and mounted on a slice for microscopic analysis. Images were

acquired with Zeiss LSM880 confocal microscope with Airyscan

equipped with a 40×Plan-Apochromat water immersion objective.

Fluorescence signals for GFP (excitation 488 nm, emission 507 nm)

and PI (excitation 536 nm, emission 617 nm) were detected.

For image quantification (PIN2-GFP fluorescence intensity

measurements), maximum intensity projections of confocal pictures

were used in epidermis and cortex cells. Images were handled and

analyzed with Zeiss blue (v3.1) and Fiji (v1.52) software. The

experiment was performed with 3 biological replicates and 2-3 roots

per experimental conditions were analyzed in each replicate.
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Data availability

Phosphoproteomic datasets (raw spectra) had been deposited at the

Mass Spectrometry Interactive Virtual Environment (MassIVE)

repository with the MassIVE ID MSV000086215 (http://massive.uc

sd.edu/MSV000086215).

Expanded View for this article is available online.
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