
Decomposing Permutation Automata
Ismaël Jecker #

Institute of Science and Technology, Klosterneuburg, Austria

Nicolas Mazzocchi # Ñ

IMDEA Software Institute, Madrid, Spain

Petra Wolf # Ñ

Fachbereich IV, Informatikwissenschaften, Universität Trier, Germany

Abstract
A deterministic finite automaton (DFA) A is composite if its language L(A) can be decomposed
into an intersection

⋂k

i=1 L(Ai) of languages of smaller DFAs. Otherwise, A is prime. This notion
of primality was introduced by Kupferman and Mosheiff in 2013, and while they proved that we
can decide whether a DFA is composite, the precise complexity of this problem is still open, with a
doubly-exponential gap between the upper and lower bounds. In this work, we focus on permutation
DFAs, i.e., those for which the transition monoid is a group. We provide an NP algorithm to decide
whether a permutation DFA is composite, and show that the difficulty of this problem comes from the
number of non-accepting states of the instance: we give a fixed-parameter tractable algorithm with
the number of rejecting states as the parameter. Moreover, we investigate the class of commutative
permutation DFAs. Their structural properties allow us to decide compositionality in NL, and even
in LOGSPACE if the alphabet size is fixed. Despite this low complexity, we show that complex
behaviors still arise in this class: we provide a family of composite DFAs each requiring polynomially
many factors with respect to its size. We also consider the variant of the problem that asks whether
a DFA is k-factor composite, that is, decomposable into k smaller DFAs, for some given integer
k ∈ N. We show that, for commutative permutation DFAs, restricting the number of factors makes
the decision computationally harder, and yields a problem with tight bounds: it is NP-complete.
Finally, we show that in general, this problem is in PSPACE, and it is in LOGSPACE for DFAs with a
singleton alphabet.

2012 ACM Subject Classification Theory of computation → Regular languages; Theory of compu-
tation → Problems, reductions and completeness

Keywords and phrases Deterministic finite automata (DFA), Permutation automata, Commutative
languages, Decomposition, Regular Languages, Primality

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2021.18

Related Version A version of this paper with all proofs is available at https://arxiv.org/abs/
2107.04683

Funding Ismaël Jecker : Marie Skłodowska-Curie Grant Agreement No. 754411.
Nicolas Mazzocchi: BOSCO project PGC2018-102210-B-I00 (MCIU/AEI/FEDER, UE), BLOQUES-
CM project S2018/TCS-4339, and MINECO grant RYC-2016-20281.
Petra Wolf : DFG project FE 560/9-1.

1 Introduction

Compositionality is a fundamental notion in numerous fields of computer science [3]. This
principle can be summarised as follows: Every system should be designed by composing
simple parts such that the meaning of the system can be deduced from the meaning of
its parts, and how they are combined. For instance, this is a crucial aspect of modern
software engineering: a program split into simple modules will be quicker to compile and
easier to maintain. The use of compositionality is also essential in theoretical computer

© Ismaël Jecker, Nicolas Mazzocchi, and Petra Wolf;
licensed under Creative Commons License CC-BY 4.0

32nd International Conference on Concurrency Theory (CONCUR 2021).
Editors: Serge Haddad and Daniele Varacca; Article No. 18; pp. 18:1–18:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ismael.jecker@ist.ac.at
mailto:nicolas.mazzocchi@imdea.org
https://mazzocchi.github.io/
mailto:wolfp@informatik.uni-trier.de
https://www.wolfp.net/
https://orcid.org/0000-0003-3097-3906
https://doi.org/10.4230/LIPIcs.CONCUR.2021.18
https://arxiv.org/abs/2107.04683
https://arxiv.org/abs/2107.04683
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Decomposing Permutation Automata

0,0 1,0

0,1 1,1

A :

g1, g2, i r1, g2, i

r2, g1, i r1, r2

r1

g1

r1

g1

r2g2 r2g2

0,x 1,x

x,0 x,1

A1 :

A2 :

r2, i
g1, g2

g2, i
r1, r2

r1, i
g1, g2

g1, i
r1, r2

r1

g1

r2

g2

Figure 1 DFAs recognising specifications. Accepting states are drawn in black. The DFAs A1 and
A2 check that every request of the first, resp. second, client is eventually granted, A checks both.

science: it is used to avoid the state explosion issues that usually happen when combining
parallel processes together, and also to overcome the scalability issues of problems with a
high theoretical complexity. In this work, we study compositionality in the setting of formal
languages: we show how to make languages simpler by decomposing them into intersections
of smaller languages. This is motivated by the model-checking problems. For instance,
the LTL model-checking problem asks, given a linear temporal logic formula φ and a finite
state machine M , whether every execution of M satisfies φ. This problem is decidable, but
has a high theoretical complexity (PSPACE) with respect to the size of φ [1]. If φ is too
long, it cannot be checked efficiently. This is where compositionality comes into play: if we
can decompose the specification language into an intersection of simple languages, that is,
decompose φ into a conjunction φ = φ1 ∧ φ2 ∧ · · · ∧ φk of small specifications, it is sufficient
to check whether all the φi are satisfied separately.

Our aim is to develop the theoretical foundations of the compositionality principle for
formal languages by investigating how to decompose into simpler parts one of the most basic
model of abstract machines: deterministic finite automata (DFAs). We say that a DFA A is
composite if its language can be decomposed into the intersection of the languages of smaller
DFAs. More precisely, we say that A is k-factor composite if there exist k DFAs (Ai)1≤i≤k

with less states than A such that L(A) =
⋂k

i=1 L(Ai). We study the two following problems:

DFA Decomp
Given: DFA A.
Question: Is A composite?

DFA Bound-Decomp
Given: DFA A and integer k ∈ N.
Question: Is A k-factor composite?

The next example shows that decomposing DFAs can result in substantially smaller machines.

Example. Consider Figure 1. We simulate the interactions between a system and two
clients by using finite words on the alphabet {r1, r2, g1, g2, i}: At each time step, the system
either receives a request from a client (r1, r2), grants the open requests of a client (g1, g2), or
stays idle (i). A basic property usually required is that every request is eventually granted.
This specification is recognised by the DFA A, which keeps track in its state of the current
open requests, and only accepts if none is open when the input ends. Alternatively, this
specification can be decomposed into the intersection of the languages defined by the DFAs A1
and A2: each one checks that the requests of the corresponding client are eventually granted.
While in this precise example both ways of defining the specification are comparable, the
latter scales drastically better than the former when the number of clients increases: Suppose
that there are now n ∈ N clients. In order to check that all the requests are granted with a
single DFA, we need 2n states to keep track of all possible combinations of open requests,
which is impractical when n gets too big. However, decomposing this specification into an
intersection yields n DFAs of size two, one for each client. Note that, while in this specific
example the decomposition is obvious, in general computing such a conjunctive form can be
challenging: currently the best known algorithm needs exponential space.

I. Jecker, N. Mazzocchi, and P. Wolf 18:3

Decomp Bound-Decomp

DFAs EXPSPACE [9] PSPACE
Permutation DFAs NP/FPT PSPACE

Commutative permutation DFAs NL NP-complete
Unary DFAs LOGSPACE [7] LOGSPACE

Figure 2 Complexity of studied problems with containing classes, with our contribution in bold.

DFAs in hardware. Our considered problems are of great interest in hardware implement-
ations of finite state machines [13] where realizing large DFAs poses a challenge [5]. In [2]
the authors describe a state machine language for describing complex finite state hardware
controllers, where the compiled state tables can automatically be input into a temporal logic
model checker. If the control mechanism of the initial finite state machine can be split up
into a conjunction of constraints, considering a decomposition instead could improve this
work-flow substantially. Decomposing a complex DFA A can lead to a smaller representation
of the DFA in total, as demonstrated in the previous example in Figure 1, and on top of
that the individual smaller DFAs Ai in the decomposition L(A) =

⋂k
i=1 L(Ai) can be placed

independently on a circuit board, as they do not have to interact with each other and only
need to read their common input from a global bus and signal acceptance as a flag to the bus.
This allows for a great flexibility in circuit designs, as huge DFAs can be broken down into
smaller blocks which fit into niches giving space for inflexible modules such as CPU cores.

Reversible DFAs. We focus our study on permutation DFAs, which are DFAs whose transition
monoids are groups: each letter induces a one-to-one map from the state set into itself. These
DFAs are also called reversible DFAs [8, 14]. Reversibility is stronger than determinism: this
powerful property allows to deterministically navigate back and forth between the steps of a
computation. This is particularly relevant in the study of the physics of computation, since
irreversibility causes energy dissipation [10]. Remark that in the setting of DFAs, this power
results in a loss of expressiveness: contrary to more powerful models (for instance Turing
machines), reversible DFAs are less expressive than general DFAs.

Related work. The DFA Decomp problem was first introduced in 2013 by Kupferman
and Moscheiff [9]. They proved that it is decidable in EXPSPACE, but left open the exact
complexity: the best known lower bound is hardness for NL. They gave more efficient
algorithms for restricted domains: a PSPACE algorithm for permutation DFAs, and a PTIME
algorithm for normal permutation DFAs, a class of DFAs that contains all commutative
permutation DFAs. Recently, the Decomp problem was proved to be decidable in LOGSPACE
for DFAs with a singleton alphabet [7]. The trade-off between number and size of factors was
studied in [12], where automata showing extreme behavior are presented, i.e., DFAs that can
either be decomposed into a large number of small factors, or a small number of large factors.

Contribution. We expand the domain of instances over which the Decomp problem is
tractable. We focus on permutation DFAs, and we propose new techniques that improve
the known complexities. All proofs omitted due to space restrictions can be found in the
full version. Unless specified otherwise, the complexity of our algorithms do not depend on
the size of the alphabet of the DFA. Our results, summarised by Figure 2, are presented as
follows.

CONCUR 2021

18:4 Decomposing Permutation Automata

Section 3. We give an NP algorithm for permutation DFAs, and we show that the complexity
is directly linked to the number of non-accepting states. This allows us to obtain a fixed-
parameter tractable algorithm with respect to the number of non-accepting states (Theorem 1).
Moreover, we prove that permutation DFAs with a prime number of states cannot be
decomposed (Theorem 2).

Section 4. We consider commutative permutation DFAs, where the Decomp problem was
already known to be tractable, and we lower the complexity from PTIME to NL, and even
LOGSPACE if the size of the alphabet is fixed (Theorem 9). While it is easy to decide whether
a commutative permutation DFA is composite, we show that rich and complex behaviours
still appear in this class: there exist families of composite DFAs that require polynomially
many factors to get a decomposition. More precisely, we construct a family (Am

n)m,n∈N of
composite DFAs such that Am

n is a DFA of size nm that is (n − 1)m−1-factor composite but
not (n − 1)m−1 − 1-factor composite (Theorem 10). Note that, prior to this result, only
families of composite DFAs with sublogarithmic width were known [7].

Section 5. Finally, we study the Bound-Decomp problem. High widths are undesirable
for practical purposes: dealing with a huge number of small DFAs might end up being more
complex than dealing with a single DFA of moderate size. The Bound-Decomp problem
copes with this issue by limiting the number of factors allowed in the decompositions. We
show that this flexibility comes at a cost: somewhat surprisingly, this problem is NP-complete
for commutative permutation DFAs (Theorem 17), a setting where the Decomp problem is
easy. We also show that this problem is in PSPACE for the general setting (Theorem 16),
and in LOGSPACE for unary DFAs i.e. with a singleton alphabet (Theorem 18).

2 Definitions

We denote by N the set of non-negative integers {0, 1, 2, . . .}. For a word w = w1w2 . . . wn

with wi ∈ Σ for 1 ≤ i ≤ n, we denote with wR = wn . . . w2w1 the reverse of w. Moreover, for
every σ ∈ Σ, we denote by #σ(w) the number of times the letter σ appears in w. A natural
number n > 1 is called composite if it is the product of two smaller numbers, otherwise we
say that n is prime. Two integers m, n ∈ N are called co-prime if their greatest common
divisor is 1. We will use the following well known results [6, 11]:

Bertrand’s Postulate. For all n > 3 there is a prime number p satisfying n < p < 2n − 2.

Bézout’s Identity. For every pair of integers m, n ∈ N, the set {λm − µn | λ, µ ∈ N}
contains exactly the multiples of the greatest common divisor of m and n.

Deterministic finite automata. A deterministic finite automaton (DFA hereafter) is a
5-tuple A = ⟨Σ, Q, qI , δ, F ⟩, where Q is a finite set of states, Σ is a finite non-empty
alphabet, δ : Q × Σ → Q is a transition function, qI ∈ Q is the initial state, and F ⊆ Q is
a set of accepting states. The states in Q \ F are called rejecting states. We extend δ to
words in the expected way, thus δ : Q × Σ∗ → Q is defined recursively by δ(q, ε) = q and
δ(q, w1w2 · · · wn) = δ(δ(q, w1w2 · · · wn−1), wn). The run of A on a word w = w1 . . . wn is
the sequence of states s0, s1, . . . , sn such that s0 = qI and for each 1 ≤ i ≤ n it holds that
δ(si−1, wi) = si. Note that sn = δ(qI , w). The DFA A accepts w iff δ(qI , w) ∈ F . Otherwise,

I. Jecker, N. Mazzocchi, and P. Wolf 18:5

A rejects w. The set of words accepted by A is denoted L(A) and is called the language of
A. A language accepted by some DFA is called a regular language.

We refer to the size of a DFA A, denoted |A|, as the number of states in A. A DFA A is
minimal if every DFA B such that L(B) = L(A) satisfies |B| ≥ |A|.

Composite DFAs. We call a DFA A composite if there exists a family (Bi)1≤i≤k of DFAs
with |Bi| < |A| for all 1 ≤ i ≤ k such that L(A) =

⋂
1≤i≤k L(Bi) and call the family

(Bi)1≤i≤k a decomposition of A. Note that, all Bi in the decomposition satisfy |Bi| < |A|
and L(A) ⊆ L(Bi). Such DFAs are called factors of A, and (Bi)1≤i≤k is also called a
k-factor decomposition of A. The width of A is the smallest k for which there is a k-factor
decomposition of A, and we say that A is k-factor composite iff width(A) ≤ k. We call a
DFA A prime if it is not composite. We call a DFA A trim if all of its states are accessible
from the initial state. As every non-trim DFA A is composite, we assume all given DFAs to
be trim in the following.

We call a DFA a permutation DFA if for each letter σ ∈ Σ, the function mapping each state
q to the state δ(q, σ) is a bijection. For permutation DFAs the transition monoid is a group.
Further, we call a DFA A = ⟨Σ, Q, qI , δ, F ⟩ a commutative DFA if δ(q, uv) = δ(q, vu) for every
state q and every pair of words u, v ∈ Σ∗. In the next sections we discuss the problem of
being composite for the classes of permutation DFA, and commutative permutation DFAs.

3 Decompositions of Permutation DFAs

In this section, we study permutation DFAs. Our main contribution is an algorithm for the
Decomp problem that is FPT with respect to the number of rejecting states:

▶ Theorem 1. The Decomp problem for permutation DFAs is in NP. It is in FPT with
parameter k, being the number of rejecting states of DFA A, solvable in time O(2kk2 · |A|).

We prove Theorem 1 by introducing the notion of orbit-DFAs: an orbit-DFA AU of a DFA
A is the DFA obtained by fixing a set of states U of A as the initial state, and letting the
transition function of A act over it (thus the states of AU are subsets of the state space of
A). We prove three key results:

A permutation DFA is composite if and only if it can be decomposed into its orbit-DFAs
(Corollary 6);
A permutation DFA A can be decomposed into its orbit-DFAs if and only if for each of
its rejecting states q, there exists an orbit-DFA AU smaller than A that covers q, that is,
one of the states of AU contains q and no accepting states of A (Lemma 7);
Given a permutation DFA A and a rejecting state q, we can determine the existence of
an orbit-DFA covering q in non-deterministic time O(|A|2), and in deterministic time
O(2kk · |A|), where k is the number of rejecting states of A (Lemma 8, (apx) Algorithm 1).

These results directly imply Theorem 1. We also apply them to show that the Decomp
problem is trivial for permutation DFAs with a prime number of states.

▶ Theorem 2. Let A be a permutation DFA with at least one accepting state and one rejecting
state. If the number of states of A is prime, then A is prime.

3.1 Proof of Theorem 1
Consider a DFA A = ⟨Σ, Q, qI , δ, F ⟩. We extend δ to subsets U ⊆ Q in the expected way:

δ(U, w) = {q ∈ Q | q = δ(p, w) for some p ∈ U} for every word w ∈ Σ∗.

CONCUR 2021

18:6 Decomposing Permutation Automata

1
2

3

4
5

6
A :

b

b
a

a

a

a a

a
b b

234

456

126

135

a

a

a a

b

bb123

156 345

246

a

a

aa

b

b b

14 36

25b

a

a

a

b

23561245

1346 b

a

a

a

b

Figure 3 A DFA A together with some of its orbit-DFAs. Accepting states are depicted in black,
an orbit-DFA can be obtained by setting a subset containing a 1 as an initial state. For instance the
orbit-DFAs A{1,2,3} and A{1,5,6} form a decomposition of A.

The orbit of U is the collection CU = {δ(U, w) ⊆ Q | w ∈ Σ∗} of subsets of Q that can be
reached from U by the action of δ. If the subset U ⊆ Q contains the initial state qI of A, we
define the orbit-DFA AU = ⟨Σ, CU , U, δ, C′⟩, where the state space CU is the orbit of U , and
the set C′ of accepting states is composed of the sets U ′ ∈ CU that contain at least one of
the accepting states of A : U ′ ∩ F ̸= ∅. Note that AU can alternatively be defined as the
standard subset construction starting with the set U ⊆ Q as initial state. The definition of
the accepting states guarantees that L(A) ⊆ L(AU):

▶ Proposition 3. Every orbit-DFA AU of a DFA A satisfies L(A) ⊆ L(AU).

Example. Let us detail the orbits of the DFA A depicted in Figure 3. This DFA contains
six states, and generates the following non-trivial orbits on its subsets of states:

The 15 subsets of size 2 are split into two orbits: one of size 3, and one of size 12;
The 20 subsets of size 3 are split into three orbits: two of size 4, and one of size 12;
The 15 subsets of size 4 are split into two orbits, one of size 3, and one of size 12.

Figure 3 illustrates the four orbits smaller than |A|: they induce seven orbit-DFAs, obtained
by setting as initial state one of the depicted subsets containing the initial state 1 of A.

In order to prove that a DFA is composite if and only if it can be decomposed into its
orbit-DFAs, we prove that every factor B of a permutation DFA A can be turned into an
orbit-DFA AU that is also a factor of A, and satisfies L(AU) ⊆ L(B). Our proof is based on
a known result stating that factors can be turned into permutation DFAs:

▶ Lemma 4 ([9, Theorem 7.4]). Let A be a permutation DFA. For every factor B of A, there
exists a permutation DFA C satisfying |C| ≤ |B| and L(A) ⊆ L(C) ⊆ L(B).

We strengthen this result by showing how to transform factors into orbit-DFAs:

▶ Lemma 5. Let A be a permutation DFA. For every factor B of A, there exists an orbit-DFA
AU of A satisfying |AU | ≤ |B| and L(A) ⊆ L(AU) ⊆ L(B).

Proof. Let A = ⟨Σ, Q, qI , δ, F ⟩ be a permutation DFA, and let B be a factor of A. By
Lemma 4, there exists a permutation DFA B′ = ⟨Σ, S, sI , η, G⟩ satisfying |B′| ≤ |B| and
L(A) ⊆ L(B′) ⊆ L(B). We build, based on B′, an orbit-DFA AU of A satisfying the statement.

We say that a state q ∈ Q of A is linked to a state s ∈ S of B′, denoted q ∼ s, if there
exists a word u ∈ Σ∗ satisfying δ(qI , u) = q and η(sI , u) = s. Let f : S → 2Q be the function
mapping every state s ∈ S to the set f(s) ⊆ Q containing all the states q ∈ Q that are linked
to s (i.e. satisfying q ∼ s). We set U = f(sI). In particular, the initial state qI of A is in U

since δ(qI , ε) = qI and η(sI , ε) = sI . We show that the orbit-DFA AU satisfies the desired
conditions: |AU | ≤ |B′| and L(A) ⊆ L(AU) ⊆ L(B′).

I. Jecker, N. Mazzocchi, and P. Wolf 18:7

First, we show that |AU | ≤ |B′| by proving that the function f defined earlier maps S

surjectively into the orbit of U , which is the state space of AU . Since both A and B′ are
permutation DFAs, we get that for all q ∈ Q, s ∈ S and a ∈ Σ, then q ∼ s if and only if
δ(q, a) ∼ η(s, a) holds.1 Therefore, for every word v ∈ Σ∗, f(η(sI , v)) = δ(f(sI), v) = δ(U, v).
This shows that, as required, the image of the function f is the orbit of U , and f is surjective.

To conclude, we show that L(A) ⊆ L(AU) ⊆ L(B′). Proposition 3 immediately implies
that L(A) ⊆ L(AU). Therefore it is enough to show that L(AU) ⊆ L(B′). Let v ∈ L(AU).
By definition of an orbit-DFA, this means that the set δ(U, v) contains an accepting state qF

of A. Since, as stated earlier, f(η(sI , v)) = δ(U, v), this implies (by definition of the function
f) that the accepting state qF of A is linked to η(sI , v), i.e., there exists a word v′ ∈ Σ∗

such that δ(qI , v′) = qF and η(sI , v′) = η(sI , v). Then δ(qI , v′) = qF implies that v′ is in the
language of A. Moreover, since L(A) ⊆ L(B′) by supposition, v′ is also accepted by B′, i.e.,
η(sI , v′) is an accepting state of B′. Therefore, since η(qI , v′) = η(qI , v), the word v is also
in the language of B′. This shows that L(AU) ⊆ L(B′), which concludes the proof. ◀

As an immediate corollary, every decomposition of a permutation DFA can be transformed,
factor after factor, into a decomposition into orbit-DFAs.

▶ Corollary 6. A permutation DFA is composite if and only if it can be decomposed into its
orbit-DFAs.

Orbit cover. Given a rejecting state q ∈ Q \ F of A, we say that the orbit-DFA AU covers
q if |AU | < |A|, and AU contains a rejecting state U ′ ⊆ Q that contains q. Remember that,
by definition, this means that U ′ contains no accepting state of A, i.e., U ′ ∩ F = ∅. We
show that permutation DFAs that can be decomposed into their orbit-DFAs are characterized
by the existence of orbit-DFAs covering each of their rejecting states.

▶ Lemma 7. A permutation DFA A is decomposable into its orbit-DFAs if and only if every
rejecting state of A is covered by an orbit-DFA A′ of A satisfying |A′| < |A|.

Proof. Let A = ⟨Σ, Q, qI , δ, F ⟩ be a permutation DFA. We prove both implications.
Suppose that A can be decomposed into its orbit-DFAs (AUi)1≤i≤k, and let q ∈ Q \ F be

a rejecting state of A. We show that q is covered by every orbit-DFA AUi that rejects a word
w ∈ Σ∗ satisfying δ(qI , w) = q. Formally, let w ∈ Σ∗ be a word satisfying δ(qI , w) = q. Then
w /∈ L(A) =

⋂n
i=1 L(AUi), hence there exists 1 ≤ i ≤ n such that w /∈ L(AUi). Let U ′ ⊆ Q

be the state visited by AUi after reading w. Then, by applying the definition of an orbit-DFA,
we get that q ∈ U ′ since δ(qI , w) = q, and U ′ ∩ F = ∅ since U ′ is a rejecting state of AUi

(as w /∈ L(AUi)). Therefore, AUi covers q. Moreover, |AUi | < |A| since AUi is a factor of A.
Conversely, let us fix an enumeration q1, q2, . . . , qm of the rejecting states of A, and suppose

that for all 1 ≤ i ≤ m there is an orbit-DFA AUi of A that covers qi and satisfies |AUi | < |A|.
Let (Ui.j)1≤j≤ni be an enumeration of the subsets in the orbit of Ui that contain the initial
state qI of A. We conclude the proof by showing that S = {AUi.j | 1 ≤ i ≤ m, 1 ≤ j ≤ ni} is
a decomposition of A. Note that we immediately get |AUi.j | = |AUi | < |A| for all 1 ≤ i ≤ m

and 1 ≤ j ≤ ni. Moreover, Proposition 3 implies L(A) ⊆
⋂

A′∈S L(A′). To complete the
proof, we show that

⋂
A′∈S L(A′) ⊆ L(A). Let w ∈ Σ∗ be a word rejected by A. To prove the

desired inclusion, we show that there is a DFA A′ ∈ S that rejects w. Since w /∈ L(A), the

1 Remark that for general DFAs we only get that q ∼ s implies δ(q, a) ∼ η(s, a) from the determinism. It
is the backward determinism of the permutation DFAs A and B′ that gives us the reverse implication.

CONCUR 2021

18:8 Decomposing Permutation Automata

run of A on w starting from the initial state ends in a rejecting state qi, for some 1 ≤ i ≤ m.
By supposition the orbit-DFA AUi covers qi, hence the orbit of Ui contains a set U ′ ⊆ Q that
contains qi and no accepting state. Note that there is no guarantee that AUi rejects w: while
the set δ(Ui, w) contains qi, it is not necessarily equal to U ′, and might contain accepting
states. However, as A is a permutation DFA, we can reverse all of the transitions of A to get
a path labeled by the reverse of w that starts from U ′ (that contains qi), and ends in one of
the sets Ui.j (that contains qI).2 Therefore, by reversing this path back to normal, we get
that δ(Ui.j , w) = U ′, hence the orbit-DFA AUi.j ∈ S rejects w. Therefore, every word rejected
by A is rejected by an orbit-DFA A′ ∈ S, which shows that

⋂
A′∈S L(A′) ⊆ L(A). ◀

This powerful lemma allows us to easily determine whether a permutation DFA is composite
if we know its orbits. For instance, the DFA A depicted in Figure 3 is composite since the
orbit-DFA A{1,2,3} covers its five rejecting states. Following the proof of Lemma 7, we get
that (A{1,2,3}, A{1,5,6}) is a decomposition of A, and so is (A{1,2,6}, A{1,3,5}).

To conclude, we give an algorithm checking if a rejecting state is covered by an orbit-DFA.

▶ Lemma 8. Given a permutation DFA A and a rejecting state q, we can determine
the existence of an orbit-DFA that covers q in nondeterministic time O(k · |A|2), and in
deterministic time O(2kk · |A|2), where k is the number of rejecting states of A.

Proof. We can decide in NP whether there exists an orbit-DFA AU of A that covers p: we
non-deterministically guess among the set of rejecting states of A a subset U ′ containing p.
Then, we check in polynomial time that the orbit of U ′ is smaller than |A|. This property can
be checked in time O(|A|2). Since A is trim, in the orbit of U ′ there is a set U containing the
initial state of A. Moreover, since A is a permutation DFA, U and U ′ induce the same orbit.
Hence, p is covered by the orbit-DFA AU . Finally, we can make this algorithm deterministic
by searching through the 2k possible subsets U ′ of the set of rejecting states of A. ◀

3.2 Proof of Theorem 2
Thanks to the notion of orbit DFAs we are able to prove that a permutation DFA which has
a prime number of states with at least one accepting and one rejecting, is prime.

Proof. Let A = ⟨Σ, Q, qI , δ, F ⟩ be a trim permutation DFA with a state space Q of prime
size that contains at least one accepting state and one rejecting state. We show that the
only orbit of A smaller than |Q| is the trivial orbit {Q}. This implies that A cannot be
decomposed into its orbit-DFAs, which proves that A is prime by Lemma 5.

Let us consider a strict subset U1 ̸= ∅ of the state space Q, together with its orbit
CU1 = {U1, U2, . . . , Um}. We prove that m ≥ |Q|. First, we show that all the Ui have the
same size: since Ui is an element of the orbit of U1, there exists a word ui ∈ Σ∗ satisfying
δ(U1, ui) = Ui, and, as every word in Σ∗ induces via δ a permutation on the state space,
|Ui| = |δ(U1, ui)| = |U1|. Second, for every q ∈ Q, we define the multiplicity of q in CU1 as
the number λ(q) ∈ N of distinct elements of CU1 containing the state q. We show that all the
states q have the same multiplicity: since A is trim, there exists a word uq ∈ Σ∗ satisfying
δ(qI , uq) = q, hence uq induces via δ a bijection between the elements of CU1 containing qI

and those containing q, and λ(q) = λ(δ(qI , uq)) = λ(qI). By combining these results, we
obtain m · |U1| = Σm

i=1|Ui| = Σq∈Qλ(q) = λ(qI) · |Q|. Therefore, as |Q| is prime by supposition,
either m or |U1| is divisible by |Q|. However, U1 ⊊ Q, hence |U1| < |Q|, which shows that m

is divisible by |Q|. In particular, we get m ≥ |Q|, which concludes the proof. ◀

2 Remark that, if A is not a permutation DFA, then some states might not have incoming transitions for
every letter. Thus, the reversal of w might not be defined.

I. Jecker, N. Mazzocchi, and P. Wolf 18:9

4 Decompositions of Commutative Permutation DFAs

We now study commutative permutation DFAs: a DFA A = ⟨Σ, Q, qI , δ, F ⟩ is commutative if
δ(q, uv) = δ(q, vu) for every state q and every pair of words u, v ∈ Σ∗. Our main contribution
is an NL algorithm for the Decomp problem for commutative permutation DFAs. Moreover,
we show that the complexity goes down to LOGSPACE for alphabets of fixed size.

▶ Theorem 9. The Decomp problem for commutative permutation DFAs is in NL, and in
LOGSPACE when the size of the alphabet is fixed.

The proof of Theorem 9 is based on the notion of covering word: a word w ∈ Σ∗ covers a
rejecting state q of a DFA A = ⟨Σ, Q, qI , δ, F ⟩ if δ(q, w) ̸= q, and for every λ ∈ N, the state
δ(q, wλ) is rejecting. We prove two related key results:

A commutative permutation DFA is composite if and only if each of its rejecting states is
covered by a word (Lemma 12).
We can decide in NL (LOGSPACE when the size of the alphabet is fixed) if a given rejecting
state of a DFA is covered by a word (Lemma 13, and Algorithm 2 in appendix)

These results immediately imply Theorem 9. We conclude this section by showing an upper
bound on the width and constructing a family of DFAs of polynomial width.

▶ Theorem 10. The width of every composite permutation DFA is smaller than its size.
Moreover, for all m, n ∈ N such that n is prime, there exists a commutative permutation
DFA of size nm and width (n − 1)m−1.

We show that the width of a commutative permutation DFA is bounded by its number of
rejecting states (Lemma 12). Then, for each m, n ∈ N with n prime, we define a DFA Am

n

of size nm that can be decomposed into (n − 1)m−1 factors (Proposition 14), but not into
(n − 1)m−1 − 1 (Proposition 15).

4.1 Proof of Theorem 9
The proof is based on the following key property of commutative permutation DFAs: In a
permutation DFA A, every input word acts as a permutation on the set of states, generating
disjoint cycles, and if A is commutative these cycles form an orbit.

▶ Proposition 11. Let A = ⟨Σ, Q, qI , δ, F ⟩ be a commutative permutation DFA. For all
u ∈ Σ∗, the sets ({δ(q, uλ) | λ ∈ N})q∈Q partition Q and form an orbit of A.

Proof. Let A = ⟨Σ, Q, qI , δ, F ⟩ be a commutative permutation DFA. Given u ∈ Σ∗ and
q ∈ Q, the sequence of states δ(q, u), δ(q, u2), . . . , δ(q, ui) visited by applying δ on iterations
of u eventually repeats i.e. δ(q, ux) = δ(q, uy) = p for some x, y ∈ N and p ∈ Q. Since A is a
permutation DFA, it is both forward and backward deterministic, thus the set of visited states
{δ(q, uλ) | λ ∈ N} is a cycle that contain both p and q. The collection ({δ(q, uλ) | λ ∈ N})q∈Q

forms an orbit of A by commutativity. Formally, for all u, v ∈ Σ∗ and every q ∈ Q, we have:
δ({δ(q, uλ)|λ ∈ N}, v) = {δ(q, uλv)|λ ∈ N} = {δ(q, vuλ)|λ ∈ N} = {δ(δ(q, v), uλ)|λ ∈ N}. ◀

We proved with Corollary 6 and Lemma 7 that a permutation DFA is composite if and
only if each of its rejecting states is covered by an orbit-DFA. We now reinforce this result
for commutative permutation DFAs. As stated before, we say that a word u ∈ Σ∗ covers
a rejecting state q of a DFA A = ⟨Σ, Q, qI , δ, F ⟩ if u induces from q a non-trivial cycle
composed of rejecting states: δ(q, u) ̸= q, and δ(q, uλ) is rejecting for all λ ∈ N. Note that
the collection ({δ(q, uλ) | λ ∈ N})q∈Q forms an orbit of A by Proposition 11. We show that
we can determine if A is composite by looking for words covering its rejecting states.

CONCUR 2021

18:10 Decomposing Permutation Automata

▶ Lemma 12. For every k ∈ N, a commutative permutation DFA A is k-factor composite if
and only if there exist k words that, together, cover all the rejecting states of A.

Proof. Let A = ⟨Σ, Q, qI , δ, F ⟩ be a commutative permutation DFA and k ∈ N. We start
by constructing k factors based on k covering words. Suppose that there exist k words
u1, u2, . . . , uk such that every rejecting state q ∈ Q \ F is covered by one of the ui. Note that
all the ui covering at least one state q do not act as the identity on Q (since δ(q, ui) ̸= q),
therefore we suppose, without loss of generality, that none of the ui acts as the identity
on Q. For every 1 ≤ i ≤ k, let Ui = {δ(qI , uλ

i) | λ ∈ N}. We show that (AUi)1≤i≤k is a
decomposition of A. As none of the ui acts as the identity on Q, Proposition 11 implies that
every AUi is smaller than A. Moreover, Proposition 3 implies that L(A) ⊆ L(AUi), hence
L(A) ⊆

⋂k
j=1 L(AUj). To conclude, we show that

⋂k
j=1 L(AUj) ⊆ L(A). Let u /∈ L(A). By

supposition, there exists 1 ≤ i ≤ k such that ui covers δ(qI , u). As a consequence, the set

δ(Ui, u) = δ({δ(qI , uλ
i) | λ ∈ N}, u) = {δ(qI , uλ

i u) | λ ∈ N} = {δ(qI , uuλ
i) | λ ∈ N}

= {δ(δ(qI , u), uλ
i) | λ ∈ N}

contains no accepting state of A, hence it is a rejecting state of AUi . As a consequence, we
get u /∈ L(AUi) ⊇

⋂k
j=1 L(AUj), which proves that

⋂k
j=1 L(AUj) ⊆ L(A).

We now construct k covering words based on k factors. Suppose that A has a k-
factor decomposition (Bi)1≤i≤k. Lemma 4 directly implies that this decomposition can
be transformed into a decomposition (Ci)1≤i≤k of A, where Ci = ⟨Σ, Si, si

I , ηi, Gi⟩ are
permutation DFAs. For every 1 ≤ i ≤ k, we build a word ui based on Ci, we prove that every
rejecting state of A is covered by one of these ui. Consider 1 ≤ i ≤ k. Since Ci is a factor
of A, in particular |Ci| < |A|, hence there exist two input words vi, wi ∈ Σ∗ such that A
reaches different states on vi and wi, but Ci reaches the same state: δ(qI , vi) ̸= δ(qI , wi) but
ηi(si

I , vi) = ηi(si
I , wi). Note that both A and Ci are permutation DFAs, hence there exists a

power vκi
i of vi that induces the identity function on both state spaces Q and Si. We set

ui = wiv
κi−1
i , which guarantees that:

δ(qI , ui) = δ(δ(qI , wi), vκi−1
i) ̸= δ(δ(qI , vi), vκi−1

i) = δ(qI , vκi
i) = qI ;

ηi(si
I , ui) = ηi(ηi(si

I , wi), vκi−1
i) = ηi(ηi(si

I , vi), vκi−1
i) = ηi(si

I , vκi
i) = si

I .

In other words, ui moves the initial state qI of A, but fixes the initial state si
I of Ci.

We now prove that each rejecting state of A is covered by one of the ui. Let q ∈ Q \ F be
a rejecting state of A. Since A is trim, there exists a word uq ∈ Σ∗ such that δ(qI , uq) = q.
Then, as uq /∈ L(A) and (Ci)1≤i≤k is a decomposition of A, there exists 1 ≤ i ≤ k such that
uq /∈ L(Ci). We show that the word ui covers the rejecting state q: we prove that δ(q, ui) ̸= q,
and that δ(q, uλ

i) is rejecting for every λ ∈ N. First, since A is a commutative permutation DFA
and ui moves qI , we get that δ(q, ui) = δ(qI , uqui) = δ(qI , uiuq) ̸= δ(qI , uq) = q. Moreover,
for all λ ∈ N, Since uq /∈ L(Ci) by supposition and ui fixes si

I , the DFA Ci also rejects the word
uλ

i uq. Therefore, as L(A) ⊆ L(Ci), we finally get that δ(q, uλ
i) = δ(qI , uquλ

i) = δ(qI , uλ
i uq) is

a rejecting state of A. ◀

By Lemma 12, to conclude the proof of Theorem 9 we show that we can decide in NL
(and in LOGSPACE when the size of the alphabet is fixed) whether a given rejecting state of
a DFA is covered by a word (since in the Decomp problem we can afford to pick a covering
word for each state). As we consider commutative permutation DFAs, we can represent a
covering word by the number of occurrences of each letter, which are all bounded by |Q|.

▶ Lemma 13. Let A be a commutative permutation DFA and p a rejecting state.
1. We can determine the existence of a word covering p in space O(|Σ| · log |Q|);
2. We can determine the existence of a word covering p in NL;

I. Jecker, N. Mazzocchi, and P. Wolf 18:11

A2
5 :

a2

a1

a2

a1

a2

a1

a2

a1

a2

a1

a2

a1

a2

a1

a2

a1

a2

a1

a2

a1

a2

a1

a2

a1

a2

a1

a2

a1

a2

a1

a2

a1

a2

a1

a2

a1

a2

a1

a2

a1

a2

a1

a2

a1

a2

a1

a2

a1

a2

a1

a2

a2

a2

a2

a2

a2

a2

a2

a2

a2
A2

5.1 :
a1 a1 a1 a1

a1

A2
5.2 : a1 a1 a1 a1

a1

A2
5.3 : a1 a1 a1 a1

a1

A2
5.4 : a1, a2 a1, a2 a1, a2 a1, a2

a1, a2

a2

a2 a2 a2 a2

a2 a2

a2 a2 a2

a2 a2 a2

a2 a2

Figure 4 The DFA A2
5 recognising the language L2

5, together with its decomposition into four
non-trivial orbit-DFAs. Final states are depicted in black.

4.2 Proof of Theorem 10
As a direct consequence of Lemma 12, the width of every commutative permutation DFA A
is bounded by the number of rejecting states of A, hence, it is smaller than |A|. To conclude
the proof of Theorem 10, for all m, n ∈ N with n prime, we define a DFA Am

n of size nm

and width (n − 1)m−1 on the alphabet Σ = {a1, a2, . . . , am}. For all ℓ ∈ N, let [ℓ] denote the
equivalence class of ℓ modulo n. Let Lm

n ⊆ Σ∗ be the language composed of the words w

such that for at least one letter ai ∈ Σ the number #ai(w) of ai in w is a multiple of n, and
for at least one (other) letter aj ∈ Σ, the number #aj

(w) of aj in w is not a multiple of n:

Lm
n = {w ∈ Σ∗ | [#ai

(w)] = [0] and [#aj
(w)] ̸= [0] for some 1 ≤ i, j ≤ m}.

The language Lm
n is recognised by a DFA Am

n of size nm that keeps track of the value modulo
n of the number of each ai already processed. The state space of Am

n is the direct product
(Z/nZ)m of m copies of the cyclic group Z/nZ = ([0], [1], . . . , [n − 1]); the initial state is
([0], [0], . . . , [0]); the final states are the ones containing at least one component equal to [0] and
one component distinct from [0]; and the transition function increments the ith component
when an ai is read: δ(([j1], [j2], . . . , [jm]), ai) = ([j1], [j2], . . . , [ji−1], [ji + 1], [ji+1], . . . , [jm]).
Figure 4 illustrates the particular case n = 5 and m = 2.

To prove that the width of Am
n is (n − 1)m−1, we first show that the (n − 1)m−1 words

{a1aλ2
2 . . . aλm

m | 1 ≤ λi ≤ n − 1} cover all the rejecting states, thus by Lemma 12:

▶ Proposition 14. The DFA Am
n is (n − 1)m−1-factor composite.

Then, we prove that there exist no word that covers two states among the (n − 1)m−1

rejecting states {([1], [k2], [k3], . . . , [km]) | 1 ≤ ki ≤ m − 1}. Therefore, we need at least
(n − 1)m−1 words to cover all of the states, thus by Lemma 12:

▶ Proposition 15. The DFA Am
n is not ((n − 1)m−1 − 1)-factor composite.

5 Bounded Decomposition

We finally study the Bound-Decomp problem: Given a DFA A and an integer k ∈ N encoded
in unary, can we determine whether A is decomposable into k factors? For the general
setting, we show that the problem is in PSPACE: it can be solved by non-deterministically
guessing k factors, and checking that they form a decomposition.

CONCUR 2021

18:12 Decomposing Permutation Automata

▶ Theorem 16. The Bound-Decomp problem is in PSPACE.
For commutative permutation DFAs, we obtain a better algorithm through the use of the

results obtained in the previous sections, and we show a matching hardness result.

▶ Theorem 17. The Bound-Decomp problem for commutative permutation DFAs is NP-
complete.
Both parts of the proof of Theorem 17 are based on Lemma 12: a commutative permutation
DFA is k-factor composite if and only if there exist k words covering all of its rejecting states.
We prove the two following results:

Bounded compositionnality is decidable in NP, as it is sufficient to non-deterministically
guess a set of k words, and check whether they cover all rejecting states (Lemma 19);
The NP-hardness is obtained by reducing the Hitting Set problem, a well known NP-
complete decision problem. We show that searching for k words that cover the rejecting
states of a DFA is as complicated as searching for a hitting set of size k (Lemma 20).

We finally give a LOGSPACE algorithm based on known results for DFAs on unary alphabets [7].

▶ Theorem 18. The Bound-Decomp problem for unary DFAs is in LOGSPACE.

Sketch. Recall that a unary DFA A = ⟨{a}, Q, qI , δ, F ⟩ consists of a chain of states leading
into one cycle of states. The case where the chain is non-empty is considered in Lemmas 8
and 10 of [7]. We prove that the criteria of these lemmas can be checked in LOGSPACE. If
the chain of A is empty, then A is actually a commutative permutation DFA. In this case,
by Proposition 11 for every word u = ai ∈ {a}∗, the orbit of the set {δ(qI , uλ) | λ ∈ N}
is a partition ρ on Q, and every set in ρ has the same size sρ. Both sρ and |ρ| divide |Q|.
For u = ai where i and |Q| are co-prime, the induced orbit DFA has a single state and thus
cannot be a factor of A. Further, if i1 < |Q| divides i2 < |Q|, then all states covered by ai1

are also covered by ai2 . Hence, w.l.o.g., we only consider words of the form ai where i is
a maximal divisor of |Q| in order to generate orbit-DFAs of A that are candidates for the
decomposition. Now, let pj1

1 · pj2
2 · . . . · pjm

m = |Q| be the prime factor decomposition of |Q|.
By Lemma 12 we have that A is k-factor composite if and only if a selection of k words
from the set W = {a|Q|/pi | 1 ≤ i ≤ m} cover all the rejecting states of A. As |W| = m is
logarithmic in |Q|, we can iterate over all sets in 2W of size at most k in LOGSPACE using a
binary string indicating the characteristic function. By Lemma 13, checking whether a state
q ∈ Q is covered by the current collection of k words can also be done in LOGSPACE. ◀

5.1 Proof of Theorem 17
By Lemma 12, a commutative permutation DFA A is k-factor composite if and only if its
rejecting states can be covered by k words. As we can suppose that covering words have size
linear in |A| (see proof of Lemma 13), the Bound-Decomp problem is decidable in NP: we
guess a set of k covering words and check in polynomial time if they cover all rejecting states.

▶ Lemma 19. The Bound-Decomp problem for commutative permutation DFAs is in NP.

We show that the problem is NP-hard by a reduction from the Hitting Set problem.

▶ Lemma 20. The Bound-Decomp problem is NP-hard for commutative permutation DFAs.

Proof. The proof goes by a reduction from the Hitting Set problem (HIT for short), known
to be NP-complete [4]. The HIT problem asks, given a finite set S = {1, 2, . . . , n} ⊆ N, a
finite collection of subsets F = {C1, C2, . . . , Cm} ⊆ 2S , and an integer k ∈ N, whether there

I. Jecker, N. Mazzocchi, and P. Wolf 18:13

q2=0

q2=0

q1=0 q1=0 q1=0 q1=0 q1=0

q2=1

q2=1

q1=1 q1=1 q1=1 q1=1 q1=1

q2=2

q2=2

q1=2 q1=2 q1=2 q1=2 q1=2

q4=1

q4=0

q3 = 0 q3=1 C1={1} q3=2 C2={1, 2} q3=3 C3={2} q3=4

Figure 5 DFA representing the instance of HIT with S = {1, 2} and F = {{1}, {1, 2}, {2}} using
µ = 3 and τ = 5. Accepting states are filled black while rejecting states are sectored.

is a subset X ⊆ S with |X| ≤ k and X ∩ Ci ̸= ∅ for all 1 ≤ i ≤ m. We describe how to
construct a DFA A = ⟨Σ, Q, qI , δ, F ⟩ that is (k + 1)-factor composite if and only if the HIT
instance ⟨S, F , k⟩ has a solution.

Automaton construction. To be constructed, the automaton A requires µ, τ defined as
the smallest prime numbers that fulfill n < µ and m < τ and 2 < µ < τ . By Bertrand’s
postulate [11], µ and τ have a value polynomial in m + n. The state space of A is defined as
Q = {0, 1, . . . , µ − 1} × {0, 1, . . . , µ − 1} × {0, 1, . . . , τ − 1} × {0, 1} with qI = (0, 0, 0, 0) as
initial state. Let us define the subset of states Q⊥ = {(q1, q2, q3, q4) ∈ Q | q4 = 0} to encode
instances of HIT and the subset Q⊤ = {(q1, q2, q3, q4) ∈ Q | q4 = 1} which is a copy of Q⊥
with minor changes. The example in Figure 5 gives some intuition on the construction of A.
The DFA A is defined over the alphabet Σ = {a, b, c, d} with the transition function defined
for each state q = (q1, q2, q3, q4) by δ(q, a) = (q1 + 1 mod µ, q2, q3, q4), δ(q, b) = (q1, q2 + 1
mod µ, q3, q4), δ(q, c) = (q1, q2, q3 + 1 mod τ, q4) and δ(q, d) = (q1, q2, q3, q4 + 1 mod 2).
Note that, A can be seen as a product of four prime finite fields. In particular, for every
q3 ∈ {0, . . . , τ −1} the subset of states {(x, y, q3, 0) ∈ Q⊥ | 0 ≤ x, y ≤ µ−1} can be seen as the
direct product of two copies of the field of order µ (a.k.a. Fµ), thus inheriting the structure of
a Fµ-vector space of origin (0, 0, q3, 0). We use these τ disjoint vector spaces to represent the
collections of F thanks to the acceptance of states. More precisely, each collection Ci ∈ F is
encoded through the vector space {(x, y, i, 0) ∈ Q⊥ | 1 ≤ i ≤ m} and each v ∈ Ci is encoded
by the non-acceptance of all states belonging to the line {(x, y, i, 0) ∈ Q⊥ | y = vx mod µ}.
In Figure 5, each Ci is presented by an instance of F3 × F3 and each v ∈ Ci is depicted by
rejecting states with the same emphasized sector. Since τ > m, there are extra vector spaces
for which all states are accepting i.e. {(q1, q2, q3, 0) ∈ Q⊥ | q3 /∈ {1, 2, . . . , m}} ⊆ F . The
acceptance of states of Q⊤ is defined similarly as for Q⊥ except that the origins of vector
spaces are accepting in Q⊤ (see Figure 5). Formally, the rejecting states of A is defined by
F = R⊥ ∪ R⊤ where R⊥ = {(q1, q2, q3, 0) ∈ Q⊥ | q2 = vq1 mod µ, 1 ≤ q3 ≤ m, v ∈ Cq3}
and R⊤ = {(q1, q2, q3, 1) ∈ Q⊤ | (q1, q2, q3, 0) ∈ R⊥, q1 ̸= 0, q2 ̸= 0}. All other states are
accepting, i.e., we set F = Q \ F . So, the acceptance of the subsets of states Q⊥ and Q⊤
only differ by O ∩ Q⊥ ⊆ F and O ∩ Q⊤ ⊆ F where O = {(0, 0, q3, q4) ∈ Q | q3 ∈ {1, . . . , m}}.

The cornerstone which holds the connection between the two problems is the way the
rejecting states of O can be covered. In fact, since Q⊤ mimics Q⊥ for states in Q \ O, all
rejecting states of Q \ O can be covered by the single word d ∈ Σ. In addition, most words do

CONCUR 2021

18:14 Decomposing Permutation Automata

not cover any rejecting states of A, as stated by the following claim. Hereafter, we say that
a word w ∈ Σ∗ is concise when it satisfies #σ(w) < hσ for all σ ∈ Σ, where hσ ∈ {2, µ, τ} is
the size of the cycle induced by σ.

▷ Claim 21. Let u ∈ Σ∗ be a concise word that covers some rejecting state of A:
1. u must belong either in {d}∗ or in {a, b}∗ \ ({a}∗ ∪ {b}∗).
2. u covers some rejecting state of Q⊤ iff u covers all rejecting states of Q⊤ iff u = d.
3. u covers (0, 0, i, 0) ∈ O iff u ∈ {a, b}∗ and #b(u) ≡ v · #a(u) mod µ for some v ∈ Ci.

Proof of Item 1. The statement is a direct consequence of the following:
i. Every concise word u satisfying #c(u) > 0 covers no rejecting state of A;
ii. Every concise word u ∈ {a}∗ ∪ {b}∗ covers no rejecting state of A;
iii. Every concise word u satisfying #a(u) > 0 and #d(u) > 0 covers no rejecting state of A;
iv. Every concise word u satisfying #b(u) > 0 and #d(u) > 0 covers no rejecting state of A.
In order to prove these four properties, we now fix a state q = (q1, q2, q3, q4) ∈ Q, and we
show that, in each case, iterating a word of the corresponding form starting from q will
eventually lead to an accepting state:

(i.) Let u be a concise word satisfying #c(u) > 0. Since u is concise we have #c(u) < τ .
Hence, as τ is prime, there exists λ ∈ N such that λ · #c(u) ≡ −q3 mod τ . Therefore the
third component of δ(q, uλ) is 0, thus it is an accepting state of A.

(ii.) Let u ∈ {a}∗ be a concise word (if u ∈ {b}∗ instead, the same proof works by
swapping the roles of q1 and q2). Since u is concise we have 0 < #a(u) < µ. Hence, as µ is
prime there exists λ1, λ2 ∈ N satisfying λ1 · #a(u) ≡ −q1 mod µ and λ2 · #a(u) ≡ −q1 + 1
mod µ. Therefore, if q2 ≠ 0, we get that δ(q, uλ1) = (0, q2, q3, q4) is an accepting state of A,
and if q2 = 0, we get that δ(q, uλ2) = (1, 0, q3, q4) is an accepting state of A.

(iii.) Let u be a concise word satisfying #a(u) > 0 and #d(u) > 0. Since µ is a prime
number greater than 2, there exist α ∈ N such that µ − 2α = 1, thus 2α ≡ −1 mod µ.
Moreover, since u is concise we have #d(u) = 1 and #a(u) < µ. Hence there exists β ∈ N
such that β · #a(u) ≡ 1 mod µ. Therefore, if we let λ = 2αβq1 + µ(1 − p4), we get

#a(uλ) = 2α · β#a(u) · q1 + µ(1 − p4) · #a(u) ≡ −q1 mod µ;
#d(uλ) = 2αβq1 + µ · (1 − p4) ≡ 1 − p4 mod 2;

As a consequence, the first component of δ(q, uλ) is 0 and its fourth component is 1, hence it
is an accepting state of A.

(iv.) Let u be a concise word satisfying #b(u) > 0 and #d(u) > 0. Then we can prove
that u does not cover q as in point (3), by swapping the roles of q1 and q2. ◁

Proof of Item 2. First, remark that d is the only concise word of {d}∗. By construction of A,
we have (q1, q2, q3, 0) ∈ F if and only if (q1, q2, q3, 1) ∈ F holds for all (q1, q2, q3, q4) ∈ Q \ O.
Thus, for all (q1, q2, q3, q4) ∈ F \ O we have

{δ((q1, q2, q3, q4), dλ) | λ ∈ N} = {(q1, q2, q3, x) | x ∈ {0, 1}} ⊆ F .

Hence, if u = d then u covers all rejecting states of of Q⊤.
Now suppose that u ∈ Σ∗ covers some rejecting state q = (q1, q2, q3, 1) ∈ Q⊤. By Item (1.),

either u ∈ {d}∗ or u ∈ {a, b}∗ \ ({a}∗ ∪ {b}∗). We show that u ∈ {d}∗, by supposing that
#a(u) > 0 and deriving a contradiction. Since µ is prime, there exists λ ∈ N satisfying
λ · #a(u) ≡ −q1 mod µ. Therefore the first component of δ(q, uλ) is 0 and its fourth
component is 1, hence it is accepting, which contradicts the assumption that u covers q. ◁

I. Jecker, N. Mazzocchi, and P. Wolf 18:15

Proof of Item 3. Consider a rejecting state q = (0, 0, i, 0) ∈ O. First, remark that no word in
{d}∗ covers q since (0, 0, i, 1) is accepting. Therefore, by Item (1.), the only concise words
that can cover q are the words u ∈ {a, b}∗ \ ({a}∗ ∪{b}∗). For such a word u, since µ is prime,
by Bezout’s identity there exists 0 < v < µ satisfying #b(x) ≡ v · α#a(x) mod µ, hence

{δ((0, 0, i, 0), uλ) | λ ∈ N} = {(q1, q2, i, 0) ∈ Q | q2 ≡ vq1 mod µ}.

If v ∈ Ci, all the states in this set are rejecting, thus u covers (0, 0, i, 0), but if v /∈ Ci, all
these states except from (0, 0, i, 0) are accepting, thus u does not cover (0, 0, i, 0). ◁

We finally conclude the proof of Lemma 20 by proving that the sets of the initial instance
of HIT are hitting if and only if the automaton A is composite.

If sets are hitting then the automaton is composite. Thanks to Lemma 12, we can show
that A is (k +1)-factor composite by finding (k +1) words, namely w⊤, w1, w2, . . . , wk, which
all together cover all the rejecting states of A. From the HIT solution X = {v1, v2, . . . , vk} ⊆ S,
we define wj = abvj for all 1 ≤ j ≤ k. We prove now that for all 1 ≤ i ≤ m, the rejecting state
(0, 0, i, 0) ∈ O is covered by some wj . Since X ∩ Ci ̸= ∅, there exists vj ∈ X ∩ Ci. Moreover,
by definition of wj , we have wj ∈ {a, b}∗ and #b(wj) ≡ vj · #a(wj) mod µ. Therefore, by
Claim 21.3, (0, 0, i, 0) is covered by wj . Finally, we take w⊤ = d which covers all rejecting
states F \ O by Claim 21.2.

If the automaton is composite then the sets are hitting. Suppose that A is (k + 1)-factor
composite. Hence, by Lemma 12, there exists a set W of at most k + 1 words such that
all rejecting states of A can be covered by some w ∈ W . In addition, we assume that each
w ∈ W is concise: if this is not the case, we can remove the superfluous letter to obtain
a concise words that cover the same rejecting states. As a consequence of Claim 21.2, to
cover the rejecting states of Q⊤, the set W needs the word d, thus W contains at most k

words in {a, b}∗. Moreover, by Claim 21.3, for every 1 ≤ i ≤ m, to cover (0, 0, i, 0) ∈ O the
set W needs a word ui ∈ {a, b}∗ satisfying #b(ui) ≡ vi · #a(ui) mod µ for some vi ∈ Ci.
To conclude, we construct X = {vi | 1 ≤ i ≤ m} which is a solution since |X| ≤ k due to
W ∩ {d}∗ ̸= ∅, and for each C ∈ F we have X ∩ C ̸= ∅. ◀

6 Discussion

We introduced in this work powerful techniques to treat the Decomp problem for permutation
DFAs. We discuss how they could help solving the related questions that remain open:

How do the insights obtained by our results translate to the general setting?
How can we use our techniques to treat other variants of the Decomp problem?

Solving the general setting. The techniques presented in this paper rely heavily on the
group structure of transition monoids of permutation DFAs, thus cannot be used directly
in the general setting. They still raise interesting questions: Can we also obtain an FPT
algorithm with respect to the number of rejecting states in the general setting? Some known
results point that bounding the number of states is not as useful in general as it is for
permutation DFAs: while it is known that every permutation DFA with a single rejecting
state is prime [9], there exist (non-permutation) DFAs with a single rejecting state that are
composite. However, we still have hope to find a way to adapt our techniques: maybe, instead
of trying to cover rejecting states, we need to cover rejecting behaviours of the transition

CONCUR 2021

18:16 Decomposing Permutation Automata

monoid. Another way to improve the complexity in the general setting would be to bound
the width of DFAs: we defined here a family of DFAs with polynomial width, do there
exist families with exponential width? If this is not the case (i.e., every composite DFA has
polynomial width), we would immediately obtain a PSPACE algorithm for the general setting.

Variants of the Decomp problem. In this work, we focused on the Bound-Decomp
problem, that limits the number of factors in the decompositions. Numerous other restrictions
can be considered. For instance, the Fragmentation problem bounds the size of the factors:
Given a DFA A and k ∈ N, can we decompose A into DFAs of size smaller than k? Another
interesting restriction is proposed by the Compression problem, that proposes a trade-off
between limiting the size and the number of the factors: given a DFA A, can we decompose A
into DFAs (Ai)1≤i≤k satisfying Σn

i=1|Ai| < |A|? How do these problems compare to the ones
we studied? We currently conjecture that the complexity of the Fragmentation problem
matches the Decomp problem, while the complexity of the Compression problem matches
the Bound-Decomp problem: for commutative permutation DFAs, the complexity seems to
spike precisely when we limit the number of factors.

References
1 Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT Press, 2008.
2 Edmund M. Clarke, David E. Long, and Kenneth L. McMillan. A language for compositional

specification and verification of finite state hardware controllers. Proceedings of the IEEE,
79(9):1283–1292, 1991. doi:10.1109/5.97298.

3 Willem P. de Roever, Hans Langmaack, and Amir Pnueli, editors. Compositionality: The Signi-
ficant Difference, International Symposium, COMPOS’97, Bad Malente, Germany, September
8-12, 1997. Revised Lectures, volume 1536 of Lecture Notes in Computer Science. Springer,
1998. doi:10.1007/3-540-49213-5.

4 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., USA, 1979.

5 Stephen Gould, Ernest Peltzer, Robert Matthew Barrie, Michael Flanagan, and Darren
Williams. Apparatus and method for large hardware finite state machine with embedded
equivalence classes, 2007. US Patent 7,180,328.

6 G. H. Hardy. An introduction to the theory of numbers. Bulletin of the American Mathematical
Society, 35(6):778–818, November 1929. URL: https://projecteuclid.org:443/euclid.
bams/1183493592.

7 Ismaël Jecker, Orna Kupferman, and Nicolas Mazzocchi. Unary prime languages. In Javier
Esparza and Daniel Král, editors, 45th International Symposium on Mathematical Foundations
of Computer Science, MFCS 2020, August 24-28, 2020, Prague, Czech Republic, volume
170 of LIPIcs, pages 51:1–51:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.MFCS.2020.51.

8 Michal Kunc and Alexander Okhotin. Reversibility of computations in graph-walking automata.
In Krishnendu Chatterjee and Jirí Sgall, editors, Mathematical Foundations of Computer
Science 2013 - 38th International Symposium, MFCS 2013, Klosterneuburg, Austria, August
26-30, 2013. Proceedings, volume 8087 of Lecture Notes in Computer Science, pages 595–606.
Springer, 2013. doi:10.1007/978-3-642-40313-2_53.

9 Orna Kupferman and Jonathan Mosheiff. Prime languages. Inf. Comput., 240:90–107, 2015.
doi:10.1016/j.ic.2014.09.010.

10 Rolf Landauer. Irreversibility and heat generation in the computing process. IBM J. Res.
Dev., 5(3):183–191, 1961. doi:10.1147/rd.53.0183.

11 Jaban Meher and M Ram Murty. Ramanujan’s proof of Bertrand’s postulate. The American
Mathematical Monthly, 120(7):650–653, 2013. doi:10.4169/amer.math.monthly.120.07.650.

https://doi.org/10.1109/5.97298
https://doi.org/10.1007/3-540-49213-5
https://projecteuclid.org:443/euclid.bams/1183493592
https://projecteuclid.org:443/euclid.bams/1183493592
https://doi.org/10.4230/LIPIcs.MFCS.2020.51
https://doi.org/10.1007/978-3-642-40313-2_53
https://doi.org/10.1016/j.ic.2014.09.010
https://doi.org/10.1147/rd.53.0183
https://doi.org/10.4169/amer.math.monthly.120.07.650

I. Jecker, N. Mazzocchi, and P. Wolf 18:17

12 Alon Netser. Decomposition of safe languages. Amirim Research Project report from the
Hebrew University, 2018.

13 Volnei A. Pedroni. Finite State Machines in Hardware: Theory and Design (with VHDL and
SystemVerilog). The MIT Press, 2013.

14 Jean-Eric Pin. On reversible automata. In Imre Simon, editor, LATIN ’92, 1st Latin American
Symposium on Theoretical Informatics, São Paulo, Brazil, April 6-10, 1992, Proceedings,
volume 583 of Lecture Notes in Computer Science, pages 401–416. Springer, 1992. doi:
10.1007/BFb0023844.

A Algorithm: Section 3

Algorithm 1 NP-algorithm for the Decomp problem for permutation DFAs.

Function isComposite(A = ⟨Σ, Q, qI , δ, F ⟩ : permutation DFA)
foreach p ∈ Q \ F do

guess U with {p} ⊆ U ⊆ Q \ F /* guess rejecting state U of some
orbit-DFA, such that U contains rejecting state p of A */

if not cover(A, p, U) then return False
return True

Function cover(A = ⟨Σ, Q, qI , δ, F ⟩ : permutation DFA, p ∈ Q \ F , U ⊆ Q \ F)
Cold

U = ∅
CU := {U}
while CU ̸= Cold

U and |CU | < |Q| do
Cold

U := CU

CU := CU ∪ {δ(S, σ) | S ∈ CU , σ ∈ Σ}
if |CU | ≥ |Q| then return False /* check that orbit-DFA is factor */
foreach S ∈ CU do

if qI ∈ S then return True /* check that U is reachable from the
inital state of the orbit-DFA */

return False

CONCUR 2021

https://doi.org/10.1007/BFb0023844
https://doi.org/10.1007/BFb0023844

18:18 Decomposing Permutation Automata

B Algorithm: Section 4

Algorithm 2 Deterministic and non-deterministic version of the algorithm solving the
Decomp problem for commutative permutation DFAs.

Function isComposite(A = ⟨Σ, Q, qI , δ, F ⟩ : commutative permutation DFA)
foreach p ∈ Q \ F do

cover_found:=False
foreach q ∈ Q \ F with q ̸= p do

if cover(A, p, q) then cover_found:=True /* covering p with wp,q */

if not cover_found then return False /* no cover found for p */

return True /* all state p are covered */

Function cover(A = ⟨Σ, Q, qI , δ, F ⟩ : commutative permutation DFA, p, q ∈ Q \ F)
s := q

while s ̸= p do /* eventually s = p A is a permuation DFA */
s := mimic(p, q, s) /* thus s := δ(s, wp,q) */
if s ∈ F then return False /* contradiction of covering */

return True /* encountered p again without hitting state in F */

Function mimic(A = ⟨Σ, Q, qI , δ, F ⟩ : commutative permutation DFA,
p, q, s ∈ Q \ F)

Assumption: |Σ| is fixed, let Σ = {σ1, σ2, . . . , σm}
foreach 1 ≤ x1 + · · · + x|Σ| ≤ |Q| do /* possible since |Σ| is fixed */

if δ(p, σx1
1 σx2

2 . . . σxm
m) = q then return δ(s, σx1

1 σx2
2 . . . σxm

m)

Function mimic(A = ⟨Σ, Q, qI , δ, F ⟩ : commutative permutation DFA,
p, q, s ∈ Q \ F)

Assumption: this algorithm is allowed to use non-determinism
p′ := p, ℓ := 0
while p′ ̸= q and ℓ < |Q| do

guess σ ∈ Σ /* iteratively contruct wp,q of length ℓ */
p′ := δ(p′, σ), s := δ(s, σ), ℓ := ℓ + 1

if ℓ = |Q| then return error else return s /* check q = δ(p, wp,q) */

I. Jecker, N. Mazzocchi, and P. Wolf 18:19

C Algorithms: Section 5

Algorithm 3 LOGSPACE-algorithm solving the Bound-Decomp problem for unary DFAs.

Function isBoundedComposite(A = ⟨{a}, Q, qI , δ, F ⟩ : unary DFA, integer k)
if A is permutation DFA then

foreach binaryString wordCombination ∈ {0, 1}log |Q| with ≤ k ones do
/* wordCombination represents current set in 2W */

if testWordCombination(A, wordCombination) then return True
/* Set of words covering all rejecting states found */

return False /* No covering set found */
else

call [7, Algorithm 1]

Function testWordCombination(A = ⟨{a}, Q, qI , δ, F ⟩ : unary DFA,
wordCombination : binaryString)

foreach q ∈ Q \ F do
if not cover (A, q, wordCombination) then return False /* Found state
not covered by current set */

return True
Function coverBySet(A = ⟨{a}, Q, qI , δ, F ⟩ : unary DFA, q ∈ Q \ F ,
wordCombination : binaryString)

foreach int i with wordCombination[i] ?= 1 do /* Go through all ≤ k

words in the set and test if q is covered */
compute p1 := i’th prime divisor of |Q|
if cover(A, q, δ(q, a|Q|/pi)) then return True /* Function cover from
Algorithm 2 */

return False

Algorithm 4 NP-algorithm solving the Bound-Decomp problem for commutative per-
mutation DFAs.

Function isBoundedComposite(commutative permutation DFA A, integer k)
guess W := {wi ∈ Σ≤|Q| | i ≤ k}
foreach p ∈ Q \ F do

if not cover(A, p, W) then return False /* Some p not covered? */

return True /* all p are covered */

Function cover(commutative permutation DFA A, state p, set of words W)
foreach wi ∈ W do

compute Qq,wi
:= {δ(q, wλ

i) | λ ≤ |Q|}
if Qq,wi

∩ F = ∅ then return True
return False

CONCUR 2021

	1 Introduction
	2 Definitions
	3 Decompositions of Permutation DFAs
	3.1 Proof of Theorem 1
	3.2 Proof of Theorem 2

	4 Decompositions of Commutative Permutation DFAs
	4.1 Proof of Theorem 9
	4.2 Proof of Theorem 10

	5 Bounded Decomposition
	5.1 Proof of Theorem 17

	6 Discussion
	A Algorithm: Section 3
	B Algorithm: Section 4
	C Algorithms: Section 5

