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Abstract
Invasive breast cancer tends to metastasize to lymph nodes and systemic sites. The management of metastasis has evolved 
by focusing on controlling the growth of the disease in the breast/chest wall, and at metastatic sites, initially by surgery 
alone, then by a combination of surgery with radiation, and later by adding systemic treatments in the form of chemotherapy, 
hormone manipulation, targeted therapy, immunotherapy and other treatments aimed at inhibiting the proliferation of cancer 
cells. It would be valuable for us to know how breast cancer metastasizes; such knowledge would likely encourage the devel-
opment of therapies that focus on mechanisms of metastasis and might even allow us to avoid toxic therapies that are currently 
used for this disease. For example, if we had a drug that targeted a gene that is critical for metastasis, we might even be able 
to cure a vast majority of patients with breast cancer. By bringing together scientists with expertise in molecular aspects 
of breast cancer metastasis, and those with expertise in the mechanical aspects of metastasis, this paper probes interesting 
aspects of the metastasis cascade, further enlightening us in our efforts to improve the outcome from breast cancer treatments.

Keywords Genes · Breast cancer evolution · Mitochondrial DNA · Cell clusters · Lymph node and systemic metastasis

Introduction

S. David Nathanson and Michael Detmar

The scientifically based management of breast cancer (BC) 
is dependent upon an understanding of the natural history 
of the disease. Initially only direct treatment of the diseased 
breast was possible, and surgery played a predominant role 
well into the middle of the twentieth century [1]. Treatment 
by radical mastectomy was offered as an ‘all or nothing’ 
response; the practitioner could do a drastic operation with 
the hope that all the cancer had been removed. Patients and 
their families to this day ask the surgeon whether he/she 
‘got it all.’ Until fairly recently that also meant removing all 
the lymph nodes in the axilla, even when the tumor had not 
spread to those nodes, exposing the patient to an uncomfort-
able series of postoperative complications, including severe 
lymphedema of the arm.

The procedures and processes that played out in the imag-
ination of physicians treating patients with BC were based 
upon a mechanical/anatomic understanding of metastasis. 
In a sense, everything in the metastatic process could be 
related to ‘tubes,’ namely, blood vessels and lymphatics, 
and their connections in the breast, axilla, and the systemic 
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circulation; tumor cells traveled through these vessels to 
other parts of the body where they might invade the end 
organ, such as the lung, liver, bone or brain, forming metas-
tases. Once vital organs had succumbed to these invasive 
tumors the patient would eventually die of the disease.

When radiation [2] was added to the armamentarium of 
treatment for BC, it was initially only used for locoregional 
management on the superficial chest, axilla and supraclavic-
ular areas, but it later became useful as well for direct treat-
ment of metastases in distant organs. The mechanisms of 
metastasis were still not explored beyond the understanding 
of an anatomic component; the ‘maps’ of metastasis were 
known to involve lymphatics, blood vessels, and end points, 
much like geographic maps that indicate roads, rivers, cities, 
mountains, coast lines and states.

Systemic treatment for BC, in the form of chemotherapy 
and endocrine manipulation, advanced the management 
of BC and was based upon a developing understanding of 
tumor cell biology, particularly the mechanisms by which 
tumor cells proliferated [3]. Proliferation did not explain 
why tumor cells metastasized, although cells that landed in 
other organs proliferated just like they had in the primary 
site in the breast. These systemic treatments were often 
directed at symptoms, such as bone pain.

Evolution and revolution in the management of BC has 
focused on multidisciplinary treatment and most of the 
advances have been directed at decreasing metastasis by 
decreasing proliferation; cells that do not proliferate seem 
not to metastasize. Many of the large clinical studies of the 
past few decades [4] have focused attention on preventing 
metastasis by treating the patient with adjuvant therapies, 
potentially killing microscopic metastases because that also 
improves survival. These advances have been accomplished 
knowing where but not how BC metastasizes.

We have begun a new phase in the systemic treatment of 
BC by focusing on molecular targets that can be attacked, 
such as the well-known HER-2/neu, which is based upon 
molecular aberrations in the tumor cells, but not proven to 
be involved in how tumors metastasize. Some molecular 
targets could be functionally important in how tumor cells 
metastasize without necessarily affecting their ability to pro-
liferate. Drugs targeting functionally important molecules 
could potentially stop tumors from metastasizing and result 
in prolonged survival of the patients.

Studies in animal models and in vitro at the dawn of the 
experimental metastasis era [5] showed the importance of 
tumor cell invasion into surrounding tissues, with adjusted 
biological processes already known in cell biology, such as 
chemotaxis, proteolytic enzyme secretion, expression and 
de-expression of adhesion molecules, the development of 
new blood and lymphatic vessels in and around tumors, and 
immune reactivity [6]. Early pharmacologic studies, using 

drugs that target biochemical stages in metastasis, show 
some promise but the field is in its infancy.

The guidelines for BC management, based upon high 
quality clinical studies have become very dependent upon 
molecular markers and on statistical models at predicting 
metastasis [7]. For example, the Oncotype DX test looks 
at 16 genes, some of which may be functionally important 
in metastasis, to predict which estrogen-receptor positive 
tumors that have not metastasized to regional lymph nodes 
(RLNs) are likely to metastasize to systemic sites [7]. Clini-
cians frequently use this and other gene studies to decide 
which patients might benefit from chemotherapy.

The Henry Ford Cancer Institute Mini Symposium on 
the mechanisms of BC metastasis was held in October 2019 
in San Francisco as part of the 8th International Cancer 
Metastasis Congress. The main objectives of this mini sym-
posium were to look at some recent studies on how tumor 
cells behave and travel to systemic sites, either through the 
RLN or directly into the systemic circulation at the site of 
the original tumor. The more we know about how BC metas-
tasizes at a microscopic, cellular and molecular level, the 
more likely we are to develop new, more effective ways of 
treating BC.

The potential role of the sentinel node 
in systemic metastasis

Timothy P. Padera

The presence of lymph node metastasis (LNM) is associated 
with worse clinical outcomes for cancer patients than those 
without LNM [8–10]. The question becomes: “Why is this 
true?” Is it because LNM is just a biomarker for the aggres-
siveness of the primary cancer, in which more aggressive 
tumors spread to distant sites and drive patient mortality [1, 
11]? Or is it that LNMs themselves can drive cancer progres-
sion by serving as a source for distant metastases [12–15]?

There is new urgency to address these questions as 4 ran-
domized clinical trials (three breast cancer studies-ASCOG-
Z0011, IBCSG 23-01, and AMAROS; one melanoma study 
MSLT-II) have shown that additional lymph node resection 
in patients beyond the sentinel lymph node does not provide 
any survival benefit when adjuvant radiation therapy and 
systemic therapies are used [16–20]. However, implicit in 
this strategy is the potential to leave cancer bearing lymph 
nodes in the patient that will require further therapy. Radia-
tion therapy of RLNs has been shown to improve outcomes 
(disease-free and cancer-specific survival) in early-stage BC 
[21, 22]. Thus, treatment of lymph nodes benefits patients, 
highlighting the importance of LNMs in driving cancer 
progression.
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To begin to understand how LNMs could be driving can-
cer progression, we asked whether it was possible for cancer 
cells that have colonized lymph nodes to escape the lymph 
node and seed distant metastatic sites. The main challenge in 
addressing this question is the ability to identify cancer cells 
that had been in a lymph node and then were later either cir-
culating in the blood or residing in a distant metastatic site. 
To overcome this challenge, we relied on a photoconvertible 
fluorescent protein, Dendra2, which when exposed to spe-
cific wavelengths of ultraviolet light can change the color of 
its emission from green to red [23]. After stably expressing 
Dendra2 in 3 murine cancer cell lines (4T1 triple negative 
breast carcinoma, B16F10 melanoma and SCCVII squamous 
cell carcinoma), each tumor type was grown orthotopically 
in syngeneic immunocompetent mice [24]. Once the cancer 
cells spontaneously metastasized from the primary tumor 
to the lymph node, the primary tumors were surgically 
resected. We then exposed only the tumor draining lymph 
node to the photoconverting light and were able to switch the 
color of the cancer cells in the lymph node from green to red 
with an efficiency of about 70%. After this photoconversion, 
the only source of red cancer cells in the animal could be 
from LNM. We then asked, can we identify red cancer cells 
from the lymph node circulating in the blood or in distant 
metastatic sites?

First, we collected all the blood from the animals and 
using flow cytometry, identified red cancer cells—which 
must have been in the lymph node at the time of photo-
conversion—as well as green cancer cells in the blood of 
animals containing photoconverted 4T1 and B16F10 LNMs, 
but identified only green cancer cells in the blood of ani-
mals containing photoconverted SCVII LNMs [24]. These 
data provided the first direct evidence that in some models, 
metastatic cancer cells in lymph nodes can escape the node 
and enter the blood circulation. Next, we collected the lungs 
from these animals, made sections through the whole lung 
and used confocal microscopy to spectrally scan through the 
tissue. Similar to the blood, we identified red cancer cells, as 
well as green cancer cells, in the lungs of animals containing 
photoconverted 4T1 and B16F10 LNMs, but identified only 
green cancer cells in the lungs of animals containing photo-
converted SCVII LNMs [24]. These data provide evidence 
that the circulating cancer cells that escape the lymph node 
can disseminate to a distant metastatic organ.

To determine if cancer cells can also escape directly 
from the primary tumor, we photoconverted a portion of 
4T1 primary tumors before they spread to the lymph node 
and identified circulating red cancer cells in the blood [24]. 
Thus, there are two sources of circulating cancer cells: those 
directly from the primary tumor and those from the LNM. 
Further experiments showed that cancer cells both directly 
from the primary tumor and those from spontaneous LNM 
can form metastatic lesions in the lungs [24].

The next question we addressed was how cancer cells 
escaped the lymph node. There are two possible exit routes. 
First, cancer cells could leave via the efferent lymphatic 
vessels, heading to the next echelon nodes upstream. Clini-
cally, it is observed that LNM can often be found in sec-
ondary draining lymph node beds and cancer cells have 
been observed in medullary lymphatic structures in meta-
static lymph nodes from extramammary Paget’s disease 
[25], making escape through the efferent lymphatic vessels 
plausible. However, by performing intravital microscopy 
of metastatic lymph nodes, we saw cancer cells migrating 
toward and interacting with lymph node blood vessels [24]. 
We established that cancer cells in our mouse model migrate 
and enter lymph node blood vessels, an additional route of 
escape for cancer cells out of the lymph node. Finally, look-
ing at a series of LNM from patients with head and neck 
squamous cell carcinomas, we identified cancer cells inside 
lymph node blood vessels in 7 out of 19 cases [24], confirm-
ing that cancer cells in some patients are able to escape the 
lymph node through nodal blood vessels.

Our data show it is possible for cancer cells to spontane-
ously disseminate to lymph nodes and then escape the lymph 
node to seed another metastatic site. The work also provides 
evidence that one method of escape from the lymph node is 
by invasion of the lymph node blood vessels by the cancer 
cells. Our work does not exclude other methods of dissemi-
nation to distant metastasis (e.g., direct invasion of primary 
tumor blood vessels, which we show is also occurring in the 
4T1 model) or other methods of escape from the lymph node 
(e.g., escape through efferent lymphatic vessels). It also does 
not suggest that every patient will have distant dissemination 
occurring from metastatic lymph nodes. However, our data 
did provide direct evidence for a new route for how cancer 
cells can spread throughout the body, one that had long been 
hypothesized [13, 26]. Our work was simultaneously cor-
roborated by data from the laboratories of Dontscho Ker-
jaschki and Michael Sixt, which showed similar findings 
using different methods [27].

Other recent work studying LNM in patients also sup-
ports the concept that cancer cells can metastasize from 
lymph node lesions. In a study of 17 colorectal cancer 
patients, Naxerova et al. built phylogenetic trees to relate 
the primary tumor, LNMs and distant metastases based on 
mutational evolution. In this study 6 out 17 patients showed 
LNM with close mutational relationships to distant metasta-
ses [28]. Similarly to our mouse data, this study also shows 
that some, but not all, patients may have distant metasta-
ses seeded by lymph node lesions. In a long-term study of 
3329 BC patients that underwent RLN biopsy, Nathanson 
et al., show that LNMs are predictive of distant metasta-
ses, whereas lymphovascular invasion at the primary site is 
not predictive by itself [29]. These data further suggest that 
LNM can drive distant cancer progression.
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Our work has shown that it is possible for LNM to spread 
further in the body. However, there is currently no actionable 
information to identify which patients are at risk for this 
occurring. Further research into the molecular and physio-
logical mechanisms that drive this process are needed before 
at-risk patients can be identified and interventions designed. 
By identifying these mechanisms, we aim to improve out-
comes for patients with LNM while balancing the risk of 
overtreatment by appropriate patient selection.

The genomic evolution of breast cancer 
metastasis

Lucy Yates

Cancer is primarily caused by DNA damage. The transfor-
mation from a normal to cancerous phenotype and from 
primary to metastatic BC is marked by the accumulation of 
genetic changes known as somatic mutations. By applying 
evolutionary principles to genomic sequence data, we have 
started to uncover the fundamental patterns underlying BC 
metastasis.

Whole genome sequencing studies have revealed that BC 
genomes are highly abnormal. In a study of 560 primary 
BCs, we identified an average of 6214 single base pair sub-
stitutions, 665 small insertions and deletions and 140 struc-
tural variants per cancer [30]. In a separate study, we found 
that the progression from primary tumor to the diagnosis of 
distant metastatic disease was accompanied by an increase in 
the mutation burden of around a third [31]. Only a tiny frac-
tion of the somatic mutations detected in cancer genomes 
alter known cancer genes and act as drivers of cancer pro-
gression. The majority of mutations are ‘passengers’ with 
no effect cell fitness; however, they provide great statistical 
power for identifying mutational signatures and tracing the 
evolutionary patterns that underlie cancer metastasis.

Cancer subclones

Breast cancers are composed of multiple genetically related 
subclones [32–37].

Subclone composition can vary over space (within 
the same tumor mass or across metastatic sites) and time 
(sequential samples). All subclones in a cancer are by defini-
tion genetically related, having arisen from a single common 
ancestor, but individual subclones are distinguished by the 
existence of private genetic changes. This may be directly 
observed in single cell studies although technical limita-
tions still mean that these are most reliable for measuring 
copy number variation rather than point mutations [34, 38]. 
Subclonal composition can also be inferred indirectly from 
bulk tissue samples (that typically consist of thousands of 

millions of mixed cancer cells and normal cells) using bioin-
formatic approaches that determine the nature of and cellular 
prevalence of genotypes using features such as variant allele 
fraction, tumor purity and allele specific copy number infor-
mation [32, 39]. Multi-region sampling approaches increase 
our ability to detect subclonal structure. Recent advances 
in low-input material sequencing (of 100 cells or less) are 
moving this approach to a new level, providing much higher 
resolution of subclone composition in both cancer and nor-
mal tissues. In the coming years, we expect these approaches 
to continue to provide important insights into how normal 
tissue development is subverted during cancer evolution [40, 
41].

Different genetic subclones can have different pheno-
types and therefore provide the substrate upon which natural 
selection may act. Indeed, we and others have demonstrated 
that aggressive cancer traits such as invasion, treatment 
resistance or metastasis can be mapped back to anteced-
ent subclones earlier in the disease history [31, 32, 41–43]. 
Understanding how these ill-fated subclones relate and dif-
fer to their seemingly well-behaved sisters, within the same 
primary tumor, is a major priority in cancer research. The 
recent development of a wide range of spatial sequencing 
approaches is set to provide critical insights into the spa-
tial arrangement and characterization of individual cancer 
subclones [44–46]. Combining these techniques with evolu-
tionary mapping approaches offers an exciting opportunity 
to isolate and study the most clinically important subclones 
within the tumor environment.

Trees describe cancer evolution

We can use evolutionary or phylogenetic trees, akin to the 
‘tree of life’ famously described by Charles Darwin, to rep-
resent diagrammatically, the inferred evolutionary relation-
ships between different cancer subclones (Fig. 1). Phyloge-
netic tree construction starts with two basic assumptions: 
mutations can be gained but not lost and each mutation can 
only occur once [47]. Although there are caveats to these 
assumptions, these can generally be accommodated. Firstly, 
we must consider copy number differences between sub-
clones (i.e., where deletions might have ‘lost’ some muta-
tions in one subclone/sample) and secondly, by using as 
much of the rich genome-wide mutation data as possible 
rather than relying on limited targeted gene panels that only 
identify a handful of mutations at best. Using the two prin-
ciples we can identify ‘clonal’ mutations as those shared 
by all cancer cells and form the ‘trunk’ of the phylogene-
netic tree (Fig. 1). Mutual exclusivity of mutations identi-
fies subclones from different branches, while co-occurrence 
indicates mutations within the same subclone or a direct 
lineage. The lengths of branches are typically scaled accord-
ing to the number of mutations, and therefore, act as a kind 
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of molecular clock that allows us to order branching events 
in time. Studying the branching patterns that we derive can 
then help us to understand how different cancers develop 
and progress.

Metastasis seeding cell dissemination timing

The point at which the Metastasis Seeding Cell (MSC) 
diverges form the primary tumor has important implications 
for the use of adjuvant systemic therapy. Take the example 
where 3 driver mutations have accumulated within a pri-
mary tumor up to the point where it is diagnosed. A preci-
sion medicine treatment plan would have to be based on 
the 3 mutations seen in the primary tumor, but we do not 
know how representative this is of the potential MSCs at this 
time point. In the situation where the MSC left the primary 
tumor recently, i.e., the late branching scenario, it is likely 
that these cells share the same 3 driver mutations and the 
primary tumor can be considered a good proxy. However, 
in the case where the MSC departed from the tumor a long 
time ago, i.e., an early branching scenario, these cells are 
less likely to contain the same driver mutations seen in the 
primary tumor and furthermore, they have had significant 
time to accumulate novel driver mutations that we will not 
be able to detect. The primary tumor in this situation is a 
poor proxy, providing inaccurate and incomplete information 
about the cancer cells that we wish to eliminate.

When we applied this principle to 17 cases of metastatic 
or relapsed BCs, we found that most MSCs diverged from 
the primary tumor late in evolution (on average 87% in pri-
mary tumor molecular time). This was a phenomenon shared 

across distant metastases, local relapses and synchronous 
LNM. Importantly, the majority of driver mutations in the 
primary tumor were also present in 100% of the cells in 
the metastasis indicating that targeted therapies based on 
the primary tumor genomic profile would be relevant to the 
metastasis.

Some studies appear to contradict our findings, suggest-
ing that cancer cell dissemination occurs, or at least can 
occur early—even from pre-invasive lesions [48–52]. Not-
withstanding the need to extend our analyses to larger sam-
ple series and different BC subtypes, we do suspect that 
one potential confounding factor is that these studies have 
tended to rely on less robust technologies for inferring clonal 
relatedness. Indeed, much of the support for early dissemina-
tion is derived from disseminated tumor cell (DTC) studies 
that defined bone marrow cells as DTCs based on morphol-
ogy and cytokeratin expression. Importantly, recent single 
cell sequencing of DTCs and exome sequencing/genome-
wide copy number profiling of the primary tumor revealed 
that only a fraction of presumed DTCs are actually clonally 
related to the primary tumor [53]. Further work linking these 
DTCs to the subsequent metastasis is needed to determine 
if real-time characterization could be helpful for treatment 
scheduling during the relapse free window.

Future perspectives

Our findings to date have identified that metastases typically 
arise from a detectable subclone in the primary tumor. To 
date, we have not been able to demonstrate that the driver 
mutations that dominate the metastasis are pre-selected in 

Fig. 1  Evolutionary or phylogenetic trees provide a map of cancer development and progression. Cancer subclones are represented by different 
colored cells with distinct mutation combinations
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the primary tumor. Furthermore, we have had little success 
in identifying the anatomical localization of the subclones 
that are most closely related to a future metastasis. A critical 
question remains to be answered: “Is there something special 
about the metastasis seeding subclone?”.

The emergence of spatially resolved approaches, such as 
laser capture microscopy with low-throughput sequencing 
and in-situ sequencing of somatic mutations, are expected to 
allow much closer interrogation of primary tumors and pin-
pointing of ill-fated subclones [41, 44]. These approaches 
will be essential for identifying subclone specific associa-
tions with tumor micro-environmental factors that are likely 
to be important determinants of subclone fate.

Mitochondrial‑nuclear exchange (MNX) 
mice reveal contributions of mitochondrial 
genetics to cancer metastasis

Thomas C. Beadnell, Adam D. Scheid, and Danny R. 
Welch

Introduction

The ability of cancer cells to metastasize requires coordi-
nated expression of multiple genes [54–64] and the effi-
ciency of metastasis is contributed to by multiple quantita-
tive trait loci (QTL) [65] alleles that influence a trait [66] in 
combination with environmental factors.

Because of its comparative size, most studies with QTL 
examine the nuclear genome, ignoring the mitochondrial 
genome. However, in the context of cancer, mitochondria 
are key players, which were first identified by Warburg with 
regard to their roles in metabolism [67–69], but the defini-
tive mechanisms by which mitochondrial DNA (mtDNA) 
contribute to cancer phenotypes has been understudied and 
underappreciated. It is critical to emphasize that mtDNA 
polymorphisms are likely metastasis modifiers rather than 
drivers per se. mtDNA QTL would combine nuclear and 
mitochondrially-encoded genes to regulate cancer sever-
ity and metastasis [70–72]. Given the miniscule size of 
the mitochondrial genome (~ 16 kb) to the nuclear genome 
(~ 3 ×  104 kb), could the hypothetical existence of mtDNA 
metastasis QTL be reasonable? Despite being relatively 
understudied, the answer is that it is likely (reviewed in 
[73–75]).

The classic experiment demonstrating the existence of 
metastasis QTL in the nuclear genome was performed in the 
laboratory of Kent Hunter, who crossed female mice from 
multiple Mus musculus strains to male transgenic mice with 
the oncogenic polyomavirus middle T antigen (PyMT) under 
the control of the mouse mammary tumor virus (MMTV) 
promoter (FVB/N-TgN(MMTV-PyMT)) [76]. Critically, 

these mice were made on the FVB/N genetic background 
[77]. Crossing inbred strains with FVB/N-TgN(MMTV-
PyMT) resulted in differential tumor latency and metastatic 
burden in the first filial generation [76]. Using backcrosses 
and comprehensive genetic screens, his group has identified 
metastasis modifiers [78–80], many of which have also been 
observed in human BCs [81–83].

However, an alternative interpretation of their data 
was recognized because their experimental design 
crossed females of those various strains to male FVB/N-
TgN(MMTV-PyMT) mice. Since mtDNA is maternally 
transmitted, the possibility existed that mtDNA could also 
be a metastasis modifier QTL. A growing volume of data 
implicates mitochondria in cancer and metastasis (reviewed 
in [73, 74]). Specifically, Kaori Ishikawa and colleagues 
demonstrated that transfer of mitochondria from highly 
metastatic cells to poorly metastatic recipient cancer cells 
enhanced metastatic potential. A reciprocal experiment also 
lowered metastatic efficiency [84].

We began exploring approaches to study contributions of 
mtDNA to metastasis. Unfortunately, the unique characteris-
tics of mtDNA presented numerous experimental challenges 
(reviewed in [73, 85]). Briefly, mtDNA is present in 100s to 
1000s of copies per cell, making alteration of all mtDNA 
copies currently impossible even with the most advanced 
methods [86]. Therefore, introduction of heterogeneous het-
eroplasmy would confound effects of the alteration. The use 
of cybrids or transmitochondrial mice involves prior expo-
sure to mutagens, which could potentially introduce muta-
tions that would complicate interpretation. Likewise, gen-
eration of conplastic mice, while not exposing to mutagenic 
agents, involves backcrossing for at least 10 generations to 
achieve 99.9% nuclear DNA (nDNA) purity with different 
mtDNA composition [87]. While conplastic mice mostly 
eliminate disparate nDNA as a confounding variable, the 
number of necessary backcrosses increases the likelihood 
that nDNA recombination has occurred.

To circumvent the issues associated with the above 
approaches, we developed the mitochondrial-nuclear 
exchange (MNX) mouse model [88] to assess whether there 
are metastasis modifier QTLs in the mitochondrial genome. 
Crossing MNX female mice with mammary cancer trans-
genic mouse models demonstrated a driver-dependent 
regulation of metastasis. Moreover, injection of syngeneic 
cancer cells into MNX mice revealed non-cell autonomous 
contributions of the mitochondrial genome to metastasis. 
mtDNA polymorphisms alter immune profiles as well as 
other changes to the tumor microenvironment, which affect 
metastatic efficiency. Together, these data demonstrate that 
mtDNA indeed contains QTL for cancer metastasis.

Generating MNX mice did not involve backcrossing 
or mutagen exposure. They were made using micropi-
pette transfer of pronuclei from embryos into enucleated 
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cytoplasts from another mouse strain (i.e., having mito-
chondria from another strain) [88, 89]. The resulting hybrid 
embryos transplanted into pseudopregnant mice resulted in 
progeny, which are homoplasmic, phenotypically normal 
and fertile. The resulting colonies have been maintained for 
more than a decade and have been very stable.

Mitochondrial DNA alters metastasis in a cell autonomous 
manner

Female MNX mice on the FVB genetic background hav-
ing FVB mitochondria (FF), BALB/c mitochondria (FB) 
or C57BL/6 mitochondria (FC) were crossed with MMTV-
PyMT mice. The nuclear genomes were identical except 
for the transgene. Latency to first tumor formation and 
metastasis were measured. FF crosses developed tumors as 
expected while time to first tumor was accelerated in the FB 
crosses and slowed in FC progeny. Almost identical to the 
data from the Hunter crosses, pulmonary metastatic burden 
(i.e., cumulative volume of metastases and metastasis size) 
differed. The number of metastases arising was relatively 
unaffected [90].

Subsequently, the same MNX mouse strains were crossed 
to male FVB/N-Tg(MMTVneu) mice, which overexpress 
the wild-type Her2/neu oncogene under the control of the 
MMTV promoter [91]. Tumor latency and metastases were 
quantified. Results in FF and FC progeny were similar to 
those seen in the PyMT model. However, Her2 FB mice 
developed tumors later and had lower metastatic burden than 
FF mice [91]. This contrasted with the PyMT crosses, where 
FB mice exhibited more rapid primary tumor formation than 
FF mice.

Taken together, these two studies demonstrate that 
mtDNA polymorphisms affect both tumorigenicity and 
metastasis. The changes are dependent upon contributions 
of both the nuclear genome and the mitochondrial genome, 
exactly what one would expect for QTL. Additionally, 
Brinker and colleagues showed that using male MNX mice 
crossed to MMTVneu females (i.e., mtDNA from the MNX 
mice would not be inherited in the progeny) resulted in no 
difference in the tumor behaviors.

Additional evidence that the mitochondrial genome could 
impact tumor formation was obtained by Vivian et al. [92]. 
Mice unexposed to carcinogen treatments were allowed to 
age naturally, and the incidence and location of spontaneous 
autochthonous tumors were recorded. Although underpow-
ered for some strains of MNX mice, a tumor protective effect 
of C57BL/6 mtDNA was observed.

Since metastasis involves multiple genes to be coordi-
nately expressed and only a very small fraction of those 
genes are encoded in the mtDNA, we reasoned that SNP 
in mtDNA could influence gene expression in the nuclear 
genome. By altering the nuclear epigenome via changes in 

cytosine methylation or modifying histones, gene expression 
and corresponding phenotypes could be affected. We per-
formed whole genome methylation sequencing coupled with 
RNA sequencing and determined that there were selective 
changes in the location of methylation in the mouse genome 
and that some of those changes occurred concomitant to 
changes in gene expression [93]. In a more recent study, 
we measured 4 common histone marks using ChIP-Seq and 
again found a selectivity in location of histone modifications. 
Many of the methylation marks and histone marks are in 
similar regions, suggesting that mtDNA somehow dictates 
how the nuclear genome operates.

Mitochondrial DNA alters metastasis in a non‑cell 
autonomous manner

Although having previously demonstrated that nuclear [87] 
and mitochondrial [64, 69] genetics could alter metastatic 
efficiency, it was recognized that all cells in  F1 progeny 
would inherit mtDNA from the MNX mother. We therefore 
investigated the role of mtDNA in the tumor microenviron-
ment and its impact on tumor development. Using 2 mam-
mary carcinoma and 2 melanoma cell lines, we were able 
to keep the mtDNA constant within the cancer cells and 
injected the cells into either WT or MNX mice. Orthotopic 
tumor growth was not significantly altered; however, forma-
tion of experimental metastasis was significantly affected. 
These experiments utilized wild-type C57BL/6 (CC), C3H/
HeN (HH) and reciprocal MNX mice C57BL/6 nDNA:C3H/
HeN mtDNA (CH) and C3H/HeN nDNA:C57BL/6 mtDNA 
(HC) into which cells were injected either orthotopically 
or into the lateral tail vein. Critically, wild-type mice and 
their nuclear-matched MNX counterparts were major histo-
compatibility matched; so, overt transplant rejection mecha-
nisms were eliminated as an experimental variable. Clearly 
the mtDNA in stromal compartments influenced behavior of 
tumor cells [94]. The question is: how?

In all mouse strains utilized for the above studies, only 
a handful of mtDNA polymorphisms have been identi-
fied [71]. Changes have been reported in protein encoding 
genes as well as in transfer RNA [71, 92]. Polymorphisms 
in mtDNA genes encoding electron transport chain proteins 
implicate metabolism and previous studies found oxygen 
consumption to be different between MNX strain mammary 
tissue [69] and cardiomyocytes [68]. However, parameters 
associated with metabolism (i.e., oxygen consumption, 
extracellular acidification, and mitochondrial load) showed 
no correlation with changes in tumor cell behavior. Metabo-
lomic analyses comparing the MNX mice also identified 
metabolite differences among MNX strains. Nothing jumped 
out as an explanation for the different tumor cell phenotypes 
observed. The caveat to dismissing differences in metabo-
lism as a mechanism for stromal manipulation of metastasis 
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is that the measurements were done in vitro and in tissues 
that are not necessarily the most appropriate locations of 
tumor cells.

A byproduct of electron transport is generation of reactive 
oxygen species (ROS). We tested the hypothesis that altered 
ROS in MNX mice might be responsible for the changes 
in metastatic potential. Using MitoTEMPO, a scavenger for 
mitochondria-derived ROS, the metastasis-promoting effects 
of C3H/HeN mtDNA were reduced. While the results are 
consistent with the hypothesis, reciprocal experiments (i.e., 
increasing ROS in C57 mice) could not be done because of 
multiple off-target effects [91].

A key stromal contributor to tumorigenicity and metas-
tasis is the immune system. Based upon linkages between 
mitochondrial genetics, metabolism, and observations that 
metabolism is closely linked to immune differentiation and 
polarization [95], we studied whether baseline immune pro-
files and functionalities could explain results in the non-
cell autonomous studies. Most differences between mouse 
strain immune profiles were found to be regulated by nDNA. 
Interestingly, many of the lymphocyte populations were not 
dramatically altered. However, macrophage differentiation 
(and perhaps polarization state) was significantly altered by 
SNP in the mtDNA [96]. Detailed studies are underway to 
refine the changes and to directly test which macrophage 
subpopulations are most relevant to the phenotypic changes 
reported for tumorigenicity and metastasis.

Relevance and perspective

The co-evolution of mtDNA and nDNA [97] demonstrate 
clear communication between the two genomes. Metabolic 
adaptations to changing climates encountered by ancient 
humans migrating from Africa provided selective pressures 
dictating divergence from the original mtDNA genotype 

contained in ‘Mitochondrial Eve’ [98]. Those physiological 
adaptations mediated by mtDNA haplogroups have played 
critical roles in human evolution. Moreover, relevant to this 
discussion, they also contribute to disease pathologies and 
racial health disparities [73, 99]. Individuals with certain 
mtDNA haplogroups have increased predisposition to cer-
tain cancers compared to people with other mtDNA hap-
logroups [85, 90, 91]. Some adaptive advantages in some 
mtDNA variants resemble oncogenic mitochondrial func-
tions [100, 101].

Clinicians have long known that patient race/ethnic-
ity contributes to cancer incidence rates and survival. For 
instance, triple negative BC is more prevalent in African 
American and Hispanic Caucasian women [102, 103] who 
exhibit higher proliferation rates, increased angiogenesis 
markers, higher grade, higher rates of LNM and worse over-
all survival compared to non-Hispanic women [104–113]. 
While economic and modifiable factors contribute to out-
come disparities, incidence and progression differences 
persist even after controlling for socioeconomic factors 
[106, 109–113]. To date, no nuclear genomic explanations 
have been found comparing patients from different races 
[114–117]. We posit that the impact of contributions from 
each QTL that define race are masked by uncontrollable var-
iables in analyses. Use of the MNX model, which isolates 
mtDNA as an experimental variable, allowed us to gain a 
foothold into the mechanistic underpinnings of mitochon-
drial contributions to metastasis.

In the context of metastasis, it is critical to remember 
that tumor cells encounter multiple different microenviron-
ments throughout their journey from the primary tumor 
to distant sites. Our data (Table 1) exploring the roles of 
mtDNA in the MNX mice support the notion that mitochon-
dria perform critical functions in the receipt of information 
as well as the conveyance of neoplastic cell signals to the 

Table 1  MNX mice and corresponding mtDNA-directed phenotypes

MNX, mitochondrial-nuclear exchange; ND, not done; NS, not significant
Phenotypes are relative to wild-type strains with matching nDNA

MNX mouse 
abbreviation

nDNA composition mtDNA composition Tumor latency Metastasis size No. metastases nDNA methylation

FB FVB/NJ BALB/cJ PyMT [90]:↓
Her2 [91]:↑

PyMT:↑
Her2:↑

PyMT: NS
Her2:↓

Yes [93]

FC FVB/NJ C57BL/6J PyMT:↑
Her2:↑

PyMT:↓
Her2:↑

PyMT: NS
Her2:↓

Yes

CH C57BL/6J C3H/HeN ND ND ↑B16-F10 and 
K1735-M2 
experimental 
metastasis

Yes

HC C3H/HeN C57BL/6J ND ND ↓B16-F10 and 
K1735-M2 
experimental 
metastasis

Yes
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microenvironment. While the mitochondrial genome is 
small, it leverages the much larger nuclear genome to affect 
neoplastic cell behavior. Mitochondria are mediators of out-
side-in and inside-out cellular communication [118–120]. 
They sense changes in the microenvironment and signal to 
the nucleus the requirement of a cell to adapt. As yet, the 
mediators of mitochondrial signaling are poorly defined. 
Identifying those signals represents an as yet untapped 
opportunity for prognostic information from the mito-
chondria and therapeutic targets within the mitochondrial 
genome. There is currently no direct evidence that mito-
chondrial genetics play a role in human breast cancer. Efforts 
to create Synteny maps between mouse mitochondrial and 
human mitochondrial genomes and a comprehensive map of 
mtDNA polymorphisms are underway.

Deconstructing collective metastasis: 
emergent multicellular mechanisms 
supporting metastatic colonization

Emma D. Wrenn and Kevin J. Cheung

A large number of tumor cells reaching distant sites will 
die and never grow into a clinically detectable metastasis 
[121]. Disseminated tumor cells encounter inhospitable 
stromal matrices, cell types, and paracrine signals differ-
ent from their organ of origin. In addition, they are actively 
eliminated by immune cells, such as natural killer (NK) and 
T-cells. Diverse mechanisms have been described that ena-
ble tumor cells to overcome these barriers: entry into a stem 
cell-like state, epithelial-to-mesenchymal and mesenchymal-
to-epithelial transitions, genetic mutation, and co-option of 
the native microenvironment for example [122–124]. Here, 
we focus on an emerging mechanism by which cancer cells 
increase their chance of success—metastasizing as cohesive 
clusters of cells, also known as collective metastasis.

Much research has been conducted on the mechanisms by 
which single tumor cells metastasize. However, accumulat-
ing studies have shown that tumor cells can also metastasize 
as multicellular aggregates, and do so with much higher effi-
ciency than solitary cancer cells [125, 126]. A key founda-
tion for this concept originates from seminal experimental 
metastasis studies performed in the mid-twentieth century. 
Investigators injected lung cancer, melanoma, and fibrosar-
coma tumor cells into mice as either clusters or filtrated sin-
gle cells [127–129]. In each instance the clusters had signifi-
cantly greater success forming new metastases. Since then, 
a number of studies in different tumor types and metastasis 
models have demonstrated greater metastasis formation by 
injected clusters compared to single cells [130–133], with 
for example ~ 15-fold higher lung metastasis seeding rates 
by clusters in pancreatic cancer [134] and up to 500-fold 

higher rates in BC [135, 136] compared with equal numbers 
of single cells.

These findings are buttressed by recent studies tracing 
the clonal composition of spontaneous metastases in mouse 
models. Multiple groups have used multi-color fluorescent 
tumor cell models [131, 132, 134, 135, 137–139] or deep 
sequencing [140, 141] to demonstrate that transplantable 
primary tumors produce metastases that are polyclonal, that 
is seeded by multiple clones present in the primary tumor. 
A large fraction of metastases were found to be polyclonal 
in several of these models; 48–53% using BC cell lines 
[137], 54% using BC PDXs [131], ~ 80% of large lesions to 
the peritoneal wall and diaphragm using KPCX pancreatic 
cancer cells [134], and over 97% using the MMTV-PyMT 
breast tumor model [135]. A caveat to these experiments is 
that polyclonal metastases could arise from serial seeding 
by single cells [142]. Importantly, multiple studies have also 
conducted experiments excluding large contributions from 
serial seeding, which indicates that polyclonal metastases in 
their models arise primarily from tumor cell clusters [132, 
134, 135, 137].

Deep sequencing studies comparing primary and met-
astatic genomic alterations have also supported a role for 
polyclonal seeding in human tumors. Polyclonal seeding has 
been reported in colorectal cancer [143–146], intrahepatic 
cholangiocarcinoma [147], gastric cancer [148], and prostate 
cancer [149]. Two recent studies of metastatic BC patients 
identified polyclonal metastases in 63% to 73% of patients 
[150, 151]. This clonal diversity raises the possibility that 
multiple subclones in polyclonal metastases could cooperate 
to increase one another’s fitness, instead of responding to 
selective pressures from the tumor microenvironment purely 
on their cell-intrinsic properties. This kind of interclonal 
cooperativity has been observed in mouse models of cancer 
[139, 152, 153]. But further research is needed to understand 
how diverse genetic compositions in tumor cell clusters con-
tribute to different stages of collective metastasis. Impor-
tantly, direct isolation of tumor cell clusters (CTCs) from the 
blood of metastatic patients has provided further clinical evi-
dence for collective metastasis [154–157]. Moreover, CTC 
clusters are correlated with poorer patient prognosis across 
the most common cancer types [137, 158–167]. Together 
these diverse experimental and clinical studies indicate that 
tumor cell clusters are potent metastatic seeds.

Despite these many studies establishing the impact 
of cluster-based metastasis, the molecular mechanisms 
underpinning their efficient colonization are much less 
understood. One possible explanation is physical entrap-
ment; it could be that clusters’ large size simply results 
in rapid arrest in the circulation. However, a recent 
study demonstrated that patient-derived CTC clusters 
in the blood could rearrange into single-file chains, 
which survive passage through narrow capillaries [168]. 
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Additionally, another study in zebrafish models found no 
significant difference in the rate of extravasation between 
single and clustered CTCs [130]. These findings do not 
rule out the importance of physical entrapment. But, as 
discussed below, recent studies also show that clustering 
of tumor cells alters their properties beyond mechanical 
trapping in ways that support metastasis.

The metastatic potential of a single cell can be con-
ceived as a balance of factors promoting or hindering that 
cell’s ability to colonize other tissues. But to understand 
cluster-based metastasis we have to consider an additional 
dimension, the interactions amongst the cells in that cluster. 
Indeed, a number of recent studies have coalesced around a 
common theme: tumor cell clustering induces global shifts 
in key cell states promoting survival, growth, and ultimately 
colonization. For instance, clusters may be able to resist 
attrition in the critical early stage of colonization (Fig. 2). 
Shortly after tail vein injection, tumor cell clusters arrested 
in the lungs had lower rates of apoptosis than single BC cells 
[137]. Recently, we observed that while both clusters and 
single cells were able to reach the lungs immediately after 
tail vein injection, clusters persisted while single cells were 
mostly cleared within 48 h [136]. Additionally, time lapse 
imaging in the presence of an apoptosis biosensor revealed 
that clusters generated from 8 of 10 human BC tumor sam-
ples were significantly more apoptosis resistant than single 
cells in 3-dimensional culture [136]. A recent clinical study 
of CTCs from small-cell lung cancer patients also observed a 
reduction in apoptosis in CTC clusters vs. single cells [159]. 
Another study using BC tumor cell clusters from patient-
derived xenografts found that homophilic CD44 adhesions 
promote cluster-based metastasis, possibly through PAK2-
mediated increases in cell survival [131]. Together, these 

suggest that likelihood of survival during colonization is a 
key difference between clusters and single tumor cells.

Some of the survival advantage of clusters appears to 
depend upon resisting ROS, a critical challenge for dissem-
inating tumor cells [169, 170]. A recent study found that 
E-cadherin mitigates TGFb-dependent ROS stress in tumor 
cell clusters, facilitating their survival at metastatic sites 
[171]. Clusters have also been shown to induce mitophagy 
to limit ROS and increase cell survival [172]. Clustering 
may play a role in non-apoptotic forms of cell death as well. 
Recent reports show that multicellular aggregates are more 
resistant to ferroptosis [173, 174], an iron-dependent form of 
non-apoptotic cell death characterized by ROS accumulation 
[175]. Tumor cell clusters generated Nectin-4 dependent Src 
signaling, which buffered against ferroptotic lipid peroxida-
tion [173, 174].

Cell–cell adhesion could also help tumor cell clusters 
successfully evade attack from the immune system. Tumor 
cell clusters were recently demonstrated to be more resist-
ant to NK cells than single cells via downregulation of NK 
cell activating ligands [132]. NK cells play a key role in the 
immunosurveillance and targeting of metastasis, and NK 
tumor cell infiltration and activation often correlate with bet-
ter patient prognosis [176–178]. Interestingly, a number of 
cell–cell adhesion molecules function as NK cell inhibitory 
ligands, suggesting that NK cells may more effectively target 
solitary tumor cells or cells that have undergone complete 
epithelial mesenchymal transition EMT [132, 179, 180]. 
Clusters may even utilize the immune system to promote 
survival and growth; heterotypic clustering of CTCs with 
neutrophils has been found to promote cell cycle entry in 
tumor cells [181] and clusters may shift NK cells into a more 
metastasis-promoting state [182].

Fig. 2  Clusters resist programmed cell death. Tumor cell clusters have increased survival at metastatic sites through several mechanisms includ-
ing depletion of reactive oxygen species, resistance to NK cell killing, and pro-survival signals transduced downstream of cell–cell adhesion
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Beyond survival, clustering generates changes in sign-
aling and cell state supportive of metastatic outgrowth. 
Tumor cell clusters are more proliferative and more stem 
cell-like than single tumor cells [131, 135, 136, 183]. How 
does cell–cell contact generate these pro-metastatic states? 
An attractive hypothesis is that cell–cell adhesion mol-
ecules directly generate pro-proliferative signaling through 
cross-talk with cellular signaling pathways that regulate 
growth [184]. On the other hand, many studies have shown 
that cell–cell adhesion induces contact inhibition, restrict-
ing cell proliferation [185, 186]. In fact, the same cell–cell 
adhesion molecule can either promote or inhibit metas-
tasis depending on context. For example, E-cadherin is 
required for successful metastasis in a mouse model of BC 
and promotes cell survival [171]. But in the same mouse 
model, E-cadherin activating antibodies inhibit metasta-
sis, suggesting that E-cadherin’s role in metastasis may be 
tunable [187]. At present, the balance between pro- and 
anti-metastatic signals downstream of cell–cell adhesion 
molecules remains unresolved and may be highly context-
dependent between different cell types, tumor types, and 
model systems.

Cell–cell adhesions can also promote metastasis without 
direct intracellular signal transduction. Instead, clustering 
can induce 3-dimensional architectural changes that generate 
collective signaling. Our group recently characterized nano-
lumina within tumor cell clusters (Fig. 3)—hollow spaces 
between cells, sealed at either end by electron dense cell–cell 
junctions [136]. They are often lined by microvilli-like pro-
trusions, which can interdigitate between neighboring cells 
and provide high surface area for intercellular interactions. 
Nanolumenal junctions were selectively permeable, thereby 
controlling the composition of nanolumina and shielding 
them from the microenvironment.

Importantly, we found that nanolumina formed sites for 
intercellular communication. We identified a growth fac-
tor, epigen, which was trafficked into nanolumina where it 
achieved concentrations > 5000-fold higher than those out-
side the cluster. Importantly, epigen suppression profoundly 
reduced both primary tumor growth and metastatic outgrowth. 
By secreting a growth signal into a shared space, clusters cre-
ate collective, non-cell autonomous signaling to promote pro-
liferation during metastasis. In this instance, cell–cell adhe-
sions do not directly transduce a signal but instead regulate a 

Fig. 3  Tumor cell clusters contain intercellular nanolumina that con-
centrate signaling molecules. Left, transmission electron microscopy 
of an MMTV-PyMT tumor cell cluster. Between tumor cells we 
observe intercellular cavities lined by microvilli-like protrusions and 

sealed by cell–cell junctions. We find that the growth factor epigen is 
trafficked to and concentrated within nanolumina, resulting in coop-
erative pro-growth signaling during collective metastasis
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signaling molecule’s concentration by trapping it within inter-
cellular cavities. This 3-dimensional topology-dependent col-
lective signaling is an emergent feature of clusters, as it is not 
possible in single cells lacking cell–cell adhesion. Our findings 
indicate that the physical architecture of a multicellular cluster 
provides an additional layer of regulation during metastasis, 
and a mechanism for robust intercellular signaling.

Importantly, we also observed nanolumina in freshly iso-
lated human tumor cell cluster samples. Nanolumina with 
restricted permeability were also present in an aggressive 
subset of basal-like 2 (BL2) triple negative BC cell lines 
which highly express epigen, but not in mesenchymal-like 
triple negative BC cell clusters. BL2 BCs have poor treat-
ment response and overexpress growth factors and myoepi-
thelial genes, whereas mesenchymal-like BCs overexpress 
genes related to EMT and cell motility [188–191]. RNA-
sequencing analysis demonstrated that BL2 nanolumina-
containing cell lines highly express epithelial genes and 
genes associated with branching morphogenesis during 
early development. This suggests that epigen expression and 
nanolumina may be linked to epithelial identity and could 
have a role during epithelial development that is exploited 
by metastatic tumor cell clusters.

Treatments are critically needed to effectively eradicate 
metastases and suppress the metastatic process [192]. An 
understanding of the mechanisms underlying tumor cell 
clusters’ metastatic potency could pave the way toward ther-
apies targeting their metastatic advantages. One approach is 
to target the adhesion molecules holding clusters together. 
Indeed, disrupting cell–cell adhesion can repress metastatic 
potential [131, 137, 171, 183, 193]. However, cell–cell adhe-
sion molecules are often highly expressed in normal tissues, 
which could narrow the therapeutic window unless tumor 
specific properties or activation states are identified. Another 
approach is to target the cooperative signals generated by 
clusters within nanolumina. However, much remains to be 
learned about the optimal strategy to target these collective 
signaling compartments in practice. Our finding that BL2 
but not mesenchymal-like BCNot cells contain nanolumina 
also suggests that the relative contribution and mechanisms 
of collective metastasis could differ widely between cancers, 
subtypes, and individual patients. Future studies are essen-
tial to expand on these mechanistic insights into collective 
metastasis, to rigorously assess their relevance to specific 
subgroups of patients, and ultimately to translate these find-
ings into the clinic.

Conclusions

Breast cancer metastasis is a complex process requiring 
many interacting components, anatomic, cellular and molec-
ular/genetic. Mechanical factors play a part in sentinel lymph 

node metastasis, and breast cancer cells may gain direct 
access to the systemic circulation by invasion into veins in 
the node. Polyclonal multicellular tumor cell aggregates 
metastasize with much higher efficiency than solitary cancer 
cells, partly because large size clusters might simply arrest 
in the circulation by physical entrapment. DNA studies show 
that some breast cancers metastasize to systemic sites with-
out first entering lymph nodes, suggesting the secretion of 
gene-induced functional proteins, cytokines and/or peptides, 
present in some clones but not others, cause direct invasion 
into blood vessels in the primary breast tumor. It is more 
likely that tumor cells invade lymphatic rather than blood 
vessel capillaries at the primary site.

Identification of activated genes and other molecular 
markers that are important in systemic breast cancer metas-
tasis would be valuable to clinicians in many ways. For 
example, a more accurate molecular fingerprint of tumor 
cells identified by needle biopsy of the primary tumor could 
subclassify patients into those who might not benefit from 
sentinel node biopsy. Innovation and adaptation will be nec-
essary for continued relevance of SLN biopsy, which will 
likely take place in several areas. There would need to be 
incremental advances helping to optimize an already good 
technique. Other avenues of research could advance SLN 
utility even further, including developing more refined cri-
teria for selecting patients for SLN biopsy. Some advances 
may make SLN biopsy redundant; for example, we can 
imagine non-surgical therapies that will kill tumor in lymph 
nodes in which case removing them might become unnec-
essary. We still don’t know for certain whether removing 
the SLN treats breast cancer and that will require further 
research.

In our current practice most patients with no clinical 
evidence of axillary lymph node metastasis who undergo 
lumpectomy for invasive disease are eligible for sentinel 
lymph node biopsy. Only one in four patients in this cohort 
are found to have node metastasis. This means that 75 of 
every 100 patients with negative lymph nodes might safely 
avoid the operation of sentinel node biopsy altogether. 
Revealing currently unknown molecular markers might help 
us identify these patients upfront. Seven in every seventy-
five patients without node metastases develop systemic 
metastases. More accurate and advanced molecular signa-
tures might allow us to focus adjuvant systemic therapy on 
only this small proportion of patients, which would be a 
major advance on our current use of commercially available 
molecular subtypes used to decide which patients should be 
offered chemo, targeted and hormonal therapies. The major-
ity of patients could perhaps safely avoid uncomfortable 
systemic and loco-regional treatments without jeopardizing 
their chances of survival.

The development of anti-metastatic therapies is an 
obvious future direction for researchers who identify 
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metastasis-related molecular markers. Hypothesis-directed 
research would first need to connect the clinically impor-
tant molecular markers to the mechanisms of metastasis. 
For example, although we know that patients with HER-2/
neu positive breast cancers are at higher risk for systemic 
metastasis, there is no direct proof that HER-2/neu is 
involved in the process of metastasis. Similarly, triple 
negative breast cancer carries a risk of poorer survival 
than hormone-receptor rich tumors, but no-one has yet 
identified any related molecular or cellular mechanisms to 
account for this difference. The relative contributions and 
mechanisms of breast cancer metastasis might vary widely 
between cancers, subtypes, and individual patients and we 
are at the dawn of those discoveries.

The precise biochemical and molecular/genetic signals 
that prompt lymphatic or blood vessel invasion, and meth-
ods by which tumor cells survive the hazardous journey 
through the blood stream, and how exactly those cells set-
tle into their new environment within the body, are still 
under investigation but it seems likely that when we dis-
cover more details about these mechanisms we will be bet-
ter able to target steps in metastasis formation. When we 
reach those goals we may be able to eliminate metastases 
altogether, goals that are both urgent and possible and will 
augur a new era of breast cancer treatment.
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