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Decellularized dermis extracellular 
matrix alloderm mechanically 
strengthens biological engineered 
tunica adventitia‑based blood 
vessels
Bijal Patel1, Bryan T. Wonski1, Dan M. Saliganan1, Ali Rteil2, Loay S. Kabbani2 & Mai T. Lam1*

The ideal engineered vascular graft would utilize human‑derived materials to minimize foreign body 
response and tissue rejection. Current biological engineered blood vessels (BEBVs) inherently lack 
the structure required for implantation. We hypothesized that an ECM material would provide the 
structure needed. Skin dermis ECM is commonly used in reconstructive surgeries, is commercially 
available and FDA‑approved. We evaluated the commercially‑available decellularized skin dermis 
ECM Alloderm for efficacy in providing structure to BEBVs. Alloderm was incorporated into our 
lab’s unique protocol for generating BEBVs, using fibroblasts to establish the adventitia. To assess 
structure, tissue mechanics were analyzed. Standard BEBVs without Alloderm exhibited a tensile 
strength of 67.9 ± 9.78 kPa, whereas Alloderm integrated BEBVs showed a significant increase in 
strength to 1500 ± 334 kPa. In comparison, native vessel strength is 1430 ± 604 kPa. Burst pressure 
reached 51.3 ± 2.19 mmHg. Total collagen and fiber maturity were significantly increased due to the 
presence of the Alloderm material. Vessels cultured for 4 weeks maintained mechanical and structural 
integrity. Low probability of thrombogenicity was confirmed with a negative platelet adhesion test. 
Vessels were able to be endothelialized. These results demonstrate the success of Alloderm to provide 
structure to BEBVs in an effective way.

Current technologies in vascular tissue engineering rely on polymer tubes as a scaffolding material or cell sheets 
wrapped into a tube. Leading approaches share the same basic principles- seeding of vascular smooth muscle 
cells onto a tubular scaffold such as a  polymer1–3 or  hydrogel4–6, followed by weeks of mechanical conditioning for 
extracellular matrix deposition to increase vessel strength, and finally decellularization to remove immunogenic 
components. However, polymers can lead to graft failure due to the body’s natural foreign body response leading 
to a persistent inflammatory  response7. The hydrogel grafts are completely biological and thus illicit minimal 
immune response, however presently the most effective current way to achieve sufficient strength is to subject 
these vessels to mechanical conditioning for several weeks to months, which has impeded manufacturability and 
translatability. Another common approach to engineer blood vessels is to roll cell sheets into tubes creating a 
completely biological  construct7–8. However, this approach still requires weeks of strength conditioning. A more 
efficient approach for introducing the strength is needed for implantation.

We hypothesized that using a human-derived, biological material for mechanical strength as opposed to 
polymers commonly used in the field will provide an effective support structure that will meet the mechanical 
needs of a vascular graft and minimize adverse immune response. In a native blood vessel, the adventitia outer 
layer is key to providing structural  integrity9–11. The extracellular matrix of the adventitia allows for a vessel to 
withstand high pressures preventing vessel  rupture12. The strength derives from the significant type I collagen 
content, which is a load bearing extracellular matrix protein that is able to resist high pressure  forces13–16. The 
adventitia also contains elastin to aid in elasticity and vessel  distension17. Collagen is found in many organs, with 
especially high levels in the skin. Specifically, the ECM of the skin dermis consists of type I collagen and elastin 
to aid in strength and  elasticity18, thus providing an ECM similar to that of the adventitia. Decellularized dermis 
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ECM has been used for years in reconstructive surgeries and for wound care, with several products currently on 
the  market19. One product in particular, Alloderm, has been used extensively in the clinic with much success. 
Alloderm is a human allograft, and has been used for reconstructive surgeries, complex abdominal wall hernia 
repair, soft-tissue defect augmentation, rhinoplasty, and vaginal  repair18–22. Alloderm has also been investigated 
for other uses such as for tendon repair, stress urinary incontinence and pelvic organ prolapse  repair23–24. The 
mechanical properties of the ECM of Alloderm, and the fact that it is decellularized thus reducing inflammatory 
and rejection risk, makes it ideal for tissue engineering  application20,25–27. Thus, we proposed to employ the advan-
tageous properties of Alloderm to mimic the adventitia’s role and provide strength to engineered blood vessels. 
This type of application of a decellularized matrix is a departure from the typical use of decellularized matrices 
as a scaffold for use in its tissue of origin. Our approach represents an innovative application of a decellularized 
ECM for use as a reinforcement material in an engineered tissue of a different tissue origin. Our objective was 
to mimic the natural strength component of a native blood vessel by substituting a comparable ECM.

Using our lab’s unique method for generating completely biological engineered blood vessels (BEBVs) as our 
base  structure28–30, Alloderm was integrated into our protocol. In our methods, vascular cells are formed into 
ring structures, which are then stacked into tubular form to form the vessel. This method is termed the Ring 
Stacking Method (RSM). This method is highly modifiable and allows for the integration of reinforcing materials 
such as Alloderm. Once the Alloderm material was successfully added to our RSM protocol, the resultant engi-
neered rings and vessel structures were tested mechanically. Tensile tests revealed that the Alloderm-integrated 
engineered vessels reached a tensile strength of 1500 ± 334 kPa, which is in the range of a native vessel’s tensile 
strength of 1430 ± 604  kPa12. Burst pressure reached 80 mmHg, indicating that the decellularized ECM was able 
to increase the completely biological engineered vessels blood pressure capabilities to within the diastolic blood 
pressure range. Histological analysis showed that the overall collagen amount and degree of fiber maturity were 
significantly increased, elements that both contribute to tissue strength. These results demonstrate the success 
of Alloderm to provide sufficient mechanical support to the BEBVs in a much more efficient and effective way 
than current approaches in the field. The novelty of this approach is in achievement of clinical requirements 
for engineered vessel mechanical strength using decellularized ECM, progressing this type of technology that 
much closer to patient use.

Methods
Cell culture. Human dermal fibroblasts (HuDFs) (PCS-201-012, ATCC, Manassas, VA) were used to make 
adventitia-based engineered vessels. Dermal fibroblasts were chosen in foresight of patient application of autolo-
gous cells. Passages up to 15 were able to form consistent rings/vessels. Fibroblast growth media (GM) consisting 
of 89% Dulbecco’s Modified Eagle Medium (DMEM), 10% fetal bovine serum, and 1% antibiotic/antimycotic 
was used to expand and maintain the cell culture. Cells were trypsinized at roughly 90% confluency and used to 
make the rings and vessel structures.

Human umbilical vein endothelial cells (HUVECs) (PCS-100-013, ATCC) were used to form the intima in 
the Alloderm vessels. HUVECs were cultured in HUVEC growth media consisting of 93%—131 media; 5% FBS 
and l-Glutamine (200 mM); 1% antibiotic/antimycotic; 50 µg/mL ascorbic acid; 1 µg/mL hydrocortisone; 4 µg/
mL heparin sulfate; 15 ng/mL insulin-like growth factor-1 (IGF-1); and 5 ng/mL of vascular endothelial growth 
factor (VEGF), epidermal growth factor (EGF), and fibroblast growth factor-basic (FGF-b).

Human saphenous veins. Human saphenous veins were obtained from diabetic patients undergoing limb 
amputation between years 2018–2020. The study was approved by the Human Institutional Review Boards of 
both entities of Wayne State University and Henry Ford Health System (IRBs 054514M1E and 10744, respec-
tively). Informed consent was obtained from all 6 patients who donated tissues. The tissues were obtained in 
accordance with relevant guidelines and regulations.

Human femoral artery. Fully intact human femoral arteries were harvested from fresh, non-treated cadav-
ers donated to the Wayne State University Body Bequest Program. Arteries were tensile tested to determine 
mechanical properties and histologically processed to assess tissue morphology.

Assembly of ring formation plates. A 60 mm petri dish was used as the basis for forming the rings. 
Poly(dimethylsiloxane) (PDMS) polymer (1064291, Dow Corning, Midland, MI) was used to coat plates at 3 mL 
per plate. Posts were made and adhered to the plates centrally to provide a structure around which the rings 
would form. The posts were punched from PDMS bulk material using 6 mm diameter biopsy punches to fabri-
cate 6 mm lumen vessels. Base plates were coated with PDMS, followed by placement of the post centrally in the 
plate and oven cured at 60 °C for 1 h. Plates were sterilized with a 30 min 70% ethanol soak followed by 30 min 
of UV sterilization under the bio-hood.

Hydrogel formulation. A provisional hydrogel was used to secure the cell sheet as it aggregated around the 
central post to form the ring structures. Hydrogels rapidly degrade in 2–4 weeks hence serving as a temporary 
support. Fibrin gel was identified as an ideal option as it is naturally found in the body. Fibrin hydrogels were 
formed using thrombin, fibrinogen, and hydrogel  media28. A 4:1 ratio of 20 mg/mL bovine fibrinogen (151122, 
MP Biomedicals LLC, OH) to 100 U/mL bovine plasma thrombin (7592, BioVision, Milpitas, CA) was prepared. 
Hydrogel media consisted of 88.8% DMEM, 0.1% TGF-β and ascorbic acid, 10% fetal bovine serum, and 1% 
antibiotic/antimycotic.
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Alloderm preparation. Alloderm was obtained from LifeCell Corporation (Allergan, CA). Biopsy punches 
were used to cut 6 mm holes into Alloderm. A scalpel was used to cut a 3–3.5 mm width around the 6 mm hole. 
The final dimensions of the donut shaped Alloderm was an inner diameter of 6 mm and outer diameter around 
12–13 mm. Alloderm donuts were sterilized in a bio-hood using UV sterilization for 15 min on both sides and 
kept sterile until ready to use.

Ring formation. Cultured fibroblasts were trypsinized from pates and re-suspended in growth media. Each 
prepared PDMS ring plate was seeded with 1.5 ×  106 fibroblast cells in 4 mL GM, 150 µg ascorbic acid and 0.01 ng 
TGF-β either onto fibrin gel directly (basic rings/vessels) or fibrin gel topped with Alloderm (ECM-integrated 
rings/vessels). Media was changed one day after seeding, and subsequently every 3 days for 14 days. Each media 
change was supplemented with fresh ascorbic acid and TGF-β.

Fabrication of dermis‑integrated engineered vessels. To create the vascular grafts, tubular struc-
tures were created by stacking 3 or more engineered rings. Alloderm adventitia vessels were created using our 
lab’s Ring Stacking Method (RSM). In the RSM, engineered vascular rings are stacked around a 1.2 cm long 3D 
printed post placed centrally in custom made 8 cm tall plates. Engineered vessels made of stacks of 3 rings were 
used for histology and stacks of 6 rings were used for mechanical testing. Rings were temporarily adhered to one 
another using additional fibrin glue to secure the rings to each other as the cells deposited their own extracellular 
matrix to secure the overall vascular structure. A 1:1 volumetric ratio of 30 µL of 100 u/mL thrombin to 30 µL 
of 20 mg/mL fibrinogen was used for the fibrin glue. Ring stacks, i.e. vessels, were maintained in HuDF growth 
media supplemented with ascorbic acid and TGF-β for one week with a media change 3 days after stacking.

Assembly of a long engineered adventitia vessel. To demonstrate the ability to scale the ring stacking 
method towards engineering vessels of physiologically relevant sizes, a 5 cm long adventitia vessel was created. 
Custom ring and vessel culture dishes were developed to accommodate the increased dimensions. The custom 
vessel culture dish consisted of a 50 mL conical equipped with a 5 mm diameter 3D printed polylactic acid (PLA) 
post holder attached to the center of the lid by PDMS. A 10 cm long, 5 mm diameter PLA post was printed, filed 
for smoothness, and thinly coated with PDMS to reduce ring attachment and deformation during stacking and 
vessel removal. A 60 mm culture plate with a central PLA post holder was utilized for stacking rings to maintain 
sterility of the vessel culture dish during the stacking process. All components were sterilized with 70% ethanol 
followed by UV radiation prior to cell culture use. Rings were formed per the Ring Formation protocol using 
human dermal fibroblasts. Following six days of self-organization, adventitia rings were gently removed from the 
wells with fine-tip forceps and transferred to the 10 cm PLA post fitted in the 60 mm stacking dish post holder. 
After the rings were stacked and fit closely together, 80 µL of thrombin (100 U/mL) and 80 µL of fibrinogen 
(20 mg/mL) were applied to the outer surface of the vessel to aid in ring-to-ring adhesion. Following ring stack-
ing, the vessel post was transferred from the stacking dish and placed in the custom 50 mL conical post holder 
for culture. Forty-seven rings were used to build the 5 cm long vessel.

Endothelialization of adventitia vessels. In preparation of endothelial cell seeding, adventitia vessels 
were transferred into an 8  mm diameter PDMS cylindrical shell with two removable 3D printed PLA tube 
fittings. Adventitia vessels were transferred from culture posts into the cylindrical shell with one fitting block-
ing the outlet. Human umbilical endothelial cells (HUVECs) at a concentration of 4 ×  106 cells/mL in HUVEC 
media were used to create a cell suspension. Luminal seeding was achieved by pipetting 600 µL of the endothelial 
cell suspension into the adventitia vessel lumen followed by sealing the PDMS shell with the second tube fit-
ting. The cylindrical culture chamber was placed horizontally in a culture dish and incubated for 1 h. Following 
this period, the media with HUVECs was carefully removed by pipetting, the vessel was rotated 120°, and the 
endothelial seeding process was repeated until a full 360° rotation was achieved. Endothelial cell-seeded vessels 
were removed from the PDMS shell, placed into a traditional culture dish, and incubated in 50% HUVEC media 
and 50% fibroblast growth media for 24 h prior to analysis. The HUVEC-seeded Alloderm vessels were fixed in 
formalin for 24 h, dehydrated, embedded in paraffin, and sectioned. The vessels were stained with FITC-conju-
gated Ulex Europaeus (Gorse) Agglutinin I (UEA I) to mark the endothelial cell glycoproteins and glycolipids, 
and DAPI to mark nuclei.

Long‑term mechanics. To test long-term mechanics of the Alloderm-integrated engineered vascular tis-
sue, rings with Alloderm (n = 10) were cultured for 4 weeks then tensile tested. Controls consisted of Alloderm 
rings tested immediately after formation, denoted as timepoint day 0. Rings were maintained in culture in fibro-
blast growth media supplemented with ascorbic acid and TGF-β. Media was changed every 3 days. Tensile test-
ing was performed on a Mark-10 ESM 301 (Mark-10, Copiague, NY) with a 1000 N load cell at a strain rate of 
0.4 mm/min until failure. Samples were formalin fixed for 24 h, dehydrated, paraffin embedded and sectioned 
for histological analysis.

Mechanical testing. Tensile testing was performed using an UStretch system with a 5 N load cell (CellS-
cale, Waterloo, Ontario, Canada) and an Instron 5943 with a 50 N and a 500 N load cell (Instron, Norwood, 
MA). The smaller load UStretch was used for tensile testing in the range of the original rings and vessels without 
Alloderm. The higher load Instron was used to tensile test the Alloderm by itself, and Alloderm-integrated rings 
and vessels. Rings were tensile tested 14 days after cell seeding. Two modes of tensile testing were conducted 
to analyze both circumferential and longitudinal vessel mechanics. Circumferential tensile testing was used to 
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measure the hoop strength of the rings and vessels. Longitudinal testing was used to measure the strength along 
the length of the vessels. Samples were stretched to failure and mechanical properties of elastic modulus, ulti-
mate tensile strength and failure strength were obtained from resultant stress–strain curves.

Circumferential tensile testing was conducted at a strain rate of 0.4 mm/min until failure. Rings with Allo-
derm (n = 5) and without dermis (n = 5) were tested to determine the effect of the addition of Alloderm. Alloderm 
donuts alone (n = 6) were tensile tested to determine their independent mechanical properties. For tensile testing, 
engineered vessels were built with 6 rings each. Vessels with (n = 5) and without (n = 5) Alloderm were tensile 
tested after a 7-day culture period following ring stacking. For control data, a human saphenous vein (cut into 
n = 6) obtained from a diabetic patient following amputation and a human femoral artery (cut into n = 8) obtained 
from un-embalmed cadaver were tensile tested.

Longitudinal tensile testing was performed at a strain rate of 0.4 mm/min until failure. Engineered vessels 
with (n = 5) and without Alloderm (n = 5) were tensile tested following a 7 day culture period after ring stacking. 
In order to attach the vessels longitudinally into the tensile tester, VetBond tissue adhesive (3 M, St. Paul, MN) 
was used to fix the two ends of the vessels onto sandpaper, which was then folded and placed on the Ustretch 
system hooks.

Histology. Engineered rings; engineered vessels; and controls of human saphenous vein and cadaver femoral 
artery were histologically analyzed to determine tissue structure, ECM content and ECM organization. Tissues 
were processed in paraffin. Individual rings and 3-ring vessels with and without Alloderm were fixed in formalin 
for 48 h. Samples were stored in 70% ethanol in 5 °C until dehydrated. Samples were dehydrated in graduations 
of 70% to 100% ethanol over 12 h and then embedded into paraffin blocks. Hematoxylin and eosin (H&E), 
Masson’s Trichrome, and Picrosirius red stains were conducted on all ring groups and Alloderm donuts. H&E 
revealed cellular and extracellular matrix organization. DAPI stain was used to determine cellularity. Masson’s 
Trichrome and Picrosirius red stains showed collagen organization and total content in the rings and Alloderm 
donuts. Collagen quantification for red and blue stained collagen from picrosirius red and trichome, respectively, 
were quantified as a percentage of total cross-sectional area using ImageJ.

Polarized light. Picrosirius red stained samples of rings and Alloderm donuts were observed under polar-
ized light to determine collagen maturity of each sample. Birefringence images were captured using an Axiovert 
200 microscope (Carl Zeiss, Oberkochen, Germany). Mature, thicker collagen fibers appear orange and red 
under polarized light. Immature, thinner collagen fibers appear yellow and green under polarized light. Polar-
ized light images were quantified for percent cross-sectional area of red, yellow and green fibers using ImageJ.

Hemodynamic testing. The hemodynamic capabilities of the engineered vessels were assessed by burst 
pressure testing. Burst pressure gives an indication of the maximum pressure the ECM-integrated BEBVs can 
withstand. Alloderm-integrated vessels were subjected to pulsatile flow with cell culture media in a custom-
made bioreactor with a peristaltic pump (WT600-2J, Longer Precision Pump Cp. Ltd, Boonton, NJ), a glass 
media reservoir, polymer tubing, a custom-made bioreactor chamber, and 3D printed vessel holders. Vessels 
secured onto 3D printed vessel holders using VetBond. Alloderm vessels (n = 5) were subjected to increasing 
fluid pressure until failure.

Suture retention. Suture retention tests were conducted to examine the graft’s ability to mechanically 
retain a suture placed using standard surgical technique. These tests were conducted using the UStretch system. 
Engineered vessels with (n = 5) and without Alloderm (n = 5) were tested following a 7 day culture period after 
ring stacking. Sutures sized 6–0 proline were sutured through the bottom end of the vessel and then fixed to the 
bottom hook of the UStretch system using sandpaper and gorilla glue. The top stationary hook on the Ustretch 
system held the engineered vessels fixed in place using VetBond and sandpaper. The suture was pulled at a strain 
rate of 0.4 mm/min until the failure. Force output during the duration of the test was recorded and plotted versus 
displacement.

Thrombogenicity platelet adhesion assay. To test the thrombogenicity of the engineered vessels, ves-
sels were incubated with fresh human platelets for 24 h in culture. The human platelets were donated by the 
Henry Ford Hospital System Blood Bank (Detroit, MI). Following the 24 h platelet culture, vessels were removed 
from the platelet solution, formalin fixed for 24 h, dehydrated, paraffin embedded, and sectioned. Platelet adher-
ence to the vessel was assayed by immunostaining using CD41 platelet antibody. The CD41 antibody devel-
oped by Rockefeller University was obtained from the Developmental Studies Hybridoma Bank, created by the 
NICHD of the NIH and maintained at The University of Iowa, Department of Biology, Iowa City, IA 52242. 
Controls consisted of platelets embedded in fibrin hydrogel.

Statistics. Statistical analyses were conducted using SPSS (IBM, Armonk, New York). Results were pre-
sented as means with standard error of means. One-way ANOVA were performed to compare material prop-
erties determined from circumferential tensile testing of rings and vessels. Tukey B post-hoc test was used to 
determine significance between groups. Student’s t-test was performed to compare engineered vessels with and 
without Alloderm for longitudinal tensile testing, suture retention and burst pressure comparisons. An inde-
pendent sample t-test was used to compare material properties of the 4-week culture rings to newly formed 
rings. The alpha level was set to 0.05.
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Results
Ring and vessel formation. The Alloderm decellularized dermis was incorporated into our tissue engi-
neered vessel  protocol28–30 as depicted in Fig. 1. The Alloderm material exhibited some additional stiffness com-
pared to fresh dermis tissue determined by observation, likely due to the proprietary treatment protocol for 
 commercialization31. The human dermal fibroblasts were able to infiltrate the Alloderm material once seeded. 
Alloderm did not hinder ring formation and integrated into the lumen side of the ring structures and vessels.

Ring mechanics. Circumferential ring tensile mechanics significantly improved with inclusion of Alloderm 
in the rings and vessels. Average stress–strain curves for rings without Alloderm, rings with Alloderm and Allo-
derm donuts are shown in Fig. 2 and material properties are summarized in Table 1. Average elastic modulus, ulti-
mate tensile strength and failure strength for rings without Alloderm (n = 5) were 89.1 ± 27.5 kPa, 177 ± 21.4 kPa 
and 101 ± 34.8 kPa, respectively. Rings with Alloderm (n = 5) had an elastic modulus of 6630 ± 1510 kPa and an 
ultimate tensile strength of 1770 ± 221 kPa. Alloderm rings exhibited two main rupture points, consisting of 
the Alloderm completely tearing first at 1500 ± 372 kPa, followed by the remaining cells and hydrogel structure 
tearing to failure at 6.75 ± 3.25 kPa (Supplemental Video 1). Average elastic modulus, ultimate tensile strength 
and failure strength for Alloderm donuts alone (n = 4) were 8250 ± 3360 kPa, 4730 ± 628 kPa and 4390 ± 848 kPa, 
respectively. The percent elongation of rings, Alloderm rings and Alloderm donuts was 310 ± 29.8%, 162 ± 48.3% 
and 89.9 ± 16.3%, respectively.

Vessel mechanics. Engineered vessel tensile mechanics significantly improved with inclusion of Alloderm. 
Average stress–strain curves for rings without Alloderm, rings with Alloderm and Alloderm donuts are shown 
in Fig.  3a–e and summarized in Table  2. Interestingly, initial (failure strength 1; FS1) and complete (failure 
strength 2; FS2) failure points were noted for the vessel groups, indicating the point of failure of the first and last 
ring, respectively. These two failure points are of importance to note because the initial point of failure is vital 

Figure 1.  Diagram of self-assembled rings with incorporated Alloderm. Alloderm was integrated into the 
engineered vascular rings by placing the ECM material into the plate prior to cell seeding. Fibroblasts were 
seeded on top of the Alloderm and hydrogel, and the cells were able to infiltrate both the Alloderm ECM and 
hydrogel. Plate images show the progression of the engineered vascular ring formation 1 day and 14 days 
following seeding, showing the cell monolayer with hydrogel (edge indicated by white arrows) and the location 
of the Alloderm (black arrow) in the final ring tissue. Scale bar = 1 cm.
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information for clinical application, as is the catastrophic point of complete vessel failure. Average elastic modu-
lus and ultimate tensile strength for vessels without Alloderm (n = 5) were 79.4 ± 11.6 kPa and 67.9 ± 9.78 kPa, 
respectively. The primary failure point and secondary failure point of standard rings were 49.8 ± 27.1 kPa and 
3.22 ± 1.47 kPa, respectively. Average elastic modulus and ultimate tensile strength for Alloderm vessels (n = 5) 
were 3720 ± 687 kPa and 1500 ± 262 kPa, respectively. The primary failure point and secondary failure point for 
Alloderm vessels were 1400 ± 301 kPa and 4.77 ± 1.73 kPa, respectively (Supplemental Video 1). To compare 
the contribution of the Alloderm material alone in the vessels, 6 Alloderm donuts were adhered with Vetbond 

Figure 2.  Significantly increased mechanical properties with inclusion of Alloderm into engineered vascular 
rings. (a,c,e) Average stress–strain curve of standard rings (n = 5), Alloderm rings (n = 5) and Alloderm alone 
(n = 5). (b) Elastic modulus, (d) ultimate tensile strength and (f) failure strength shown for all groups. Elastic 
modulus, ultimate tensile strength and failure strength significantly improved with inclusion of Alloderm 
into the rings. Two failure strengths were exhibited by the Alloderm rings (f), indicating first rupture of the 
Alloderm (blue bar) and complete tissue failure of the rest of the ring composed of the cells and hydrogel (gray 
bar). Compared to Alloderm alone, Alloderm rings exhibited significantly lower elastic modulus, ultimate 
tensile strength, and failure strength. *p < 0.01; **p < 0.001; ***p < 0.0001. Scale bars = 1 cm.

Table 1.  Average circumferential ring mechanical properties. a Statistically significant difference between 
standard rings and Alloderm rings (E: p ≤ 0.0010; UTS: p < 0.0001; FS Primary: p < 0.01; Percent Elongation: 
p < 0.001). b Statistically significant difference between Alloderm rings and Alloderm alone (E: not significant; 
UTS: p < 0.0001; FS Primary: p < 0.0001; Percent Elongation: p < 0.05). c Statistically significant difference 
between standard rings and Alloderm alone (E: p < 0.0001; UTS: p < 0.0001; FS Primary: p < 0.0001; Percent 
Elongation: p < 0.001).

Group E (kPa) UTS (kPa) FS primary (kPa) FS secondary (kPa) Percent elongation (%)

Standard Rings (n = 5) 89.1 ± 27.5a,c 177 ± 21.4a,c 101 ± 34.8a,c N/A 310. ± 29.8a,c

Alloderm Rings (n = 5) 6630 ±  1510a 1770 ±  221b,a 1500 ±  372b,a 6.75 ± 3.25 162 ± 48.3b,a

Alloderm Alone (n = 4) 8250 ±  3360c 4730 ±  628b,c 4390 ±  848b,c N/A 89.9 ± 16.3b,c



7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:11384  | https://doi.org/10.1038/s41598-021-91005-9

www.nature.com/scientificreports/

Figure 3.  Significantly increased mechanical properties with inclusion of Alloderm into engineered vascular 
vessels. Average circumferential stress–strain curves for (a) standard vessels (n = 5), (b) Alloderm alone (n = 4), 
(c) Alloderm vessels (n = 5), and (d) human diabetic saphenous veins (green line; n = 6) and cadaver femoral 
arteries (yellow line; n = 8). (e) Average longitudinal stress–strain curves for standard and alloderm vessels; 
average circumferential stress–strain curves. Scale bars = 1 cm.

Table 2.  Average circumferential vessel material properties. a Statistically significant difference between 
Standard Vessels and Alloderm Vessels (E: p < 0.0001; UTS: p < 0.0001; FS Primary: p ≤ 0.01; FS Secondary: 
not significant; Percent Elongation: p < 0.0001). b Statistically significant difference between Standard Vessels 
and Alloderm Alone (E: p < 0.0001; UTS: p < 0.0001; FS Primary: p < 0.0001; FS Secondary: p < 0.0001; Percent 
Elongation: p < 0.0001). c Statistically significant difference between Standard Vessels and Diabetic Human 
Saphenous Vein (E: p < 0.0001; UTS: p < 0.01; FS Primary: not significant; Percent Elongation: p < 0.0001). 
d Statistically significant difference between Standard Vessels and Cadaver Femoral Artery (E: not significant; 
UTS: p < 0.0001; FS Primary: p < 0.0001; Percent Elongation: p < 0.0001). e Statistically significant difference 
between Alloderm Vessels and Alloderm Alone (E: p < 0.0001; UTS: p < 0.0001; FS Primary: p < 0.0001; FS 
Secondary: p < 0.0001; Percent Elongation: p < 0.0001). f Statistically significant difference between Alloderm 
Vessels and Diabetic Human Saphenous Vein (E: not significant; UTS: not significant; FS Primary: p < 0.05; 
Percent Elongation: p < 0.0001). g Statistically significant difference between Alloderm Vessels and Cadaver 
Femoral Artery (E: p < 0.001; UTS: p < 0.01; FS Primary: p ≤ 0.01; Percent Elongation: not significant). 
h Statistically significant difference between Alloderm Alone and Diabetic Human Saphenous Vein (E: 
p < 0.0001; UTS: p < 0.0001; FS Primary: p < 0.0001; Percent Elongation: not significant). i Statistically significant 
difference between Alloderm Alone and Cadaver Femoral Artery (E: p < 0.0001; UTS: p < 0.0001; FS Primary: 
p < 0.0001; Percent Elongation: p < 0.0001). j Statistically significant difference between Diabetic Human 
Saphenous Vein and Cadaver Femoral Artery (E: p < 0.0001; UTS: p < 0.0001; FS Primary: p < 0.0001; Percent 
Elongation: p < 0.0001).

Group E (kPa) UTS (kPa) FS Primary (kPa) FS Secondary (kPa) Percent Elongation (%)

Standard vessels (n = 5) 79.4 ± 11.6a,b,c 67.9 ± 9.78a,b,c,d 49.8 ± 27.1a,b,d 3.22 ± 1.47b 511 ± 64.9a,b,c,d

Alloderm vessels (n = 5) 3720 ±  687a,e,g 1500 ±  262a,e,g 1400 ±  301a,e,f,g 4.77 ± 1.73e 286 ± 56.1a,e,f

Alloderm alone (n = 4) 11,400 ±  1960b,e,h,i 5050 ±  333b,e,h,i 4800 ±  384b,e,h,i 119 ± 39.2b,e 3730 ±  733b,e,i

Human saphenous vein 
(n = 6) 2980 ±  409c,h 1060 ±  155c,h,j 416 ±  157f,h,j N/A 821 ±  141c,f,j

Cadaver femoral artery 
(n = 8) 1280 ±  303g,i,j 2540 ±  748d,g,i,j 2360 ±  773d,g,i,j N/A 281 ± 36.9d, i, j
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and tensile tested. Average elastic modulus and ultimate tensile strength of the 6 Alloderm donuts (n = 4) were 
11.4 ± 1.96 MPa and 5050 ± 333 kPa, respectively. The primary failure point and secondary failure point were 
4800 ± 384 kPa and 119 ± 39.2 kPa, respectively. Percent elongation for vessels without Alloderm, Alloderm ves-
sels and 6 Alloderm donuts alone were 511 ± 64.9%, 286 ± 56.1% and 3730 ± 733%, respectively. To evaluate the 
Alloderm vessels compared to native vessels, human saphenous vein was also mechanically tested. Interest-
ingly, the Alloderm vessels surpassed circumferential tensile mechanics of two native human vessels tested for 
comparison. Human saphenous vein (n = 6), which exhibited an elastic modulus of 2980 ± 409  kPa, ultimate 
tensile strength of 1060 ± 155 kPa and failure strength of 416 ± 157 kPa. The human saphenous vein had an aver-
age percent elongation of 821 ± 141%. Alloderm vessels exhibited a higher elastic modulus but lower ultimate 
tensile and failure strength in comparison to cadaver femoral artery (n = 8) which had an elastic modulus of 
1280 ± 303 kPa, ultimate tensile strength of 2540 ± 748 kPa and failure strength of 2360 ± 773 kPa. The Alloderm 
vessels’ average percent elongation was similar to that of the human cadaver femoral artery (281 ± 36.9%).

Longitudinal tensile mechanics representing strength along the length of the vessels was not significantly dif-
ferent in vessels without Alloderm compared to vessels with Alloderm (Fig. 3, Table 3). The longitudinal elastic 
modulus, ultimate tensile strength and failure strength for vessels without Alloderm (n = 5) were 26.1 ± 13.5 kPa, 
11.2 ± 6.05 kPa and 1.54 ± 0.304 kPa, respectively. The longitudinal elastic modulus, ultimate tensile strength 
and failure strength for vessels with Alloderm (n = 5) were 10.7 ± 8.09 kPa, 3.47 ± 1.61 kPa and 1.41 ± 1.08 kPa, 
respectively.

The force required to strain the engineered rings, engineered vessels and Alloderm alone to failure (Supple-
mental Fig. S1; Supplemental Tables S1 and S2) provide insight into the resultant mechanics and the effects of 
the difference in cross-sectional area on strength calculations. Significant differences in forces to obtain circum-
ferential elasticity, tensile strength and failure strength were found between standard rings and Alloderm alone 
(p < 0.001). Standard rings had an average elastic force, ultimate tensile force and failure force of 0.127 ± 0.134 N, 
0.273 ± 0.134 N and 0.162 ± 0.104 N, respectively. Alloderm alone had an average elastic force, ultimate tensile 
force and failure force of 21.9 ± 9.31 N, 12.7 ± 2.94 N and 11.8 ± 3.27 N, respectively. Although significant dif-
ferences were seen in comparing material properties of Alloderm rings to Alloderm alone, when comparing 
associated forces no significant differences were found between ultimate tensile strengths (p = 0.102), and between 
Alloderm ring primary failure force and Alloderm alone failure force (p = 0.793). This indicates that the larger 
thickness of the Alloderm rings compared to the Alloderm donuts is responsible for the difference in calculation 
of strength due to the difference in cross-sectional area. Alloderm rings had an average elastic force, ultimate 
tensile force, primary failure force, and secondary failure force of 56.3 ± 6.58 N, 15.1 ± 0.677 N, 12.7 ± 1.94 N, and 
0.0558 ± 0.0207 N, respectively. This indicates structural integrity of Alloderm was not compromised when in the 
rings, but rather the reduced mechanical properties can be attributed to increased cross-sectional area. Between 
standard rings and Alloderm rings, a significant difference was found between elastic force, ultimate tensile force 
and primary failure strength force (p < 0.001). These force outputs indicate the superior tensile mechanics from 
inclusion of Alloderm into the rings. Using an independent t-test with equal variances not assumed, a signifi-
cant difference was found between standard rings failure strength and Alloderm ring secondary failure strength 
(p < 0.01), however, this can also be attributed to increased cross-sectional area. Using an independent t-test with 
equal variances not assumed, no significant difference was found between the standard ring’s failure force and 
Alloderm ring secondary failure force (p = 0.084). This indicates that the cells in the fibrin gel maintain their 
mechanical properties regardless of the inclusion of Alloderm. All together, these results indicate that Alloderm 
rings are a composite material comprised with material properties of strength from the Alloderm and ductility 
from the ring of cells organized in the fibrin gel.

Rings and vessels histological analysis. Histological analysis of rings provided pertinent information 
on cellular and ECM protein content and organization in the engineered tissue. Vessel histology showed cellular 
and ECM organization across the multi-ring structure. Cross-sectional ring samples were stained with multiple 
stains. Hematoxylin and eosin was used to visualize overall cellular structure by staining nuclei deep purple and 
cytoplasm and extracellular matrix pink. Masson’s Trichrome and Picrosirius red stains were used to visualize 
ECM content and organization, by staining collagen blue and red, respectively. DAPI stains were used to clearly 
demarcate cell density and location.

In the standard rings (Fig. 4a–c), fibroblasts self-organized into a band of cells surrounded by a layer of the 
fibrin gel. In rings with Alloderm (Fig. 4d–f), the organization of the ring from the lumen outward was first the 
Alloderm, followed by cells, then fibrin gel, and lastly more cells lining the outer diameter. Average ring thickness 
without and with Alloderm was 0.964 ± 0.170 mm and 2.35 ± 0.198 mm, respectively. Cell nuclei were seen located 
in the fibrin gel and Alloderm indicating cell migration. In rings with Alloderm, Trichrome stain showed a large 
blue band at the Alloderm, indicating its significant collagen content. In addition, a thin blue band was seen 
on the outer diameter suggesting collagen deposition by the cells in the Alloderm rings which was not evident 

Table 3.  Longitudinal vessel material properties. a Statistically significant difference between Standard Vessels 
and Alloderm Vessels (E: no significance; UTS: p < 0.05; FS: not significant).

Group E (kPa) UTS (kPa) FS (kPa)

Standard vessels (n = 5) 26.1 ± 13.5 11.2 ± 6.05a 1.54 ± 0.304

Alloderm vessels (n = 5) 10.7 ± 8.09 3.47 ± 1.61a 1.41 ± 1.08
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in standard rings. This collagen deposition pattern was confirmed in picrosirius red stained sections where the 
red collagen-stained areas were seen co-localized with the cells and in parts of the hydrogel. In contrast, little 
positive collagen stain was seen in the standard rings without Alloderm. The same dense blue and red collagen 
network is seen in the Trichrome and Picrosirius red stains of Alloderm alone (Fig. 4h–i). Both trichrome and 
picrosirius red stains of the groups showed Alloderm alone had the highest percentage of area stained positive for 
collagen followed by Alloderm rings and then standard rings. Trichome stains of standard rings and Alloderm 
rings showed a significant difference (p < 0.001) in quantified collagen, 18.8 ± 4.77% and 65.6 ± 14.9%, respec-
tively. Picrosirius red stains of rings without Alloderm and with Alloderm also showed significant differences 
(p < 0.001) in quantified collagen as 21.7 ± 8.27% and 66.7 ± 11.4%, respectively. Both ring groups additionally 
showed significant differences (p < 0.001) in percent area stained collagen from trichrome, 100 ± 0%, and pic-
rosirius red, 100 ± 0%, in Alloderm alone. Quantified collagen from trichrome and picrosirius stains of human 
cadaver femoral artery showed a percentage of 73.9 ± 8.04% and 86.0 ± 6.98%, respectively, of collagen per area. 

Figure 4.  Extracellular matrix and cellular organization in engineered vascular rings and vessels improved with 
inclusion of Alloderm. H&E, trichrome and picrosirius red stains of (a–c) standard rings, (d–f) Alloderm rings, 
(g–i) Alloderm alone, and (j–l) cadaver femoral artery. Standard rings show well organized cells (white arrows) 
surrounded by fibrin gel (a–c). The addition of Alloderm (black arrows) further improved tissue organization by 
providing structural support for the cells (white arrows) and fibrin gel (blue arrows) around which to organize 
(d–f). Alloderm’s dense, organized collagen is evident in the stains of Alloderm alone (g–i). The Alloderm rings 
were the most similar in morphology and cellular organization to the cadaver femoral artery (j–l). H&E stained 
longitudinal sections of engineered vessels (m,n) show the ring-to-ring integration within the vessels, and 
the improvement of tissue organization with inclusion of Alloderm (n) compared to standard vessels without 
Alloderm (m). L indicates lumen side. White scale bars = 200 µm; black scale bars = 500 µm.
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Alloderm ring collagen percentage was not significantly different from the cadaver femoral artery, indicating 
similarity in collagen content. In contrast, standard rings and Alloderm alone did show significance difference 
in collagen content compared to the cadaver femoral artery (p < 0.001).

Longitudinal cross sections of vessels with and without Alloderm stained for H&E (Fig. 4m,n) showed suc-
cessive rings composed of cells, fibrin gel, and Alloderm for the Alloderm rings. Areas of cellular density were 
evident by the purple nuclei stains. Standard vessels without Alloderm showed cellular organization as dense 
pockets of cells, whereas Alloderm vessels show more evenly distributed layers of cells.

DAPI fluorescent stains of cell nuclei in Alloderm rings showed the organization of the cells along the outer 
diameter of the rings (Fig. 5). In comparison, DAPI stains for Alloderm alone were negative indicating the 
absence of cells. Lack of positive stained DAPI in Alloderm alone indicates cell infiltration in Alloderm rings 
is from the ring making process rather than possible nuclear remnants from the original material of the decel-
lularized Alloderm.

Polarized light images of a Picrosirius red stained standard ring, Alloderm ring and Alloderm alone (Fig. 6) 
allowed for further assessment of collagen organization in the rings. Collagen fiber thickness can be visualized 
using polarized light microscopy of Picrosirius red stained tissues. More mature, thicker fibers appear orange 
to red whereas less mature, thinner fibers appear green to yellow. Rings without Alloderm primarily exhibited 
mature red collagen fibers in the region around the cells surrounded by areas of less mature yellow and orange 
collagen in the fibrin hydrogel. In the Alloderm alone, polarized light showed a dense red network of mature 
collagen. In the Alloderm ring, a dense red–orange network of collagen is seen in the Alloderm area, along with 
a lighter region of red fibers and orange fibers deposited by the cells surrounding the Alloderm. These results 
clearly show the enhanced collagen content provided by the inclusion of the Alloderm into the engineered tissue. 
Polarized light quantifications for percent area of fibers shows significant differences (p < 0.01) in red fibers for 
all three groups, in yellow fibers for all three groups, and in green fibers (p < 0.01) between standard rings and 
Alloderm alone and between standard rings and Alloderm rings. Standard rings contained 15.8 ± 7.85, 58.2 ± 13.9 
and 19.0 ± 8.77 percent area of red, yellow and green collagen fibers, respectively, which was the highest yellow 
and green fiber content. Alloderm alone contained 91.3 ± 5.55, 7.49 ± 4.91 and 0.757 ± 0.791 percent area of red, 
yellow and green collagen fibers, respectively, which contained the highest red fiber composition. Alloderm rings 
contained 73.7 ± 5.49, 22.9 ± 5.41 and 3.47 ± 1.72 percent area of red, yellow and green collagen fibers, respectively, 
which contained higher red fiber content than similar green fiber content as Alloderm alone.

Suture retention and burst pressure. No significant differences were found between vessels with and 
without Alloderm for suture retention (Fig. 7). Average suture retention for vessels without Alloderm (n = 3) was 
7.73 ± 2.01 g-force. Average suture retention for vessels with Alloderm (n = 3) was 9.83 ± 2.25 g-force. In both 
vessel groups, suture retention failure points occurred in the area between the rings, at about 1 to 2 rings above 
the suture. However, there was a significant difference between burst pressure between vessels with and without 
Alloderm, with values of 51.3 ± 2.19 mmHg and 47.0 ± 1.14 mmHg, respectively (Fig. 8).

Mechanical integrity maintained in Alloderm rings cultured long‑term. To test long-term viability, 
Alloderm rings were cultured for 4 weeks and mechanically tested (Fig. 9). Alloderm rings cultured for 4 weeks 

Figure 5.  Cells infiltrated the Alloderm ECM in the engineered vascular tissue. DAPI stains of (a) an 
Alloderm-integrated vascular ring and (b) Alloderm alone. (a) Positive DAPI stain in Alloderm rings on the 
edge indicate cells seeded on the outer surface during the ring formation process (white open arrow), and 
positive DAPI stain in the Alloderm indicates cell infiltration (white closed arrow). (b) Lack of positive DAPI 
stain in the Alloderm alone verifies lack of cell presence prior to cell seeding, indicating that cells presence in the 
Alloderm in the rings (a) is due to cell infiltration. Scale bars = 200 µm.
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demonstrated similar mechanical properties to Alloderm rings tested immediately following ring formation 
(at day 0) as determined by an independent sample t-test (p > 0.5). The long-term cultured rings exhibited an 
elastic modulus, ultimate tensile strength, primary failure strength, and percent elongation of 5910 ± 2560 kPa, 
2760 ± 1130 kPa, 1750 ± 588 kPa, and 170 ± 53.2%, respectively. The secondary failure strength, a material prop-
erty associated with the fibrin gel component, was significantly higher in the 4-week cultured rings compared to 
day 0 rings, exhibiting a FS2 of 70.5 ± 24.6 (p < 0.001).

Physiologically relevant long vessel. A 5 cm long vessel was fabricated (Fig. 10) to demonstrate the 
capability of the Ring Stacking Method to generate vessels in lengths suitable for human implantation. Depend-
ing on the implantation site, degree of injury and vessel to be repaired, varying graft lengths are needed, most 

Figure 6.  Increased collagen maturity of engineered vascular rings with incorporated Alloderm. Polarized light 
images of picrosirius red stained samples at (a–c) × 5 magnification and (d–f) × 40 magnification. Standard rings 
(a,d) exhibited mature red collagen fibers (white closed arrows) in the region of the cells and less mature yellow/
orange fibers (white open arrows) in the fibrin gel. (b,e) Alloderm-integrated rings exhibited a mix of mature 
red collagen fibers and less mature yellow/orange fibers, along with green fibers indicating least maturity which 
was likely newly deposited by the cells. More mature red collagen fibers were present in the (c,f) Alloderm 
group, with very few green fibers. (a–c) scale bars = 200 µm; (d–f) scale bars = 100 µm; L indicates the lumen 
side.

Figure 7.  Average suture retention strength of engineered vessels increased with inclusion of Alloderm. Suture 
retention testing was performed on standard vessels (n = 5) and Alloderm vessels (n = 5). One end of the vessel 
was fixed to the tensile testing machine with sandpaper, with the suture glued to the other hook as shown. Both 
vessels experienced similar force output trends with respect to displacement. Alloderm vessels had a higher 
average maximum force compared to standard vessels. Scale bars = 1 cm.
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typically ranging from 2 to 10  cm32. Hence, the 5 cm long vessel built shows clinical feasibility of our adventitia 
vessels.

Endothelialization of adventitia vessels. Human umbilical vein endothelial cells were successfully 
seeded into Alloderm vessels (Fig. 11). Formation of a single endothelial cell layer was demonstrated in the 
lumen of the vessel, evidenced by positive staining for UEA-1 throughout the vessel lumen. This indicates that 
in vivo the Alloderm vessels have the potential to successfully endothelialize.

Figure 8.  Burst pressure testing of engineered vessels. Standard vessels without (n = 5) and with Alloderm 
(n = 5) were placed under increasing pulsatile flow until failure. Vessels are shown loaded into the custom 
perfusion system used to perform the burst pressure tests. Alloderm vessels had significantly higher burst 
pressure compared to vessels without Alloderm (*p < 0.005). Scale bars = 1 cm.

Figure 9.  Engineered Alloderm rings exhibit long-term viability. Alloderm-integrated rings cultured for 
4 weeks showed retainment of mechanical integrity. (a) A 4-week cultured Alloderm ring sample in the tensile 
setup with the associated average stress–strain curve. (b) Average elastic modulus (E), ultimate tensile strength 
(UTS), failure strength 1 (FS1), and failure strength 2 (FS2) for the day 0 and 4-week rings showing mechanics 
were maintained over the 4 week period; in fact, FS2 significantly increased after 4 weeks in culture indicating 
development of ECM strengthening the tissue. Histological analyses of 4-week rings stained for (c) fluorescence 
DAPI, (d) H&E, (e) Masson’s Trichrome, and (f) picrosirius red showing maintenance of tissue integrity and 
cellularity over time. Black scale bars = 500 µm; white scale bars = 200 µm.
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Platelet adhesion assay. To test thrombogenicity, Alloderm rings were submerged in a fresh human 
platelet concentrate for 24 h. Negative CD41 anti-platelet antibody stains of the Alloderm rings indicated no 
platelet adherence (Fig. 12). The control of platelets embedded in a fibrin hydrogel stained positive for CD41, 
validating efficacy of the antibody. These results suggest that when implanted in vivo, Alloderm vessels would 
not inherently cause thrombus formation.

Discussion
The Alloderm ECM resulted in the ideal material for adding strength to tissue engineered blood vessels. Given 
the Alloderm’s pliability and strength, it easily integrated into the aggregating ring structures while concurrently 
offering sufficient support and strength for the final tissue. The Alloderm ECM organized into the lumen side 
of the ring and was lined by the fibrin gel and cells on the outer edge. This organization allowed the Alloderm 
to serve as the main component to counteract forces exerted on the tissue while the cells on the outer edge 
provided elasticity. This observation was supported by the tensile results showing two main failure points- first, 
of the stiffer Alloderm material and then, of the more elastic cellular component. Interestingly, vessels with the 
Alloderm material showed increased collagen content and encouraged collagen deposition by the cells as seen in 
the additional collagen lining the cells. Additionally, cell nuclei were seen located in the fibrin gel and Alloderm, 
which indicates that the extracellular matrix encouraged cell migration and infiltration.

Inclusion of the Alloderm into the engineered rings significantly improved circumferential tensile mechan-
ics compared to standard rings. This is due to the significant increase in the load-bearing collagen extracellular 
matrix protein provided by the Alloderm. These results are quite encouraging to progress towards clinical applica-
tion, since the incorporation of the Alloderm elevated the engineered vessels’ tensile strength to 1500 ± 334 kPa, 

Figure 10.  Physiologically relevant length engineered vessel. A 5 cm long adventitia vessel was created, 
demonstrating the capability of the Ring Stacking Method to create engineered vessels in lengths suitable for 
human implantation. (a) Longitudinal view; scale bar = 1 cm. (b) Luminal view; scale bar = 5 mm.

Figure 11.  Endothelialization of Alloderm-integrated vessels. Vessel lumen was successfully endothelialized 
with human umbilical cord endothelial cells (HUVECs). UEA-1 stain showed complete coverage of the vessel 
lumen with HUVECs. Black scale bars = 500 µm; white scale bars = 200 µm.
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which allows the engineered vessel to meet the comparative native adventitia tensile strength of 1430 ± 604  kPa12. 
The other important parameter for clinical application is the burst pressure. There was a significant difference 
in burst pressure with the addition of the Alloderm—however, the burst pressure needs further improvement in 
order to meet human blood pressure values. Our lab is currently testing methods to improve burst pressure in 
our vessels with promising preliminary results, which is the focus of an upcoming follow-up study. Nevertheless, 
the current burst pressure strength of 51.3 ± 2.19 mmHg of the Alloderm vessels is encouraging as it approaches 
human diastolic blood pressure values.

Interestingly, Alloderm rings exhibited a lower ultimate tensile strength and failure strength than Alloderm 
alone. This is due to the differences in the cross-sectional area of each group. Stress is calculated as the force 
divided by the cross-sectional area, meaning that larger cross-sectional areas result in lower apparent stress. 
The rings have an inherent larger cross-sectional area due to the additional thickness of the cells and hydrogel 
compared to the Alloderm alone. Thus, the thicker the tissue, the larger the cross-sectional area and thus the 
smaller the calculated stress for a given force applied. This effect directly correlates to the parameter of strength 
which is determined from the stress–strain curve, as stress is a normalized factor, however, in cases such as this, 
force needed to cause tissue failure also provides useful information.

In the longitudinal direction, no significant differences were observed in forces associated with the elastic 
modulus and ultimate tensile strength between standard vessels and Alloderm rings, meaning that the addition 
of the Alloderm did not affect longitudinal vessel mechanics. Longitudinal strength of the engineered vessels 
with or with Alloderm could be improved. However, in vivo the vessels would not be subjected to major forces in 
that direction. Also, it has been shown that engineered vessels after implantation are remodeled with endogenous 
cell engraftment which further strengthens the tissue in all  directions2. Regardless, the current study in our lab 
to improve burst pressure will concurrently strengthen the vessels in the longitudinal direction. Suture retention 
was not significantly different between standard engineered vessels and Alloderm vessels likely because suture 
retention relies on longitudinal structural components, similar to burst pressure strength. Hence, since burst 
pressure was not significantly different, it is not surprising that suture retention strength followed a similar trend.

The 4-week long cultured Alloderm rings exhibited retainment of mechanical properties over time. Failure 
strength 2 correlates with the strength of the fibrin gel in the rings. The increase in failure strength 2 in Alloderm 
rings indicates increased ECM deposition around the rings by the cells. The biological environment promotes 
tissue growth and ECM deposition, hence the engineered vessels will be further strengthened upon implanta-
tion in the future. Rings were chosen in this test because any potential mechanical changes over time would not 
exhibit a difference in rings compared to vessels.

The 5 cm long vessel built is capable of accommodating common repair of vessels such as the popliteal artery, 
femoral artery and iliac artery. In practice, any length vessel can be built using our methods by simply adding 
additional rings to the vessel, thus allowing for our methods to accommodate any vessel repair length needed. 
Moreover, vessel lumen can easily be modified by changing dimensions of the posts the vascular rings are fab-
ricated around, furthering applicability of our vessels to accommodate repair of vessels of differing lumen sizes 

Figure 12.  Alloderm rings did not exhibit adhesion to human platelets. Compared to the platelet control 
(a–c), Alloderm rings cultured in human platelets for 24 h (d–f) did not exhibit platelet adhesion as evidenced 
by negative CD41 anti-platelet stain (e). DAPI stain demarcated nuclei only evident in the Alloderm rings (d). 
CD41 stain was only positive in the platelet control (b). Scale bars = 200 µm.
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from small-diameter to larger diameter grafts, as was demonstrated in our previous work of fabricating vessels 
of lumen size 6, 10 and 20  mm29.

Successful endothelialization of the vessels show that the vessels readily support formation of an intima, which 
is pertinent for establishing proper hemodynamics. Endothelialization of grafts has shown to aid in increased 
patency  rates33. Thus, demonstration of successful endothelialization of our Alloderm-integrated adventitia ves-
sels provides further evidence of clinical applicability. The negative platelet adhesion test results further support 
patency of our engineered vessels, even with the inclusion of the Alloderm material. As one of the primary steps 
in coagulation, which can lead to vessel occlusion, the inherent characteristic of the adventitia vessels to not 
preferentially adhere platelets is advantageous.

In regard to in vivo performance, Alloderm has extensively previously been studied for its effects in vivo and 
in clinical application in human  patients34–38. Alloderm has been used to in the clinic since 1994 and continues 
to be used today. The primary findings from the in vivo studies and clinical data are that Alloderm promotes 
neovascularization and fibroblast infiltration; and reduces inflammation and fibrosis compared to controls. 
Clinically, Alloderm has shown to integrate well into host tissue and has not, in some studies, shown any safety 
concerns in a 5-year follow-up. These positive attributes of Alloderm in vivo show promise for our Alloderm-
integrated vessels to perform advantageously once implanted. Animal studies are planned in the near future to 
fully test our Alloderm vessels and determine outcomes following implantation.

Conclusions
Here, we demonstrate the incorporation of commercially available decellularized extracellular matrix Alloderm 
to significantly improve the mechanical properties of our engineered biological vascular grafts, a pre-requisite for 
meaningful clinical utility. Additionally, the added ECM advantageously increased collagen content, improved 
ECM organization, increased mature collagen content, encouraged cell engraftment, and demonstrated the capa-
bility of endothelialization. Our ongoing work on methods to improve burst pressure strength currently shows 
promising preliminary results, further increasing its relevance for prospective patient applications.
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