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Abstract

Genetic e↵ects on gene expression and splicing can be modulated by cellular and environmental
factors; yet interactions between genotypes, cell type and treatment have not been comprehensively
studied together. We used an induced pluripotent stem cell system to study multiple cell types derived
from the same individuals and exposed them to a large panel of treatments. Cellular responses involved
di↵erent genes and pathways for gene expression and splicing, and were highly variable across contexts.
For thousands of genes, we identified variable allelic expression across contexts and characterized
di↵erent types of gene-environment interactions, many of which are associated with complex traits.
Promoter functional and evolutionary features distinguished genes with elevated allelic imbalance
mean and variance. On average half of the genes with dynamic regulatory interactions were missed
by large eQTL mapping studies, indicating the importance of exploring multiple treatments to reveal
previously unrecognized regulatory loci that may be important for disease.
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Impact statement: Investigation of dynamic gene regulation across cell types and environments reveals
new GxE regulatory loci that are important for disease.

Introduction

Cells exist within complex environments, where levels of metabolites and signaling molecules can change
rapidly. In order to thrive under such conditions, cells have evolved mechanisms to control gene expression
in response to environmental perturbation. Variation in environmental exposure can explain variation in
gene expression in human population samples [2, 33, 40, 51, 71, 113, 121]. For example, a highly correlated
cluster of surfactant-related genes was found to be highly expressed in lung tissue from GTEx donors who
died while on a ventilator [78]. Similarly, thousands of gene expression di↵erences were identified between
sun-exposed and non-sun-exposed skin [57]. In addition to changing gene expression, environmental expo-
sures are also able to alter splicing processes [87]. This may be a direct e↵ect of the environment altering
normal splicing patterns, as well as the result of a compensatory e↵ect initiated by the cell to overcome
a stressful situation. Splicing is an important co-transcriptional and post-transcriptional process taking
place within the nucleus, in which portions of pre-mRNAs called introns are removed, and others called
exons are joined together to form a mature transcript [115]. All forms of splicing require a variable set
of proteins and small nuclear RNAs to form small-nuclear ribonucleoproteins (snRNPs), ultimately giving
rise to the spliceosome [119] which, together with a variable set of accessory proteins [41, 45] finely tune
splicing. Expression of both spliceosomal and accessory factors may be influenced by the environment,
which means the environment is eventually able to alter splicing processes [99].

It is widely accepted that gene expression varies across individuals and that such variation is under
genetic control. Expression quantitative trait loci (eQTL) mapping in samples from a variety of tissues
has elucidated the tissue specificity of the genetic control of gene expression [29, 36, 118]. Specifically,
the GTEx consortium observed a U-shaped pattern for eQTL tissue specificity, with eQTLs tending to be
either highly shared amongst tissues or highly tissue-specific [8]. These findings underscore the importance
of evaluating the genetic control of gene expression across cell and tissue types.

To address the environment-specific control of gene expression, eQTL studies performed on in vitro
treated cells from many donors are commonly used. The resulting genetic variants which influence gene
expression response are known as response eQTL (reQTL) and represent gene-environment interactions
(G⇥E) for molecular phenotypes. reQTL have been identified for infectious agents, drugs, and hormones,
among other stimuli/perturbations [3, 4, 10, 20, 31, 50, 56, 59, 64, 73, 75, 76, 85, 94]. These studies have
consistently shown that genes with G⇥E on gene expression are enriched for association with complex
traits. However, given the large sample sizes needed to detect reQTLs, only a small number of conditions
in a limited number of cell types can be tested at one time.

Allele-specific expression (ASE) is an alternative to eQTL mapping to identify the genetic control of
gene expression. Rather than associating a genetic variant with gene expression, ASE uses heterozygous
sites within coding regions to measure allelic imbalance in RNA-seq reads. A significant allelic imbalance
within an individual implies cis-regulatory variation, as the trans-environment is constant. Similar to
reQTL mapping, di↵erences in ASE between environmental conditions is indicative of G⇥E, and we refer
to such SNPs as conditional ASE (cASE) [84]. cASE has important implications for human health. For
example, nearly 50% of genes with cASE were involved in complex traits by GWAS, which is significantly
greater than ASE or eQTL genes [84]. Unlike reQTL mapping, ASE can identify G⇥E in small sample
sizes, thereby allowing for interrogation of a broader spectrum of environmental exposures [84].

While gene expression is governed by both genetic and environmental factors, it is subject to fluctua-
tions due to stochastic factors [96]. This noise in gene expression is gene-specific, dependent on promoter
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elements, and can be a↵ected by genetic mutation [81, 96], indicating its importance in gene regulation.
Indeed, there has been selection to minimize gene expression noise in yeast [65], and gene expression vari-
ation has been linked to di↵erential gene expression in response to perturbation in flies and humans [109].
While the importance of variation in gene expression has been clearly established, much less is known on
variation in the genetic control of gene expression.

Taking advantage of the reduced sample size needed to measure genetic e↵ects by ASE, we have estab-
lished a system to measure the genetic e↵ects on gene expression in three cell types from six individuals
across a large number of environmental conditions. This study design allows us to simultaneously quantify
context (cell type and environment) dependent and genetic e↵ects on gene expression. In addition to iden-
tifying thousands of instances of cASE, we have partitioned the variance in gene and allelic expression into
individual, treatment, and cell type components, illustrating how each of these components can influence
genetic control.

Results

High-throughput scan of gene expression response in 84 di↵erent contexts

We have reprogrammed lymphoblastoid cell lines (LCLs) from six individuals into induced pluripotent stem
cells (IPSCs), which were further di↵erentiated into cardiomyocytes (CMs) (Figure 1A). Our study was
performed in batches on 96-well plates. Each batch consisted of the same cell type from three individuals,
with 28 treatments and two controls. Each experiment was performed in duplicate for a total of 12 batches.
(Figure 1). In order to shift CM cellular metabolism from fetal-associated glycolysis to adult-associated
aerobic respiration, we replaced the cell culture media with galactose-containing media on day 20 [95, 122].
We assessed the purity of CM cultures on days 25 and 27 using flow cytometry to measure the percentage
of cells expressing cardiac troponin 2 (TNNT2). Purities ranged from 44.9% - 95% (Supplementary File
1a). CMs were derived in a single di↵erentiation experiment per individual, so all experiments from CMs
in a single individual have identical purities. Principal components analysis on gene expression reveals
three distinct clusters corresponding to the three cell types (Figure 1-figure supplement 1). Additionally,
to further verify the identity of the three cell types, we evaluated the expression of LCL, IPSC, and
CM marker genes (Figure 1-figure supplement 2), including TNNT2, which, as expected, showed high
expression in CM samples and low expression in IPSC and LCL samples (Figure 1-figure supplement 2C).

We exposed all cell lines to 28 di↵erent treatments (Supplementary File 1d), resulting in 84 cell
type/treatment combinations of cellular contexts. Treatments included hormones, common drugs, vi-
tamins, and environmental contaminants, among others. We used a two-step sequencing approach [83] to
identify changes in gene expression, splicing, and allelic expression across cellular contexts. First, we per-
formed an initial shallow RNA-sequencing step (median depth of 9.5M reads) to identify treatments which
caused a significant response, indicated by changes in gene expression when comparing each treatment to
its vehicle control with DESeq2 [69] (Figure 1B, Supplementary File 1e). To characterize changes in gene
expression, splicing, and allelic expression, we selected 12 of the 28 treatments which induced a substantial
change in global gene expression for a total of 36 di↵erent contexts.(in bold in Figure 1B, see methods).

Gene expression and splicing response across treatments and cell types

From the 12 deep-sequenced treatments across all cell types (36 contexts and 6 controls, median depth/sample:
146M for LCLs, 148M for IPSCs, 273M for CMs, see Supplementary File 1f), we identified di↵erentially
expressed genes between each treatment and its vehicle control in each cell type using DESeq2 (Figure 1C,
Supplementary File 1g). We found between 53 (insulin in IPSCs) and 21,593 (copper in LCLs) di↵erentially
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Figure 1: Gene expression and splicing changes in response to environmental perturbation (A) Study Design.
We reprogramed LCLs from six donors into IPSCs, which were further di↵erentiated into CMs. We treated all cell lines
with 28 treatments and two vehicle controls, performing RNA-seq six hours after treatment. Three individuals per cell line
were treated on one plate, and each plate was performed in duplicate, for a total of twelve plates. (B) Shallow Sequencing.
Number of di↵erentially expressed genes (DEGs) per treatment in each cell type from the shallow sequencing. Treatments
in bold were selected for deep sequencing. (C) Deep Sequencing. Number of DEGs and di↵erentially spliced genes (DSGs)
per treatment in each cell type from the deep sequencing step. (D) Normalized stacked barplot of the number of genes that
are only di↵erentially spliced and those that are both di↵erentially spliced and di↵erentially expressed, for each treatment
and cell type. (E) Dotplot generated by ClusterProfiler depicting the top enriched GO terms of CM DEGs and DSGs across
environments.

expressed genes (DEGs; FDR < 10%) out of 58,300 genes. We confirmed that the treatments were having
physiological e↵ects by examining gene ontology enrichment of di↵erentially expressed genes. For example,
as expected glucose catabolic pathways were enriched (FDR = 0.40%) in genes upregulated in response
to insulin in CMs relative to all genes expressed in CMs (Supplementary File 1h). Also, divalent metal
ion transport (FDR = 1.8%) and transition metal ion transport (FDR = 2.8%) were enriched in genes
upregulated in response to copper in LCLs. When we considered a model with all cell types together, we
identified 4,835 genes that show evidence of cell type ⇥ treatment interaction e↵ects on gene expression as
measured by a likelihood ratio test in DESeq2 (FDR < 10%, Supplementary File 1i, see Methods Eq. 2).
These cell type ⇥ treatment interactions indicate that for these genes, the transcriptional response to the
environment varies by cell type. Inter-individual variation within the regulatory sequences governing these
cell type-specific responses could lead to G⇥E in a cell type-dependent manner. Interestingly, 96% of dif-
ferentially expressed genes in CMs in response to treatment with insulin are not di↵erentially expressed in
LCLs or IPSCs. These unique insulin-CM genes are enriched for cholesterol and ADP metabolic processes.
Together these results highlight the importance of studying environmental e↵ects on gene expression in
di↵erent cell types to avoid missing physiologically important cell type ⇥ treatment e↵ects.

To comprehensively identify global shifts in splicing patterns across cell types, individuals, and envi-
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ronments we employed LeafCutter [66], an annotation-free splicing detection tool based on intron excision
from pre-mRNAs. We identified 22,334,519 unique introns, corresponding to 101,450 di↵erent transcripts
and 14,066 di↵erent genes among all cell types and treatment exposures. We found between 9 (insulin in
IPSCs) and 4,106 (copper in LCLs) di↵erentially spliced genes (DSGs; FDR < 10%) between treatment
and control in each cell type. As one would expect, we identified treatments triggering consistent splicing
alterations across all three cell types, as well as treatments predominantly having an e↵ect in just one or
two of them (Figure 1C). For instance, selenium exposure leads to splicing alterations in all three cell types,
particularly prominent in IPSCs (3,223 DSGs), while in LCLs and CMs the number of di↵erentially spliced
genes is much lower (1,006 and 130 DSGs, respectively). Intron excision can be directional, meaning a given
intron can be more or less excised in any given condition, with respect to baseline levels [100]. This may
result from a treatment inducing a concerted regulation of splicing towards, for example, intron retention
across genes. To investigate this phenomenon, in each condition (i.e. treatment-cell type combination) we
extracted the percent spliced in ( ) values and performed a two-sided binomial test to determine whether
observed excision direction significantly shifts from a random 50:50 distribution. We identified 10 out of
36 environments (⇠29%) that show a consistent shift (FDR < 10%) in one direction of intron splicing
(Figure 1-figure supplement 3). More specifically, 4 of them were identified in LCLs (insulin, selenium,
zinc, copper), 2 in IPSCs (ca↵eine, zinc) and 4 in CMs (aldosterone, nicotine, dexamethasone, insulin).
When considering the same treatment across di↵erent cell types, we found varying consistency in splicing
direction. For instance, zinc treatment is associated with an increase in intron excision events in all the 3
cell types considered, although being significant only in LCLs and IPSCs. Response to insulin, instead, is
characterized by an increase in intron retention in CMs and intron excision in LCLs. This would suggest
that interaction between the environment and cellular contexts eventually determines whether cells tend
to overall retain or excise introns.

Environment triggers distinct changes in gene expression and alternative
splicing

Cells are continuously exposed to di↵erent stimuli and environments, even in physiological conditions.
Responses to those exposures are multi-layered, involving changes at both the transcriptional and post-
transcriptional level. Because of that, di↵erentially expressed and di↵erentially spliced genes may be in-
volved in distinct processes, but ultimately contributing to restoring cellular homeostasis. To understand
how gene expression changes and alternative splicing contribute to the cellular response, we investigated
whether the same genes are DEG and DSG in a certain context. Overall, the number of DSGs is signifi-
cantly correlated with the number of DEGs (Figure 1-figure supplement 4, ⇢ = 0.91, p = 1.4⇥10�14), thus
indicating that the extent of the environmental e↵ects on the transcriptome is similar for gene expression
and splicing. DSGs are also generally enriched for DEGs, except for notable examples, such as insulin
in CMs (Figure 1-figure supplement 5). On average 12.6% of the DSGs were found to be also DEGs
in a given condition (Figure 1D). Overall this suggests that there are both co-transcriptional and also
independent mechanisms controlling pre and post-transcriptional responses. Furthermore, gene regulatory
mechanisms involved in di↵erent biological processes responding to the environment likely modify tran-
scription by splicing or changes in expression independently. We identified di↵erent biological processes
a↵ected by di↵erential gene expression and splicing in response to the treatments in the three cell types
(Figure 1E, Figure 1-figure supplement 6 and Figure 1-figure supplement 7A and B). DEGs in CMs are
enriched for biological processes related to ion channel activity and transmembrane signaling across seven
treatments (vitamin A, dexamethasone, ca↵eine, nicotine, copper, insulin, and acetaminophen), whereas
DSGs were enriched for cytoskeletal protein binding across seven treatments (aldosterone, dexamethasone,
ca↵eine, nicotine, copper, zinc, and insulin). Similarly, IPSCs showed a di↵erence, with DEGs being in-
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Figure 2: Variance partitioning of gene expression and splicing Sources of variation in gene expression and splicing.
Variance for gene expression (A) and splicing (B) was partitioned into categories (horizontal axis).

volved in ion channel activity in seven treatments (vitamin A, ca↵eine, nicotine, copper, selenium, zinc,
and acetaminophen), whereas DSGs were enriched for DNA binding and RNA biology terms across all
treatments. On the other hand, both DEGs and DSGs in LCLs were highly enriched for cancer and viral-
related processes, pathways and diseases across most treatments, without showing any specific di↵erence
between DEGs and DSGs. We also considered disease-gene network annotations and found that DEGs
and DSGs in CMs are both enriched for genes linked to cardiovascular diseases, including di↵erent forms
of cardiomyopathies and vascular disorders across all treatments except insulin for DSGs (Figure 1-figure
supplement 8B).

Sources of variation of gene expression and splicing

In order to identify the determinants of gene expression and splicing variation, we partitioned the variance
in both gene expression and intron excision [48]. In particular, we were interested in uncovering the extent
of the contribution of genetics, environmental and cell type e↵ects to gene expression and intron excision.
Variance which cannot be attributed to any of these defined components is counted as residual, which can
be generally interpreted as due to stochasticity in the transcription process, technical variation, and/or
unknown variables (e.g. cell cycle stage).

First, we considered the relative contribution of cell type, treatment, individual and batch e↵ects (i.e.
plate) to the overall variance. To this end, we partitioned the variance of all deep-sequenced samples. As
expected, cell type identity has the strongest e↵ect on both gene expression and splicing variance across
samples for most genes (variance explained median value 74% and 70%, respectively, which is consistently
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Figure 3: ASE and cASE (A) Number of SNPs with ASE in each treatment and cell type from QuASAR. (B) Spearman
correlations between libraries across variables. The notches describe the 95% confidence interval of the median. “Across cell”
indicates comparisons between libraries which are from the same individual and treatment, but di↵erent cell types. “Across
individual” indicates comparisons between libraries from the same cell type, treatment, and replicate (i.e. plate), but di↵erent
individuals. “Across replicate” indicates comparisons between libraries from the same cell type, treatment, and individual,
but di↵erent replicates (i.e. plate). “Across treatment” indicates comparisons between libraries which are from the same cell
type, individual, and replicate (i.e. plate), but di↵erent treatments. “Control1 vs Control2” indicates comparisons between
the two vehicle controls from the same individual and replicate (i.e. plate). (C) QQ-plot depicting interaction p-values
for SNPs tested for cASE. G⇥C indicates SNPs tested for GenexCell type e↵ects, G⇥T indicates SNPs tested for Gene
⇥ treatment e↵ects, G⇥C⇥T indicates genes tested for Gene ⇥ cell type ⇥ treatment e↵ects. Ctr1 vs Ctr2 indicates the
coe�cient in the model that accounts for the vehicle control used for each treatment. (D) Number of treatment G⇥E. Gene
⇥ treatment and gene ⇥ treatment ⇥ cell type cASE is reported for each treatment, irrespective of the cell type in which it
was identified. (E) Enrichment of genes with ASE and treatment cASE in eGenes from large ASE/eQTL mapping studies:
1,2) CMs in GTEx heart tissues ASE/eQTL (left ventricle, LV and atrial appendage, AA), 3) IPSCs in i2QTL, 4) LCLs in
Geuvadis. Odds ratios and 95% confidence intervals are plotted (Fisher’s test). (F) Gene-by-treatment cASE shared between
treatments. For each treatment pair we calculate the proportion of shared cASE over the union of cASE identified in each
of the two treatments (Jaccard Index). (G) Forest plot depicting the significant (FDR < 10%) enrichment and depletion of
ASE and cASE SNPs with respect to all SNPs tested for di↵erent genomic annotations.

bigger than the batch e↵ect), with a relatively small contribution from the individual and treatment
(Figure 2). Within each cell type, we considered treatment, individual, batch e↵ects (i.e. plate), and we
also considered the e↵ect of any interaction between individual and treatment. These interactions should
capture potential G⇥E e↵ects for a specific treatment, but may also include epigenetic interactions. As
expected, once we removed cell type e↵ects, we observed a larger contribution from the other factors
to both gene expression and splicing variation across samples. Similar patterns were observed for both
gene expression and splicing. For example the contribution of the individual is largest in CMs (55% gene
expression, 45% splicing), followed by LCLs (36% gene expression, 28% splicing) and IPSCs (28% gene
expression, 20% splicing), similar to what was shown previously for gene expression [9]. To investigate
whether this result may reflect variation in the purity of the CMs, we considered the expression of the gene
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TNNT2 which encodes for the Cardiac muscle troponin T. The expression of this gene is used as a marker of
di↵erentiation of CMs and a surrogate of CM purity [122]. We repeated the analysis of variance for the CMs
by including TNNT2 expression as an additional factor. The results show that the proportion of variance
explained by the individual component does not change and that the median percent variance explained
by TNNT2 expression is 6% (Figure 2-figure supplement 1). Treatment explained the greatest percentage
of variance in LCLs (22% gene expression, 12% splicing), followed by IPSCs (11% gene expression, 6%
splicing), then CMs (4% gene expression, 2% splicing). When we focused on the variance explained by
measured variables (plate, treatment, individual and their interaction) we found that treatment (marginal
and interaction with individual) explained at least half of the variance for 64% of the genes.

A B

C
AARS2: Combined oxidative 
phosphorylation deficiency 8

DSC2: Arrhythmogenic right 
ventricular dysplasia 11

D
E

Figure 4: Treatment cASE genes in TWAS (A) CM cASE overlap for genes associated with complex traits in TWAS.
For each trait, the forest plot shows the proportion of cASE genes overlapping TWAS genes, relative to the average proportion
calculated across all traits. Overlap with genes associated with heart rate was significantly greater than other traits (p=0.01,
FDR=0.08). (B) Overlap of gene-by-treatment cASE from all cell types with genes associated with complex traits in TWAS.
The color of the box represents the Z-score of the one sample proportion test comparing the proportion of cASE-TWAS
overlap for a treatment to the average cASE-TWAS overlap across treatments. (C) Gene-by-treatment cASE overlap with
CARDIoGRAM TWAS. (D,E) Forest plots depicting change in allelic imbalance in CMs due to treatments for AARS2 and
DSC2, two genes implicated in Medelian disease. Lines in blue indicate significant treatment cASE.

Genetic e↵ects on gene expression across cell types and treatments

To investigate the genetic control of gene expression across cell types and treatments, we identified SNPs
exhibiting allele-specific expression (ASE). ASE occurs when there is a transcriptional imbalance between
the maternal and paternal copies of an allele. Because ASE is measured within each sample, trans factors
are kept constant, so any di↵erences in allelic expression is most likely due to cis-regulatory variants.
We used QuASAR [47] to identify heterozygous genotypes and to provide an initial estimate of the ASE
(Supplementary File 1j). In total, we quantified ASE at 282,278 unique SNPs in 22,397 genes. The number
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of SNPs with ASE across treatments within each cell type ranges from 612 - 1052 for LCLs, 607-1342 for
IPSCs, and 812-1310 for CMs (Figure 3A).

For each individual, we measured ASE in up to 84 experimental conditions (3 cell types, 14 treatments,
2 technical replicates). This gives us an unprecedented opportunity to determine the factors that modify
allelic expression in an individual. To avoid excluding conditions where an allele may be lowly expressed,
we tested for ASE using a new linear model (see Methods), which incorporated ASE measurements across
all conditions for a SNP in a given individual, for a total of 69,205 SNPs (10,142 genes) that can be tested.
By doing so, we directly infer the noise inherent in ASE measurements using the linear model (ANOVA).

We first identified 15,497 (⇠23%) SNPs that show evidence of ASE in any condition (ANOVA test eq.
3 and 4, FDR < 10%, Supplementary File 1k), corresponding to 5,640 genes. Reassuringly, we observed
high correlation of ASE between replicates (i.e. same individual, treatment, and cell type in di↵erent
batches; Spearman’s correlation median=0.66), which confirms that technical e↵ects have a limited impact
and that ASE measurements are reproducible (Figure 3B). When we consider control conditions on the
same plate, the median correlation is identical to the one between replicates, thus confirming that the 2
control conditions can be considered technical replicates of each other. Finally, we observe a significant
decrease in the correlation between ASE measurements when we consider di↵erent treatments or di↵erent
cell types, which indicates G⇥E e↵ects (p < 10�16, Kolmogorov-Smirnov test).

We then used the linear model to identify significant cell type-specific e↵ects, treatment-specific e↵ects
and cell type ⇥ treatment e↵ects on ASE, which we refer to as conditional ASE (cASE)(ref. Methods,
Eq. 5, Supplementary File 1m). We identified 7,866 instances of cell type cASE (5,452 unique SNPs,
FDR < 10%), corresponding to gene ⇥ cell type interactions; 1,409 instances of treatment cASE (1,102
unique SNPs, FDR 10%), corresponding to gene ⇥ treatment interactions; and 929 instances of cell type
⇥ treatment cASE (715 unique SNPs, FDR < 10%), corresponding to gene ⇥ cell type ⇥ treatment
interactions (Figure 3C,D). When we considered genes with at least one SNP with ASE, we found 2,822
unique genes with gene ⇥ cell type interactions, 979 unique genes with gene ⇥ treatment interactions and
689 unique genes with gene ⇥ cell type ⇥ treatment interactions.

We next investigated whether these genetic e↵ects on gene expression have been previously observed in
large scale eQTL mapping studies that largely ignored dynamic regulatory interactions. For this analysis
we considered the CMs and their tissue counterparts in GTEx (left ventricle and atrial appendage), the
LCLs and the GEUVADIS dataset [61], and IPSCs and the I2QTL consortium data [13]. In CMs, we
identified 3,033 genes with ASE. Of these genes, 50% (1,519) and 52% (1,619) were eGenes in left ventricle
and atrial appendage from GTEx, respectively. This translates to a 1.52 and 1.46-fold enrichment of ASE
genes in GTEx genes in the left ventricle and atrial appendage, respectively (p < 10�16, Fisher’s exact test,
Figure 3E). Of the 338 genes with treatment cASE in CMs, 170 and 178 are eGenes in left ventricle and
atrial appendage in GTEx. Interestingly, treatment cASE genes in CMs were not significantly enriched in
either tissue (odds ratio = 1.02, 0.95). In addition to eQTL mapping, GTEx also used ASE to measure
cis-regulatory e↵ects [24]. As with GTEx eGenes, GTEx left ventricle and atrial appendage genes with
ASE were enriched for CM ASE genes (odds ratio = 1.75, 1.66 for each tissue, respectively, p < 10�16), but
not CM cASE genes. A similar pattern was seen in LCLs and IPSCs. In LCLs, there were 3,237 genes with
ASE, and 24% (764) were eGenes in Geuvadis (1.55-fold enrichment, p = 1.4 ⇥ 10�13). Of the 167 genes
with cASE in LCLs, 26 were eGenes in Geuvadis. This represented a significant depletion of cASE genes in
Geuvadis eGenes (odds ratio = 0.55, p = 7.7⇥10�3). In IPSCs, there were 3,113 genes with ASE, and 80%
were eGenes in i2QTL (1.49-fold enrichment, p = 1.0⇥ 10�10). Of the 352 genes with cASE in IPSCs, 284
were eGenes in i2QTL. As with the CMs, these cASE genes were not significantly enriched (odds ratio =
1.03). These results indicate that investigating the control of gene expression across di↵erent environmental
contexts, even in a small number of individuals, can identify new instances of genetic regulation that are
missed in large eQTL mapping studies that do not explicitly sample di↵erent environmental contexts.
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To investigate whether our G⇥E results replicate in other environments previously investigated, we
calculated the overlap between genes with gene ⇥ treatment interactions in our dataset and genes with
G⇥E identified in fourteen previous ASE and eQTL mapping studies spanning a range of cell types and
treatments. Of 979 genes with treatment cASE, 850 ( 87%) replicated in at least one of these datasets
(with p < 0.05 in the original study, Supplementary File 1q). Knowles et al [59] exposed IPSC-derived
CMs to doxorubicin, a chemotherapeutic agent, and performed response eQTL (reQTL) and response
splicing QTL (rsQTL) mapping. When considering genes with a reQTL, 105 could be tested for cASE
in CMs and 79 of these genes had nominally significant cASE (p < 0.05), while 12 displayed cASE after
multiple test correction (FDR < 10%) spanning 9 di↵erent treatments in our study (Supplementary File
1r). For example, for 3 of those genes (FRAS1, PDGFC, and MPHOSPH6 ) we can now annotate a G⇥E
interaction with ca↵eine in addition to doxorubicin. Out of 740 genes with 1 or more sQTLs,182 and
88 have ASE and cASE in our datasets (p <0.05), respectively, whereas of the 62 genes with response
sQTLs to doxorubicin 16 have ASE and 11 have cASE (p <0.05). Overall these results point to di↵erent
regulatory mechanisms that can lead to G⇥E and that are context-specific.

The number of genes with gene ⇥ treatment interactions varies with a low of 96 (93 SNPs) for aldos-
terone and a high of 176 (159 SNPs) for copper (1.8 fold range between minimum and maximum number
of cASE). This is in contrast with the spread in gene expression and splicing responses across treatments
(two orders of magnitude lower than the range between minimum and maximum number of DEGs). When
we considered cASE in each cell type separately, indeed we did not find a significant enrichment or deple-
tion for cASE genes being di↵erentially expressed or di↵erentially spliced between treatment and control
(Figure 3-figure supplement 1). However, despite the number of cASE being similar across treatments, the
genes with G⇥E are largely di↵erent. Most treatment cASE SNPs were specific to one treatment (80.5%,
Figure 3-figure supplement 2), so there was little sharing between treatments (Figure 3F). While this
could be due to a lack of power in detecting cASE with small e↵ect sizes, it also suggests that genes with
the strongest cASE are di↵erent across conditions.

Biological and clinical significance of allele-specific expression across cell types
and treatments

SNPs with ASE and cASE may have a direct e↵ect on gene expression or more often may indirectly reflect
the e↵ect of a regulatory variant located in non-coding regions. Regulatory sites that could be located
within the gene transcript itself include those in the 3’ and 5’ UTRs, in splicing junctions, premature stop
codons, and possibly exonic enhancers. Thus SNPs with ASE and cASE located within these regulatory
sites could be putative causal sites for the observed allelic imbalance [82].

We retrieved the genomic location of the SNPs associated with ASE and cASE, as well as their pre-
dicted functional impact from dbSNP (https://www.ncbi.nlm.nih.gov/snp, [108]) (Figure 3-figure
supplement 3). When we considered all variants that could be tested for ASE, both ASE and cASE SNPs
were found to be significantly enriched in 5’ and 3’ UTRs, and among variants classified as missense or
altering a stop codon (FDR < 10%, Fisher’s exact test; Figure 3G). On the contrary, SNPs located within
upstream/downstream transcript and genic regions, within introns and in splicing sites were found to be
significantly depleted in ASE/cASE SNPs. Taken together, these data suggest that functional SNPs with
ASE or cASE most likely exert their function by changing transcriptional and/or RNA stability regula-
tory sequences because the 5’ and 3’ regions tend to a↵ect these processes, rather than a↵ecting splicing
processes.

To investigate the role of genes with cASE in human phenotypes, we considered genes associated
with complex traits. To this end, we used the results from Probabilistic Transcriptome Wide Association
Studies (PTWAS) [128], which combined eQTL data from GTEx and GWAS data from several large scale
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Figure 5: ASE residual variance (A) Variance partitioning of ASE across all cell types. (B) Variance partitioning of
ASE within each cell type separately. (C) ASE residual variance across cell types. For SNPs with ASE variance measured
in more than one cell type in the cell type-specific model, we have plotted the residual variance in each pair of cell types.
(D) Relationships between 8 gene annotations and treatment ASE variance, residual ASE variance, and mean absolute ASE.
Red indicates that the annotation is positively correlated to ASE variance or absolute ASE, while blue indicates a negative
correlation. Gray indicates no significant relationship. (E) Treatment variance, residual variance, and mean absolute ASE
by DEG. We have separated genes into 3 categories: 1) Not DEG: Not di↵erentially expressed in response to any treatment.
2) DEG: Di↵erentially expressed with log2 fold change > 0.25 in at least one treatment but not greater than 0.75 in any
treatment. 3) Highly DEG: Di↵erentially expressed with log2 fold change > 0.75 in at least one treatment. Each gene can
only be in one category. (F) Residual ASE variance and mean absolute ASE for genes with or without a TATA box in the
promoter. (G) Treatment variance, residual variance, and mean absolute ASE for genes significant or not significant by
TWAS.

studies to identify which genes are most likely to be in the causal pathway for complex traits. First, we
considered eight cardiovascular traits, including blood lipids, hypertension, coronary artery disease, and
heart rate. Heart rate was the only trait with a significant overlap with CM-specific cASE, compared to the
average overlap with other cardiovascular traits (FDR < 10%). Interestingly, heart rate is the trait among
those tested where cardiomyocytes have a direct physiological role (Figure 4A). We then investigated the
role of G⇥E in a larger panel of 45 complex traits (Figure 4B). Five traits were enriched for treatment
cASE genes in at least one condition (p < 0.05) compared to the other treatments. For example, genes
associated with low birthweight are enriched for genes that have ca↵eine cASE (Figure 4B). For the 428
genes associated with coronary artery disease (CAD), cASE for metal treatments have the greatest overlap,
with cadmium and copper each having five cASE genes associated with CAD, and zinc having three (Figure
4C). Interestingly, cadmium causes endothelial dysfunction and promotes atherosclerosis [80], while copper
deficiency has been linked to the development of CAD [30]. FAM213A (also known as PRXL2A), which
is involved in redox regulation [42, 124] is shared as treatment cASE for cadmium and copper, in addition
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to being treatment cASE for nicotine.
We also considered an atrial fibrillation GWAS which identified 151 genes near associated loci [86]. Ten

of these genes displayed treatment cASE in at least one condition, for a total of 21 gene-cASE condition
pairs (Figure 4-figure supplement 1, Supplementary File 1s). The greatest overlap was with dexametha-
sone cASE. Corticosteroids are antiinflammatory drugs which share molecular pathways with inflammatory
disease. Inflammation is a risk factor for atrial fibrillation [46, 49]. Additionally, in multiple population-
based, case-control studies, corticosteroid use was associated with new-onset atrial fibrillation [25, 117].
Unlike atrial fibrillation, GWAS for heart failure have not identified many association signals, likely due
to the highly heterogeneous nature of the disease. Two recent meta-analyses identified 3 and 13 genes,
respectively [6, 105]. Three of the genes associated with heart failure had treatment cASE: FAM241A in 5
conditions (copper, dexamethasone, insulin, ca↵eine, and vitamin A); BAG3 in 5 conditions (dexametha-
sone, ca↵eine, vitamin A, nicotine, and aldosterone); and KLHL3 in triclosan.

While most causes of heart disease are not due to a mutation in a single gene, regulatory variation
controlling the expression of Mendelian disease genes can a↵ect complex trait risk [37]. In CMs, we found
3 genes in OMIM (Online Mendelian Inheritance in Man) [44] with gene ⇥ treatment interactions that are
known to cause Mendelian forms of heart disease: PSMA6, AARS2, DSC2. AARS2 displayed cASE in
response to nicotine and mutations in this gene cause Combined Oxidative Phosphorylation Deficiency 8,
which manifests as fatal infantile hypertrophic mitochondrial cardiomyopathy (Figure 4D). DSC2, instead,
displayed cASE in response to copper and mutations in this gene cause Arrhythmogenic right ventricular
dysplasia 11 (Figure 4E).

Much of complex trait heritability is not explained by genome-wide significant variants, but rather
results from the contribution of many variants with smaller e↵ect sizes [15, 74, 125]. Methods to partition
the heritability of complex traits can be used to determine the proportion of heritability attributable
to genomic annotations [35, 126]. We used RHE-mc [90] to partition the heritability of complex traits
from UK Biobank based on cASE annotations. First, we partitioned the heritability of 17 traits, using
an annotation of genes with cell type cASE for CMs. CM cell type cASE was significantly enriched for
diastolic blood pressure, autoimmune disease, and height. We then considered 22 traits, using treatment
cASE as an annotation (Figure 4-figure supplement 2). Diastolic blood pressure was enriched for vitamin
A, systolic blood pressure was enriched for vitamin A, copper, and zinc. Respiratory disease was enriched
for ca↵eine, and smoking status for selenium.

Characterizing variation in genetic regulation of gene expression

The presence of cASE indicates that the genetic control of gene expression varies significantly with changes
in the environment. To further investigate the role of the environment and cell type in controlling ASE,
we used a mixed-e↵ects model to partition the variance in ASE for each SNP-individual pair across all
experimental conditions, similar to our analysis of gene expression and splicing variance (see methods).
When considering all cell types together, the greatest amount of explainable variance in ASE was captured
by the cell type (Figure 5A, Supplementary File 1t), similar to the results explaining variability in gene
expression (Figure 3A). However, when considering variance in ASE within each cell type, a much larger
proportion of the explainable variance was attributed to the e↵ect of a treatment (Figure 5B, Supple-
mentary File 1u). Specifically 17.5%, 16.6%, and 16.8% of variance (median) in ASE was attributed to
treatment e↵ects in CMs, IPSCs, and LCLs, respectively, compared to 3.6%, 11.2%, and 21.9% variance
(median) in total gene expression.

There has been extensive investigation into gene expression stochasticity [109]. However, the role of
stochasticity in the genetic control of gene expression has proven more di�cult to study [103]. Because
our experimental design measures ASE across many conditions, we can analyze the residual variance as a

12



measure of genetic control stochasticity. We found that residual variance at a particular SNP is correlated
(r 2 [0.55� 0.59], p < 10�16, 95% confidence intervals = [0.55, 0.63] for LCL vs IPSC, [0.50, 0.59] for LCL
vs CM, and [0.55, 0.61] for IPSC vs CM) across cell types, indicating that unknown factors that contribute
to the genetic control of gene expression are conserved across tissues (Figure 5C). In LCLs, genes with
high residual variance were enriched in 22 GO terms, with the greatest enrichments being related to tissue
morphogenesis and developmental processes, while genes with low residual variance were enriched in 82
GO terms, including RNA processing and immune activation. In IPSCs, low residual variance genes were
enriched in 128 GO terms, including peptide metabolic pathways, which was also seen in CMs. We found
that low residual variance genes in CMs were enriched in 123 GO terms, including processes related to cell
signalling (Supplementary File 1v, Figure 5-figure supplement 1).

To investigate the biological significance of ASE changes in magnitude and variance, we considered 9
genomic features: genes di↵erentially expressed in response to any treatment, genes di↵erentially spliced
in response to a treatment, genes with a TATA-box promoter, CpG percentage in the promoter, GC
percentage in the promoter, genes which cause mendelian cardiomyopathies, genes associated with complex
traits by TWAS, gene tolerance to loss of function mutations, and dN/dS ratio (the ratio of nonsynonymous
to synonymous mutations in a gene, which is a measure of selective pressure) (Figure 5D). We first
considered the distribution of allelic expression for each of these categories. DEGs were characterized by
high ASE compared to genes that do not respond to the treatments (Figure 5E). Allelic expression was
also elevated for genes tolerant to loss of function mutations, while genes associated with complex traits
tend to have lower allelic expression (Figure 5F,G), which reflects the di↵erence in phenotypic relevance
for these gene categories. Genes with lower ratio of nonsynonymous to synonymous mutations (dN/dS,
i.e. genes under negative selection) are associated with lower mean ASE. When we considered regulatory
features of the genes with ASE, we found lower ASE for genes with a TATA box, and for genes with higher
promoter CpG and GC content.

When focusing on variance in allelic expression, we found di↵erential gene expression to be associated
with increased residual variance, suggesting that for genes with more dramatic responses to the environ-
ment, gene expression is under a less stringent genetic control (Figure 5E). Di↵erentially spliced genes,
however, are associated with increased treatment variance, and not increased residual variance (Figure
5-figure supplement 2). We then considered promoter architecture. SNPs in genes with a TATA box had
increased residual variance compared to SNPs in genes without a TATA box (Figure 5F). We found no
significant relationship between treatment variance and whether the gene contains a TATA box. In addi-
tion, GC content and CpG islands in a gene’s promoter was associated with increased treatment variance
and decreased residual variance. Genes which are known to cause cardiomyopathies when mutated had a
small increase in residual variance (p = 0.0032), while genes implicated in any of the 103 TWAS in [128]
had decreased residual variance. Finally, we considered if intolerance to loss of function and dN/dS ratio
could be related to ASE variance. As expected, genes that are less tolerant to loss of function mutations
and genes under negative selection (i.e. low dN/dS) have significantly lower residual variance.

Discussion

A fundamental open question in the field of genomics is understanding the sources of variation in gene
expression across di↵erent individuals, cell types and environmental contexts. Each of these components
has been investigated separately in previous studies [2, 3, 4, 10, 20, 29, 31, 33, 34, 36, 40, 50, 51, 56, 59,
64, 71, 73, 75, 76, 84, 85, 94, 113, 118, 121]. Here, in order to investigate the transcriptome along the three
di↵erent axes, we used a study design that combines IPSC technology, high-throughput screening and
allele-specific expression analyses. The cell type context has the overall strongest e↵ect on gene expression,
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splicing, and allelic expression. This is observed both in terms of di↵erences of the mean gene expression
levels across conditions using fixed e↵ect models, or in analyzing the variance on gene expression using
random e↵ect models. Importantly, we demonstrate that a large number of context-specific genetic e↵ects
on gene expression are not captured by existing large cohort eQTL studies (e.g. GTEx, GEUVADIS,
i2QTL), but can be discovered even with limited sample sizes, when using an allele-specific expression
study design. Our unique approach, accounting for cell-type but also genetic and environmental influences
has also revealed that environmental impact on gene expression is substantial and particularly important
for genes that influence complex traits.

IPSCs are a valuable model system for studying primary cell types which are di�cult to obtain
and/or culture [110]. Extensive work by our group and others have shown that despite the poten-
tial introduction of reprogramming e↵ects, IPSC-derived CMs mimic primary CMs [89], recapitulate in
vivo CM phenotypes [18, 23, 77], retain donor-specific expression signatures [19, 27, 88, 102], and can
be used to assess the e↵ects of environmental exposures on CM gene expression and cellular physiol-
ogy [18, 58, 59, 77, 106, 107, 122]. This ability to study CMs themselves is especially important given
that GWAS studies for heart failure have revealed little of the genetic architecture of the disease. While
pedigree analysis suggests that the heritability of heart failure is 26% - 34% [68], two recent, large-scale
GWAS identified only eleven [105] and three [6] genomic loci associated with heart failure. This could be
due to a lack of quantitative measurements of heart failure, complex etiologies, or the significant environ-
mental contributions to developing heart failure [97]. Our approach allows for interrogation of the e↵ects
of environmental exposures in a controlled environment on CM gene expression.

Some treatments had very dramatic e↵ects on gene expression, such as copper and selenium in LCLs
with more than 10,000 DEGs each. However, these large changes in gene expression were seen in our previ-
ous work [84] (7,869 DEGs in copper, 14,057 DEGs in selenium), and the increased sequencing depth and
greater number of individuals in this study increased our power to detect DEGs. On average, we show the
number of DSGs is directly correlated with the number of DEGs, therefore suggesting that environmental
perturbations have a similar degree of e↵ect on both transcriptional and post-transcriptional processes.
However, only a minor fraction of genes were found to be both di↵erentially expressed and spliced, which
suggests that changes in gene expression and splicing represent distinct regulatory mechanisms by which
cells can respond to their environment. Indeed, this is supported by GO and KEGG enrichment analyses,
showing DSGs in CMs are involved in cytoskeletal activities, whereas DEGs were found to play a role in
ion channel processes.

Partitioning the variance in gene expression and intron excision across all cell types gives a broad
overview of the relative contribution of cell type and treatment components to transcription and splicing
processes. There were similar patterns for gene expression and splicing. Similar to previous work on
partitioning the variance in gene expression across a panel of LCLs, IPSCs, and CMs by Banovich et al [9],
variance due to the individual component was greatest in CMs, followed by LCLs and IPSCs. Yet herein,
we were additionally able to consider the treatment component, which was greatest in LCLs and least in
CMs. One possible explanation is that the chosen treatments may have more e↵ect in LCLs; alternatively,
this may be a consequence of greater inter-individual heterogeneity in CMs compared to LCLs. Regardless
of cell type, residual variance was greater for splicing than gene expression. This is consistent with previous
work showing that splicing is an error-prone process with a high degree of noise [79, 91, 120].

A key new feature of our study design is that it allowed us to analyze allelic expression across 12
environments (and 2 controls), 3 cell types, 6 individuals and 2 technical replicates each, for a total of 504
experimental samples. This is the largest single study of allelic expression comparing in parallel cell type
e↵ects, treatment conditions, and their interactions while controlling for technical variation. We used a
new linear model to precisely estimate allelic expression and its variance directly from all the measurements
of ASE for each individual (up to 84). As a result, we have a more complete view of the pervasiveness
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of G⇥E and we were able to directly investigate whether environmental e↵ects on genetic regulation of
gene expression di↵er across cell types. Our study design allowed us to specifically investigate interactions
between genotype, cell type and treatment. Interestingly, many treatment e↵ects on allelic expression vary
across cell types, therefore it is important to consider jointly cellular and environmental contexts. As the
IPSC technology allows investigators to study multiple cell types from the same individuals, future study
designs should consider the importance of studying environmental e↵ects across cell types to learn about
pleiotropic e↵ects of potential biomedical relevance.

Both eQTL and ASE studies have demonstrated that genetic e↵ects on gene expression vary significantly
across cellular [8] and environmental contexts [3, 4, 10, 20, 31, 50, 56, 59, 64, 73, 75, 76, 84, 85, 94]. However
we don’t know how stable the genetic control of gene expression is across technical and environmental
contexts. This cannot be investigated with eQTL mapping because the genetic e↵ects on gene expression
are estimated across individuals, but can be explored with multiple measurements of allelic expression
from the same individual. We observed that residual variance of allelic expression is conserved across cell
types, which indicates that the intrinsic properties controlling variation in allelic expression are consistent
in di↵erent tissues and have biological significance. For example, genes which had a strong expression
response to at least one treatment had increased residual variance over genes which had no response or a
smaller response, while genes with a splicing response had greater treatment variance only. We hypothesize
that greater residual variance indicates a less stringent control of allelic expression. This may depend on the
regulatory architecture of these genes and may similarly enable large fluctuations in gene expression across
contexts. Prior work on gene expression variance has demonstrated that genes with a TATA box have
increased noise [81]. This was also shown by [109] as well as in our data here (Figure 2-figure supplement
2). However, this finding has not been evaluated for the genetic control of allelic expression. Our results
indicate that genes with ASE which are under the control of a TATA box promoter have increased residual
variance over ASE genes without a TATA box, and thus greater noise. TATA box promoters, as opposed
to CpG island-associated promoters, have been associated with tissue-specific genes and high conservation
across species [22]. Genes which are more tolerant to loss of function mutations showed greater allelic
expression residual variance, indicating that redundancy in gene function allows for less stringent genetic
control. This could allow for the evolution of new regulatory elements, resulting in new patterns of gene
expression. Conversely, genes which are under negative selection (i.e. low dN/dS) have low residual
variance, underscoring the importance of preserving stable expression of these genes. Tolerance to ASE
variation could result in robustness against regulatory decoherence [63], which could be further explored
in future studies. Cell type and treatment specific e↵ects are the largest identifiable sources of variation in
allelic expression for hundreds of genes, as we demonstrated using both variance decomposition and fixed
e↵ects as statistical models.

Splicing sites have very conserved sequences, which are recognized by spliceosomal and accessory pro-
teins which ultimately determine splicing patterns. Moreover, splicing is finely tuned by regulatory cis
RNA sequences within both exons and introns, which are recognized by several RNA-binding proteins
(RBPs). Mutations within these consensus sequences therefore have catastrophic consequences in pre-
mRNA splicing, eventually being associated with a plethora of di↵erent pathological conditions [5, 32, 70],
including several forms of cystic fibrosis[12, 38] and in both Becker and Duchenne muscular dystrophies [43].
In addition to deleterious mutations, naturally-occurring polymorphisms such as SNPs may contribute to
alter the strength of splicing signals, eventually changing splicing outcomes. However, SNPs linked either
to ASE or cASE were found to be mainly depleted in both donor and acceptor splicing sites, eventually
suggesting that di↵erential intron splicing is not a major mechanism underlying ASE/cASE. In fact, those
SNPs were found to be enriched within several genic regions, in particular within UTRs and, interestingly,
causing either the loss or gain of stop codons. These events have dramatic e↵ects on RNA stability, as
improper stop codon localization can activate the nonsense mRNA decay (NMD) pathway, resulting in
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transcript degradation [17]. Moreover, synonymous polymorphisms may alter the codon optimization of a
given mRNA, a process which has been linked to reduced half-life [93]. All these events may eventually
lead to reduced abundance of the transcript carrying a particular allele, compared to the other copy, thus
resulting in ASE.

We identified 3,198 genes with cASE, including 2,822 genes with cell type cASE, 979 genes with treat-
ment cASE and 689 genes with treatment ⇥ cell type cASE. Many genes with treatment cASE overlap with
genes that have context-specific genetic e↵ects discovered by other studies; yet there is little sharing for
any specific pair of conditions. In our study, since we compare ASE within the same genetic background,
this limited sharing of ASE between treatments strongly suggests the existence of independent regulatory
variants in context specific cis-regulatory modules. eQTL mapping consortia, like GTEx, identify eQTLs
under one arbitrary condition, so genetic e↵ects on gene expression which occur only transiently during
development or under certain environmental conditions will be missed [26, 34, 84, 98, 111, 116]. A com-
mon approach to increasing identification of eQTLs is to increase the sample size. However, interrogating
additional environmental conditions will be required to gain a more complete understanding of the genetic
control of gene expression. This is reflected in the lack of enrichment for cASE genes in eQTLs from large
studies in three tissues/cell-types. Even with a sample size of only six individuals, we identified many new
genes which are genetically regulated under specific environmental conditions. For example, in CMs ap-
proximately half (⇠1,500) of the ASE genes were not eGenes in GTEx heart tissues. They were identified
as ASE genes in our study due to the wide range of compounds we exposed them to. More than 160 of
these ASE genes unidentified by GTEx showed evidence of cASE, thus pinpointing the environmental con-
dition which was responsible for altering regulation of gene expression. Indeed a large fraction of CM cASE
genes (>47%) are not eGenes in GTEx as detected by eQTL mapping or ASE. Because the CM samples
were sequenced to very high depth, and because the power to detect allelic bias is based on read depth,
this result could be partially due to having high statistical power to detect ASE and cASE. However, this
does not seem to be the case, as we obtained similar results for LCLs and IPSCs, compared to the eQTL
results in the Geuvadis and i2QTL datasets, respectively, with ASE genes being enriched in eGenes, but
not cASE. While comparisons across studies may be complicated by several factors including di↵erences
in haplotype structures, study populations, and sequencing depth, the results are highly concordant and
support the same conclusion.

Our results show the importance of considering the relevant tissue type, as CM-specific cASE are
enriched for heart rate, which is a phenotype with a direct physiological role for the heart muscle. The
importance of the identification of G⇥E in a range of environments is illustrated by our findings that
Mendelian cardiovascular disease genes and TWAS genes in a wide variety of traits display G⇥E. In total,
across all cardiovascular related traits we identified 169 genes with cASE, spanning the 12 conditions
tested. In cardiomyocytes, 52 genes with cASE were associated with cardiovascular disease traits. Among
the treatment e↵ects, metal ions (cadmium and copper) and corticosteroids (dexamethasone) are the most
common environments interacting with genetic risk for CVD and atrial fibrillation, respectively.

For example, the aryl hydrocarbon receptor nuclear translocator 2 gene (ARNT2) was identified by
GWAS for atrial fibrillation [86] and is a treatment cASE gene in CMs for insulin. ARNT2 is part of the
hypoxia-inducible factor (HIF) pathway [72], which has a role in the progression of obesity and metabolic
disease [39]. Indeed, insulin itself is known to induce the expression of HIF1A [114], which we confirm in
our di↵erential gene expression data. In turn, the HIF pathway is especially important for cardiovascular
disease and the response to cardiac ischemia [104]. This approach could be further expanded by targeting
individuals with large polygenic risk scores to discover additional G⇥E e↵ects of clinical relevance, in
future studies.

The polygenic nature of human complex traits provides a formidable challenge to tackle the genetic
and molecular basis of interindividual variation. Our study demonstrates that interactions between genetic
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and environmental factors are common, but require specifically designed studies to be discovered. These
results also have direct implications on issues related to the portability and interpretation of polygenic
risk scores across individuals exposed to di↵erent environments. While gene-environment interactions
further complicate the overall picture of human complex trait variation, they may represent an important
contribution to the overall missing heritability that requires further study and careful consideration.

Methods

Key Resources Table

Key Resources Table
Reagent type (species) or resource Designation Source or reference Identifiers Additional in-

formation
Cell line (H.sapiens, Female) GM18858 Coriell
Cell line (H.sapiens, Female) GM18855 Coriell
Cell line (H.sapiens, Female) GM18505 Coriell
Cell line (H.sapiens, Female) GM18912 Coriell
Cell line (H.sapiens, Female) GM18520 Coriell
Cell line (H.sapiens, Female) GM19209 Coriell
Cell line (H.sapiens, Female) 18858 IPSC Banovich2018
Cell line (H.sapiens, Female) 18855 IPSC Banovich2018
Cell line (H.sapiens, Female) 18505 IPSC Banovich2018
Cell line (H.sapiens, Female) 18912 IPSC Banovich2018
Cell line (H.sapiens, Female) 18520 IPSC Banovich2018
Cell line (H.sapiens, Female) 19209 IPSC Banovich2018

Cell culture and treatments

Experiments were conducted using three cell types derived from the same six individuals: Lymphoblastoid
Cell Lines (LCL), Induced Pluripotent Stem Cells, (IPSC) and IPSC-derived Cardiomyocytes (CM). All
cells were cultured at 37�C with 5% CO2. Each batch consisted of the same cell type from three individuals,
with 28 treatments and two controls. Each experiment was performed in duplicate for a total of 12 batches
(Figure 1).

LCLs from six Yoruba individuals were purchased from Coriell: GM18858, GM18855, GM18505,
GM18912, GM18520, and GM19209. LCLs were maintained at a density of 200,000 to 1 million cells/ml
in supplemented RPMI media (500 mL RPMI-1640 with glutamine (Fisher Scientific, 15-040-CM), 75
mL FBS (Genemate S1200-500), 5 mL GlutaMAX (35050-061, ThermoFisher Scientific) and 5 mL peni-
cillin/streptomycin). 50,000 cells were plated per well of a round-bottom 96-well plate in 100 ul sup-
plemented RPMI media 48 hours before treatment. Cells from each individual were plated in 32 wells
representing 28 treatments and 2 controls.

Each of the six LCLs were reprogrammed into iPSCs using episomal reprogramming vectors and ex-
panded on a layer of MEF prior to conversion to feeder-independent growth as previously described [9].
iPSCs were seeded on plates coated with a 1:100 dilution of Matrigel hESC-qualified Matrix (354277,
Corning, Bedford, MA, USA) and cultured in iE8 media (Invitrogen A1517001) supplemented with peni-
cillin/streptomycin. Cells were passaged every 3-5 days using dissociation reagent (0.5 mM EDTA, 300
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mM NaCl in PBS). During plating of cells, media was supplemented with 10 uM ROCK inhibitor (ste-
molecule Y27632, stemgent 04-0012) to aid in cell adherence. Media was changed every day thereafter.
50,000 cells were plated per well of a Matrigel-coated flat-bottom 96-well plate in supplemented E8 media
48 hours before treatment. Cells from each individual were plated in 32 wells representing 28 treatments
and 2 controls performed in duplicate. Additional information on IPSC reprogramming, including number
of passages and di↵erentiation batch can be found in Supplementary File 1b.

CMs were di↵erentiated from iPSCs using small molecules as previously described [9]. Briefly, Wnt
signaling was modulated by treating iPSCs with 12 uM of the GSK3 inhibitor CHIR99021 (4953, Tocris
Bioscience, Bristol, UK) followed by 2 uM of theWnt signaling inhibitor Wnt-C59 (5148, Tocris Bioscience).
Cells start to spontaneously beat between days 7-10. The cardiomyocyte population was enriched through
metabolic purification by culturing the cells in glucose-free, lactate-containing media from days 14-20. In
order to promote aerobic respiration following purification, on Day 20, the cell culture media was replaced
with galactose-containing media (500mL DMEM (without glucose, Life Tech A11430-01), 50 mL FBS
(GeneMate S1200-500), 5 mL sodium pyruvate (Gibco 11360-070), 2.5 mL HEPES (Fisher SH3023701),
5 mL GlutaMAX (35050-061, ThermoFisher), 5 mL penicillin/streptomycin and 990 mg galactose (Sigma
G5388). On Day 25, five days before treatment, cells were trypsinized and split to 114,000 cells/well
in 100µL of galactose-containing media on a Matrigel-coated flat-bottom 96-well plate. Cells from each
individual were plated in 32 wells representing 28 treatments and 2 controls. Purity of the cell cultures was
determined by measuring the expression of the cardiomyocyte-specific marker cardiac troponin T (564767,
BD Biosciences) by flow cytometry. Flow cytometry was performed on Day 25 for 18912, 18520, and
19209 and on Day 27 for 18858, 18855, and 18505. Purities ranged from 44% to 95% (Supplementary
File 1a). Additional information on CM di↵erentiation, including cell counts and the day at which the
cells spontaneously started beating can be found in Supplementary File 1c. All lines tested negative for
mycoplasma contamination. All cell lines were authenticated by genotyping.

Samples were treated on a total of twelve plates, and each plate was processed as a batch. Each plate
contained samples from three individuals from a single cell type, exposed to 28 treatments plus 2 vehicle
controls (water and ethanol, referred as Control 1 and Control 2). Additionally, each plate had a technical
replicate performed the following day. Importantly all three cell types for the same group of individuals
were treated and harvested in parallel on the same day, to avoid that cell-type e↵ects are confounded with
batch e↵ects. Cells were treated for six hours at concentrations listed in Supplementary File 1d. As in [84],
concentrations were chosen based on the highest physiological concentrations as reported by the Mayo Clinic
(http://www.mayomedicallaboratories.com) or the CDC (http://www.cdc.gov/biomonitoring/), as
available.

RNA Library Preparation

For RNA library preparation, each plate was prepared as a batch. Treated cells were collected by centrifu-
gation at 2000 rpm and washed 2x using ice cold PBS. Collected pellets were lysed on the plate, using
Lysis/Binding Bu↵er (Invitrogen), and frozen at -80�. Poly-adenylated mRNAs were subsequently isolated
from thawed lysates using the Dynabeads mRNA Direct Kit (Ambion) and following the manufacturer
instructions. RNA-seq libraries were prepared using a protocol modified from the NEBNext Ultra II Di-
rectional RNA library preparation protocol to use 96 Barcodes from BIOOScientific added by ligation,
as described in [83]. Libraries from the same plate were pooled together and quantified using the KAPA
Library Quantification Kit, following the manufacturer instructions and using a custom-made series of
standards obtained from serial dilutions of the phi-X DNA (Illumina). Library pools were sequenced to an
average of 9.5M 75bp PE reads. Within each pool, individual library concentrations were normalized and
repooled to achieve comparable sequencing depths. Twelve treatments were selected for deep sequencing
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on the basis of the strong transcriptional response they provoked in at least one cell type, in addition to
both controls. Samples selected for deep sequencing were pooled within each plate and further sequenced
on the NovaSeq 6000 using 300bp PE reads. Each plate of LCLs and IPSCs were sequenced once on one
lane for an average of 147M reads, and each plate of CMs was sequenced twice on one lane for an average
of 273M reads. The number of reads per library can be seen in Supplementary File 1f.

Alignment of RNA-sequencing

RNA-sequencing reads were aligned to the human reference genome using HISAT2 [55] (https://ccb.
jhu.edu/software/hisat2/index.shtml, version hisat2-2.0.4) with the following options:

HISAT2 -x <genome> -1 <fastq_R1.gz> -2 <fastq_R2.gz>

where <genome> represents the location of the genome file ( genome snp tran), and <fastqs R1.gz> and
<fastqs R2.gz> represent that sample’s fastq files.

Multiple sequencing runs were merged for each sample using samtools (version 2.25.0). We removed
PCR duplicates and further removed reads with a quality score of < 10 (equating to reads mapped to
multiple locations). Shallow and deep RNA-sequencing reads were aligned in an identical manner except
for the reference used. GRCh38 was used for the deeply sequenced data and GRCh37 for the low coverage
data which is not used after the initial screening.

Di↵erential gene expression analysis

To identify di↵erentially expressed (DE) genes in shallow and deep sequencing data, we used DESeq2 [69]
(R version 3.5.2, DESeq2 version 1.28.1). coverageBed was utilized to count reads in transcripts from
the Ensembl gene annotation with -s to account for strandedness and -split for BED12 input. The
counts were then utilized in DESeq2 to determine changes in gene expression under the di↵erent treatment
conditions.

Eq(1) Model 1: CellType + Treatment.ID

Each treatment was compared to its relevant vehicle control, except for plate CM1R2, where we iden-
tified a technical problem with control 1, so we only used control 2 for this plate (Supplementary File 1f).
Note that comparison between the two controls yielded the expected finding of fewer than six di↵erentially
expressed genes for all other plates, thus confirming that the 2 controls are essentially technical repli-
cates of the untreated condition. Multiple test correction was performed using the Benjamini-Hochberg
procedure [11] with a significance threshold of 10%. A gene was considered a DEG if at least one of its
transcripts was di↵erentially expressed and had an absolute log2 fold change > 0.25. Each cell type was
run independently, and the model corrected for a composite variable of library preparation batch and
individual. Full DESeq2 results from the shallow sequencing can be found in Supplementary File 1e.

After identifying DEGs from all 28 treatments in the initial shallow sequencing, we selected twelve to
sequence more deeply. Nine of these twelve treatments were selected because they resulted in at least 60
DEGs in CMs. Selenium and Zinc were added because they induced a strong response in both IPSCs and
LCLs, and Cadmium was added to complete the set of metal treatments. Full DESeq2 results from the
deep sequencing can be found in Supplementary File 1g.

To identify genes that show evidence of treatment ⇥ cell type interactions, we analyzed the deep
sequencing data across all cell types and treatments using the following likelihood ratio test to compare
Model 1 and Model 2:

(Eq 2) Model 2: CellType + Treatment.ID + CellType:Treatment.ID
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Di↵erential intron excision analysis

To detect shifts in splicing patterns across cell types and environments we used LeafCutter[66], an intron-
based splicing analysis tool. Briefly, LeafCutter uses short RNA-seq reads spanning exon-exon junc-
tions (i.e. split reads) to estimate internal introns usage, hence being able to ultimately infer all splic-
ing events which can be summarized with di↵erential introns excisions. Overlapping introns sharing a
splice sites are then identified, which are subsequently used to construct a graph where the connected
components represent clusters. Lastly, for each cluster the counts of the composing introns are jointly
modelled with a Dirichlet-multinomial generalized linear model. We used the provided bam2junc.sh
script to convert HISAT2-generated .bam files from the deep sequencing data to .junc files, as well as
leafcutter cluster.py script to perform intron clustering with the -s yes -m 50 -l 500000 options
(keep strand information, >50 split reads supporting each cluster and accepting introns with length up
to 500kb). We removed clusters localizing on sex, mitochondrial and sca↵old chromosomes, and used
leafcutter ds.R to perform di↵erential intron excision analysis by contrasting each treatment with the
appropriate control, with individuals (i.e. cell lines) as confounders.

Determining significance of global directional shifts in RNA processing

LeafCutter produces an output file in which, for every intron within a successfully tested cluster it computes
the percentage spliced in index ( ) in the control and treatment condition, as well as the corresponding
� . LeafCutter exploits that retention and alternative excision of introns [14, 16] act as proxies of several
subtypes of alternative splicing events, including exon skipping (ES), intron retention (IR), mutually-
exclusive exons (MxE), alternative first and last exons (AFE/ALE), alternative 5’ and 3’ splice sites
(A5SS/A3SS), among others. For every condition, we extracted introns belonging to clusters considered
to be di↵erentially spliced (FDR < 10%), and we performed a two-sided binomial test defining n as the
number of introns with � > 0, and p equal to the average proportion of positive events among all
conditions. We considered a shift to be significant if the corresponding FDR < 10%.

Gene Ontology, KEGG, Disease-Gene Network enrichment analyses

We used ClusterProfiler [127] R package to perform Gene Ontology [7, 21], KEGG [53], and Disease-Gene
Network [92] enrichment analyses. We considered two separate approaches for enrichment analysis. First,
we calculated an enrichment of DEGs within each treatment per cell type against a background of all
expressed genes in that treatment. This identified the pathways that were most enriched in DEGs for
each treatment (Supplementary File 1h). Second, we calculated an enrichment within each cell type across
all environments to compare GO, KEGG and DGN enrichments using the compareCluster function by
submitting the lists of di↵erentially spliced or expressed (FDR < 10%) genes in each condition, as well as
one background gene list comprising all tested genes in that given cell type. We considered a process to
be significantly enriched if FDR < 10%.

For performing GO analysis on ASE variance, we first identified the top 20% and bottom 20% of
genes based on their variance (high variance or low variance genes, respectively). We tested for pathway
enrichments using Gene Ontology annotations comparing the high variance against the low variance genes
using ClusterProfiler with the same thresholds as described above (Supplementary File 1v).

Variance partitioning of gene expression and intron excision

We used the Variance Partition package [48] to partition the total variance in gene expression. For each
gene, the tool determines the fraction of the observed variance explained by each variable by implementing

20



a linear-mixed model, ultimately allowing multiple dimensions of variation to be analyzed simultaneously.
Variance which cannot be attributed to any of the provided covariates is counted as residuals, which can be
generally interpreted as due to noise that can have technical or biological origin. We included all transcripts
with at least 1 count per million reads (cpm) in 50% of the libraries, and the resulting data was voom-
normalized [62, 101]. All variables included in the model were categorical, and were therefore modeled
as random e↵ects. For the model including all cell types, we used the fitExtractVarPartModel func-
tion with the following formula: (1|Individual) + (1|CellType) + (1|Plate) + (1|Treatment).
When each cell type was considered independently, we dropped CellType and added a Individual:Treatment
variable, accounting for the interaction between these two covariates. We restricted this analysis to genes
tested for both splicing and gene expression so we can compare the origins of variation in these two
transcriptional processes.

For splicing, we merged all LeafCutter .junc files across every cell type and condition, where each
column represents a sample and each row a di↵erent intron, in order to recover the full list of detected
introns. We applied the suggested cuto↵ to extract introns considered to be expressed (on average, at
least 1 cpm in half of the libraries), and used the cell type covariate to design the matrix eventually used
by voom to normalize expression counts. Finally, we used the same methods as for gene expression to
partition the variance.

Genotyping and ASE quantification with QuASAR

Using the common SNPs from dbSNP Build 144, we calculated the number of RNA-seq reads mapping
to each allele using samtools mpileup. We inferred genotypes from these pileups using all samples from a
given individual across all treatments and each plate together using QuASAR [47]. Counts for each pair of
controls on the same plate were combined. For all subsequent analyses we focused on heterozygous SNPs
with a read coverage greater than five and located on autosomes. Initial testing for ASE was performed
for each sample separately using QuASAR. The amount of ASE identified via QuASAR aggregated by
treatment is shown in Figure 3A, and the full output from QuASAR for tested SNPs can be found in
Supplementary File 1j

ANOVA for identifying ASE

Previous e↵orts for detecting ASE have commonly used binomial or beta-binomial tests [28, 47, 60]. Given
that we have a large number of replicates and experimental conditions and to avoid excluding conditions
where an allele may be lowly expressed, we tested for ASE using a linear model which incorporated ASE
measurements across all conditions for a SNP in a given individual. To this end, we re-calculated ASE by
adding a pseudocount to both reference and alternate read counts, and then computed the natural logarithm
of the number of reference reads divided by the number of alternate reads. By doing so, we directly infer
the noise inherent in ASE measurements using the linear model, obviating the need for binomial models
to quantify the technical variance. To detect ASE in the model with all cell types combined, we selected
69,683 SNPs for which ASE was measured in at least five conditions per cell type, including at least one
measurement for each control. We used an ANOVA test to compare a full model including the control
ID, cell type, treatment, and cell type ⇥ treatment interaction term against a reduced model with the
intercept set to 0:

(Eq 3) Full: ASE ~ Control + CellType + Treatment + CellType:Treatment
(Eq 4) Reduced: ASE ~ 0

21



We only consider this test for SNPs with a su�cient number of observations given the number of
parameters being estimated (i.e., at least 5 degrees of freedom). Full results for the ANOVA model can
be found in Supplementary File 1k. For SNPs with ASE detected by the ANOVA model, we performed
spearman correlations for every pair of libraries using all SNPs shared between them. Pairs of libraries
were then placed into four categories based on their di↵erences. These were: ”Across Cell” (n = 968
pairs), which included all pairs of libraries from the same individual and treatment, but di↵erent cell
types; ”Across Individual” (n = 490 pairs), which included all pairs of libraries from the same treatment,
cell type, and plate, but di↵erent individuals; ”Across Replicate” (n = 242 pairs), which included all pairs
of libraries from the same individual, cell type, and treatment, but di↵erent plate; and ”Across Treatment”
(n = 3146 pairs), which included all pairs of libraries from the same individual, cell type, and plate, but
di↵erent treatment. Finally, the category for ”Control 1 vs Control 2” (n = 33 pairs) includes correlations
between the two control libraries from the same individual, cell type, and plate.

Fixed e↵ect linear model for identifying conditional ASE

To identify SNPs displaying cASE due to cell type, treatment, or the interaction between cell type and
treatment, we used a fixed e↵ect linear model. All SNPs with significant ASE detected via the ANOVA
model were tested for cASE. Additionally, SNPs must have ASE measured in at least one of each control for
each cell type to be tested. We modeled the ASE values for each SNP in an individual across all conditions
as a function of cell type, treatment, cell type-treatment interaction, and a variable representing the vehicle
used for that treatment (Control):

(Eq 5) ASE ~ Control + CellType + Treatment + CellType:Treatment

Results can be found in Supplementary File 1m, and are summarized in Supplementary File 1n.
We also investigate ASE, and cASE for each cell type separately which may recover situations in which

a gene is only expressed in one cell type. First we detect ASE for each cell type across any condition:

(Eq 6) Full: ASE ~ Control + Plate + Treatment
(Eq 7) Reduced: ASE ~ 0

Then, we test for each treatment component in the Full model to detect cASE. For the model with
the cell types analyzed separately, ANOVA results can be found in Supplementary File 1l, and results
from the Full, fixed e↵ect model (Eq 6), can be found in Supplementary File 1o and are summarized in
Supplementary File 1p

Genomic locations of ASE and cASE SNPs

Using the genomic annotations from dbSNP build 153, we assigned SNPs tested for ASE to one of 18
categories on the basis of their location in relation to a gene and predicted function. For each category,
we calculated the enrichment of ASE and cASE SNPs separately relative to all SNPs tested for ASE and
performed Fisher’s exact test to test for significance. Multiple test correction of p-values was performed
using the Benjamini-Hochberg procedure.

cASE overlap with TWAS, OMIM, and other G⇥E studies

To identify traits which are enriched for CM cell type cASE, we focused on 8 TWAS for cardiovascular
traits from [128]. For each trait, we intersected all cell type cASE with TWAS genes, and calculated the
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proportion of overlap which is attributable to CM cell type cASE only. We used the one-sample proportion
test to determine if the CM cell type cASE overlap for a given trait was significantly di↵erent from the
average trait overlap for CM cell type cASE.

To identify genes with treatment cASE that could influence complex traits, we intersected our cASE
genes from the model with all cell types combined with genes whose expression has been implicated by
transcriptome-wide association study (TWAS) to influence complex traits in 103 TWAS [128]. 45 TWAS
had at least 20 cASE gene overlaps across all treatments, and those were selected for further analysis.
As above for CM cell type cASE, we used the one-sample proportion test to determine if the treatment
cASE overlap for a given trait was significantly di↵erent from the average overlap for that trait across all
treatments.

P (t, c) =
O(t, c)

N(t)

Z(t, c) =
P (t, c)� P0(c)p

P0(c) ⇤ (1� P0(c))/N(t)

Where t is the trait, c is the treatment, O(t, c) is the number of genes which are significant for both the trait
and the treatment, N(t) is the sum of all genes for the trait which are treatment cASE in any treatment,
and P0(c) is the average P (t, c) across all traits.

For plotting purposes, we abbreviated the TWAS study names from Zhang et al [128] according to
Supplementary File 1w.

To identify genes responsible for Mendelian traits, we downloaded OMIM’s Synopsis of the Human
Gene Map (morbidmap.txt) on December 19, 2019 and intersected treatment cASE genes from the model
containing only the CM data with OMIM genes. This resulted in 95 OMIM traits, which were manually
curated to identify traits relevant to heart disease.

To investigate whether our G⇥E results replicate in other environments previously investigated, we
calculated the overlap between genes with gene ⇥ treatment interactions in our dataset and genes with
G⇥E (p < 0.05) identified in fourteen previous ASE and eQTL mapping studies [10, 20, 50, 52, 59, 60,
64, 73, 76, 84, 85, 94, 112, 129]. The full table of treatment cASE genes which replicated in these other
studies can be found in Supplementary File 1q.

Enrichment of ASE and cASE genes in GTEx eGenes

We used Fisher’s exact test to test for an enrichment in ASE and cASE genes in eGenes from three large
eQTL studies for CMs, IPSCs, and LCLs, respectively: GTEx left ventricle and atrial appendage [8],
i2QTL [13], and Geuvadis [61, 123]. ASE and cASE genes for each cell type were detected using the model
that examined each cell type separately. For each cell type, we restricted our analysis to include genes which
had been tested for being eGenes in the relevant eQTL study and had also been tested for ASE or cASE
in our study. GTEx v8 eQTL data was downloaded from https://storage.googleapis.com/gtex_
analysis_v8/single_tissue_qtl_data/GTEx_Analysis_v8_eQTL.tar. GTEx ASE data were down-
loaded from https://github.com/secastel/phaser/blob/master/gtex_v8_analyses/gtex_v8_tissue_
by_gene_imbalance.tar.gz. i2QTL eGenes and tested genes were found in Supplemental Tables 3 and
7 in Bonder et al [13]. Geuvadis eGenes were downloaded from https://www.ebi.ac.uk/arrayexpress/
experiments/E-GEUV-3/files/analysis_results/EUR373.gene.cis.FDR5.best.rs137.txt.gz. The
list of tested Geuvadis genes were downloaded from http://www-personal.umich.edu/~xwen/geuvadis/
geuv.fm.tar.gz.
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Heritability explained by cASE

To estimate the heritability explained by G⇥E, we used RHE-mc [90]. We performed two separate analyses
using the UK Biobank data. First, we quantified the heritability of complex traits using an annotation of
CM gene ⇥ cell type genes. Second, we quantified the heritability of complex traits using an annotation
of gene ⇥ treatment genes. In both cases, SNPs were annotated to G⇥E genes within 100 Kb. For the
gene ⇥ treatment analysis, we included both gene ⇥ treatment and gene ⇥ treatment ⇥ cell type genes,
with each treatment forming a separate annotation.

The heritability partitioning was performed as described in [90]. Briefly, we excluded SNPs with greater
than 1% missingness and minor allele frequency smaller than 0.1%. Further, we excluded SNPs that fail the
Hardy-Weinberg test at significance threshold 10�7 as well as SNPs that lie within the MHC region (Chr6:
25–35 Mb) to obtain 7, 774, 235 SNPs. We included age, sex, and the top 20 genetic principal components
(PCs) as covariates in our analysis for all traits. We used PCs precomputed by the UK Biobank from
a superset of 488, 295 individuals. Additional covariates were used for waist-to-hip ratio (adjusted for
BMI) and diastolic/systolic blood pressure (adjusted for cholesterol-lowering medication, blood pressure
medication,insulin, hormone replacement therapy, and oral contraceptives). For the CM gene ⇥ cell type
annotation, we partitioned the heritability of 17 complex traits, while for the gene ⇥ treatment analysis,
we expanded to 22 traits in the same sample from the UK Biobank. For each annotation, we computed the
heritability enrichment as the ratio of the percentage of heritability explained to the percentage of SNPs
in that annotation.

Mixed e↵ect linear model for quantifying ASE variance

To quantify ASE variance, we used the same linear model as for identifying cASE, with the exception of
modeling the cell type, treatment, cell type-treatment interaction, and batch variables as random e↵ects:

(Eq 8) ASE ~ (1 | Control) + (1 | CellType) + (1 | Treatment) + (1 | CellType:Treatment)

As before, we only tested SNPs with significant ASE as determined by the ANOVA. To analyze each
cell type independently, we used the following model:

(Eq 9) ASE ~ (1 | Control) + (1 | Batch) + (1 | Treatment)

Biological features of ASE variance

Residual variance is partially a function of sequencing depth, so for all analyses of variance components for
ASE, at each SNP, we have adjusted for the total number of reads covering that position. To determine the
biological significance of ASE variance, we identified biological features which contributed to di↵erences
in treatment or residual variance. Given the overwhelming contribution of cell type to ASE variance, we
used the ASE variance calculated within each cell type. We tested for a relationship between residual and
treatment variance and six annotations using the following model:

(Eq 10) Variance ~ Annotation + SNP expression

We assigned SNPs tested for ASE to the genes in which they reside, and considered the following
sevengene annotations:

1. Di↵erentially expressed genes: We categorized genes as 1) not di↵erentially expressed in any condi-
tion; 2) di↵erentially expressed in at least one condition (absolute value of logFC > 0.25 but < 0.75;
or 3) highly di↵erentially expressed (absolute value of logFC > 0.75) in at least one condition.
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2. Di↵erentially spliced genes: Genes were classified as being di↵erentially spliced as described in the
“Di↵erential intron excision analysis” section.

3. Promoter architecture characteristics: Information on promoter characteristics, including presence
of a TATA box, GC percentage, and CpG percentage were downloaded from refTSS [1]: http://
reftss.clst.riken.jp/datafiles/current/human/tata_box_annotations/hg38_tata_annotation_
v3.txt.gz

4. Loss of function tolerance: Loss of function statistics by gene were downloaded from Gnomad, version
2.1.1 (https://storage.googleapis.com/gnomad-public/release/2.1.1/constraint/gnomad.v2.
1.1.lof_metrics.by_gene.txt.bgz). Specifically, we use the observed over expected ratio for pre-
dicted loss of function variants for a transcript (oe lof). Lower scores indicate less tolerance to loss
of function mutations. For example, haploinsu�cient genes tend to have low oe lof scores [54].

5. dN/dS ratio: dN/dS ratios were downloaded from Lindblad-Toh et al [67]. Ratios were derived from
an analysis of 29 mammalian genomes. (http://www.broadinstitute.org/ftp/pub/assemblies/
mammals/29mammals/PositivelySelectedCodons.tar.gz)

6. Cardiomyopathy genes: The 55 genes tested by the Mayo Clinic Laboratory Comprehensive Car-
diomyopathy Multi-Gene Panel were considered as cardiomyopathy genes. For this category, we only
tested ASE variance in CMs.

7. TWAS genes: All genes significant for at least one trait in the PTWAS analysis by [128] were
considered TWAS genes.

Data and code availability

Sequencing files have been uploaded to the Sequence Read Archive (SRA) under Bioproject PRJNA694697.
Code is available at https://github.com/piquelab/GxExC.

Additional Files

Supplementary File 1 — Supplementary Tables.
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Manuel a Rivas, Mar Gonzàlez-Porta, Natalja Kurbatova, Thasso Griebel, Pedro G Ferreira, Matthias
Barann, Thomas Wieland, Liliana Greger, Maarten van Iterson, Jonas Almlöf, Paolo Ribeca, Irina
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Supplementary Figures

A B

Figure 1-figure supplement 1: Principal component analysis of gene expression Principal components analysis

was performed on normalized gene expression reads. Each point represents a deep-sequenced library, colored by cell type, for

A PC1 vs PC2 and B PC2 vs PC3.

A B C

Figure 1-figure supplement 2: Expression of marker genes Normalized expression of three marker genes for each

cell type from all deep-sequenced libraries are plotted by cell type.
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Figure 1-figure supplement 3: Direction of di↵erential splicing Forest plot of the proportion of di↵erential splicing

events which result in intron retention as opposed to intron excision. An asterisk indicates a significance at FDR < 10%.
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Figure 1-figure supplement 4: Correlation between number of DEGs and DSGs Scatterplot between the

number of di↵erentially expressed (DEGs) and di↵erentially spliced (DSGs) genes. Each dot represents a unique cell type-

environment, with shape and color representing cell type and treatment, respectively.
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Figure 1-figure supplement 5: Enrichment of DSGs in DEGs Enrichment odds ratios and 95% confidence intervals

have been log-transformed.
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A

B

Figure 1-figure supplement 6: GO and KEGG enrichment dotplot for IPSCs Dotplot generated by Cluster-

Profiler depicting the top enriched GO (A) and KEGG (B) terms of CM DEGs and DSGs across environments, as well as

within a background list composed by all tested genes.
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B

Figure 1-figure supplement 7: GO and KEGG enrichment dotplot for LCLs Dotplot generated by ClusterPro-

filer depicting the top enriched GO (A) and KEGG (B) terms of CM DEGs and DSGs across environments, as well as within

a background list composed by all tested genes.
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A

B

Figure 1-figure supplement 8: KEGG and DGN enrichment dotplot for CMs Dotplot generated by Cluster-

Profiler depicting the top enriched KEGG (A) and DGN (B) terms of CM DEGs and DSGs across environments, as well as

within a background list composed by all tested genes.

A B

Figure 2-figure supplement 1: Variance partitioning of gene expression and splicing in CMs with TNNT2

expression Sources of variation in gene expression (A) and splicing (B) in CMs as in Figure 2, but with an additional
category for TNNT2 expression.
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Figure 2-figure supplement 2: Gene expression residual variance by presence or absence of TATA box

A B

Figure 3-figure supplement 1: Enrichment of cASE in DSGs and DEGs cASE is matched by treatment to DSGs

and DEGs.
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A B

Figure 3-figure supplement 2: cASE per SNP For SNPs with significant cASE, barplots depict the number of (A)

treatment cASE and (B) treatment by cell type cASE per SNP.
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Figure 3-figure supplement 3: Enrichment and depletion of ASE/cASE SNPs within di↵erent genomic

regions Full forest plot from Figure 3 with all genomic categories which were tested for an enrichment and depletion of ASE

and cASE SNPs with respect to all SNPs tested.
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Figure 4-figure supplement 1: Overlap between atrial fibrillation GWAS prioritized genes and treatment

cASE Number of treatment cASE genes which overlap with 151 genes prioritized from an atrial fibrillation GWAS.
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Figure 4-figure supplement 2: Enrichment of treatment cASE annotations in 22 GWAS Enrichment and 95%

confidence intervals for treatment cASE annotations in A respiratory diseases, B body size traits, C cardiovascular traits,

D endocrine diseases, and E autoimmune diseases.

Figure 5-figure supplement 1: Gene ontology for ASE variance For each cell type, the 5 most significant GO

terms are plotted for each group.
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Not DSG DSG

Figure 5-figure supplement 2: Treatment variance of DSGs Treatment variance of ASE based on whether the

gene is di↵erentially spliced in response to any condition.
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