
A weighted position value

Amandine Ghintran

To cite this version:

Amandine Ghintran. A weighted position value. 2009. <hal-00420430>

HAL Id: hal-00420430

https://hal.archives-ouvertes.fr/hal-00420430

Submitted on 29 Sep 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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émanant des établissements d’enseignement et de
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A weighted position value

Amandine GHINTRAN∗

September 16, 2009

Abstract

We provide a generalization of the position value (Meessen 1988) that allows players to benefit
from transfers of worth by investing in communication links. The player who invests the most in a
communication link obtains transfers of worth from the second one. We characterize this new alloca-
tion rule on the class of cycle free graphs by means of four axioms. The first two axioms, component
efficiency and superfluous link property, are used to characterize the position value (Meessen (1988),
Borm, Owen, and Tijs (1992)). Quasi-additivity is a weak version of the standard additivity axiom.
The weighting axiom captures the fact that the allocation of players should be increasing with their
level of investment.
Keywords: Weighted position value; Monotonicity

1 Introduction

Many economic or social projects are carried out by groups of agents, called players in the sequel, who
cooperate to achieve a common goal. These situations can be appropriately formalized via cooperative
games with transferable utility, or TU games. A TU game summarizes the worth produced by each coalition
when its players agree to cooperate. It is assumed that every coalition of players can form.

Oftentimes, the coordination of activities between these players takes place throught communication
networks, which restrict the possibility of coalitions to form. Myerson (1977) suggests to use undirected
graphs to model such networks. He introduces communication situations which combine TU games and
undirected graphs. Vertices of an undirected graph represent the players and edges represent the bilateral
communication links between players. In order to measure the impact of restrictions on communication on
the worth produced by coalitions, Myerson (1977) suggests to associate to each communication situation
a graph-restricted TU game. This game provides an assessment of the gains from cooperation that are
obtainable by coalitions in the face of restricted communication possibilities. Then the author defines a
set of attractive properties on the class of communication situations that suffices to determine a unique
allocation rule, the so-called Myerson value. Myerson (1980), Borm, Owen, and Tijs (1992) and Slikker
and van den Nouweland (2001) provide various characterizations of the Myerson value that are valid on
different classes of communication situations.

Meessen (1988) introduces an alternative associated TU game that highlights the role of links in the
production of worth. In this TU game, called link game, the set of players is the set of links. The worth
associated to a set of links is the worth obtainable by the grand coalition when only this set of links is
available. A link game measures the communicative strength of each subgraph. To compute the position
value of a communication situation, one first determines the Shapley value of each link in the link game.
Then, the Shapley value of each link is equally divided between its two incident players. The total amount
that a player obtains in that way is his position value. Borm, Owen, and Tijs (1992) and Slikker (2005)
provide characterizations of this allocation rule.
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In this article, we generalize the position value in order to allow players to benefit from transfers of
worth by investing in communication links. The idea behind the position value is that the worth produced
by the cooperation between players is due to the presence of communication links. If there is no links,
players cannot coordinate their actions and then they cannot cooperate nor produce worth. Thus one
can argue that the player who invests the most in a communication link should benefit from an insurance
system that allows him to obtain transfers of worth from the other one.

We suggest to model the level of investment of players in communication links through a weight
scheme that is in the same spirit as the one used by Haeringer (2006) to generalize the Shapley value.
We use this weight scheme to share the Shapley value of a link between its two incident players so that
if the Shapley value of a link is positive, the higher the level of investment of a player is, the higher his
share of this Shapley value. On the contrary, if the Shapley value of a link is negative, the higher the
level of investment of a player is, the lower his share of this Shapley value. We follow the usual axiomatic
method to give a characterization of this allocation rule using four axioms. Superfluous link property
states that if the presence or absence of a link in a communication situation does not change the worth
obtainable by the grand coalition, then the removal of this link does not change the payoffs of the players.
Superfluous link property and component efficiency are satisfied by the Myerson value and the position
value. Quasi-additivity is a weak version of additivity. The weighting axiom reflects the fact that the
allocation of players should be increasing with their level of investment. We show that the combination of
this four axioms determines the weighted position value uniquely on the class of communication situations
such that the game is zero normalized and the graph is cycle-free, a class considered by Borm, Owen, and
Tijs (1992).

This article pursues the literature on weighted values initiated by Shapley (1953b), who generalizes
the Shapley value in order to take into account information that is external to the game, like bargaining
abilities or levels of effort. This external information is modelled through weights. Kalai and Samet (1987)
extend this weighted Shapley value enabling weights to be equal to zero for some players. Chun (1991)
provides alternative characterizations of this allocation rule. Owen (1968) shows that the weight systems
used by Shapley (1953b) and Kalai and Samet (1987) measures the slowness of players to reach the grand
coalition rather than their bargaining abilities or their levels of effort. Then Haeringer (2006) suggests an
alternative way to define weights so that they can be interpreted as a measure of power. He obtains a
weighted Shapley value that is increasing with the weights of players.

Haeringer (1999) and Slikker and van den Nouweland (2000) generalize the weighted Shapley value
defined by Kalai and Samet (1987) to communication situations and to hierarchical structures respectively.
Kamijo and Kongo (2009) extend the position value in order to take into account two different sources of
asymmetry: asymmetry among links and among players. Asymmetry among links is obtained by applying
the weighted Shapley value of Shapley (1953b) to the link game. Asymmetry among players is obtained
by dividing unequally the Shapley value of a link between its two incident players. Unlike our weighted
position value, all these asymmetric extensions of allocation rules to TU games with a network structure
are not increasing with respect to the weights of players.

This article is organized as follows. In section 2, we introduce the definitions and notations used in
the present article. In section 3, we define and characterize our weighted position value.

2 Preliminaries

2.1 TU games

Let N = {1, . . . , n} be a finite set of players. Denote by 2N the set of all subsets of N . A coalition
S is an element of 2N whose players cooperate to achieve a common goal. For a coalition S ∈ 2N , |S|
denotes its cardinal. A TU game is a pair (N, v) consisting of player set N and a characteristic function
v : 2N → R, with v(∅) = 0, that associates to every coalition S ⊆ N the worth its players create by
agreeing to cooperate. A game (N, v) is zero normalized if v({i}) = 0 for each i ∈ N . A carrier of a
game (N, v) is a coalition R ∈ 2N \ {∅} such that for each S ∈ 2N \ {∅}, v(S) = v(S ∩ R). Consider
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(N, v) and S ∈ 2N . The subgame (S, v|S) of (N, v) is given by v|S(T ) = v(T ) for each T ⊆ S. An

allocation rule on a class of TU games is a function Y that assigns a payoff vector Y (N, v) ∈ R
N to

every TU game in that class.
For each S ⊆ N , the unanimity game (N, uS) is defined as uS(T ) = 1 if S ⊆ T and uS(T ) = 0

otherwise. Every characteristic function v can be written as a unique linear combination of unanimity
games in the following way:

v =
∑

S∈2N\{∅}

αv
SuS ,

where for each S ∈ 2N \ {∅}, the unanimity coefficients αv
S are given by:

αv
S =

∑

T⊆S
T 6=∅

(−1)|S|−|T |v(T ).

The Shapley value Sh of a game (N, v) is given by:

Shi(N, v) =
∑

S∈2N

S∋i

αv
S

|S|

for each i ∈ N .
We now state five properties, satisfied by the Shapley value, that will be useful to prove the main

result of this article. The four first properties are adapted from axioms provided by Shapley (1953a) to
characterize the Shapley value.

Efficiency requires that the payoffs of the players add up to the worth of the grand coalition.

Efficiency: an allocation rule Y on a class of TU games is efficient if
∑

i∈N Yi(N, v) = v(N) for each
TU game (N, v).

Symmetry requires that symmetric players, i.e. players who contribute in the same proportion to every
coalition of the game, obtain the same payoff. Formally, two players i and j of N are symmetric in (N, v)
if v(S ∪ {i}) = v(S ∪ {j}) for each S ⊆ N \ {i, j}.

Symmetry: an allocation rule Y on a class of TU games is symmetric if for each TU game (N, v) in
that class and for any two symmetric players i, j ∈ N , Yi(N, v) = Yj(N, v).

Null player property requires that null players, i.e. players whose presence or absence does not change
the worth of any coalition, obtain a payoff equal to zero. Formally, a player i ∈ N is null in (N, v) if
v(S ∪ {i}) = v(S) for each S ⊆ N \ {i}.

Null player property: an allocation rule Y on a class of TU games satisfies the null player property
if for each TU game (N, v) in that class, Yi(N, v) = 0 if i ∈ N is a null player.

The null player out property is provided by Derks and Haller (1999). It requires that if a game admits
a null player, the payoffs of the game resulting from the deletion of the null player are the same as the
payoffs of the original game.

Null player out property: an allocation rule Y on a class of TU games satisfies the null player out
property if for each null player j ∈ N , Yi(N, v) = Yi(N \ {j}, v|N\{j}) for each i ∈ N , i 6= j.

Additivity requires that the allocation rule is an additive operator on the class of games on which it is
defined.
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Additivity: an allocation rule Y on a class of TU games is additive if for any two TU games (N, v) and
(N, w) in that class, it holds that Y (N, v+w) = Y (N, v)+Y (N, w), where (v+w)(S) = v(S)+w(S)
for each S ⊆ N .

Theorem1

The Shapley value is the unique allocation rule for TU games satisfying efficiency, symmetry, addi-
tivity and null player property.

Proposition 1 (Derks and Haller, 1999)
The Shapley value satisfies the null player out property on the class of all TU games.

2.2 Communication situations

A comunication graph is a pair (N, L) where the set of vertices N is the set of players and edges of
L ⊆ LN = {{i, j} | i, j ∈ N, i 6= j} represent bilateral communication links. A sequence of k different
vertices (i1, . . . , ik) is a path in (N, L) if {ih, ih+1} ∈ L for h = 1, . . . , k − 1. A cycle is a sequence of
vertices (i1, . . . , ik+1), k ≥ 3, such that (i1, . . . , ik) is a path, {ik, ik+1} ∈ L and ik+1 = i1.

Two vertices i, j ∈ N are connected in graph (N, L) if i = j or there exists a path (i1, . . . , ik) with
i1 = i and ik = j. For any S ⊆ N , (S, L(S)) denotes the subgraph of (N, L) induced by S, where
L(S) = {{i, j} ∈ L | i, j ∈ S}. For each S ⊆ N , (S, L(S)) is connected if any two vertices i, j ∈ S
are connected. A coalition S ⊆ N is a connected component in (N, L) if (S, L(S)) is connected and
for each i ∈ N \ S, (S ∪ {i}, L(S ∪ {i})) is not connected. Note that for each graph (N, L), the set
of connected components, denoted by N/L, partitions the set of players N in a unique way. For each
L ⊆ LN and i ∈ N , let Li = {{i, j} | j ∈ N and {i, j} ∈ L} be the set of player i’s links in (N, L). For
each A ⊆ L, N(A) = {i ∈ N | ∃ j ∈ N : {i, j} ∈ A} is the set of players of N who have a link in A. A
tree is cycle-free graph such that |N/L| = 1.

A communication situation is a triple (N, v, L) where (N, v) is a TU game and (N, L) is a commu-
nication graph. For the remainder of this article, we restrict ourselves to communication situations with a
fixed player set N and a zero normalized TU game. The class of communication situations such that the
player set is N , the game is zero normalized and the graph is cycle-free is denoted by CSN .

In order to assess the impact of restrictions on communication on the worth created by coalitions,
Meessen (1988) suggests to associate to each communication situation (N, v, L) a link game (L, rv)
defined as:

rv(A) =
∑

C∈N/A

v(C)

for each A ⊆ L. The link game associated to (N, v, L) is a TU game in which the set of players is the
set of links in (N, L). The worth of a set of links A ⊆ L is the worth obtainable by the grand coalition
if only links in A are available. As the grand coalition partitions in connected components, the worth
obtainable by N is the sum of the worths obtainable by the connected components of N/A. Note that as
(N, v) is zero normalized, rv(∅) = 0.

Let (N, L) be a cycle-free graph. The connected hull of a coalition S ⊆ N , defined by Borm, Owen,
and Tijs (1992), is defined as H(S) = ∩{T ⊆ N |S ⊆ T and T is connected}. As the graph is cycle-free,
the connected hull of a coalition S ∈ N consists of the players whose cooperation is both necessary and
sufficient to enable the players in S to communicate. If S ⊆ C ∈ N/L, as (C, L(C)) is a tree, then H(S)
is connected. Moreover, if S is connected, H(S) = S. If S 6⊆ C, then H(S) = ∅. For each A ⊆ L, let
∆(A) = {S ⊆ N |S ⊆ C ∈ N/L, A = L(H(S))} be the set of coalitions of which the connected hull is
N(A). Note that A = L(H(S)) if and only if N(A) = H(S).

The following lemma, provided by Borm, Owen, and Tijs (1992), states the relation between the
unanimity coefficients of the link game and the unanimity coefficients of the underlying coalitional game.
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Lemma 1 (Borm, Owen, and Tijs 1992)
For each (N, v, L) ∈ CSN and A ⊆ L,

αrv

A =











∑

S∈2N\{∅}
S∈∆(A)

αv
S if N(A) is connected,

0 otherwise.

(1)

An allocation rule on a class of communication situations is a function Y that assigns a payoff vector
Y (N, v, L) ∈ R

N to every communication situation in that class. The position value P is the allocation
rule for the class of zero-normalized communication situations defined as:

Pi(N, v, L) =
∑

li∈Li

1

2
Shli(L, rv)

for each zero normalized (N, v, L) and i ∈ N .
Now consider the following example.

Example 1

Let (N, v, L) be a communication situation such that N = {1, 2, 3},

v(S) =















−20 if S = {1, 2},
40 if S = {2, 3},
40 if S = {1, 2, 3},
0 otherwise,

and L = {{1, 2}, {2, 3}}. The Shapley value of (L, rv) equals Sh{1, 2}(L, rv) = −10, Sh{2, 3}(L, rv) =
50, and the position value of (N, v, L) equals P (N, v, L) = (−5, 20, 25). �

In this example, players 1 and 2 suffer equally from the low-achieving of coalition {1, 2}. Now,
suppose that one player, for instance player 2, invests more in the creation or the maintaining of link
{1, 2} than player 1. One can argue that player 2 should be protected against loss, to a certain extent,
and should benefit from a transfer of worth from player 1. An allocation rule encompassing this mechanism
is described in the following section.

3 The value

We provide a generalization of the position value that is in the same spirit as the weighted Shapley
value defined by Haeringer (2006). The levels of investment of players in their links are formalized
through the set of weights λ+ = {λ+

i, {i, j} ∈ R++ | i ∈ N(L) and {i, j} ∈ LN}. The element λ+
i, {i, j}

can be thought of as the level of investment realised by player i in link {i, j}. From λ+, we define
λ− = {λ−

i, {i, j} ∈ R++ |λ−
i, {i, j} = 1/λ+

i, {i, j}}. We will use λ+ to share the Shapley values of links that

are positive between their incident players. Elements of λ− will be used to share the Shapley values of
links that are negative between their incident players.

The share of each player is determined according to the sign of the Shapley value and the relative
weights of involved players. If the Shapley value of a link is positive, the player who invests the most to
maintain a link obtains a higher part of its Shapley value than the other player. On the contrary, if the
Shapley value of a link is negative, the player who invests the most to maintain the link obtains a lower
part of its Shapley value than the other player. Thus the relative level of investment of a player determines
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his level of protection against loss. The position value of a communication situation (N, v, L) weighted
by λ+, denoted by P λ+

, is defined as:

P λ+

i (N, v, L) =
∑

{i, j}∈Li

λ̄i, {i, j}

λ̄i, {i, j} + λ̄j, {i, j}
Sh{i, j}(L, rv) (2)

for each i ∈ N , where λ̄i, {i, j} = λ+
i, {i, j} if Sh{i, j}(L, rv) ≥ 0 and λ̄i, {i, j} = λ−

i, {i, j} if Sh{i, j}(L, rv) < 0.

This weighted position value is a generalisation of the position value. To see this, note that if λ+
i, {i, j} = a,

a ∈ R, for each i ∈ N(L) and each {i, j} ∈ Li, then P λ+
(N, v, L) = P (N, v, L).

The following example explains the transfer of worth induced by the weighted position value.

Example 2

Consider the communication situation (N, v, L) defined in Example 1, and suppose that λ+ = {1, 9, 1, 1},
i.e. players 1 and 2 invests up to 1 and 9 in link {1, 2} respectively, and players 2 and 3 both invest
up to 1. As the Shapley value of link {1, 2} is negative, we use λ−

1, {1, 2} = 1 and λ−
2, {1, 2} = 1/9 to

share it between players 1 and 2. As the level of investment of players 2 and 3 in the link {2, 3} is
the same, the Shapley value of link {2, 3} is shared equally between its two incident players. We obtain
P λ+

(N, v, L) = (−9, 24, 25). Then player 2 obtains a transfer of an amount of 4 from player 1. �

Now, we introduce a set of axioms used to characterize the weighted position value on CSN . Compo-
nent efficiency, defined by Myerson (1977), is a standard axiom. It is satisfied by the Myerson value and
the position value. It requires that the payoffs of the players of a component add up to the worth of this
component.

Component efficiency: an allocation rule Y on CSN is component efficient if for every (N, v, L) ∈
CSN and every connected component C ∈ N/L,

∑

i∈C

Yi(N, v, L) = v(C).

The superfluous link property is defined by Borm, Owen, and Tijs (1992) to characterize the position
value. A link {i, j} ∈ L is superfluous in a communication situation (N, v, L) if its presence or absence
does not change the worth obtainable by the grand coalition: rv(A) = rv(A \ {i, j}) for all A ⊆ L. The
superfluous link property requires that the removal of a superfluous link does not change the payoffs of
the players.

Superfluous link property: an allocation rule Y on CSN satisfies the superfluous link property if for
every communication situation (N, v, L) ∈ CSN in that class and every superfluous link {i, j} ∈ L, it
holds that:

Y (N, v, L) = Y (N, v, L \ {i, j}).

The third axiom is based on the link unanimity property provided by van den Brink, van der Laan, and
Pruzhansky (2007). A communication situation is link unanimous if rv = [

∑

C∈N/L v(C)]uL. This means
that the grand coalition produces a value of zero if some links of L are not available. The weighting axiom
requires that for each link unanimous communication situation, the payoff of a player only depends on its
relative weights. Moreover, this axiom captures the fact that the allocation of a player increases with his
level of investment.

Weighting: an allocation rule Y on CSN satisfies the weighting axiom if for each link unanimous
communication situation (N, v, L) ∈ CSN there exists c ∈ R such that for each i ∈ N :

Yi(N, v, L) = c
∑

{i, j}∈Li

λ̄i, {i, j}

λ̄i, {i, j} + λ̄i, {i, j}
,
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where λ̄ = λ+ if vL(N) ≥ 0 and λ̄ = λ− if vL(N) < 0.

The fourth axiom is a weak version of the standard additivity property that relies on the following
definition. Two communication situations (N, v, L) ∈ CSN and (N, w, L) ∈ CSN are comparable if
αrv

A αrw

A ≥ 0 for each A ⊆ L, i.e. if for each set of links, the unanimity coefficient of the link game have
the same sign.

Quasi-additivity: an allocation rule Y on CSN is quasi-additive if for each pair (N, v, L), (N, w, L) ∈
CSN comparable,

Y (N, v + w, L) = Y (N, v, L) + Y (N, w, L).

We prove the main result of this article (Theorem 2), which states that the weighted position value
is the only allocation rule on CSN satisfying the four previous axioms, in two steps. First, we show that
the weighted position value is the unique allocation rule satisfying weighting, superfluous link property
and component efficiency on the class of communication situations of CSN such that the coalitional
game is a unanimity game. Second, as each game can be written as a linear combination of unanimity
games, the quasi-additivity axiom permits to complete the proof. But as shown in Example 3, there
exists communication situations that cannot be written as a sum of comparable unanimity communication
situations.

Example 3

Consider (N, v, L) such that N = {1, 2, 3}, v = 3u{1, 2} +u{1, 3}− 2u{1, 2, 3} and L = {{1, 2}, {2, 3}}.
The communication situations (N, u{1, 3}, L) and (N, −2u{1, 2, 3}, L) are not comparable:

ru{1, 3} =
∑

A⊂L

0 uA + uL

r−2u{1, 2, 3} =
∑

A⊂L

0 uA − 2uL

thus we have αr
u{1, 3}

L αr
−2u{1, 2, 3}

L < 0. �

In order to complete the proof, we associate to each communication situation on CSN a new com-
munication situation, denoted by (N, ηv, L), that summarizes all the necessary information to compute
(L, rv) and that can be written as a unique linear combination of unanimity communication situations.
This new communication situation is defined as:

αηv

S =











∑

R∈2N\{∅}
H(R)=S

αv
R if S is connected,

0 otherwise.

(3)

Note that as (N, v, L) ∈ CSN , we know that αv
{i} = 0 for each i ∈ N . Since H(S) = {i} if and

only if S = {i}, we have αηv

{i} = αv
{i} = 0. Therefore, we obtain (N, ηv, L) ∈ CSN .

Moreover, we can see that for each S ∈ 2N \ {∅}, the worth of S in ηv is equal to the worth of L(S)
in rv. Indeed, we have:

ηv(S) =
∑

T⊆S
T 6=∅

T=H(T )

αηv

T =
∑

T⊆S
T 6=∅

T=H(T )

∑

R∈2N\{∅}
H(R)=T

αv
R =

∑

T⊆S
T 6=∅

T=H(T )

∑

R∈2N\{∅}
R∈∆(L(T ))

αv
R =

∑

T⊆S
T 6=∅

T=H(T )

αrv

L(T ).

To each T such that T = H(T ) ⊆ S corresponds a unique L(T ) ⊆ L(S) such that |T/L(T )| = 1
and conversely, to each A ⊆ L(S) such that |N(A)/A| = 1 corresponds a unique N(A) ⊆ S such that
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N(A) = A. Note that T ⊆ S is connected if and only if there exists a unique A ⊆ L(S) such that N(A)
is connected. Then:

ηv(S) =
∑

A⊆L(S)
|N(A)/A|=1

αrv

A = rv(L(S)). (4)

By (4), it follows that the communication situation (N, ηv, L) summarizes all the information included in
(N, v, L) that we need to compute rv: the unanimity coefficients αηv

S such that H(S) 6= S are equal to

zero and the unanimity coefficients αηv

S such that H(S) = S contains all the necessary information about
the coalitions R ⊆ S such that H(R) = S. Note that there is no redundant information because H(R)
is unique for each R ∈ 2N \ {∅}.

Now we are ready to provide a preliminary result: Lemma 2 states that if an allocation rule satisfies
component efficiency, quasi-additivity and weighting, the worth of coalitions such that the connected hull
is empty are useless for determining the allocations of the players. Moreover, all the necessary information
about unanimity coefficients αv

S such that H(S) ⊆ R can be summarized in a unique unanimity coefficient
relative to R.

Lemma 2

If an allocation rule satisfies component efficiency, quasi-additivity and weighting on CSN , then
Y (N, v, L) = Y (N, ηv, L).

Proof : Consider (N, v, L) ∈ CSN and (N, w, L) such that w = v−ηv. For each A ⊆ L, the unanimity
coefficients of rw are given by:

αrw

A =
∑

S∈2N\{∅}
S∈∆(A)

αw
S

=
∑

S∈2N\{∅}
S∈∆(A)









αv
S −

∑

R∈2N\{∅}
S=H(R)

αv
R









=
∑

S∈2N\{∅}
N(A)=H(S)









αv
S −

∑

R∈2N\{∅}
S=H(R)

αv
R









,

where the first equality follows by Lemma 1 and the second equality by the definition of w. Moreover, for
each S ∈ 2N \ {∅} such that N(A) = H(S), there is R ∈ 2N \ {∅} such that S = H(R) if and only if
S = H(S). This means that S = N(A). Therefore:

αrw

A =
∑

S∈2N\{∅}
N(A)=H(S)

αv
S −

∑

R∈2N\{∅}
N(A)=H(R)

αv
R

= 0.

From this we obtain that rw(A) = 0 for each A ⊆ L. Suppose that L = ∅. As (N, w) is zero
normalized, by component efficiency we can easily conclude that Yi(N, w, L) = v({i}) = 0 for each
i ∈ N . Now, suppose that L 6= ∅. As (N, w) is zero normalized, by component efficiency, it follows that
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Yi(N, w, L) = 0 for each i ∈ N \ N(L). Next, consider C ∈ N/L such that |C| > 1. We have:

w(C) =
∑

S∈2N\{∅}
S⊆C

αv
S −

∑

S∈2N\{∅}
S⊂C

H(S)=S









∑

R∈2N\{∅}
S=H(R)

αv
R









=
∑

S∈2N\{∅}
S⊆C

αv
S −

∑

S∈2N\{∅}
S⊆C

αv
S

= 0,

where the first equality follows by the definition of w and the fact that αηv

S 6= 0 only if H(S) = S.
Moreover, the communication situation (N, w, L) is trivially link unanimous because rw(A) = 0 for each
A ⊆ L. These two remarks, combined with weighting and component efficiency, give:

∑

i∈C

Yi(N, w, L) = 0

= c
∑

i∈C

∑

l∈Li

λ̄i, l
∑

j∈l λ̄j, l

= c
∑

l∈L(C)

∑

i∈l

λ̄i, l
∑

j∈l λ̄j, l

= c|L(C)|.

As L(C) 6= ∅, we have c = 0. This is true for each C ∈ N/L such that |C| > 1, so that we obtain
Yi(N, w, L) = 0 for each i ∈ N(L). Finally, we have:

Y (N, v, L) = Y (N, v − ηv + ηv, L) = Y (N, w + ηv, L).

As αrw

A = 0 for each A ⊆ L, we know that (N, w, L) and (N, ηv, L) are comparable. Thus we obtain:

Y (N, w + ηv, L) = Y (N, w, L) + Y (N, ηv, L) = Y (N, ηv, L).

This gives us the desired result: Y (N, v, L) = Y (N, ηv, L). �

We now have the necessary material to provide a characterization of the weighted position value on
CSN .

Theorem2

The weighted position value is the unique allocation rule satisfying component efficiency, quasi-
additivity, superfluous link property and weighting on CSN .

Proof : We first show that the weighted position value satisfies component efficiency. Consider (N, v, L) ∈
CSN and a connected component C ∈ N/L. Let us define (L, rL(C)) where rL(C)(A) = rv(A ∩ L(C))
for each A ⊆ L and (L, rL\L(C)), where rL\L(C)(A) = rv(A \ L(C)) for each A ⊆ L. Note that L(C)
is the smallest carrier of (L, rL(C)). As the Shapley value satisfies the null player property, we have
Shl(L, rL(C)) = 0 for each l ∈ L \L(C). In addition, as L \L(C) is the smallest carrier of (L, rL\L(C)),
Shl(L, rL\L(C)) = 0 for each l ∈ L(C). Finally, as C is a connected component of N/L, we have
rv = rL(C) + rL\L(C).
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Therefore:

∑

i∈C

P λ+

i (N, v, L) =
∑

i∈C

∑

l∈Li

λ̄i, l
∑

j∈l λ̄j, l
Shl(L, rv)

=
∑

l∈L(C)

∑

i∈l

λ̄i, l
∑

j∈l λ̄j, l
Shl(L, rv)

=
∑

l∈L(C)

Shl(L, rv)

=
∑

l∈L(C)

[

Shl(L, rL(C)) + Shl(L, rL\L(C))
]

=
∑

l∈L(C)

Shl(L, rL(C))

=
∑

l∈L

Shl(L, rL(C))

= rL(C)(L)

= rv(L(C))

= v(C),

where the third equality follows using that
∑

i∈l(λ̄i, l/
∑

j∈l λ̄j, l) = 1 for each l ∈ L, the fourth equality
from additivity of the Shapley value, the fifth equality from the fact that Shl(L, rL\L(C)) = 0 for each
l ∈ L(C) and the sixth equality follows since Shl(L, rL(C)) = 0 for each l ∈ L \ L(C). The seventh
equality follows from the efficiency of the Shapley value.
Now, we show that the position value satisfies weighting. Let (N, v, L) ∈ CSN be a link unanimous
communication situation. The links of L are symmetric players in (L, rv). By the symmetry and efficiency
of the Shapley value, it holds that Shl(L, rv) = vL(N)/|L|. Thus:

P λ+

i (N, v, L) =
∑

l∈Li

λ̄i, l
∑

j∈l λ̄j, l

vL(N)

|L|
,

where λ̄ = λ+ if vL(N) ≥ 0 and λ̄ = λ− if vL(N) < 0. By setting vL(N)/|L| = c, we conclude that the
weighted position value satisfies weighting.
In order to see that the weighted position value satisfies the superfluous link property, consider (N, v, L) ∈
CSN such that k ∈ L is superfluous. As rv(A) − rv(A \ {k}) = 0 for each A ⊆ L, we know that k is a
null player in (L, rv). Thus Shk(L, rv) = 0. Therefore, for each i ∈ N :

P λ+

i (N, v, L) =
∑

l∈Li

λ̄i, l
∑

j∈l λ̄j, l
Shl(L, rv)

=
∑

l∈Li
l6=k

λ̄i, l
∑

j∈l λ̄j, l
Shl(L, rv)

=
∑

l∈Li
l6=k

λ̄i, l
∑

j∈l λ̄j, l
Shl(L \ {k}, rv)

= P λ+

i (N, v, L \ {k}).

The third equality follows from the fact that the Shapley value satisfies the null player out property.
Finally, in order to see that the weighted position value is quasi-additive, consider two communication
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situations (N, v, L) and (N, w, L) of CSN that are comparable. It holds that:

P λ+

i (N, v, L) + P λ+

i (N, w, L) =
∑

l∈Li

λ̄i, l
∑

j∈l λ̄j, l
Shl(L, rv) +

∑

l∈Li

λ̄i, l
∑

j∈l λ̄j, l
Shl(L, rw)

=
∑

l∈Li

λ̄i, l
∑

j∈l λ̄j, l
Shl(L, rv + rw)

=
∑

l∈Li

λ̄i, l
∑

j∈l λ̄j, l
Shl(L, rv+w)

= P λ+

i (N, v + w, L).

The third equality follows since rv(A) + rw(A) =
∑

C∈N/A[v(C) + w(C)] =
∑

C∈N/A(v + w)(C) =

rv+w(A) for each A ⊆ L.
All that is left to prove now is that there is a unique allocation rule Y satisfying this four axioms on
CSN . As we have just showed that P λ+

satisfies them, we can easily conclude that Y = P λ+
. Pick

S ∈ 2N \ {∅} and consider (N, αuS , L) where α ∈ R. By Lemma 2, we know that Y (N, αuS , L) =
Y (N, ηαuS , L). Consider (N, ηαuS , L) ∈ CSN such that H(S) = ∅. In that case, each link of L is
superfluous. By the superfluous link property, component efficiency and zero-normalization of (N, ηαuS ),
we obtain Yi(N, ηαuS , L) = Yi(N, ηαuS , ∅) = ηαuS ({i}) = 0.
Now suppose that H(S) 6= ∅. The links in L\L(H(S)) are superfluous. By the superfluous link property,
we know that Y (N, ηαuS , L) = Y (N, ηαuS , L(H(S))). Note that each player i ∈ N \ H(S) is isolated
in graph (N, L(H(S))). Using zero normalization of (N, ηαuS ) and component efficiency, we obtain
Yi(N, ηαuS , L(H(S))) = ηαuS ({i}) = 0. Then Yi(N, ηαuS , L) = 0 = P λ+

i (N, ηαuS , L) for each
i ∈ N \ H(S). The link game associated to (N, ηαuS , L) is given by:

rηαuS (A) =

{

α if A ⊇ L(H(S)),
0 otherwise.

Hence (N, ηαuS , L(H(S))) is link unanimous. By the weighting axiom, we have:

Yi(N, ηαuS , L(H(S))) = c
∑

l∈Li(H(S))

λ̄i, l
∑

j∈l λ̄j, l

for each i ∈ H(S), where λ̄ = λ+ if α ≥ 0 and λ̄ = λ− if α < 0. Using component efficiency, we obtain:

∑

i∈H(S)

Yi(N, ηαuS , L(H(S))) = c
∑

i∈H(S)

∑

l∈Li(H(S))

λ̄i, l
∑

j∈l λ̄j, l
= ηαuS (H(S)) = α.

This immediately leads to:

c =
α

∑

i∈H(S)

∑

l∈Li(H(S))

λ̄i, l
∑

j∈l λ̄j, l

.

By changing the order of the summations and noting that
∑

i∈l(λ̄i, l/
∑

j∈l λ̄j, l) = 1 for each l ∈ L, we
obtain:

∑

i∈H(S)

∑

l∈Li(H(S))

λ̄i, l
∑

j∈l λ̄j, l
=

∑

l∈L(H(S))

∑

i∈l

λ̄i, l
∑

j∈l λ̄j, l
= |L(H(S))|.

Then, for each i ∈ H(S):

Yi(N, ηαuS , L) = Yi(N, ηαuS , L(H(S))) =
α

|L(H(S))|

∑

l∈Li(H(S))

λ̄i, l
∑

j∈l λ̄j, l
.
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Now, it remains to show that Y (N, v, L) is uniquely determined for each (N, v, L) ∈ CSN . By Lemma
2, we know that Y (N, v, L) = Y (N, ηv, L). We can decompose (N, ηv, L) as a sum of comparable

communication situations. Let L+ = {A ⊆ L |αrηv

A ≥ 0} and L− = {A ⊆ L |αrηv

A < 0}. Then:

ηv =
∑

S∈2N\{∅}
S=H(S)

L(S)∈L+

αηv

S uS +
∑

S∈2N\{∅}
S=H(S)

L(S)∈L−

αηv

S uS +
∑

S∈2N\{∅}
S 6=H(S)

0uS .

Now define (N, ηv+
, L) and (N, ηv−

, L) in the following manner:

ηv+
=

∑

S∈2N\{∅}
S=H(S)

L(S)∈L+

αηv

S uS +
∑

S∈2N\{∅}
S=H(S)

L(S)∈L−

0 uS +
∑

S∈2N\{∅}
S 6=H(S)

0uS

ηv−
=

∑

S∈2N\{∅}
S=H(S)

L(S)∈L+

0uS +
∑

S∈2N\{∅}
S=H(S)

L(S)∈L−

αηv

S uS +
∑

S∈2N\{∅}
S 6=H(S)

0uS .

Then (N, ηv, L) = (N, ηv+
, L) + (N, ηv−

, L). By (4), we have:

rηv+

=
∑

A∈L+

αrηv

A uA +
∑

A∈L−

0uA

rηv−

=
∑

A∈L+

0uA +
∑

A∈L−

αrηv

A uA.

Note that (N, ηv+
, L) and (N, ηv−

, L) are comparable because αrηv+

A αrηv−

A = 0 for each A ⊆ L. By
quasi-additivity, we can conclude that:

Y (N, ηv, L) = Y (N, ηv+
, L) + Y (N, ηv−

, L).

Now we show that the communication situations stemming from the linear decomposition of (N, ηv+
, L)

are comparable. Consider (N, αηv+

S uS , L), S 6= ∅, such that the coalitional games stem from the linear

decomposition of ηv+
. By Lemma 1, we know that for each S ⊆ N \ ∅ such that S = H(S),

αηv

S =
∑

R⊆N\∅
H(R)=S

αv
R =

∑

R⊆N\∅
R∈∆(L(S))

αv
R = αrv

L(S).

Then we have αηv+

S = αrηv+

L(S) ≥ 0 if S = H(S) and L(S) ∈ L+, αηv+

S = αrηv+

L(S) = 0 if S = H(S) and

L(S) ∈ L−, and αηv+

S = 0 if S 6= H(S). By Lemma 1 we can write rαηv+

S uS as a linear combination of
unanimity games:

rαηv+

S uS =
∑

A⊆L

αr
α

ηv+

S
uS

A uA

=
∑

A⊆L









∑

T∈2N\{∅}
T∈∆(A)

α
αηv+

S uS

T









uA

=
∑

A⊆L
A 6=L(S)

0 uA + αηv+

S uL(S).
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The unanimity coefficients of rαηv+

S uS are all positive or equal to zero. For any S, R ⊆ N \ ∅, S 6= R, we

obtain αr
α

ηv+

S
uS

A αr
α

ηv+

R
uR

A ≥ 0 for each A ⊆ L. By quasi-additivity:

Y (N, ηv+
, L) =

∑

S⊆N\{∅}

Y (N, αηv+

S uS , L).

Similarly, we have:

Y (N, ηv−
, L) =

∑

S⊆N\{∅}

Y (N, αηv−

S uS , L),

which proves that Y (N, v, L) is uniquely defined for each Y (N, v, L) ∈ CSN . �

4 Conclusion

In this article, we provide a generalization of the position value that allows players to benefit from transfers
of worth by investing in communication links. The levels of investment made by players are formalized via
a weight scheme that is similar to the one defined by Haeringer (2006). Our weighted position value can be
thought of as an insurance system that protects players who invest the most against loss. We characterize
this new allocation rule via four axioms. Component efficiency and superfluous property are satisfied by
the Myerson value and the position value. Quasi-additivity is a weak version of additivity, and weighting
reflects the fact that the allocations of players should be increasing with their level of investment.
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