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Disjointness of Linear Fractional Actions on
Serre Trees

By Henry W. Talbott

Abstract. Serre showed that, for a discrete valuation field, the group of linear fractional
transformations acts on an infinite regular tree with vertex degree determined by the
residue degree of the field. Since the p-adics and the polynomials over the finite field
of order p act on isomorphic trees, we may ask whether pairs of actions from these two
groups are ever conjugate as tree automorphisms. We analyze permutations induced
on finite vertex sets, and show a permutation classification result for actions by these
linear fractional transformation groups. We prove that actions by specific subgroups of
these groups are conjugate only in specific special cases.

1 Introduction

For a commutative ring R with unit 1R, one may consider the projective special linear
group

PSL(2,R) =
{[

a b
c d

]
: a,b,c,d ∈ R, ad −bc = 1R

}/
{±I}

Groups of this form are ubiquitous in algebra, and have a rich theory. A foundational
result on special linear groups over fields is due to Borel and Tits (1973; see also Margulis,
1989): if two fields F1 and F2 satisfy certain properties, PSL(2,F1) ∼= PSL(2,F2) if and only
if F1

∼= F2.
We will be interested in matrix groups of discrete valuation fields, or of the rings

of integers of these fields. Two accessible examples of such fields are Qp , the p-adic
numbers, and Fp ((x)), the field of fractions of polynomials over the finite field Fp . In both
cases, p must be a prime integer. These fields, along with other objects mentioned in
this introduction, will be rigorously defined in the next section.

Qp and Fp ((x)) have many common properties: their respective valuation norms
both have image set {0}∪{pn}n∈Z, and there exists a canonical norm-preserving bijection
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2 Disjointness of Linear Fractional Actions on Serre Trees

between these fields. However, these fields are not isomorphic (in fact, they do not even
have the same characteristic), so PSL(2,Qp ) 6∼= PSL(2,Fp ((x))). While these linear groups
are globally distinct, one may ask if there is some sense in which the algebraic struc-
tures of these groups are locally similar. Serre trees provide a framework for comparing
PSL(2,Qp ) and PSL(2,Fp ((x))) locally.

Specifically, Serre observed (1977) that to every discrete valuation ring R, one can
associate an infinite regular tree TR, and that this tree admits a faithful group action by
PSL(2,R). Since PSL(2,Qp ) and PSL(2,Fp ((x))) both act on Tp , the regular tree in which
every vertex has p +1 neighbors, we can ask whether any two actions from these groups
are conjugate with respect to the full automormorphism group of the tree, Aut(Tp ) (fig.
1). In other words, does there exist f ∈ PSL(2,Qp ), g ∈ PSL(2,Fp ((x))), and h ∈ Aut(Tp )
such that (thinking of each element as an automorphism of Tp ),

g = h ◦ f ◦h−1

If so, what can we say about f and g ? Notice this condition is weaker than isomorphism
of the two groups, or even isomorphism of subgroups, since we are allowed to conjugate
by elements of Aut(Tp ) that do not arise by action of either PSL(2,Qp ) or PSL(2,Fp ((x))).
In fact, conjugacy gives a very high amount of flexibility in some cases: for example, any
two tree automorphisms that fix one point of Tp and act on its neighbors via a cyclic
permutation of length p +1 are conjugate, via choosing an appropriate h to ’line up’ the
cycles around the fixed points.

Figure 1: A diagram showing the inclusions of PSL(2,Zp ) and PSL(2,Fp [x]) in Aut(Tp ).
The arrows represent injective homomorphisms. We ask whether, up to conjugacy in
Aut(Tp ), the images of the two projective matrix groups overlap.

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 1, 2021



Henry W. Talbott 3

For the projective special linear groups PSL(2,Zp ) and PSL(2,Fp [x]) derived from the
respective rings of integers ofQp and Fp ((x)), we determine a condition for two actions
to be conjugate. This condition turns out to be highly restrictive, even with the flexibility
given by working with conjugacy in Aut(Tp ).

Theorem 1.1. Let f ∈ PSL(2,Zp ), g ∈ PSL(2,Fp [x]), and h ∈ Aut(Tp ), where Tp is the Serre
tree of Zp and Fp [x]. Also let i1 : PSL(2,Zp ) → Aut(Tp ) and i2 : PSL(2,Fp [x]) → Aut(Tp )
be natural inclusions, and assume

i2(g ) = h ◦ i1( f )◦h−1

Then Ord( f ) = Ord(g ) <∞, and moreover Ord( f ) = Ord(g ) is a divisor of (p2−1)p
2 .

The primary reason this condition is restrictive is that elements of PSL(2,Zp ) or
PSL(2,Fp [x]) with finite order are rare. In fact, it can be deduced from our primary
technical lemmas that in the following exact sequences, the third nonzero term s are
torsion-free (this fact was known to Serre and Tate (1968), although they do not provide
a proof):

0 → PSL(2,Fp ) → PSL(2,Zp ) → PSL(2,Zp )/PSL(2,Fp ) → 0

0 → PSL(2,Fp ) → PSL(2,Fp [x]) → PSL(2,Fp [x])/PSL(2,Fp ) → 0

By avoiding torsion, working with general matrices becomes significantly easier. How-
ever, the above language of exact sequences will generally be avoided in favor of explicit
constructions.

We will also examine the space of invertible projective affine transformations over a
field or ring:

Aff(R) =
{[

a b
0 1

]
: a ∈ R∗,b ∈ R

}
In the case of Aff(Zp ) and Aff(Fp [x]), we obtain a corollary for affine transformations:

Corollary 1.1. Let f ∈ Aff(Zp ), g ∈ Aff(Fp [x]), and h ∈ Aut(Tp ) so that g = h◦ f ◦h−1. Then
Ord( f ) = Ord(g ) <∞, and additionally Ord( f ) = Ord(g ) is a divisor of p(p −1).

In section 2, we will rigorously define Serre trees and their associated group actions.
In section 3, we will analyze the action of PSL(2,Zp ) on Tp and derive crucial geometric
information about this action. In section 4 we will determine similar information for
PSL(2,Fp [x]) and prove theorem 1.1 as a consequence.

2 Key Definitions

2.1 Discrete Valuation Rings,Zp , and Fp [x]

Zp and Fp [x] are two natural examples of discrete valuation rings, or rings with unique
maximal ideals. For our purposes, it is most useful to define Zp as the ring of formal

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 1, 2021



4 Disjointness of Linear Fractional Actions on Serre Trees

power series in p:

Zp =
{ ∞∑

i=0
ai p i : ai ∈ {0,1, ..., p −1} for all i ,

}
Addition and multiplication are done using the normal rules for manipulating power
series, with the exception that coefficients are carried. When we restrict to elements
of Zp with finite power series expansions, we recover the monoid Z≥0 with the usual
addition and multiplication rules.

Fp [x] is defined analogously to Zp , but with x in place of p, and with coefficients in
Fp :

Fp [x] =
{ ∞∑

i=0
ai xi : ai ∈ Fp for all i

}
Addition and multiplication are carried out by using the normal rules for power series
expansions, treating coefficients as elements of Fp .

The fields of fractions of Zp and Fp [x] are isomorphic toQp and Fp ((x)), respectively,
whereQp and Fp ((x)) are obtained by allowing finitely many negative coefficients:

Qp =
{ ∞∑

i=k
ai p i : k ∈Z, ai ∈ {0,1, ..., p −1} for all i , ak 6= 0

}
∪ {0}

Fp ((x)) =
{ ∞∑

i=k
ai xi : k ∈Z, ai ∈ Fp for all i , ak 6= 0

}
∪ {0}

For z ∈ Qp or z ∈ Fp ((x)) with the above notation, the canonical valuation function is
defined as ϕ(z) = k, and the induced valuation norm is then given by |z| = p−ϕ(z) = p−k .

There exists a valuation-preserving (and thus norm-preserving) bijection fromQp to
Fp ((x)), given by

ψ :Qp ↔ Fp ((x)), ψ

( ∞∑
i=k

ai p i

)
=

∞∑
i=k

ai xi

This observation will become critical once Serre trees are introduced.

2.2 Serre Trees

The Serre tree TR of an arbitrary discrete valuation ring R can be defined in terms of
the order of its residue field, or the field obtained by quotienting the ring by its unique
maximal ideal. In this case, both TZp and TFp [x] have residue field Fp . As a consequence,
TZp and TFp [x] are both isomorphic to the infinite regular tree with p +1 vertices, which
we will denote Tp (fig. 2).

Serre trees are part of a much larger family of geometric objects, the Euclidean build-
ings, and are a fundamental class of examples of 1-dimensional Euclidean buildings

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 1, 2021



Henry W. Talbott 5

Figure 2: The local structure of the infinite regular tree T2.

(Brown, 1989). Serre originally defined these trees as arising from scale-equivalence
classes of rank-two modules over a given base ring (1977); it is not obvious from Serre’s
original definition that the objects presented are trees, nor that they have the regular
structure described above. We will instead follow the more concrete geometric interpre-
tation given by Armitage and Parker (2007).

2.3 p-adic Balls, the Ultrametric Inequality, and Serre Trees

For two elements x, y in a field with norm | · |, define d(x, y) = |x − y |. The valuation
norms onQp and Fp ((x)) both satisfy the ultrametric inequality, or for any x, y, z,

d(x, z) ≤ max(d(x, y),d(y, z))

This inequality is a strengthening of the standard triangle inequality. As a consequence,
translations of balls are either disjoint or equal:

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 1, 2021



6 Disjointness of Linear Fractional Actions on Serre Trees

Lemma 2.1. Let B(x1,r ), B(x2,r ) be two closed balls inQp with equal radius. Then B1 = B2

or B1 ∩B2 =;.

Proof. When r = 0, we have that two points are either equal or disjoint, which is
certainly true in this field. Assume r > 0. Since the norm is discrete except at 0, we can
assume without loss of generality that r = pk for some k ∈Z. If B(x1,r )∩B(x2,r ) 6= ;, then
assume y ∈ B(x1,r )∩B(x2,r ). For any z ∈ B(x1,r ), d(z, x1) ≤ r . Additionally, d(x1, y) ≤ r ,
and d(y, x2) ≤ r . Applying the ultrametric inequality twice,

d(z, x2) ≤ max(d(z, x1),d(x1, y),d(y, x2)) ≤ r

So z ∈ B(x2,r ), and B(x1,r ) ⊆ B(x2,r ). By symmetry, B(x1,r ) = B(x2,r ). ■
Corollary 2.2. For any k ∈Z, the balls of radius pk partitionQp .

Corollary 2.3. Let B(x,r ) ⊂Qp . If y ∈ B(x,r ), then B(x,r ) = B(y,r ).

Effectively, any point in a p-adic ball serves as its ’center’! Identical results hold in
the case of Fp ((x)).

We will assume for the remainder of the paper that all balls are closed with nonzero
radius. Now, let V be the set of all balls inQp with radius pk for some k ∈Z; by the remark
in the proof of the above lemma, this covers every ball in Qp up to equality. V serves
as the vertex set of Tp under our construction. Visually, we can think of balls of equal
radius being stacked in horizontal ’layers’ in order of radius, with each layer representing
a partition of Qp into balls. Arranging balls of greater radius ’higher’ on the tree, the
partition corresponding to each layer refines the partition above it (see fig. 3). We will
notate each ball using coset notation, so that B(z, p−k ) = z +pkZp represents the ball of
radius p−k ’centered’ at z. With this notation, two balls z+pkZp and z ′+pkZp are equal
if and only if z − z ′ ∈ pkZp .

The edge set E of Tp is defined via maximal containment:

Definition 2.1. If B1 and B2 are two distinct balls in some field, B1 is maximally contained
in B2 if B1 ⊂ B2 and there exists no B3 such that B1 (B3 (B2.

Example 2.1. If B = 1+23Z2, then B is maximally contained in 1+22Z2, and B maximally
contains 1+24Z2 and 1+23 +24Z2.

E is then defined as the set of all unordered pairs of balls such that one is maximally
contained in the other. Over the p-adics, if the radius of B1 is pk and the radius of B2 is
p j , an alternate way of characterizing maximal containment is that B1 ⊂ B2 and k = j −1,
or B2 ⊂ B1 and k = j +1.

Definition 2.2 (p-adic Serre tree). Let Vp be the set of all balls in Qp , and let Ep be the
set of unordered pairs (B1,B2) such that B1,B2 ∈Qp and either B1 is maximally contained
in B2 or B2 is maximally contained in B1. Then Tp = G(Vp ,Ep ), the graph constructed by
interpreting Vp as a vertex set and Ep as an edge set, is the Serre tree ofQp .

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 1, 2021



Henry W. Talbott 7

Figure 3: A rooted subtree of T2, labeled with the 2-adic ball associated to each vertex.
Each ball contains two maximal sub-balls.

It is not immediately obvious from the above definition that Tp is in fact a tree. We
give a proof sketch: assume B0 = B(a0, pk0 ) is a vertex contained in a cycle C of Tp . Notice
that any ball in Tp is adjacent to p balls of smaller radius and 1 ball of larger radius. Of
the two vertices adjacent to B0 in C, at least one is a ball with smaller radius, pk0−1; call
this ball B1. If B2 is the other vertex adjacent to B1 in C, it must have radius pk0−2, since
the only ball adjacent to B1 in C with greater or equal radius to B1 is B0. Continuing
this argument, we form a chain of adjacent vertices B0,B1,B2,B3, ... ⊂ C with strictly
decreasing radius. So no Bn ∈ C can be equal to B0, a contradiction.

Having constructed TZp , we have all the structure in place to build TFp [x]. We re-
marked earlier that there is a norm-preserving bijection between Qp and Fp ((x)). As
a function between Qp and Fp ((x)), this bijection sends balls to balls, and preserves
both radii and containment (and therefore maximal containment). Since TZp was only
defined in terms of balls onQp and their relations, our bijection shows that TFp [x] can be
constructed in exactly the same manner as TZp , and moreover TFp [x]

∼= TZp in the sense
of graph isomorphism.

Definition 2.3 (Laurent Serre tree). Let Vp be the set of all balls in Fp ((x)), and let Ep be
the set of unordered pairs (B1,B2) such that B1,B2 ∈ Fp ((x)) and B1 is maximally contained
in B2 or B2 is maximally contained in B1. Then Tp = G(Vp ,Ep ), the graph constructed by
interpreting Vp as a vertex set and Ep as an edge set, is the Serre tree of Fp ((x)).

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 1, 2021



8 Disjointness of Linear Fractional Actions on Serre Trees

2.4 Linear Fractional Transformations on Tp

We claimed that the Serre tree TR admits a group action by PSL(2,K), where K is the
field of fractions of R. How is this action defined? Rather than use the matrix notation
presented in the introduction, we will represent PSL(2,K) as a group of linear fractional
transformations:

PSL(2,K) =
{

f (z) = az +b

cz +d
: a,b,c,d ∈ K, ad −bc = 1

}
With this notation, the group law on PSL(2,K) becomes function composition, and each
element f (z) is an invertible function f :P1(K) →P1(K). As is standard, we think of P1(K)
as K∪ {∞}. The map

ψ

([
a b
c d

])
= az +b

cz +d

is the canonical isomorphism between the matrix notation of PSL(2,K) and our new
notation. We will use both notations, depending on context, and will sometimes use
M(z) to notate a matrix M ∈ PSL(2,K) acting on some vertex or point z.

One apparent issue is that representations of the form f (z) = az+b
cz+d are not quite

unique. After all, for any element s,

az +b

cz +d
= s

s
· az +b

cz +d
= asz +bs

csz +d s

However, a quick calculation shows that

det

([
as bs
cs d s

])
= s2 det

([
a b
c d

])
So the only choice of s that leaves the determinant fixed is s =±1. But these choices of
s correspond to multiplying by ±I, which we quotiented by to obtain PSL(2,K)! So the
az+b
cz+d notation is well-defined once we require that ad −bc = 1. This issue of multiple
representations can thus mostly be ignored, although it will be useful in section 4.4.

Similarly,
Aff(K) = { f (z) = az +b : a ∈ K∗,b ∈ K}

where the multiple representations issue is resolved by requiring that any matrix

[
a b
0 d

]
corresponding to an affine transformation satisfy d = 1.

If f (z) ∈ PSL(2,Qp ) and B ⊂Qp is a ball, then either f (B) is a ball or f (B)c is a ball,
where f (B) is the pointwise image of B (Parker, 2007). Since no ball B contains the point
∞ ∈ P1(Zp ), checking whether ∞ ∈ f (B) is a practical way to check whether f (B) or
f (B)c is a ball. Associating each ball B with Bc , f (z) defines a bijection on the vertices
of the p-adic Serre tree. Moreover, if B1 and B2 are two p-adic balls such that B1 is

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 1, 2021



Henry W. Talbott 9

Figure 4: The action of six elements of PSL(2,Z2) on a portion of the tree T2; specifically,
the vertex 0+Z2 and the three adjacent vertices 0+2−1Z2, 0+2Z2, and 1+2Z2. In each
subfigure, 0+Z2 is the central vertex, and is fixed by the action.

maximally contained in B2, and neither balls is mapped to the complement of a ball,
then either f (B1) is maximally contained in f (B2) or f (B2) is maximally contained in
f (B1) (Parker, 2007). If either B1 or B2 is mapped to the complement of a ball, this
statement holds after taking proper complements. Since f (z) can be thought of as a
bijective vertex map that preserves edge relations, f (z) acts as an isomorphism on TQp .
Proofs of these assertions can be reduced to direct calculations. Moreover, this images-
of-balls construction transfers essentially verbatim to the case of PSL(2,Fp ((x))) acting
on Tp , and the proofs generalize to this case without issue.

Example 2.2. If B = 1+23Z2 and f (z) = (1+2)z + (1+22), then

f (B) = f (1)+23Z2 = (1+2)+ (1+22)+23Z2 = 23 +23Z2 = 0+23Z2

As a more complex example that is best left to a computer, if f (z) = (1+2)z+2
(1+2+22)z+(1+22)

and

B = 2−1 +2+23 +25 +26Z2, then

f (B) = 1+2+22 +23 +24 +26 +27 +28Z2

Example 2.3. Figure 4 shows how six elements of PSL(2,Z2) locally act on T2.

Parker (2007) also shows that the group action homomorphisms PSL(2,Qp ) → Aut(Tp )
and PSL(2,Fp ((x))) → Aut(Tp ) are injective:

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 1, 2021



10 Disjointness of Linear Fractional Actions on Serre Trees

Lemma 2.4. The actions of PSL(2,Qp ), PSL(2,Fp ((x))), Aff(Qp ), and Aff(Fp ((x))) on Tp are
faithful.

Due to the above lemma, we can think of these groups as embedded subgroups of
Aut(Tp ). We will often abuse notation and use f (z) or M(z) to refer to both the linear frac-
tional transformation and its corresponding automorphism on Tp - this identification
makes more sense once we consider rays of Tp .

2.5 Rays, Ends and the Boundary of Tp

Serre (1977) observed that the ’boundary’ of Tp can be associated with the projective line
over its base field, in our case eitherQp ∪ {∞} or Fp ((x))∪ {∞}. Intuitively, this statement
makes sense: as one chooses a path down the tree, one chooses a nested sequence of
balls of decreasing radius, which converge to a single point. On the other hand, all paths
of balls of strictly increasing radii eventually converge, so we label this ’upwards’ limit
point ∞ (using the picture suggested by fig. 3). This idea can be made precise by defining
rays (see fig. 5):

Definition 2.4. A ray r on TR is an infinite path of vertices with one endpoint and no
backtracking. Two rays r1 and r2 are equivalent if their intersection is again a ray, and
an equivalence class of rays is called an end. A line l on TR is an infinite path of vertices
with no endpoints and no backtracking.

The set of ends of Tp is in bijection with both Qp ∪ {∞} and Fp ((x))∪ {∞}, and this
bijection agrees with the already-established bijection betweenQp and Fp ((x)). As sug-
gested above, an intuitive way to see this is that an end represents all nested sequences of
balls that ’zoom in’ to the same point, and defining ends in this way is the standard way
of extending the idea of ’boundary’ to the infinite tree Tp . For any element h of Aut(Tp ),
the fact that h is a tree automorphism implies it sends equivalent rays to equivalent rays,
and hence is a well-defined map on ends.

Crucially, ends interact nicely with the actions of PSL(2,Qp ) and PSL(2,Fp ((x)))
(Parker, 2007). We’ll state this fact for Qp , and the equivalent statement will also hold
for Fp ((x)). Although we won’t give a full proof, this lemma holds because we define the
action of linear fractional transformations on vertices in terms of pointwise images of
balls.

Lemma 2.5. Let M ∈ PSL(2,Qp ), and let Ez be the end of Tp associated to some z ∈P1(Qp ).
If M(z) is the image of z under M :P1(Qp ) →P1(Qp ), and M(Ez ) is the image of Ez (i.e. the
equivalence class of images of rays in Ez) under the automorphism M : Tp → Tp , then

M(Ez) = EM(z)

Sometimes, it will be helpful to go back and forth between the automorphism M
induces on Tp , and the map M induces on the ’boundary’ of Tp ; this second map is just
the function M :P1(Qp ) →P1(Qp ).

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 1, 2021



Henry W. Talbott 11

Figure 5: A line (blue) and two equivalent rays (red) on T2.

2.6 Conjugation and Orbits

One of the most useful tools we’ll use is conjugation, since it preserves the permutation
structures we’ll be interested in. For a set S, a group G acting on S, and s ∈ S, g ∈ G,
define Ordg (s) as the least positive integer m such that g m(s) = s if such an m exists, and
∞ otherwise. Then:

Lemma 2.6. Let S be a set and let G be a group acting on S. For all s ∈ S, and g ,h ∈ G such
that Ordg (s) is finite,

Ordg (s) = Ordhg h−1 (h(s))

Proof. Assume that g m(s) = s for some m ≥ 1. Then (hg h−1)m = hg mh−1, and

h(g m(h−1(h(s)))) = h(g m(s)) = h(s)

So Ordhg h−1 (h(s)) ≤ Ordg (s). On the other hand, if (hg h−1)m(h(s)) = h(s), then

h(g m(h−1(h(s)))) = h(s)

→ h(g m(s)) = h(s) → g m(s) = s

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 1, 2021



12 Disjointness of Linear Fractional Actions on Serre Trees

So Ordg (s) ≤ Ordhg h−1 (h(s)). In conclusion,

Ordg (s) = Ordhg h−1 (h(s))

■
In particular, if S is finite of size n, then the symmetric group Sn naturally acts on S,

and a bit more work shows that conjugation in Sn preserves the orbit structures induced
by permutations.

3 Analyzing PSL(2,Zp)

3.1 Preliminary Lemmas and Computational Tools

Let M =
[

a b
c d

]
∈ PSL(2,Zp ). Our first goal will be to obtain a specific computational

description of how M acts on vertices of Tp .
If c = 0, then a is a unit and d = a−1; M corresponds to the function

f (z) = az +b

a−1
= a2z +ab

f (z) fixes ∞, so must send balls to balls and complements of balls to complements
of balls. Moreover, the action of a general affine map is straightforward to compute:

Lemma 3.1. Let a,b ∈Zp , a ∈Z∗
p , and let r +pkZp be a p-adic ball. Then if f (z) = az+b,

f (r +pkZp ) = f (r )+pkZp

Proof. As stated above, f (z) fixes ∞, so the image under f of r + pkZp is a ball.
Moreover, this image certainly contains f (r ).

The claim now follows from the fact that f (z) is an isometry onQp . For r, s ∈Qp ,

| f (r )− f (s)| = |(ar +b)− (as +b)| = |a(r − s)| = |a||r − s| = |r − s|
since a is a p-adic unit and so |a| = 1. ■

In particular, for a,b ∈Zp , ab ∈Zp , so f (0+Zp ) = ab +Zp = 0+Zp .
If c 6= 0, we can apply a standard decomposition to M. Notice b is substituted out via

the relation b = ad−1
c :[

a b
c d

]
=

[
1 ac−1

0 1

][
0 −1
1 0

][
c 0
0 c−1

][
1 dc−1

0 1

]
= A2RDA1

Note that not all of these matrices necessarily lie in PSL(2,Zp ). The first and last matrix

are affine, so act as isomorphisms onQp .

[
c 0
0 c−1

]
corresponds to the map f (z) = c2z,
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and if c = pk u where k ∈ Z and u ∈ Z∗
p , and r +p jZp is some ball, f (r +2 jZp ) = c2r +

p j+2kZp . In effect, f (z) = c2z acts as a dilation map.[
0 −1
1 0

]
corresponds to the map r (z) = −1

z , and has a somewhat complex action:

assume pk u +p jZp is a ball such that u ∈Z∗
p as above. If pk u +2 jZp does not contain

0, r (pk u +2 jZp ) = r (pk u)+2 j−2kZp . On the other hand, any ball containing 0 can be
written in the form 0+ p jZp , and r (0+ p jZp ) = p− jZp . Calculations verifying these
assertions are performed by Parker (2007), and are of a similar spirit to lemma 3.1.

Applying the above rules in succession via the decomposition of M gives an explicit
rule for the action of M. Lemma 3.2, originally stated by Parker (2007), provides an
example of this type of computation, and is proven here in the interest of clarity:

Lemma 3.2. Let M =
[

a b
c d

]
∈ PSL(2,Zp ). Then M(0+Zp ) = 0+Zp .

Proof. The case of c = 0 is a consequence of lemma 3.1. Otherwise, M decomposes
into A2RDA1 as above. First, assume c is a unit. Then

A1(0+Zp ) = dc−1 +Zp = 0+Zp

since dc−1 ∈Zp . Again, since c is a unit,

D(0+Zp ) = 0+Zp

R(0+Zp ) = 0+Zp , and lastly A2(0+Zp ) = 0+Zp for an analogous reason as A1.
Now assume c is not a unit, so c = pk u where k > 0 and u is a unit. d is necessarily a

unit, as otherwise ad −bc = 1 would be a nonunit. A1(0+Zp ) = p−k du−1 +Zp . Then

D(p−k du−1 +Zp ) = pk du +p2kZp

Since 0 ∉ pk du +p2kZp ,

R(pk du +p2kZp ) =−p−k d−1u−1 +p2k−2kZp =−p−k d−1u−1 +Zp

Lastly,
A2(−p−k d−1u−1 +Zp ) =−p−k d−1u−1 +ac−1 +Zp

Moreover, if ∞∈ M(0+Zp ), then there exists some z ∈Zp so that bz+d = 0. But since
b is a nonunit, bz is a nonunit, and bz +d is a unit. So bz +d = 0 is impossible, and ∞ is
not in the image of M. In other words, M(0+Zp ) is a ball, rather than the complement of
a ball.

This verifies that M(0+Zp ) is a ball of radius 1. Lastly, notice that M(0) = bd−1 ∈Zp ,
since d is a unit. Therefore M(0+Zp ) can be written as bd−1 +Zp , which is equal to
0+Zp . ■

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 1, 2021



14 Disjointness of Linear Fractional Actions on Serre Trees

Lemma 3.2 gives us a fixed point to work with. Since we know 0+Zp is fixed by
PSL(2,Zp ), and that functions in PSL(2,Zp ) act as graph isomorphisms on Tp , functions
in PSL(2,Zp ) must permute the sets of vertices of distance k from 0+Zp , for all k ≥ 0.
We will call these vertex sets layers (fig. 6).

Definition 3.1. Let Tp be the p-adic Serre tree. For k ≥ 0, Lk , the kth layer from the
vertex 0+Zp , is the set of all vertices of Tp of distance exactly k from 0+Zp .

L1 consists of the vertices adjacent to 0+Zp , and contains p +1 vertices. Moving
outwards on Tp , |Lk | = (p +1)pk−1.

Figure 6: The layers L1, L2, and L3 of T2.

Since each Lk is finite, passing from the action of PSL(2,Zp ) on Tp to its action on Lk

reduces our problem to analyzing permutations of finite sets. We can restrict further to
especially nice permutations by considering matrices of a certain form.

A standard fact about Zp is that there is a surjective ring homomorphism ϕn pro-
jecting Zp to Z/pnZ for any n, obtained by taking the quotient of Zp by the ideal pnZp .
In effect, we discard terms in our power series with coefficient pn or greater. Any such
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projection map ϕn extends to a projection homomorphism

ψn : PSL(2,Zp ) → PSL(2,Z/pnZ)

by applying ϕn to each entry of a given matrix.

Definition 3.2. A matrix

M =
[

a b
c d

]
∈ PSL(2,Zp )

is identity-like if

ψ1(M) =
[

1 0
0 1

]
∈ PSL(2,Z/pZ)

An analogous definition (obtained by projecting to PSL(2,Z/pZ)) applies to matrices
in PSL(2,Z/pnZ). Identity-like matrices are immediately useful:

Lemma 3.3. Let M ∈ PSL(2,Zp ) be identity-like, or of the form

M =
[

1+pa pb
pc 1+pd

]
for some a,b,c,d ∈ PSL(2,Zp ). Then M fixes L1.

Proof. We know that pc is not a unit, so we decompose M:

M = A2RDA1[
1+pa pb

pc 1+pd

]
=[

1 (1+pa)(pc)−1

0 1

][
0 −1
1 0

][
pc 0
0 (pc)−1

][
1 (1+pd)(pc)−1

0 1

]
The first step will be to check that 0+p−1Zp is fixed. A1(0+p−1Zp ) = p−1c−1 +dc−1 +
p−1Zp . Assume that c has the form pk u, where u is a unit, so pc = pk+1u. Then

D(p−1c−1 +dc−1 +p−1Zp ) = p2c2(p−1c−1 +dc−1)+p2k+1Zp

= pc +p2dc +p2k+1Zp

0 is not contained in pc +p2dc +p2k+1Zp , since |pc +p2dc| = |pc| = p−(k+1). Therefore,

R(pc +p2dc +p2k+1Zp ) =

− 1

pc +p2dc
+p(2k+1)−2(k+1)Zp =− 1

pc +p2dc
+p−1Zp
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16 Disjointness of Linear Fractional Actions on Serre Trees

And lastly

A2

(
− 1

pc +p2dc
+p−1Zp

)
= (1+pa)(pc)−1 − 1

pc +p2dc
+p−1Zp

We could attempt to simplify the center of the above ball, but we will instead notice that
the only ball of radius p−1 in L1 is 0+p−1Zp . Since M permutes L1, necessarily

(1+pa)(pc)−1 − 1

pc +p2dc
+p−1Zp = 0+p−1Zp

and
M(0+p−1Zp ) = 0+p−1Zp

We will now turn our attention to balls in L1 of the form r +pZp , where r can be assumed
to be in {0,1, ..., p −1}. M cannot invert balls of this type: that would imply there is some
z ∈ r +pZp such that M(z) =∞, or pcz +1+pd = 0. But we can see that pcz +1+pd
is a unit. Moreover, M must send each r +pZp to another ball in L1, and 0+p−1Zp is
fixed. So in fact M must send r +pZp to some r ′+pZp such that M(r ) ∈ r ′+pZp . To
show r +pZp is fixed by M, it is therefore sufficient to show that M(r )− r ∈ pZp . This is
not so bad:

M(r )− r = r +par +pb

pcr +1+pd
− r = r +par +pb

1+pcr +pd
− r +pcr 2 +pdr

1+pcr +bd

= p(ar +b + cr 2 +dr )

1+pcr +bd

The denominator is a unit, while the numerator is divisible by p. Therefore M(r )−r ∈ pZp

as claimed. ■

3.2 Integral Branches and Orbits

Lemma 3.3 is an example of a broader phenomenon, whereby in some cases we can
reduce the coefficients of M to their representatives modulo pkZp when working on the
layer Lk . To make this phenomenon more precise, we will need yet more definitions.

Definition 3.3. Let v ∈ Tp . A branch of Tp at v is a connected component of Tp − v . If
v = 0+Zp , the integral branches are those containing a point of the form a +pZp where
a ∈ {0,1, ..., p −1}. For a general v , the downwards branches are those not containing ∞
on their boundaries.

The term ‘downwards branches’ is meant to line up with the visualization in figure 3.
Of course, the above definitions easily carry over when interpreting Tp as the Serre tree
of Fp [x] rather than Zp .

The three branches of a given v in T2 are shown in fig. 7, and lemma 3.3 implies that
identity-like matrices fix the branches of 0+Zp . We will now generalize lemma 3.3.
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Figure 7: The three branches of a vertex v in T2. A point in Tp will have p +1 branches.
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18 Disjointness of Linear Fractional Actions on Serre Trees

Lemma 3.4. Let M1,M2 ∈ PSL(2,Zp ) be identity-like. Let r + pkZp lie on an integral
branch of Tp , and additionally assume that ψk (M1) = ψk (M2). Then M1(r + pkZp ) =
M2(r +pkZp ).

Proof. Since r +pkZp is on an integral branch, r ∈Zp . Additionally, since M1 and M2

are both identity-like, they will send r +pkZp to balls on the same integral branch, and
on the same layer Lk . Let

M1 =
[

a b
c d

]
, M2 =

[
a′ b′

c ′ d ′
]

Neither matrix can send r +pkZp to the complement of a ball: this would imply that for
some z ∈ r+pkZp , cz+d = 0 or c ′z+d ′ = 0, respectively. Since c and c ′ are nonunits and d
and d ′ are units, this equation cannot be solved by any z ∈Zp . Therefore, M1(r +pkZp ) =
M1(r ) + pkZp , and M2(r + pkZp ) = M2(r ) + pkZp . So we merely need to show that
M1(r )−M2(r ) ∈ pkZp .

M1(r )−M2(r ) = ar +b

cr +d
− a′r +b′

c ′r +d ′

= (ar +b)(c ′r +d ′)− (a′r +b′)(cr +d)

(cr +d)(c ′r +d ′)
Applying ϕk to the numerator of the above expression, we observe ϕk (a) = ϕk (a′),
ϕk (b) = ϕk (b′), ϕk (c) = ϕk (c ′), and ϕk (d) = ϕk (d ′). So ϕk of the numerator is equal
to 0 in Z/pkZ, showing M1(r )−M2(r ) ∈ pkZp . ■

We need two more lemmas, which will allow us to make simplifying assumptions
when calculating the order of a point under an identity-like matrix M. The first lemma is
a counting argument. It uses the fact that the identity-like matrices of PSL(2,Zp ) form
a subgroup J, which is easily seen by noticing J = kerψ1, where ψ1 is the projection
map from PSL(2,Zp ) to PSL(2,Z/pZ). Likewise, define Jn as the identity-like matrices in
PSL(2,Z/pnZ), which is a subgroup by a similar projection onto PSL(2,Z/pZ).

Lemma 3.5. Let n ≥ 1 and p > 2. Then

|PSL(2,Z/pnZ)| = (p2 −1)p3n−2

2

and
|Jn | = p3n−3

If p = 2, then
|PSL(2,Z/2nZ)| = 3 ·23n−2

and
|Jn | = 23n−3
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Proof. All elements of SL(2,Z/pnZ) can be written in the form

[
a b
c d

]
. If a and

b are both nonunits, ad −bc = 1 is impossible, so assume a is a unit. We may now
choose any elements of Z/pnZ for b and c, which restricts d to d = 1+bc

a by ad −bc =
1. Since there are pn−1 nonunits in Z/pnZ, there are (p − 1)pn−1 units, so there are
((p −1)pn−1)(pn)(pn) = (p −1)p3n−1 matrices in Z/pnZ such that the top left entry is a
unit.

If a is not a unit, b must be a unit. We may choose any element for d , and c is
restricted to c = ad−1

b . Choosing one nonunit, one unit, and one arbitrary element gives
(pn−1)((p −1)pn−1)pn = (p −1)p3n−2 possible matrices. Therefore,

|SL(2,Z/pnZ)| = (p −1)p3n−1 + (p −1)p3n−2 = (p −1)(p +1)p3n−2

To obtain the size of PSL(2,Z/pnZ), recall that

PSL(2,Z/pnZ) = SL(2,Z/pnZ)/{±I}

and {±I} is a subgroup of size 2 when p > 2 (i.e. 1 6= −1). For p = 2, I = −I, and
PSL(2,Z/pnZ) = SL(2,Z/pnZ).

As for Jn , we can notice that any identity-like matrix in SL(2,Z/pnZ) can be written
in the form [

1+pa pb
pc 1+pd

]
where a,b,c,d are elements of Z/pn−1Z. The only restriction that must be satisfied is

(1+pa)(1+pd)−p2bc = 1 ⇐⇒ pd = (1+p2bc)− (1+pa)

1+pa

⇐⇒ d = pbc −a

1+pa

Therefore choosing a,b,c determines d uniquely. Sicne a, b, and c can be chosen
arbitrarily from Z/pn−1Z, we find

|Jn | = (pn−1)3 = p3n−3

For p > 2, going from SL(2,Z/pnZ) to PSL(2,Z/pnZ) doesn’t affect the size of Jn , since
−I ∉ Jn by definition. For p = 2, −I = I, so again nothing changes. ■

Corollary 3.6. Let M ∈ PSL(2,Z/pnZ) and p > 2. Then M
(p2−1)p

2 is identity-like. If p = 2,
then M6 is identity-like.

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 1, 2021



20 Disjointness of Linear Fractional Actions on Serre Trees

Proof. Let ψn,1 : PSL(2,Z/pnZ) → PSL(2,Z/pZ) be the projection map and p > 2.

Since ψn,1 is a homomorphism and |PSL(2,Z/pZ)| = (p2−1)p
2 ,

ψn,1

(
M

(p2−1)p
2

)
=ψn,1(M)

(p2−1)p
2 = I

by Lagrange’s theorem. Butψn,1

(
M

(p2−1)p
2

)
= I is equivalent to M

(p2−1)p
2 being identity-like.

The situation when p = 2 is analogous. ■
This lemma has a fairly powerful consequence regarding orbits of points on Tp under

M. But first, a definition:

Definition 3.4. Let M ∈ PSL(2,Zp ) and let v be a vertex of Tp . Let OrdM(v) be the order
of v under the group action of M.

Since any v ∈ Tp lies in Lk for some k, and all Lk are finite PSL(2,Zp )-invariant sets,
OrdM(v) is always a finite positive integer. We can now state another lemma:

Lemma 3.7. Let M be an identity-like matrix in PSL(2,Zp ) and let v be a vertex of Tp

lying on the intersection of Lk and an integral branch. Then the order of v under M is
equal to pm for some non-negative integer m.

Proof. By lemma 3.4, it suffices to consider the image of M in PSL(2,Z/pkZ), which
we will denote Mk . Since Mk ∈ Jk , Lagrange’s theorem and lemma 3.5 tells us that

Mp3k−3

k = I, and hence Mp3k−3

k (z) = z. It follows that OrdM(z)|p3k−3, so OrdM(z) = pm for
some m ≥ 0. ■

Lemma 3.2 shows that we can analyze the action of M ∈ PSL(2,Zp ) on Tp by analyzing
the permutations it induces on the finite sets Lk . Lemma 3.3 shows that for certain
matrices, we can restrict our attention to considering the subpermutation M induces
on the intersection of each integral branch with Lk . Lemma 3.4 shows we can even
reduce M by projecting it down to PSL(2,Z/pkZ). We have reduced studying the action
of PSL(2,Zp ) on Tp to studying the action of a finite matrix group on a finite set, which
will prove to be a fairly tractable problem.

3.3 Finding Orbits of Exponentially Increasing Length

Our goal will be to show that for some M ∈ PSL(2,Zp ), a fixed e ∈Zp , and a sequence of
balls (e +pkZp ) where k →∞, OrdM(e +pkZp ) increases exponentially with respect to
k. For this paper, ’increasing exponentially’ will mean that OrdM(e +pkZp ) is bounded
below by some function ar k−b , where a ∈R>0, b ∈R, and r ∈R>1. Finding precise values
of a, b, and r is unimportant to us, although in this case we can generally take r = p. The
next lemma is the primary building block of our main theorem:
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Lemma 3.8. Let M ∈ PSL(2,Zp ), M 6= I be an identity-like matrix, and

M =
[

a b
c d

]
For sufficiently large k and for some e ∈Zp , OrdM(e +pkZp ) increases exponentially with
respect to k.

Proof. We will make the assumption for now that e = 0, and will only be required to
take other values of e in special cases of M. Projection to PSL(2,Z/pZ) shows that all
powers Mn are identity-like. Define

Mn =
[

an bn

cn dn

]
Assume for our matrix M that a = 1+ p ia ua , b = p ib ub , c = p ic uc , and d = 1+ p id ud ,
where ua ,ub ,uc ,ud are all units and ia , ib , ic , id are all positive integers. We will go
through the proof in this general case, and then explore relaxing these assumptions.

We want to find the order of 0+pkZp under M, which is equivalent to finding the
least n such that

Mn(0+pkZp ) = bn

dn
−0 ∈ pkZp

Since dn is a unit for all n, this condition is equivalent to

bn ∈ pkZp ⇐⇒ |bn | ≤ p−k

As we saw from lemma 3.7, 0+pkZp has orbit length of the form p j . Therefore, to find
the least n above, it’s sufficient to check n = p l for various l . Our calculations will make
use of the binomial theorem for matrices, which we can apply in this case since the
identity matrix commutes with all matrices.

We will consider the effect of raising M to a single power of p.

Mp =
([

1+p ia ua p ib ub

p ic uc 1+p id ud

])p

=
([

1 0
0 1

]
+

[
p ia ua p ib ub

p ic uc p id ud

])p

=
p∑

j=0

(
p

j

)[
1 0
0 1

]p− j [
p ia ua p ib ub

p ic uc p id ud

] j

We have
(p

1

)= p, and a well-known combinatorial result asserts that p divides
(p

j

)
for all

1 ≤ j ≤ p −1.
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Also assume for the moment that p ≥ 3, so that p divides each of the entries of Mp−2,
and can be factored out from this matrix. Then we can factor pM2 out of all terms of the
above binomial expression except the first two:[

1 0
0 1

]
+p

[
p ia ua p ib ub

p ic uc p id ud

]
+p

[
p ia ua p ib ub

p ic uc p id ud

]2 (
...

)
The (...) term represents the rest of the binomial expression after factoring, and can safely
be ignored. Expanding (M− I)2, we have[

1 0
0 1

]
+p

[
p ia ua p ib ub

p ic uc p id ud

]

+p

[
p2ia u2

a +p ib+ic ubuc p ib ub(p ia ua +p id ud )
p ic uc (p ia ua +p id ud ) p2id u2

d +p ib+ic ubuc

](
...

)
Pulling out the upper-right entries from the above sum, we find

bp = 0+p(p ib ub)+p(p ib ub ub(p ia ua +p id ud ))(...)

= p ib+1ub(1+ (p ia ua +p id ud )(...))

As above, (...) represents terms from the rest of the binomial expansion. We now compare
|b| to |bp |:

|b| = |p ib ub | = p−ib , |bp | = |p ib+1ub(1+ (p ia ua +p id ud )(...))| = p−(ib+1)

This equation holds because 1+ (p ia ua +p ib ub)(...) is a unit.
We have essentially shown that |bp | = 1

p |b|. Now, we can take Mp as our new M

and rerun the above argument on (Mp )p = Mp2
, which will show that |bp2 | = 1

p |bp |.
Proceeding inductively,

|bpm | = 1

pm
|b|

For sufficiently large k such that p−k < |b|, the least m such that Mpm
(0 + pkZp ) =

0+pkZp will be the least m such that

|b|
pm

< p−k

Such an m will be equal to k −C for some constant C depending on |b| but not on k.
Therefore, for sufficiently large k we find that OrdM(0+pkZp ) = pm = pk−C increases
exponentially in k.

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 1, 2021



Henry W. Talbott 23

We now wish to relax the assumption we made that p ia ua , p ib ub , p ic uc , and p id ud

are all nonzero. From the expression

bp = p ib+1ub(1+ (p ia ua +p id ud )(...))

we can see that p ia ua = 0, p ic uc = 0, or p id ud = 0 do not affect our result that |bp | = 1
p |b|.

On the other hand, b = 0 appears to create a problem, as this implies M fixes all 0+pkZp .
We can resolve this issue by conjugating M. Let e ∈Zp . Then[

1 e
0 1

][
a 0
c d

]([
1 e
0 1

])−1

=

[
1 e
0 1

][
a 0
c d

][
1 −e
0 1

]
=

[
1 e
0 1

][
a −ea
c d −ec

]
=

[
a +ec −ea +ed −e2c

c d −ec

]
The upper right term of this matrix is e(d −a −ec). If c 6= 0, we can certainly find some e
such that e(d −a −ec) 6= 0, and identity-likeness is preserved by conjugation. Showing
this new matrix has orbits of exponentially increasing length for 0+pkZp is equivalent to
showing M has orbits of exponentially increasing length for vertices of the form e+pkZp .

On the other hand, if b = 0 and c = 0, M is a diagonal matrix, and am = am , bm = bm .
In this case, we will let e = 1. Since M(1) = a

d , and more generally Mm(1) = am

d m = ( a
d

)m , let
a
d = f = 1+p i f u f . We can assume u f 6= 0 since a

d =±1 together with ad −bc = ad = 1
implies M is the identity matrix in PSL(2,Zp ).

M(1+pkZp ) = 1+pkZp ⇐⇒ a

d
−1 ∈ pkZp

Mm(1+pkZp ) = 1+pkZp ⇐⇒
( a

d

)m
−1 ∈ pkZp

Define fm = ( a
d

)m = (1+p i f u f )m . We can analyze raising f to the p:

fp = f p = (1+p i f u f )p =
p∑

j=0

(
p

j

)
(p i f u f ) j

Assuming p ≥ 3 (and using i f ≥ 1), we can factor out p2i f +1 from
(p

j

)
(p i f u f ) j for j ≥ 2,

and have
1+p i f +1ua +p2i f +1u2

f (...)

Therefore

| fp −1| = 1

p
| f −1|
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An analogous inductive argument as in the previous cases shows that for sufficiently
large k, OrdM(1+pkZp ) increases exponentially in k.

We are left with the special case of p = 2. Luckily, a direct calculation will suffice. Let

Mn =
[

an bn

cn dn

]
as usual, and a = 1+2ia ua , b = 2ib ub , c = 2ic uc , and d = 1+2id ud . We

want to find the least n such that

Mn(0+2kZ2) = 0+2kZ2 ⇐⇒ |bn | ≤ 2−k

0+2kZ2 has orbit length 2 j for some j . Consider squaring M:

M2 =
([

1+2ia ua 2ib ub

2ic uc 1+2id ud

])2

=
[

1 0
0 1

]
+2

[
2ia ua 2ib ub

2ic uc 2id ud

]
+

[
2ia ua 2ib ub

2ic uc 2id ud

]2

=
[

1 0
0 1

]
+

[
2ia+1ua 2ib+1ub

2ic+1uc 2id+1ud

]
+

[
22ia u2

a +2ib ic ubuc 2ib ub(2ia ua +2id ud )
2ic uc (2ia ua +2id ud ) 22id u2

d +2ib+ic ubuc

]
So

b2 = 0+2ib+1ub +2ib ub(2ia ua +2id ud ) = 2ib ub(2+2ia ua +2id ud )

Since 2+2ia ua +2id ud isn’t a unit, |b2| < |b|. If both ia , id ≥ 2, then in fact |2+2ia ua +
2id ud | = 1

2 , so |b2| = 1
2 |b|. However, 2+2ia ua +2id ud might not have norm exactly 1

2 - this
scenario could occur if either ia = 1 or id = 1. In a worst-case scenario, we could have
2+2ia ua +2id ud = 0, in which case M2 fixes 0+2kZ2.

If |2+2ia ua +2id ud | < 1
2 but 2+2ia ua +2id ud 6= 0, then |b2| = 1

2l |b| for some fixed

l . However, this scenario required ia = 1 or id = 1, or in other notation, |a −1| = 1
2 or

|d −1| = 1
2 . Using the above calculation, we can observe that

a2 = 1+2ia+1ua +22ia u2
a +2ib+ic ubuc

Each of 2ia+1ua , 22ia u2
a , and 2ib+ic ubuc have norm at least 1

4 , so |a2−1| < 1
2 . Analogously,

|d2−1| < 1
2 . Since this property avoids the issue we encountered above, we can rerun our

calculation and precisely determine |b4| = 1
2 |b2|. Continuing inductively,

|b2m | = 1

2m−1
|b2| = 1

2m+l−1
|b2|

For sufficiently large k, this shows OrdM(0+2kZ) increases exponentially in k.
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If (2+2ia ua +2id ud ) = 0, then a +d = 0, or a =−d . Plugging into the determinant
equation ad − bc = 1, −a2 = 1+ bc. Reduce this equation mod 4: b and c are both
divisible by 2 by the identity-likeness assumption, so bc vanishes, and we are left with
a2 ≡−1 mod 4. This equation has no solutions, so we arrive at a contradiction.

If b = 0, then we conjugate as in the p > 2 case and repeat that argument. If b = c = 0,
then as before set e = 1, f = a

d = 1+2i f u f , and fm = ( a
d

)m = (1+2i f u f )m . Then

Mm(1+2kZp ) = 1+2kZ2 ⇐⇒ | fm −1| ≤ 2−k

We know this point has order 2n for some n, so we’ll analyze the effect of squaring f :

f2 = (1+2i f u f )2 = 1+2i f +1u f +22i f u2
f

Certainly | f2 −1| < | f −1|, but | f2 −1| = 1
2 | f −1| fails if i f = 1, or | f −1| = 1

2 . However, as
long as 2i f +1u f +22i f u2

f 6= 0, we will instead obtain some l so that | f2 −1| = 1
2l | f −1|. But

now | f2 −1| < 1
2 , so we can induct on the above calculation and obtain

| f2m −1| = 1

2m−1
| f2| = 1

2m+l−1
| f2|

The proof now follows as in p > 2. If in fact 2i f +1u f +22i f u2
f = 0, then f 2 = 1 and f =±1,

contradicting our assumptions.
Since the p = 2 case is taken care of, we are done. ■
This addresses the question of finding orbits of exponentially increasing length on

some branch. Since we’d like orbits of exponentially increasing length on more than one
integral branch, we need to work out some subtleties related to how we proved lemma
3.8.

3.4 Conjugation and Generalizing to Multiple Branches

Lemma 3.9. Let M ∈ PSL(2,Zp ), M 6= I be an identity-like matrix, and

M =
[

a b
c d

]
For at least two integer branches B1, B2 of Tp and for sufficiently large k, there exist points
p1, p2, · · · ⊂ Bi such that pi ∈ Ki+k and OrdM(pi ) increases exponentially in i .

Proof. This proof will break down into checking several cases. First, assume b 6= 0.
Since b 6= 0, we apply the proof from lemma 3.8, and see directly that points of the form
0+pkZp has exponentially increasing orbits under M with respect to k.
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Now, let M′ =
[

1 −e
0 1

]
for some unit e ∈Zp . Then

M′M(M′)−1 =
[

1 −e
0 1

][
a b
c d

][
1 e
0 1

]

=
[

1 −e
0 1

][
a b +ae
c d +ec

]
=

[
a −ec b +ae −de −e2c

c d +ec

]
Notice that the term b +ae −de −e2c is a quadratic polynomial with respect to e. More-
over, since b 6= 0, this polynomial is nonzero, and so only has finitely many solutions
e ∈ Zp . Since each branch not containing 0+ pZp contains infinitely many possible
choices for e, choose any e on such a branch such that −ce2 +e(a −d)+b 6= 0. For this
choice of e, 0+pkZp has exponentially increasing orbits under M′M(M′)−1, so e +pkZp

for all k ≥ 1 has exponentially increasing orbits under M.
We can now turn to the case where b = 0. If c 6= 0, we can conjugate:[

0 −1
1 1

][
a b
c d

][
1 −1
1 0

]

=
[

d − c −c
a + (c −d) a + c

]
Since −c 6= 0 and conjugation preserves orders of elements within each integral branch
(although the branches and the points themselves could be shuffled), this reduces to the
previous case.

If both b = 0 and c = 0, then we know from the proof of lemma 3.8 that 1+pkZp has
exponentially increasing orbits under M. We’ll consider the sequence of points 2+pkZp

for increasing k ≥ 1. Since M(z) = a
d z,

Mn(2+pkZp ) = 2+pkZp ⇐⇒ 2
(a

z

)n
−2 ∈ pkZp

If p 6= 2, this condition is equivalent to
(a

z

)n −1 ∈ pkZp since 2 is a unit. So the fact that

the sequence 1+pkZp for k ≥ 1 has exponentially increasing orbits implies that 2+pkZp

has the same property. If p = 2, then

2
((a

z

)n
−1

)
∈ 2kZ2 ⇐⇒

(a

z

)n
−1 ∈ 2k−1Z2

The above expression, recalling the proof of lemma 3.8 in the case of p = 2, implies that
OrdM(2+2kZ2) = 1

2 OrdM(1+2kZ2) for sufficiently large k. Since we know the orbits of
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1+pkZp are exponentially increasing in k, the same property holds for 2+pkZp . Lastly,
observe that 2+pkZp lies on a different branch than 1+pkZp - this last point is worthy
of some elaboration, since different behavior occurs for p = 2 and p > 2. When p > 2,
1+ pZp and 2+ pZp are both adjacent to 0+Zp , and lie on the branches containing
1+pkZp and 2+pkZp , respectively. When p = 2, points of the form 2+2kZ2 lie on the
branch with 0+2Z2 as the vertex adjacent to 0+Z2: this is the only integer branch aside
from the branch containing 1+2Z2. ■

We now have all the ingredients we need in the p-adic case, and can turn our atten-
tion to the case of Fp ((x)).

4 Analyzing PSL(2,Fp[x])

4.1 Geometric Preliminaries

Assume N ∈ PSL(2,Fp [x]) is conjugate to an element of PSL(2,Zp ) as tree automorphisms.
In other words, there exists some M ∈ PSL(2,Zp ) and some ϕ ∈ Aut(Tp ) so that

N =ϕ◦M◦ϕ−1

We will also assume that M is identity-like, since our analysis of actions on PSL(2,Zp )
focused on matrices of this type. We can use the conjugacy equation above to determine
a substantial amount of basic information about N.

First, note that M fixes 0+Zp . If we let ϕ(0+Zp ) = v0 = r +xk0Fp [x], then

N(v0) =ϕ(M(ϕ−1(v0))) =ϕ(M(0+Zp )) =ϕ(0+Zp ) = v0

So N fixes v0. Since ϕ is a tree automorphism, it induces a bijection between vertices
adjacent to 0+Zp and vertices adjacent to v0. Since M fixes all vertices adjacent to 0+Zp ,
a calculation similar to above will show that N fixes all vertices adjacent to v0.

More generally, let L′
k be the set of vertices of distance k from v0. ϕ necessarily

induces a bijection Lk ↔ L′
k for every k, and by properties of conjugation (lemma 2.4)

the existence of an element of order O under M in Lk implies the existence of an element
of order O under N in L′

k , and vice-versa.
We should look at the p +1 v0-branches of Tp in relation to N. As in definition 3.3,

we’ll use the term ’downward branch’ to refer to the p branches of v0 not containing ∞ at
their boundary. Since it is a tree automorphism, ϕ necessarily sends branches of 0+Zp

to branches of v0.

Lemma 4.1. Let N and M be as above. Then an integral branch of 0+Zp containing
points of exponentially increasing order is mapped to a downward branch of v0.

Proof. We know from lemma 3.8 that there are at least two integral branches of 0+Zp

containing points of exponentially increasing order. At most one of these branches can
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be mapped to the single non-downwards branch of v0, so the other must be mapped to
a downwards branch. ■

Our plan is now to show directly that no downwards branch of v0 can contain points
of exponentially increasing order. First, note that since N fixes the non-downwards
branch containing ∞ at its boundary, N cannot send any ball on a downwards branch
to the inverse of a ball. Moreover, since all balls on the intersection of some L′

k with a
downward branch have the same radius, N fixes the radii of balls on downward branches.
Combining these two facts, we obtain that for any q +xkFp [x] on a downwards branch,
N(q +xkFp [x]) = N(q)+xkFp [x].

Conceptually, the next lemma is comparable to lemma 3.4:

Lemma 4.2. Assume N satisfies the conditions in the last paragraph, so N(q +xkFp [x]) =
N(q)+xkFp [x] for all vertices on downwards branches of v0. Fix k ≥ 0 and assume that
q = x lq uq for some unit uq and lq ∈Z, so that q +xkFp [x] lies on a downwards branch of
v0. Assume that for some m, Nm is of the form

Nm =
[

1+x la ua x lb ub

x lc uc 1+x ld ud

]
for some units ua ,ub ,uc ,ud and integers la , lb , lc , ld ≥ max(k +1,k +1−3lq ). Then Nm

fixes q +xkFp [x].

Begin with

Nm(q)−q = (1+x la ua)q +x lb ub

x lc uc q + (1+x ld ud )
−q

= (1+x la ua)q +x lb ub −x lc uc q2 − (1+x ld ud )q

x lc uc q + (1+x ld ud )

We want to show this expression is in xkFp [x]. ld ≥ 1, and lc ≥ k + 1 − 3lq implies
lc ≥ 1−3lq and thus lc +lq ≥ 1. Therefore, the norm of x lc uc q+(1+x ld ud ) will be 1, since
the norm of x ld ud is p−ld and the norm of x lc uc q is p−(lc+lq ). Therefore showing that

(1+x la ua)q +x lb ub −x lc uc q2 − (1+x ld ud )q ∈ xkFp [x]

implies
(1+x la ua)q +x lb ub −x lc uc q2 − (1+x ld ud )q

x lc uc q + (1+x ld ud )
∈ xkFp [x]

as desired. But
(1+x la ua)q +x lb ub −x lc uc q2 − (1+x ld ud )q

x la ua q +x lb ub −x lc uc q2 −x ld ud q

= x la+lq uauq +x lb ub −x lc+2lq uc u2
q −x ld+lq ud uq
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If lq ≥ 0, then by la+lq , lb , lc+2lq , ld +lq ≥ k+1, the above expression must be in xkFp [x].
If lq < 0, then la , lb , lc , ld ≥ k +1−3lq , and so la + lq , lb , lc +2lq , ld + lq ≥ k +1. Therefore,
the above expression must be in xkFp [x]. Either way, we obtain

Nm(q)−q ∈ xkFp [x]

⇐⇒ Nm(q +xkFp [x]) = q +xkFp [x]

■
So by calculating powers of N, we can find an upper bound for OrdN(q +xkFp [x]).

4.2 Showing Orbit Lengths are Linear in k

Lemma 4.3. Let N ∈ PSL(2,Fp [x]) be an identity-like matrix such that N 6= I, and assume

N =
[

a b
c d

]
Also fix q ∈ Fp ((x)) and v0 ∈ Tp , and assume N fixes both v0 and its branches. Lastly,
assume q + xkFp [x] lies on a downward branch of v0 for all sufficiently large k. Then
OrdN(q +xkFp [x]) is bounded above by a linear function in k.

Fix some sufficiently large k ≥ 0, so that q + xkFp [x] = x lq uq + xkFp [x] lies on a
downwards branch of v0. Let

Nm =
[

am bm

cm dm

]
By lemma 4.2, our goal is to find sufficiently large m so that all elements of Nm − I have
norm less than or equal to p−max(k+1,k+1−3lq ). Assume a = 1+x la ua , b = x lb ub , c = x lc uc ,
and d = x ld ud , such that ua ,ub ,uc ,ud are all units and la , lb , lc , ld ≥ 1. Consider raising
N to the pth power:

Np =
[

1+x la ua x lb ub

x lc uc 1+xld ud

]p

=
([

1 0
0 1

]
+

[
x la ua x lb ub

x lc uc x ld ud

])p

=
p∑

j=0

(
p

j

)[
x la ua x lb ub

x lc uc x ld ud

]
We now use the fact that p divides

(p
j

)
for all 1 ≤ j ≤ p −1. Moreover, since our base ring

Fp [x] has characteristic p, all terms in the above binomial expansion will vanish except
the first and last. We’re left with[

1 0
0 1

]
+

[
x la ua x lb ub

x lc uc x ld ud

]p
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Now, let lm = min(la , lb , lc , ld ) ≥ 1 be the minimal valuation of the entries, so that[
x la ua x lb ub

x lc uc x ld ud

]
= x lm

[
x la−lm ua x lb−lm ub

x lc−lm uc x ld−lm ud

]
The above matrix is still an element of PSL(2,Fp [x]), so all of its entries will remain in
Fp [x] under matrix exponentiation. Now[

x la ua x lb ub

x lc uc x ld ud

]p

= (x lm )p
[

x la−lm ua x lb−lm ub

x lc−lm uc x ld−lm ud

]p

and we see that after multiplying (x lm )p = xplm back into the above matrix, the minimal
valuation of the entries will be at least plm .

Define the maximal norm of an identity-like matrix N to be the maximum of the
norms of the entries of N− I. For N above, its maximal norm is p−lm by definition of lm ,
the minimal valuation. We have shown that Np has maximal norm at most p−plm .

Np is still identity-like, so we can induct on the above calculation and conclude

that the maximal norm of Np i
is less than or equal to p−p i lm . After substituting in

equivalent definitions, lemma 4.2 directly states that if the maximal norm of Np i
is

less than p−max(k+1,k+1−3lq ), then Np i
fixes q +xkFp [x]. But the maximal norm of Np i

is

bounded above by p−p i lm , and

p−p i lm ≤ p−max(k+1,k+1−3lq ) ⇐⇒ p i lm ≥ max(k +1,k +1−3lq )

Now, max(k +1,k +1−3lq ) increases linearly in k, and lm is fixed. Therefore, the least
power p i such that p i lm ≥ max(k+1,k+1−3lq ) also increases linearly in k for sufficiently
large k, and is in fact bounded above by p max(k +1,k +1−3lq ). But this power p i is
exactly what we need to raise N to in order to guarantee it fixes q +xkFp [x]! Notice here
that we want to determine the rate of growth of p i , rather than i , since p i is the power
by which we’re exponentiating N.

There are other cases to consider where a = 1, b = 0, c = 0, or d = 1, but these cases
amount to little more than a difference in notation. In particular, the more extensive
casework from lemma 3.8 is not necessary here. ■
Corollary 4.4. Let N, q, and v0 be as in lemma 4.2. Let v0 = q0 + xk0Fp [x]. Then for
sufficiently large k, OrdN(q +xkFp [x]) is bounded above by a linear function of k −k0.

Proof. This follows directly from the assertion that OrdN(q + xkFp [x]) is bounded
above by a linear function of k, since k is itself a linear function of k −k0. ■

The following lemma refines the above result by showing that a specific choice of q is
not important in determining the bound.
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Lemma 4.5. Let N and v0 be as above, and choose some L′
k for sufficiently large k. Then

for every q + xk0+kFp [x] on the intersection of the downwards branches of v0 with L′
k ,

OrdN(q +xk0+kFp [x]) is bounded above by a linear function that depends on k but not on
q.

Proof. In the proof of lemma 4.3, we bounded OrdN(q +xk0+kFp [x]) by p max((k0 +
k)+ 1,(k0 + k)+ 1− 3lq ), where q is written as x lq uq + xk0+kFp [x]. However, if v0 =
xr0 u0 + xk0Fp [x] for some unit u0 and integer r0, then since q + xk0+kFp [x] lies on a
downwards branch of v0, we can assume that lq ≥ min(r0,k0). This is because

q ∈ q +xk0+kFp [x] ⊆ xr0 u0 +xk0

and so
|x lq uq −xr0 u0| ≤ p−k0

If lq < r0, then |x lq uq − xr0 u0| = p−lq and lq ≥ k0, showing lq ≥ min(r0,k0). Now, let
m = min(r0,k0). p max((k0+k)+1,(k0+k)+1−3lq ) < p max((k0+k)+1,(k0+k)+1−3m),
so we can use p max((k0+k)+1,(k0+k)+1−3m) as our bound. Since m does not depend
on q and this bound is still linear in k, we are done. ■

We need one more lemma and corollary before the main proof.

Lemma 4.6. Let n ≥ 1 and p > 2. Then

|PSL(2,Fp [x]/xnFp [x])| = (p2 −1)p3n−2

2

If p = 2, then
|PSL(2,Fp [x]/xnFp [x])| = (p2 −1)p3n−2

Proof. This proof is analogous to lemma 3.5, since the numbers of units and nonunits
are the same in Z/pnZ and Fp [x]/xnFp [x].

Corollary 4.7. Let N ∈ PSL(2,Fp [x]) and p > 2. Then N
(p2−1)p

2 is identity-like. If p = 2,
then N6 is identity-like.

Proof. The proof is analogous to corollary 3.1.

4.3 The Main Theorem: Incompatible Asymptotics

We are now ready for our main proof! We’ve already done almost all the work, and now
just need to fit the pieces together. Up until this point, we’ve primarily been using matrix
notation for linear fractional transformations, where functional iteration is captured
by matrix multiplication. Since theorem 4.1 is stated in terms of function notation to
match its initial presentation, we should mention that we are using dynamical iteration
notation, where f n represents the nth iterate of the function f .
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Theorem 4.1. Let f ∈ PSL(2,Zp ), g ∈ PSL(2,Fp [x]), and h ∈ Aut(Tp ), such that g = h ◦ f ◦
h−1. Then Ord( f ) = Ord(g ) <∞, and moreover Ord( f ) = Ord(g ) is a divisor of (p2−1)p

2 if
p > 2, and Ord( f ) = Ord(g ) is a divisor of 6 if p = 2. If f and g are identity-like, then in
fact Ord( f ) = Ord(g ) = 1.

Proof. Assume Ord( f ) and Ord(g ) are not divisors of (p2−1)p
2 . We know that

g = h ◦ f ◦h−1

Assuming p > 2, raise both terms to the (p2−1)p
2 :

g
(p2−1)p

2 = (h ◦ f ◦h−1)
(p2−1)p

2

g
(p2−1)p

2 = h ◦ f
(p2−1)p

2 ◦h−1

By lemmas 3.5 and 4.5, both g
(p2−1)p

2 and f
(p2−1)p

2 are identity-like. Moreover, by assump-

tion on the orders, g
(p2−1)p

2 6= I and f
(p2−1)p

2 6= I. Let f ′ = f
(p2−1)p

2 and g ′ = g
(p2−1)p

2 . If p = 2,
let f ′ = f 6 and g ′ = g 6 to guarantee identity-likeness.

Proceeding from this assumption, let h(0) = v0 (here we think of h as a function
from the p-adic Serre tree to the Laurent Serre tree), where v0 = q0 + xk0Fp [x]. Define
Lk as the kth layer from 0 in the p-adic Serre tree, and L′

k as the kth layer from v0 in the
Laurent Serre tree. By lemma 3.8, we can find two integral branches B1 and B2 of 0 such
that for a sufficiently large k, each Bi ∩Lk contains a vertex vk,i such that Ord f ′(vk,i )
increases exponentially with respect to k. By lemma 4.1, one of these branches, say
B1, is mapped to a downwards branch of v0. Rename B1 = B and vk,i = vk . Since
conjugation preserves orders of elements, we can consider the sequence h(vk ) ∈ L′

k and
determine Ordg ′(h(vk )) = Ord f ′(vk ). By lemma 4.5, Ordg ′(h(vk )) is bounded above by an
expression that is linear in k for sufficiently large k. So the sequence Ordg ′(h(vk )) is both
exponentially increasing with respect to k, and bounded above by some expression that
is linear with respect to k, as long as k is sufficiently large. Let e(k) be the exponential
lower bound and l (k) be the linear upper bound. By

e(k) ≤ Ordg ′(h(vk )) ≤ l (k)

we have
e(k) ≤ l (k)

for all sufficiently large k. Since any increasing exponential function (i.e. one where the
base of exponentiation is strictly greater than 1) will overtake any linear function for
sufficiently large k, we obtain a contradiction.

If f and g are already both identity-like, let f ′ = f and g ′ = g and continue as above.
■
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4.4 A Corollary for Affine Maps

Theorem 4.1 has a corollary for affine maps. First, a familiar definition:

Definition 4.1. Let f (z) = az +b =
[

a b
0 1

]
∈ Aff(Zp ), and let π1 : Aff(Zp ) → Aff(Z/pZ) be

the standard projection map. Then f is identity-like if π1( f ) = I.

Notice that PSL(2,Zp ) and Aff(Zp ) have nonempty intersection, and the above def-
inition is equivalent to the definition of identity-like elements of PSL(2,Zp ) on the
intersection. An analogous definition holds in the case of Aff(Fp [x]).

As in the special linear case, we can force f to be identity-like by taking a sufficiently
high power:

Lemma 4.8. Let f (z) = az +b ∈ Aff(Zp ). Then f p(p−1) is identity-like.

Choosing an element of Aff(Fp ) requires selecting a unit a from F∗p and an arbitrary
element b from Fp . Fp has p elements, p −1 of which are units, so necessarily |Aff(Fp )| =
p(p − 1). The lemma now follows from Lagrange’s theorem and the definition of an
identity-like affine map. ■

Now, the main result.

Corollary 4.9. Let f ∈ Aff(Zp ), g ∈ Aff(Fp [x]), and h ∈ Aut(Tp ) so that g = h◦ f ◦h−1. Then
Ord( f ) = Ord(g ) <∞, and additionally Ord( f ) = Ord(g ) is a divisor of p(p −1).

Proof Let f , g , and h be as above. Since g = h ◦ f ◦h−1, g 2 = h ◦ f 2 ◦h−1. Now, let f
have matrix representation M, where

M =
[

a b
0 1

]
and a is a unit. f is not generally an element of PSL(2,Zp ), but f 2 has matrix representa-
tion

M2 =
[

a2 b(a +1)
0 1

]
This matrix still isn’t an element of PSL(2,Zp ), but notice that f 2(z) = a2z +b(a +1) can

also be written as f 2(z) = az+a−1b(a+1)
a−1 , giving an equivalent matrix representation M′ for

f 2:

M′ =
[

a a−1b(a +1)
0 a−1

]
and now M′ ∈ PSL(2,Zp ). An analogous argument works to show g 2 ∈ PSL(2,Fp [x]). Of
course, if f 2 and g 2 are in PSL(2,Zp ) and PSL(2,Fp [x]), respectively, then their iterates
are as well.

Since either p or p −1 is even, 2|p(p −1), and f p(p−1) and g p(p−1) are both identity-
like and in PSL(2,Zp ) and PSL(2,Fp [x]), respectively. So theorem 4.1 tells us that f p(p−1)

and g p(p−1) are identity maps.
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