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ABSTRACT

This paper presents an investigation of convolutional
neural networks as a means of generating
human-plausible, goal-oriented music, specifically
pop melodies. Deep neural networks were chosen as
a focus because their training seems to mimic the
way in which a person passively learns music
throughout life. The raw dataset of MIDI files was
acquired from 17,216 song clips by 4825 artists from
Hooktheory's TheoryTab Database. A custom dataset
was created by encoding the MIDI files into sparse
matrices and sliding a fixed window over each song
to generate sequences. A novel approach within the
domain of music generation was employed using a
custom ‘skip-3’ softmax activation function, as well
as a ‘skip-3’ cross-entropy loss function. The current
results of generating music, given a seed, using a
fully-connected network, a convolutional network,
and a dilated convolutional network show some
evidence of rhythmic and harmonic patterns, but lack
melodic elements.

1. INTRODUCTION

Can there be an artificially intelligent music
composer? The mere thought of one invites both
curiosity and criticism, as the ultimate creation of
such a system could reveal the inner workings of the
brain, but at the same time could serve as competition
to human composers. However, if an Al composer
did exist, depending on the spectrum of autonomy, it
has the potential to be more useful to humans than
harmful. It could serve as a tool to inspire new ideas
in composers, as well as help musicians who are not
composers themselves develop unique pieces suited
to their particular musical tastes. Such a system could
possibly give insight into a more efficient
composition process, or have applications in other
creative fields that also depend on innovative
solutions to loosely-bounded problems—and if the Al
composer somehow became sentient enough to not

want to be treated as a tool, then perhaps it could
re-invigorate the music industry with new, emerging
styles of music as part of its own record label.
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Figure 1: Example of music exhibiting structure

So how would one go about creating such a system?
Music is governed by rules—the time signature
restricts how many notes can fit in a measure (seen in
Figure 1 above), and Western music has chord
progression flow charts—so it only seems natural to
code these rules to generate music. But what about
creativity? Composers often break rules to be
creative. This is where a rules-based perspective
breaks down. Non-musicians don’t enjoy music
based on strict rule-following; yet they somehow
know when something is off [1]. This implies a sense
of passive learning of music throughout a person's
life, similar to the way in which a neural network
trains. This led to the investigation of deep neural
networks as a means of generating music, specifically
convolutional neural networks (CNN). CNNs are
interesting to explore because they are traditionally
used for image-based applications, yet music is not
necessarily an image. A more common approach
might be to use some form of recurrent neural
network, or even a transformer, which are typical for
Natural Language Processing. However, past work in
this area using convolutional neural networks in
combination with the idea that the progression of



music over time could be viewed as an image lead
this to be a plausible investigation.

Although there are several challenging aspects to this
problem, one of the most significant is the
observation that more than one note can be played at
a particular time. The work in this paper uses a
symbolic encoding of music, rather than pure audio,
representing each note as either beginning, held, or
not played. This two-dimensional encoding of the
state presents a challenge in constructing a network
that predicts the next set of notes. The proposed
solution involves novel ‘skip-3’ softmax and
cross-entropy functions to handle this unique
classification problem.

Another challenging aspect is scope—typically pop
melodies are placed in context with their harmonies.
This translates to reading two tracks, melody and
chords, in the MIDI files, and having a network learn
patterns in both. This paper presents models trained
with melody and chords, as well as models trained
with melody only. Dataset size also plays a role, as a
significant amount of computing power is needed to
preprocess and train networks on millions of
examples.

Capturing the overarching patterns in those examples
is also a challenge, because this data is ordinal and
notes at the beginning of a melody impact notes at the
end. The system explained in this paper seeks to
capture those long-term dependencies by using
convolutions and exploring dilated convolutions;
however, this system was designed within the scope
of a melody, not an entire song. The ultimate goal of
this project would be to create a system to compose
melodies which could later be integrated as modules
into a larger piece of music, perhaps by use of a
separate system.

2. RELATED WORK

Research in the area of artificial intelligence and
music generation, as well as in the broader
multidisciplinary field of “Computational Creativity,”
is not new, including the philosophical ideas
surrounding the definition of creativity and whether it
is possible to encode it [2]. Different levels of
creativity have been identified: combinational
creativity (creating something novel from the
intersection of pre-existing ideas), exploratory
creativity (finding valuable unexplored ideas within a

pre-existing conceptual space), and transformational
creativity (having ideas outside of the pre-existing
conceptual space) [2]. One of the foundational
curiosities within the area of Al and music generation
is whether a system can be made that exhibits any of
these levels of creativity, and if so, which one.

Methods outside of deep neural networks have been
used to generate music. Markov chains, as surveyed
in [2], are probabilistic models known to be good at
replicating syntax; however, generated outputs
sometimes lack semantics, and higher order chains
can risk plagiarizing pre-existing songs, rarely
venturing  beyond  combinational  creativity.
Rules-based methods have also been investigated,
though their tradeoff lies in the loosening of rules to
allow for creativity, and the rules are limited by
human imagination [2].

Recurrent neural networks (RNNs) and long
short-term  memory networks (LSTMs) are
commonly used in Natural Language Processing
applications and have a history in music generation,
as surveyed in [2]. The issue with RNNs is that
sometimes they do not remember the beginning of a
melody by the end of generating it, which can limit
the melody’s goal-oriented nature. They also suffer
from the vanishing/exploding gradient issue, which
LSTMs attempt to solve. For really long sequences,
LSTMs are inferior to Transformers, which
remember a global context and are the state of the art
in Natural Language Processing. The focus of my
approach is on melodies, not on composing a full
song, which is why Transformers were not chosen.
CNNs were chosen instead of LSTMs in my
investigation because past work has been done with
CNNs and music generation to suggest that CNNs are
just as powerful as LSTMs, and also CNNs are
relatively unexplored within this area which makes it
an intriguing problem.

WaveNet is a CNN-based network that can generate
raw audio waveforms, with applications in music and
speech [3]. WaveNet uses dilated causal convolutions
to capture the long-ranging sequential dependencies.
The authors of WaveNet mention that “because
models with causal convolutions do not have
recurrent connections, they are typically faster to
train than RNNs” [3]. The potential of WaveNet is
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Figure 2: System diagram detailing the flow of data

that it can create new sounds; however, this is at the
cost of the dataset taking up a large amount of
memory. MIDI files are small in size so are more
manageable to work with, which is one of the reasons
they were chosen for my work in this paper.
Additionally, audio also encodes performance and
instrumentation, resulting in possibly unlimited
versions of the same song. In this paper, I focus on
the pure composition of music, removing the layer of
performance.

WaveNet showed that CNNs are a viable method for
generating music. Following WaveNet, the creators
of MidiNet sought to use CNNs in a similar manner,
but with a twist—the representation of the music is
symbolic (MIDI), not audio waveforms—and it
incorporates generative adversarial networks [4].
MidiNet only encodes pitches as being on/off
(binary) and has the restriction that a maximum of
one note can be generated at a time, emphasizing
melody. In contrast, the work I am presenting
encodes pitches in a ternary format (on/off/continued)
and has no limit to the number of notes that can be
played at a given time. MidiNet has the ability to
impose a chord condition restriction to the net,
allowing a melody to be composed within a certain
chord progression. The authors of MidiNet conclude
that a CNN-GAN based network can be a “powerful
alternative to RNNs” [4].

Dilated convolutional networks with symbolic data
have been investigated as well, with PianoNet [5].
PianoNet encodes music in a binary (on/off)
representation and flattens the time and pitch
dimensions into a one-dimensional array for training.
One-dimensional dilated convolutions are used to
encompass long-reaching dependencies, similar to
WaveNet. This differs from my approach which

encodes the data in a ternary-manner and preserves
the two-dimensional time-pitch format. The dilated
convolutions I  investigate  are  therefore
two-dimensional, with the dilation rate not always
being the same in each dimension.

3. PROCESS

A system diagram is presented in Figure 2. It
provides a general overview of the flow of data, from
preprocessing to network training to music
generation.

3.1 Data Source

The raw dataset of MIDI files was acquired from
Hooktheory’s TheoryTab Database [6] using a
slightly modified version of a web crawler created by
Wen-Yi Hsiao on GitHub under the project name
“Lead-Sheet-Dataset” [7]. The raw dataset consisted
of 17,216 song clips from 4825 artists. Only “no-key”
(key of C) files were kept. A histogram detailing the
distribution of pitches within the dataset can be seen
in Figure 3 on the next page.

3.2 Preprocessing

MIT’s Music21 Python library [8] was used to iterate
over the melody and chord parts of each MIDI file. In
this context, a timestep is defined as an array of size
84 representing 84 distinct pitches (7 octaves) with
one 16th note duration, consisting of {0, 1, 2}, which
respectively represent a rest, a pitch begins, and a
pitch is held. For each note, chord, or rest object in
the MIDI file, timestep(s) were created for that
object’s duration, with subsequent timesteps
receiving a 2 instead of a 1 due to the note being held



1le7

Prevalence of Notes: Entire Dataset

35

30

25

20

Count

15

10

05

00

m total frequency

Figure 3: A histogram reflecting the prevalence of specific pitches within the dataset

to satisfy its complete duration. The two resulting
sparse matrices (melody and chords) were combined
by giving precedence to the melody if any notes
overlapped, since this system is melody-focused.

For example, in Figure 4 below, the melody and
chord tracks for the music on the left are looped over
independently. The index corresponding to the first
note in the melody is looked up in a Python
dictionary mapping pitch to index. The corresponding
index in a timestep initialized with all zeros is
assigned a 1. Because this first note is a quarter note,
three subsequent timesteps are created, except a 2 is
assigned instead of a 1 since the note is held across
this portion of time. This process is repeated for the
rest of the notes in the melody and for the chords
track, and then the two matrices are combined to give
the matrix located on the right side of Figure 4.
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Figure 4: Encoding the MIDI file into a sparse
matrix

After this sparse matrix was obtained, more
preprocessing was necessary to yield an X, y pair

format that could be accepted by the network. The
most logical choice for this was to let X be a
sequence of consecutive timesteps and y be the
subsequent timestep, in essence allowing the network
to predict the next set of notes to be played (or
continued), given all the notes that came before. In
order to obtain these sequences, a window size had to
be selected. For the current implementation, a
window size of 4 measures (64 timesteps) was
selected, since a typical melodic phrase tends to span
this much time. It was conjectured that this size
would encompass most of the melodic components,
though future work could be done optimizing this
hyperparameter. Padding consisting of 4 measures of
rest was added to the front of each song to allow for
the beginning patterns of a song to be learned by the
network. The final dataset was then generated by
sliding a fixed window over each song, generating
(X, y) pairs, with the target being the next timestep
after the 4 measures. An abstracted depiction of this
process can be seen in Figure 5 below.
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Figure 5: Dataset generation using a fixed
sliding window
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Throughout this process, memory management was
key due to the large amount of data and limited
computing resources available. To handle this, the
data was broken into halves at certain points,



processed, and then later recombined. The final
dataset was split 80%/20% train/test and then
shuffled. To reduce contamination between the train
and test sets, all sequences belonging to a certain
artist were kept in the same set. The final training set
consisted of 2,527,499 sequences and the test set
contained 631,875 sequences. A depiction of the
dataset can be seen in Figure 6 below.
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Figure 6: Final dataset after preprocessing

Note that later on, this process was repeated except
with chords omitted to obtain a melody-only dataset
as well.

3.2 Novel Loss and Activation Functions

While this is a clear classification problem, it is
significantly different from a typical classification
problem. A typical classification problem has a
one-dimensional list of possible targets; for example,
one might classify a picture of an animal as being a
dog or a cat, or in hand-written digit recognition, the
possible targets might be the numbers one through
nine. With the problem presented in this paper, the
target-space is two-dimensional—there are 84 notes
and each could fall under three different categories:
0, 1, or 2. In the typical classification problem, the
softmax activation function creates a probability
distribution among its one-dimensional set of targets,
and there is one most likely prediction. However, the
problem presented in this paper requires a prediction
between the categories of 0, 1, 2 for each of the 84
notes because more than one note could be played at
the same time. Visualizing this as 3 channels for each
of {0, 1, 2}, similar to a color picture’s RGB

channels, the goal was to take the softmax across
these channels for each of the 84 pitches.

Figure 7: Flattening of the targets into a
one-dimensional space

Dense
Length: 252
.5
2 Softmax
21
. ——
45
—
3 Softmax
10
- -
- -
- -

Figure 8: Skip-3 Softmax

Using TensorFlow Keras, the traditional softmax
activation function did not work in this way. Thus,
due to the nature of the unique encoding of the data, a
novel approach was needed. The targets were
flattened into a one-dimensional array of size 252 (84
* 3), as can be seen in Figure 7. This translated to the
last layer of the network being a fully-connected,
flattened layer of 252 output nodes. Digging into the
internals of Keras, a custom skip-3 softmax function
was created that takes the softmax across every 3



output nodes, depicted in Figure 8 on the previous
page. Additionally, in a similar manner, a custom
skip-3 cross-entropy loss function was created that
operates over every 3 entries (mimicking 3 channels),
as well as a custom skip-3 accuracy. As far as the
author knows, this is a novel approach in the domain
of music generation due to this specific matrix
representation of music.

3.3 Neural Network Architectures

Multiple neural network architectures were explored,
beginning with simpler models. The first model
consisted of several fully-connected layers and no
convolutions. Its architecture can be seen in Figure 9
below. Note that the 64 in the input shape represents
the 4-measure fixed sliding window (4 sixteenth
notes in a quarter note * 4 quarter notes in a measure
* 4 measures = 64 timesteps), and the 84 represents
the 84 different pitches. This network, as well as all
the others, use the custom skip-3 softmax activation
function and skip-3 cross-entropy loss function. All
the networks explored in this paper used the Adam
optimizer and a learning rate of 0.00001, which was
discovered  through trial and error.  The
fully-connected network had 4,928,252 trainable
parameters.

The second network, also seen in Figure 9, is a
simple convolutional network consisting of one
convolutional layer. No padding was used (termed
‘valid’ in Tensorflow) to avoid the false impression
that some musical sequences taken from the middle
of songs were preceded by rests. A kernel size of

1. Fully-Connected Network
model = Sequential()
model.add{Input{shape=(64,64,1)))
model.add{Flatten())
model.add(Dense(800,activation="reu’))
model.add(Dense(500,activation="relu'))
model. add(Dense(300,activation="eu'))
model. add(Dense(252 activation=skip3_softmax))

2. Convolutional Network
model = Sequential()
model.add(Input(shape=(64,84,1)))
model.add(Conv2D(20, kernel_size=(4,18),padding="valic
model.add(Flatten())
model.add(Dense(800,activation="relu'))
model.add{Dense(500 activation="elu’))
model.add(Dense(300,activation="relu’))
model add(Dense(252 activation-skip3_softmax))

activation="re

model. compile(loss=skip3_cross_entropy,
optimizer=Adam(learning_rate=0.00001),
metrics=[skip3_accuracy])

u

(4,18) was used because 4 timesteps represents a
quarter note duration, a slightly larger unit in the
context of the melody, and 18 pitches spans a little
more than one octave, possibly capturing that whole
range. Max pooling was not used because it was
conjectured that it might distort the encoding of the
music. The convolutional network had 66,020,912
trainable parameters.

Both the fully-connected and the convolutional
networks were trained with 500,000 sequences, a
process that took several days. Due to limitations on
available computing power, it was not possible to
train any of the networks with the full dataset. The
fully-connected and convolutional networks were
trained using the melody and chords dataset.

The results of the fully-connected and convolutional
networks indicated that some mechanism to capture
longer-term dependencies might be necessary to
produce more goal-oriented music; this led to the
creation of a third type of network, the dilated
convolutional network, shown in Figure 9 below.
Dilated convolutions increase the size of the
receptive field without increasing the number of
parameters, and some past work has been done using
dilated convolutions with music generation, so they
seemed like a good next step. Exponentially dilated
convolutions were used in several different network
architectures, with one such example being shown in
Figure 9 below. Instead of keeping the dilation rate
the same in both dimensions, one dimension was
doubled, and then the other, trading off to maximize

3. Dilated Convolutional Network

model = Sequential()
model.add(Input(shape=(64,84,1)))

model.add(Conv2D(4,kernel_size=2 padding="valid'activation="relu' dilation_rate=(1,1)))

model.add(Conv2D(8 kernel_size=2 padding="valid activation="relu' dilation_rate=(2,1)))

model.add(Conv2D(12 kernel_size=2 padding="valid activation="relu' dilation_rate=(2,2)))
model.add(Conv2D(16 kernel_size=2 padding="valid activation="relu’ dilation_rate=(4,2)))
model.add(Conv2D(20 kernel_size=2,padding="valid activation="relu’ dilation_rate=(4,4)))
model.add(Conv2D(24 kernel_size=2 padding="valid' activation="relu dilation_rate=(8 4)))
model.add(Conv2D(28 kernel_size=2 padding="valid activation="relu’ dilation_rate=(8,8)))

model.add(Conv2D(32 kernel_size=2 padding="valid activation="relu’ dilation_rate=(1,1)))
model.add(Conv2D(36 kernel_size=2 padding="valid activation="relu’ dilation_rate=(2,1)))
model.add(Conv2D(40 kernel_size=2 padding="valid activation="relu’ dilation_rate=(2,2)))
model.add(Conv2D(44 kernel_size=2 padding="valid activation="relu’ dilation_rate=(4,2)))
model.add(Conv2D(48 kernel_size=2 padding="valid activation="relu’ dilation_rate=(4,4)))
model.add(Conv2D(52 kernel_size=2 padding="valid activation="relu’ dilation_rate=(8,4)))
model.add(Conv2D(56 kernel_size=2 padding="valid activation="relu’ dilation_rate=(8,8)))

model.add(Conv2D(60 kernel_size=2 padding="valid activation="relu’ dilation_rate=(1,1)))
model.add(Conv2D(64 kernel_size=2 padding="valid activation="relu’ dilation_rate=(2,1)))
model.add(Conv2D(68 kernel_size=2 padding="valid activation="relu’ dilation_rate=(2,2)))
model.add(Flatten())

model.add(Dense(252,activation=skip3_softmax))

Figure 9: Three deep neural network architectures that were explored



the number of convolutional layers. This idea that a
large number of layers might produce better results
comes from the idea that perhaps music composition
consists of a large number of simpler functions,
instead of a small number of complex functions, an
idea from the literature [5]. The dilation rate expands
up to a max of (8,8) before starting back over at (1,1).
This was done to maximize the number of layers. The
final layer of the network is fully-connected so that it
can fit the format of the skip-3 softmax. This network
had 722,224 trainable parameters.

The dilated convolutional network was trained using
the melody-only dataset in an attempt to simplify the
problem somewhat. It was trained with 500,000
sequences because the same limitations on computing
power were in place as before.

Early stopping with a patience of 5 epochs, as well as
model checkpoints, were used for training all the
networks. Additionally, a batch size of 32 was used.
The number of epochs was set to a large number, 100,
so that if necessary the model could train that long.

3.5 Music Generation

Music was generated by the network in the following
manner: first a seed was chosen and given to the
network’s predict function, as seen in Figure 10. This
seed could be any piece of music, or non-music (i.e.
random noise), as long as it was 64 timesteps long. If
it was shorter, it could be front-padded with silent
timesteps. The network then produced a prediction,
the next timestep. The seed was shifted to the left by
one timestep, and the prediction was appended to the
end, as shown in Figure 11. This process was then
repeated for as many timesteps as the user wanted
generated.

-

Figure 10: Predicting a seed’s next timestep

-

Figure 11: The seed was shifted to the left by
one timestep and then the prediction was
appended to the end.

The output from this process was a matrix, which is
difficult to interpret on its own. Using the Music21
Python library and a process that was similar but the
reverse of the earlier MIDI-encoding, this matrix was
converted into a Music21 Stream, which could then
be exported as a variety of formats, such as XML or
MIDI. Music2l also allows audio playback of a
Stream or visualization as sheet music.

4. RESULTS AND DISCUSSION

The fully-connected and convolutional networks
were trained with 500,000 sequences for several
days, wusing the settings and hyperparameters
described earlier. They stopped training after about
30 epochs, due to early stopping. Their associated
learning curves can be seen in Figures 12 and 13.
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Figure 12: Learning curves describing the
training of the fully-connected network



CNN: Custom Softmax/Loss Function Model
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Figure 13: Learning curves describing the
training of the convolutional network

It is worth mentioning the idea of accuracy here. In
some ways, it does not make sense to talk about
accuracy—the purpose of this network is to produce
music, a creative entity that walks the line between
predictability and unpredictability. Should the
network be rewarded for being predictable? It comes
down to an ethical dilemma. Music is structured, so
the network needs to learn to imitate, but is there a
point at which it should be rewarded for making the
wrong choice? In what weights is creativity encoded,
or is it encoded at all? These are some of the
questions that must be addressed in the future of
research in this area. The networks trained in this
paper are rewarded for having smaller losses, which
makes the assumption that small loss equals better
music. It is speculated that this might be true in terms
of generating less random music, but as for the
creative aspect, perhaps a different kind of loss
function could be future work. The accuracies,
computed as how many pitches’ {0, 1, 2} values were
predicted correctly, were consistently approximately
98% or higher, even on the test set, across the
different neural networks trained in this paper. This is
somewhat uninterpretable for a few reasons. First of
all, the baseline accuracy is unknown; however, it is
most likely extremely small, given there are 84
possible notes and any number could be played or
continued at the same time. Second, if most of the
notes are not played, then it might be fairly easy to
predict all the 0’s, getting the majority of the pitches’
states in a timestep correct. As a result, in the future,
perhaps a different kind of accuracy could be created
and computed to give less weight to getting 0’s
correct.

Trial Seed CNN  Analysis Fully- Analysis
Result Connected
Result

A “Twinkle Twinkle Repeats seed's Frequent pauses,

Little Star” chord progression, more melodic than
but no melody. Last CNN. Last note
note resolves resolves.

B Chords only Keeps a consistent Keeps a
(front-padded rhythm (no “melody” consistent rhythm,
with rests) just chords) but doesn’t

resolve.

C Unresolved Continues the Continues the

Scale (stops on
the leading tone)

leading tone, then
resolves on the tonic.

leading tone, then
silence. Doesn'’t

(front-padded Silence, then plays resolve.
with rests) the dominant (scale
degree 5)

“Npte that any silence
observed in the last 2
seconds of these mp3s
is the result of the mp3.
file format, nat the actual
song clip.

Table 1: Results of generating music from
various seeds for the convolutional and
fully-connected networks that were trained on
melody and chords data. Audio can be listened to
at the following link:
https://docs.google.com/presentation/d/INsCZnT
X6somkSMIOIKwOxEs-Cx ZsucA RL

vBQ/edit?usp=sharing

.
.

, N
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Figure 14: (a) “Twinkle Twinkle Little Star”
seed (b) CNN’s generated output using this seed

The main way the networks were assessed was by
choosing seeds at random from the test and train sets,
as well as by targeting specific examples outside
those sets, and generating music for 64 timesteps.
Note that this process was a manual one. It was not
feasible to listen to ~3 million possible results by
hand. Thus, the analysis given in this paper is based
strictly on the examples that were looked at by hand;
while it is believed these are representative of the
entire set of possible results, it is still possible this
might not be true. A few examples of generated
music are analyzed in Table 1, with audio available at
the provided link. These examples include a common
tune, a sequence with only chords, and an unresolved
scale, the latter of which is used to assess the
tendencies of the network’s pitches, since in music
theory some pitches tend to resolve on certain pitches
more often than others, a foundational concept
popular music is built upon. A sheet music example
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of a seed and its generated output are shown in Figure
14.

The following are some strengths that were observed
among these fully-connected and convolutional
networks. Both networks seem to generate continuing
notes that belong to the same chords that were in the
seed. In other words, it doesn’t sound entirely
random. All the chosen notes are within the same
range as the seed (they are not extremely high or low
in comparison). Both networks seem to continue or
create rhythms on beat, fairly consistently. There is
evidence of rhythmic patterns. There are hints of
chord progressions, some continued exactly from the
seed, and the networks seem to be good at endings,
often resolving on the tonic.

On the other hand, there are some weaknesses: Both
networks seem to want to end the song. Often, the
generated music consists of a somewhat resolved
ending to the seed, followed by silence that keeps
being generated if it is left to keep generating. This
can lead to abrupt, near-sighted endings. Sometimes
it seems like the noise becomes amplified the longer
the model generates a continuation. Both models tend
to favor chords over melody. Sometimes there
appears to be no sign of a melody, aside from the
chords. As for creativity, the generated music seems
to barely grasp musical intuition. Perhaps creativity is
an emergent property that comes about when the
basics are in place; thus, it is probably too premature
to attempt to assess creativity in this context. At this
point, the networks do not seem to be able to
replicate a melody, which makes it difficult to
analyze melodic properties. The generated music
seems to depend largely on the seed given, with
results varying widely, and sometimes the generated
notes sound “wandering” and aimless. Sometimes
silence is generated.

The dilated convolutional network was trained in a
similar manner, but with the melody-only dataset in
an attempt to simplify the problem. Again, 500,000
sequences were used due to limitations on available
computing power and memory. A graph of the
learning curves is shown in Figure 15.

A similar process of randomly choosing seeds was
used to evaluate the dilated convolutional model. Of
the results that were analyzed by hand, most of the
generated outputs were a single continuing note or
silence. There were a few interesting examples,

which can be listened to at the provided link in Table
2’s caption.
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Figure 15: Learning curves describing the
training of the dilated convolutional network

Interesting Results:

Seed Result

The Beach Boys: ‘I Get Rhythms on same
Around” < <« note

Half of “Happy Birthday"‘D Rhythms on same

<)
unresolved note

Table 2: A few select results of generating music
using the dilated convolutional network that
were deemed intriguing due to rhythmic interest.
Audio can be listened to at the following link:
https://docs.google.com/presentation/d/INsCZnT
X6somkSMIOIKwOxEs-Cx ZsucA RL

vBQ/edit?usp=sharing

In an effort to assess the network’s overall statistical
performance in an automated way, approximately
2500 musical outputs were generated using seeds
taken from the training set. Statistics including
numbers of rest timesteps, held timesteps, and
beginning timesteps, as well as numbers of different
pitches used, were recorded for later analysis. A

histogram was created in Figure 16a on the next page
describing the number of generated sequences having
specific numbers of rest timesteps. As can be seen
from the figure, the majority of the sequences were
primarily silent. Another peak occurs with about 300
of the 2500 sequences having no rests.

Another histogram was made analyzing this subgroup
and can be seen in Figure 16b. Of those non-silent
generated sequences, the majority are entirely held,
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Figure 16: (a) Histogram describing the number of generated sequences with certain numbers of rests. (b)
Histogram describing the number of generated sequences with certain numbers of held timesteps in the

subgroup that had no rests.

meaning they continue the last note of the seed
indefinitely. There are smaller peaks at 0 and 32 held
timesteps. This indicates the prevalence of some
generated sequences with continuous sixteenth notes
or continuous eighth notes, possibly like the results in
Table 2. Perhaps this is representative of some
statistic in music where if there are 0 rests, then the
music’s purpose is purely rhythmic, keeping a
consistent beat. It is also interesting that there are few
odd numbers of held timesteps, which might indicate
syncopation or unique rhythmic patterns that could be
associated with a melody—however, these could still
exist in the minority, having rests mixed in and being
part of the more general Figure 16a above.

Overall, these two histograms confirm my original
by-hand findings that most of the generated
sequences from the dilated convolutional network
were silent or consisted of a held note. Other dilated
convolutional networks with slightly different
architectures yielded similar results.

Because the results of the dilational neural network
were significantly different from the results of the
convolutional and fully-connected networks, the
impact of the dilated convolutions is unknown. The
switch to a melody-only dataset was a major change
made at the same time as the switch to the dilated
convolutions. To isolate the relative impacts of these
two changes, earlier models would have to be trained
with melody-only, and the dilated convolutional
network would have to be trained with the melody
and chords dataset.
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5. CONCLUSIONS AND FUTURE WORK

In conclusion, a unique way of encoding MIDI files
to capture the on, off, and held states was created for
use in deep neural networks. Due to this unique
encoding, a novel skip-3 softmax activation function
and skip-3 cross-entropy loss function were
developed. The current results of generating music,
given a seed, using a fully-connected network, a
convolutional network, and a dilated convolutional
network show some evidence of rhythmic and
harmonic patterns, but lack melodic elements. The
effect of wusing dilated convolutions remains
unknown.

Much future work could be done to explore these
remaining unknowns. As previously stated, training
the dilated convolutional network with the melody
and chords dataset might allow the impact of dilated
convolutions to be seen. If the dilated convolutions
do not remedy the network’s nearsightedness, other
techniques such as attention could be explored.
Additionally, the fully-connected network and the
convolutional network could both be trained with the
melody-only  dataset to focus more on
melody-generation. Another aspect that was not
investigated in this paper was using different fixed
window sizes; perhaps a number other than 64
timesteps would be better-suited to the nature of these
networks. Given more time, memory, and computing
power, the entire dataset could be used in training
instead of only 500,000 sequences. Furthermore,
results of the convolutional network could be
explored in more depth by looking at the particular




weights of each filter to try to figure out what
properties of music theory the network is learning.

Now that the musical pipeline is fully established,
there are some other specific areas for improvement
along this pipeline. The development of a different
kind of loss function and accuracy that takes into
account the prevalence of zeros in the sparse matrices
as well as the tradeoff between rewarding
predictability and unpredictability could be a whole
other project in itself.

Assuming this project were worked on for much
longer, to the point that human-plausible melodies
were being created, then a system could be built
around the melody-generation one to compose large
pieces of music. Melodies are building blocks that
can be used to create a larger whole, and perhaps this
has a method to it that neural networks could learn.

Can machines compose music? Can they pass the
musical Turing test? Only time will tell.
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