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The relationship between the linearity of the ratio of forces (RF)-horizontal velocity (vH) 
profile and initial acceleration (IA) performance was investigated in trained sprinters. 
Ground reaction force data from the IA phase of a maximal sprint from a block start were 
analysed. The coefficient of determination of the linear trendline fitted to four step-averaged 
values of RF and vH provided a measure of linearity. Semi-partial correlations (sr) 
accounting for block phase performance revealed a weak negative relationship between 
linearity of the RF-vH profile and performance over the first four steps (sr = -0.11), while 
mean RF displayed a very strong positive relationship with performance (sr = 0.80). 
Sprinters and coaches should therefore prioritise the production of a high RF during IA 
above trying to ensure a consistent decline in RF as velocity increases. 
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INTRODUCTION: An athlete’s ability to accelerate effectively can be a determining factor for 
success in many sports. The initial acceleration (IA) phase of maximal sprinting, defined as the 
first four steps following block exit (Nagahara et al., 2014), is when the largest forward 
accelerations are observed (Nagahara et al., 2020). Therefore, the IA phase has been the 
subject of considerable research to understand the principles underpinning high performance. 
A key element of high sprint acceleration performance is effective orientation of force output 
(Morin et al., 2011; Rabita et al., 2015). This ‘technical ability’ is typically measured by the ratio 
of forces (RF), which describes the proportion of the step-averaged resultant force vector (FR) 
that is directed horizontally (FH), i.e. RF = FH/FR (Morin et al., 2011). When quantifying technical 
ability over all, or any part, of the acceleration phase, a linear trendline is often fitted to step-
averaged RF with respect to step-averaged horizontal velocity (vH), denoted as the RF-vH 
profile. The gradient of this trendline quantifies the ability to maintain RF as vH increases, 
termed rate of decline in RF (DRF; Morin et al., 2011). The y-intercept provides the theoretical 
maximal RF at null velocity, termed RF0 (Rabita et al., 2015), whilst other measures such as 
RFMAX (RF value at 0.3 s; Samozino et al., 2016) are also sometimes extracted. 
These measures of technical ability have shown strong relationships with early acceleration 
(block phase and IA) performance (Bezodis et al., 2020). However, the RF-vH profile is typically 
created using data from the entire acceleration phase, which is not always closely related to 
the RF-vH profile during early acceleration, as considerable step-to-step variation in RF can be 
observed, particularly during the IA phase (Bezodis et al., 2020). This variation in RF during 
the IA phase of the sprint can be quantified from the coefficient of determination (adjusted R2) 
of the linear trendline fitted to the RF-vH profile. Hereafter termed ‘linearity’, this coefficient 
allows objective assessment of an athlete’s step-to-step variation in the decreasing RF over 
IA. The aim of this study was to determine the strength of the relationship between the linearity 
of the RF-vH profile and performance over the IA phase in trained sprinters. 
 
METHODS: Fourteen male sprinters (mean ± SD: age = 20 ± 1 years; height = 1.73 ± 0.07 m; 
mass = 68.6 ± 4.9 kg; 100 m personal best = 11.15 ± 0.33 s) gave informed consent to 
participate in this study which was approved by the local research ethics committee. 
Participants completed their preferred warm-up routine before performing two maximal sprint 
efforts to 60 m from starting blocks, while wearing spiked shoes on an indoor track. Participants 
were provided with a rest period of ≥10 minutes between efforts. Ground reaction force (GRF) 
data were collected at 1000 Hz from a 52 m series of force plates (TF-3055, TF-32120,  
TF-90100, Tec Gihan, Uji, Japan), mounted under the track. An electric starting gun was used 
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to synchronously initiate the GRF data collection and emit an auditory starting signal. All data 
were recorded and analysed in MATLAB (R2021a, Natick, USA).  
For all trials, a 50 N threshold in the raw vertical GRF data was used to identify touchdown and 
toe-off. Movement onset was defined as the first point at which the raw vertical GRF exceeded, 
and remained, two standard deviations above the mean stationary signal in the blocks 
(Bezodis et al., 2020). The raw GRF data were filtered using a 4th order low-pass Butterworth 
filter with a cut-off frequency of 50 Hz. After accounting for the influence of air resistance 
(Samozino et al., 2016), horizontal velocity (vH) and displacement were determined using 
trapezoid integration.  
Spatiotemporal variables across steps one to four were calculated. Step-averaged force data 
from each stance phase were determined from the resultant GRF (FR) and its vertical (FV) and 
antero-posterior (FH) components. Following this, step-averaged RF was calculated (FH/FR) 
and mean RF from the first four steps was determined (RFMEAN). Mean resultant GRF 
magnitude (FR MEAN) was also calculated over these four steps. A linear trendline was fitted 
through the four step-averaged RF and vH values, from which DRF and RF0 were extracted 
(Rabita et al., 2015). The coefficient of determination (adjusted R2) of this trendline was also 
calculated to quantify the linearity of the relationship between RF and vH across the IA phase. 
Normalised average horizontal external power (NAHEP) from the beginning of first contact to 
the end of fourth contact was used as a measure of IA performance (Bezodis et al., 2010).  
The trial in which each participant displayed the highest NAHEP was used for all subsequent 
analyses, with the exception of one trial in which the participant was clearly not stationary prior 
to movement onset. A semi-partial correlation coefficient (sr) was calculated between NAHEP 
and each of the associated kinetic measures (FR MEAN, RFMEAN, RF0, DRF, linearity of the RF-vH 
fit), accounting for vH at first touchdown which quantified performance up to that instant. A 
repeated measures ANOVA was used to assess differences in all variables between steps 
over the IA phase. Correlation thresholds were defined according to Batterham & Hopkins 
(2006) as trivial (0.0), small (0.1), moderate (0.3), large (0.5), very large (0.7), nearly perfect 
(0.9) and perfect (1.0). Statistical significance was accepted at p < 0.05. 
 
RESULTS AND DISCUSSION: The repeated measures ANOVA revealed significant main 
effects for all variables over the IA phase (Table 1). All of the spatiotemporal variables 
progressively increased from steps 1 to 4, except contact time which decreased. Regarding 
the kinetics, average FR magnitude increased over IA and the average FH component 
progressively decreased. RF therefore decreased across the IA phase whilst vH progressively 
increased. The IA performance defined by AHEP and NAHEP was 1779 ± 177 W and  
0.65 ± 0.05, respectively. 

 
Table 1. Step-to-step spatiotemporal, GRF-derived, and overall acceleration performance 
measures (all mean ± SD) over the IA phase. 

Measure Units Step 1 Step 2 Step 3 Step 4 

Velocity at end of contact ** (ms-1) 4.41 ± 0.20 5.27 ± 0.22 5.97 ± 0.21 6.57 ± 0.21 

Time to end of contact^ ** (s) 0.637 ± 0.025 0.861 ± 0.036 1.083 ± 0.047 1.301 ± 0.060 

Displacement at end of contact^ ** (m) 1.52 ± 0.11 2.57 ± 0.21 3.78 ± 0.30 5.11 ± 0.42 

Contact time ** (s) 0.190 ± 0.016 0.164 ± 0.018 0.149 ± 0.017 0.134 ± 0.011 

Flight time† * (s) 0.060 ± 0.020 0.073 ± 0.016 0.085 ± 0.018 0.092 ± 0.013 

Step length§ **   (m) 1.10 ± 0.12 1.24 ± 0.11 1.36 ± 0.12 1.47 ± 0.11 

Step frequency *  (steps.s-1) 4.02 ± 0.30 4.24 ± 0.28 4.31 ± 0.38 4.45 ± 0.22 

Average FR magnitude * (BW) 1.47 ± 0.14 1.50 ± 0.16 1.67 ± 0.16 1.74 ± 0.14 

Average FH component * (BW) 0.61 ± 0.06 0.54 ± 0.06 0.48 ± 0.07 0.45 ± 0.05 

Step-averaged RF * (%) 41.83 ± 1.66 36.66 ± 2.87 29.75 ± 3.20 26.93 ± 2.26 

Step-averaged vH ** (ms-1) 3.74 ± 0.18 4.76 ± 0.20 5.53 ± 0.21 6.18 ± 0.21 

^Relative to movement onset. †Following contact phase. §Touchdown to next touchdown. *Significant main effect of step  
(p < 0.05); variables marked ** exhibited pairwise differences between all four steps when assessed using a Bonferroni correction. 
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A very large, significant relationship (sr = 0.80) was observed between RFMEAN and IA 
performance (Table 2). These findings support Bezodis et al. (2020), who found a very large 
correlation (r = 0.88) between early acceleration performance (NAHEP) and RFMEAN over this 
period. The moderate correlation between FR MEAN and performance over initial acceleration  
(sr = 0.33) also supports the findings of Bezodis et al. (2020) with RF being of greater 
importance for IA performance than resultant GRF magnitude.  
 
Table 2. GRF-derived and technical ability measures (Mean ± SD) extracted from the RF-vH fit 
over the IA phase and semi-partial correlations (sr) with NAHEP over the IA phase. 

*Correlation is significant (p < 0.05) 

 
Although Bezodis et al. (2020) also included the block phase as well as the first four steps in 
their analysis, the aforementioned findings of the current study are comparable as the semi-
partial correlation with IA performance accounted for block phase performance. However, this 
discrepancy in phase definition appears to have impacted the comparison in relationships 
between the RF-vH profile-derived measures and performance. While Bezodis et al. (2020) 
found a strong relationship for RF0 (r = 0.59) and no relationship for DRF (r = -0.04), the current 
study found a weak negative relationship for RF0 (sr = -0.28) and a moderate relationship for 
DRF (sr = 0.47). These conflicting findings suggest that the inclusion of block phase RF and vH 
values may alter these relationships, although this could also be due to differences in the 
studied participants and thus future work should directly investigate this. 
 

 
Figure 1. RF-vH profiles for all 14 sprinters (A-N) across the IA phase with individual linear 
trendlines fitted through all four steps. Technical ability descriptors based on the slope (DRF) and 
y-intercept (RF0) of this trendline, and the goodness of fit (R2), for each individual are stated in 
the top right of each plot, while RFMEAN over IA is stated in the bottom left. Plot backgrounds are 
colour coded according to IA performance (NAHEP) from lowest (red) to highest (green) – see 
colour scale in bottom right of figure. 
 

Measure Units Mean over 4 steps (IA phase) Semi-partial correlation (sr) 

FR MEAN (BW) 1.60 ± 0.13 0.333 

RFMEAN (%) 33.79 ± 1.57 0.795* 

RF0 (%) 66.06 ± 5.47 -0.276 

DRF (%∙s/m) -6.37 ± 1.15 0.474 

Linearity of RF-vH fit (R2)  0.870 ± 0.130 -0.105 
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RF-vH profiles throughout the IA phase varied considerably between individuals (Figure 1). The 
highest IA performance was achieved by Participant C (NAHEP = 0.750, most green 
background), whilst the lowest performance was achieved by Participant L (NAHEP = 0.563, 
most red background). Three common patterns in RF-vH profiles were observed for the 
participants. Firstly, participants B, F, L & M, typically produced higher RF on step 2 aside from 
their mostly linear RF-vH relationship over IA (R2 range = 0.63-0.92; Figure 1). Secondly, 
participants D, G, I, J & K, produced lower RF on their third step before an increase in step 4 
(R2 range = 0.71-0.90; Figure 1). Lastly, participants A, E, H & N all showed a largely linear 
RF-vH relationship over IA phase (all R2 ≥ 0.98) (Figure 1). While participant C achieved the 
highest performance, their RF-vH profile was different from the other participants – a linear 
relationship for the first three steps followed by a notable decrease in RF on step 4 (R2 = 0.72).  
The relationship between linearity of the RF-vH fit and performance was small and negative  
(sr = -0.11) (Table 2). These findings suggest that high acceleration performance can be 
achieved regardless of any step-to-step variation in RF. This is particularly evident from the 
RF-vH profile of participant C, who achieved the highest IA NAHEP value (0.75) while 
displaying one of the least linear profiles of the cohort (R2 = 0.72) (Figure 1). 
Future research targeted on understanding the kinematic features which underpin the ability 
to achieve a high RF during IA can therefore confidently focus on RFMEAN over the period of 
interest rather than needing to consider step-to-step variation, although features which relate 
to this variation in RF may be worthy of future exploration. Furthermore, future research 
investigating technical performance during acceleration can confidently used the outputs from 
a simple macroscopic model (Samozino et al., 2016) as it is the average RF characteristics 
during IA which relate to performance, whereas the magnitude of individual step-to-step 
variation which is neglected by the model does not relate to IA performance. 
 

CONCLUSION: There was a weak negative relationship between the linearity of the RF-vH 
profile and performance over the first four steps, whereas mean RF over these steps displayed 
a very strong positive relationship with performance. As mean RF over the initial acceleration 
phase appears to be the only significant predictor of performance, sprinters and coaches 
should prioritise the production of a high RF over the whole initial acceleration phase above 
trying to ensure a consistent decline in RF as velocity increases. 
 

REFERENCES 
Batterham, A., & Hopkins, W. (2006). Making meaningful inferences about magnitudes. International 
Journal of Sports Physiology and Performance, 1, 50–57. https://doi.org/10.1123/ijspp.1.1.50 
Bezodis, N. E., Salo, A. I. T., & Trewartha, G. (2010). Choice of sprint start performance measure affects 
the performance-based ranking within a group of sprinters: Which is the most appropriate measure? 
Sports Biomechanics, 9(4), 258–269. https://doi.org/10.1080/14763141.2010.538713 
Bezodis, N., Colyer, S., Nagahara, R., Bayne, H., Bezodis, I., Morin, J.-B., Murata, M., & Samozino, P. 
(2020). Understanding ratio of forces during early acceleration: Calculation considerations and 
implications for practice. SportRχiv.  https://doi.org/10.31236/osf.io/742nv 
Morin, J.-B., Edouard, P., & Samozino, P. (2011). Technical ability of force application as a determinant 
factor of sprint performance. Medicine and Science in Sports and Exercise, 43(9), 1680–1688. 
https://doi.org/10.1249/MSS.0b013e318216ea37 
Nagahara, R., Kanehisa, H., & Fukunaga, T. (2020). Ground reaction force across the transition during 
sprint acceleration. Scandinavian Journal of Medicine & Science in Sports, 30(3), 450–461. 
https://doi.org/10.1111/sms.13596 
Nagahara, R., Matsubayashi, T., Matsuo, A., & Zushi, K. (2014). Kinematics of transition during human 
accelerated sprinting. Biology Open, 3(8), 689–699. https://doi.org/10.1242/bio.20148284 
Rabita, G., Dorel, S., Slawinski, J., Sàez-de-Villarreal, E., Couturier, A., Samozino, P., & Morin, J.-B. 
(2015). Sprint mechanics in world-class athletes: A new insight into the limits of human locomotion. 
Scandinavian Journal of Medicine & Science in Sports, 25(5), 583–594. 
https://doi.org/10.1111/sms.12389 
Samozino, P., Rabita, G., Dorel, S., Slawinski, J., Peyrot, N., Villarreal, E. S. de, & Morin, J.-B. (2016). 
A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint 
running. Scandinavian Journal of Medicine & Science in Sports, 26(6), 648–658. 
https://doi.org/10.1111/sms.12490 

295

39th International Society of Biomechanics in Sport Conference, Canberra, Australia (Online): Sept 3-6, 2021

https://commons.nmu.edu/isbs/vol39/iss1/75

https://doi.org/10.1123/ijspp.1.1.50
https://doi.org/10.1080/14763141.2010.538713
https://doi.org/10.31236/osf.io/742nv
https://doi.org/10.1249/MSS.0b013e318216ea37
https://doi.org/10.1111/sms.13596
https://doi.org/10.1242/bio.20148284
https://doi.org/10.1111/sms.12389
https://doi.org/10.1111/sms.12490

	tmp.1629705079.pdf.vnJBP

