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Vertical jump performance analysis allows for assessing the ability of the lower limb to 
generate mechanical power. The analysis performed with inertial measurement units 
(IMUs) is affected by inertial effects of wobbling masses. To compensate for them, an 
automated method was developed to estimate peak and mean concentric power based on 
anthropometric and time-frequency features. IMU data of 47 countermovement- (CMJ) and 
50 squat- jumps (SJ) performed by 17 participants were used. Force platform data were 
used to obtain reference power values. Features were chosen according to the best subset 
regression method, devising a multiple linear regression for each estimated power 
parameter and jump. The regressions explained 88% and 96% variation, for CMJ peak and 
average power respectively, while explaining 75% and 74% of the variation for the SJ. 
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INTRODUCTION: The vertical jump is a motor task often utilized for assessing the 
neuromuscular capacity of an individual. Countermovement jumps (CMJ) and squat jumps (SJ) 
can be exploited to quantify the ability of the lower limb at generating mechanical power, 
highlighting both the muscular eccentric and concentric contributions during the jumps. Peak 
and mean concentric power generated during the propulsion phase of the jump describing the 
power generated by the homonymous muscular contraction of the lower limb extensor 
muscles, are considered of particular interest. The mechanical power is complementary to the 
estimate of the height reached by the jumper (Barker et al., 2018; Dowling & Vamos, 1993; 
Linthorne, 2021; Markovic et al., 2014). 
The instantaneous mechanical power as well as the height can be easily computed using a 
force platform (FP). Such instrument represents the gold standard for the measure of the 
ground reaction force acting on the human body (Linthorne, 2001). The product of the vertical 
component of the ground reaction force and velocity represents the instantaneous power 
expressed by the jumper. However, FP instrumentation is costly, non-portable, and does not 
allow on-field analysis. In the last decades, inertial measurement units (IMUs) arose as a 
valuable alternative for human movement analysis. They are often composed of tri-axial 
elements, namely an accelerometer and a gyroscope, measuring the sum of the external 
accelerations acting on the device and its rate of change of orientation, respectively.  
IMUs have been used to estimate jump height in several studies revised in (Camomilla et al., 
2018), but only a few assessed power during vertical jumps (Rantalainen et al., 2020). 
Nonetheless, issues are present when using IMUs that may be critical for their use, such as 
improper sensor calibration and sensor positioning. Moreover, due to the intrinsic nature of the 
human body, an IMU is subject to the inertial effects of the masses it is attached to, whose 
wobbling superimposes on the sensor’s measures. This aspect is part of a wider phenomenon 
known as soft tissue artefact (STA) (Camomilla et al., 2017). The major issue brought by STA 
is that there is no known digital filtering technique to remove it, as well as it is both subject- 
and task- dependent. Hence, the computation of jump height directly from the acceleration 
trace measured by an IMU is affected by the inertial effects of the wobbling masses, making it 
virtually impossible to distinguish both the take off and the landing instants correctly (Picerno 
et al., 2011). Given that the peak power occurs prior the actual take-off, such parameter can 
be hypothesized as less affected by inertial effects.  
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For this reason, this study aimed to, first, assess peak and mean concentric power using IMU 
data and, second, to devise different multiple linear regressions (MLRs) including 
anthropometric and time-frequency parameters potentially related to STA, to improve the IMU-
based estimates of power parameters. 
 
METHODS: Seventeen participants (11M, 6F; age: 26.8 ± 4.7 years; height: 1.73 ± 0.09 m; 

mass: 72.0 ± 13.6 kg) volunteered for the study. To each of them, four skinfold lengths were 

measured, namely biceps, triceps, sub-scapular, and superior-anterior iliac crest (B, T, S, and 

I, respectively). An IMU composed of a tri-axial accelerometer and gyroscope (OPALTM, APDM 

Inc., Portland, Oregon, USA; 128 sample\s; full scale range: ± 6g; ± 2000 degree/s) was 

inserted into the pocket of an elastic belt, worn at the waist by each volunteer. The IMU was 

positioned in correspondence of the L5 vertebra to resemble the ideal human center of mass. 

The sensor was calibrated prior to each session according to the recommendations proposed 

in (Bergamini et al., 2014). Hence, volunteers performed 3 countermovement- and 3 squat-

jumps on a FP (Bertec Corp., Washington, Ohio, USA; 1000 sample/s), trying to maintain their 

elbows at the waist height, so that the arm-swing effect was minimized. Incorrect trials were 

not considered. A total number of 47 CMJ and 50 SJ were then analyzed.  

IMU data were aligned to the world reference frame as proposed in (Rantalainen et al., 2020) 
to remove the gravitational component from the acceleration trace, thus obtaining the vertical 
component of the sensor acceleration, a(t). We computed power, P, as normalized to the body 
mass of each participant, using F, v, and m, for the FP data; a and v, for the IMU data:  

P(t) =  
F(t)v(t)

m
 = a(t)v(t) 

where v(t) was computed through numerical integration of a(t) from the start of the trunk 
bending to the take-off instant for both instruments, and m is the subject mass computed from 
the FP measure in the static phase. 
The power trace prior of each jump was used to compute IMU-based concentric and eccentric 
power peak (Pc and Pe), as the maximum and minimum power value, respectively, mean 

concentric and eccentric power (Pc and Pe), as average of the positive and negative power 
portion, respectively. These values, along with the following set of four time or frequency 
features, were used as independent variables in MLRs to estimate power parameters 
compensated for inertial effects. Namely, we computed: i) the temporal distance between the 
occurrence of the minimum and maximum power, PΔ; ii-iv) three central frequencies extracted 
using variational mode decomposition (VMD) from a(t) (Dragomiretskiy & Zosso, 2014): two 

mid-high frequency components (f1, f2), referring to the inertial components linked with the 
wobbling masses; a low frequency (f3), associated with the jump movement of the trunk 
assumed as rigid. The eccentric part of the power was considered in the CMJ analysis only. 

 
Figure 1: Schematic depiction of the utilized procedure for both Pc and Pc estimation. 
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Four different MLRs were devised to provide corrected estimates of Pc (MLR
Pc) and Pc  

(MLR
Pc) for each jump, CMJ or SJ, indicated with a subscript. The feature set for each MLR 

was automatically chosen exploiting the best-subset regression method (Hocking & Leslie, 
1967), coupled with a k-fold cross validation (k = 10) on the whole feature dataset. Hence, the 
best model was selected according to the lowest cross-validation error. The quality of estimates 
obtained using the raw IMU-data and of the MLR-corrected ones was assessed through mean 
average error (MAE) with respect to FP-derived reference power parameters. A schematic 
depiction of the procedure is presented in Figure 1. 
 
RESULTS: The MAE of the peak concentric power, Pc, obtained from raw IMU data had MAE 
expressed in percentage of the FP-derived power parameters of 15.2 ± 8.6% and 12.7 ± 8.4%, 
for CMJ and SJ, respectively. MLR analysis, reported in Table 2, improved this estimate 
reducing MAE% to 6.4 ± 5.5% and 8.5 ± 7.8%, for CMJ and SJ, respectively. Similarly, mean 

concentric power, Pc, obtained using IMUs had MAE% of 21.5 ± 16.7% and 19.3 ± 13.9 %, for 
CMJ and SJ, respectively. MLR analysis reduced MAE% to 6.0 ± 5.6% and 14.3 ± 12.4% for 
CMJ and SJ, respectively. The MLR models had slightly better performances for the CMJ, 

explaining the 88% and 96% variation, for Pc and Pc  respectively, while explaining 75% and 
74% of the variation for the SJ. Absolute error values for all MAE are reported in Table 1, along 
with significance details. 
 
Table 1: Reference power and mean average errors for IMU measures and MLR estimates (W / kg).  

 
Table 2: MLRs absolute (above) and standardized coefficients (below). Significance level: *** p < 
0.001; ** p < 0.01; * p < 0.05; § p < 0.1. 

 Const Pc Pc Pe Pe B T S I PΔ f1 

MLRCMJ
Pc

 10.40*** .47*** .61*** - - -.24** - - -.09§ - - 

MLRCMJ
Pc

 
9.20*** .16*** .2** .14** 1.33*** -.10*** -.08** -.11*** - -8.91*** - 

MLRSJ
Pc  6.04 .69*** -   - - -.27§ .35** -14.95* .36* 

MLRSJ
Pc  .77 .25*** -   - - - - -7.02** .18** 

MLRCMJ
Pc

  .49 .39 - - -.19 - - -.11 - - 

MLRCMJ
Pc

 
 .33 .22 .18 .28 -.16 -.14 -.23 - -.36 - 

MLRSJ
Pc   .81 -   - - -.25 .36 -.21 .19 

MLRSJ
Pc   .69 -   - - - - -.23 .23 

 
DISCUSSION: The current study provides sports scientists with a practical and open method 
to correct for IMU-related errors in power computation during vertical jump. IMU intrinsic 
measurement errors showed to entail important inaccuracies in the estimate of jump power 
parameters. The best subset regression method here used, combining both anthropometric 
and time-frequency features, seems to be a promising approach to jump power 

 FP reference error IMU error MLR explain R2 F p 

Pc
CMJ

 18.75 ± 4.73 2.82 ± 1.81 1.18 ± 0.98 88.4% .894 F(4, 44) = 90.52 < 10-16 

P̅c

CMJ
 7.17 ± 2.35 1.45 ± 1.12 0.36 ± 0.27 95.5% .963 F(8, 39) = 125.5 < 10-13 

Pc
SJ

 21.62 ± 5.25 2.81 ± 1.99 1.82 ± 1.66 75.2% .777 F(5, 44) = 30.66 < 10-16 

P̅c

SJ
 6.36 ± 2.21 1.24 ± 1.00 0.84 ± 0.69 73.8% .754 F(3, 46) = 46.99 < 10-14 
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characterization. All devised MLRs reduced estimate errors in terms of MAE. Regressions 
developed for SJ, presenting slightly higher errors, suffered from a smaller number of available 
features due to the absence of an eccentric power component of the motor task. As regards 
regressions obtained for CMJ, both embedded anthropometric independent variables. With 
due caution, this could be explained by the fact that the inertial effects brought by wobbling 
masses, presumably described by skinfolds, were more impactful when the jumper executed 
a countermovement.  
The study enrolled only healthy individuals with an amateur potential to express power. Further 
MLR estimates should be developed for elite athletes with different performance potential and 
anthropometry to grant for a more robust generalizability of the current MLRs. To complement 
power estimates, the proposed approach could be applied to jump height analysis with IMUs. 
 
CONCLUSION: An automated method for correcting jump-generated power as measured by 
IMUs was presented. Results confirm that inertial effects had a negative effect on the quality 
of the power parameters computed directly through IMU measures. However, errors can be 
reduced by devising proper MLRs which consider anthropometric and time-frequency features. 
Further studies should focus on reducing the effect of STA affecting other jump-related 
quantities, such as height.   
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