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This study evaluated kinetic and kinematic aspects of the horizontal hang clean (H-HC) at a 
variety of loads and also compares these results to the standing sprint start (SSS). Subjects 
were tested during the H-HC at 30%, 50% and 70% of their five-repetition maximum (5RM), 
and during the SSS, using two force platforms. Analysis revealed significant differences for 
the H-HC conditions for the propulsive phase vertical GRF (p ≤ 0.001), propulsive phase 
horizontal to vertical GRF ratio (H:V) (p = 0.001), subject/barbell displacement (p ≤ 0.001), and 
velocity (p ≤ 0.001). The propulsive H:V of the H-HC at 30% of the 5 RM was correlated to the 
propulsive H:V of the first step of the SSS (p = 0.04, r = 0.55). To maximize subject anterior 
displacement and velocity and propulsive H:V, practitioners should use the H-HC with loads 
of 30% of the 5 RM. Training in this manner offers specificity for sprinting starts.  
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INTRODUCTION: The hang clean is a common weightlifting exercise that is used to train 
athletes. The traditional hang clean may be inferior as a training stimulus for sagittal plane 
anteriorly directed activities such as sprinting. Since specificity is fundamental for the transfer 
of training, there may be more optimal hang clean variations and loads for training athletes.  
Traditional hang clean kinetics have been compared to the jump shrug, high pull, mid-thigh 
pull, and high power clean (Comfort et al., 2011). In previous studies, the kinetics of the 
traditional hang clean were assessed with a variety of loading conditions (Kawamori et al., 
2014; Suchomel et al., 2014). Additionally, hang clean and hang snatch at a variety of loads 
have been compared using ground reaction forces (GRF) (Jensen & Ebben, 2002).  
Training specificity should be prioritized to increase the likelihood that training exercises 
improve sports performance (Rumpf et al., 2012; Young et al., 2015). Power exercises primarily 
categorized by vertical displacement have little correlation to sprinting speed (Rumpf et al., 
2012; Young et al., 2015). Previous studies assessing the GRF of the power clean typically 
focused on vertical mechanics (Jensen & Ebben, 2002), or horizontal displacement of barbell, 
but not of the subject (Comfort et al., 2011; Souza et al., 2002). Exercises that offer resistance 
along with horizontal displacement of the athlete are believed to be most valuable for 
developing sprinting ability (Rumpf et al., 2012; Young et al., 2015). 
The horizontal hang clean (H-HC) is a variation of the traditional hang clean in which the 
subject produces a significantly higher horizontal and vertical ground rection force ratio (H:V) 
(Gold et al., 2020). Compared to the traditional hang clean, the propulsive H:V of the H-HC is 
more similar to the H:V of sprinting (Gold et al., 2020). Therefore, the H-HC should be used to 
increase the likelihood that the training will transfer to anteriorly directed activities in the sagittal 
plane, such as sprinting. However, it is not known if there is an exercise intensity for this 
exercise that optimizes the training specificity. Therefore, the purpose of this study was to 
assess a variety of H-HC loading conditions in order to determine the relationship between 
propulsive H:V, horizontal GRF, vertical GRF, horizontal displacement and velocity of the 
subject, and the relationship of these loading conditions to the kinetic characteristics to the 
standing sprint start (SSS).  
 
METHODS: Subjects included 12 men (age = 19.67 ± 0.89 years, body mass = 87.53 ±10.40 
kg, and height = 179.08 ± 7.94 cm). All subjects provided written informed consent for the study 
which  
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was approved by the Institutional Review Board. All subjects had at least one year of training 
with Olympic weightlifting variations. Subjects participated in one testing session and  
performed the H-HC in a variety of loading conditions as well as the SSS. The SSS was 
performed to allow for comparison of the H-HC to this aspect of sprinting. Prior to performing 
the H-HC and SSS, subjects completed a general and specific warmup. Subjects also received 
instruction, demonstration, and practiced the correct technique of the H-HC and the SSS.  
Practice consisted of three sets of three repetitions of the H-HC at 30%, 50%, and 70% of their 
estimated five repetition maximum load of the traditional hang clean. Subjects then performed 
five maximal effort SSS. The SSS was performed starting with a bilateral stance and subjects 
sprinted 10 meters. Subjects rested for five minutes prior to testing.  
During testing, subjects performed the H-HC and the SSS on two flush to the floor mounted 
force platforms (Accupower, Advanced Mechanical Technology, Inc., Watertown, MA, USA) 
(Figure 1). Data were collected at 1000 Hz. Two sets of one repetition each were performed 
for all H-HC loading conditions and for the SSS. Three minutes of rest were allowed between 
each H-HC test set, and one minute for each SSS test set. The order of all test exercises was 
randomized. 
 

 
Figure 1. Starting and landing position (catch phase) of the horizontal hang clean at 30% of the 
subject’s 5 repetition maximum.  

 
The peak vertical and horizontal anterior GRF were obtained for the test exercises. In addition 
to GRF data, horizontal displacement of the subject/barbell was determined using center of 
pressure measurements from the force platforms from the propulsive and landing phase of the 
H-HC.  Kinematic variables such as subject/barbell horizontal anterior displacement and 
velocity were derived from the center of pressure data. Data were analyzed with a statistical 
software program (SPSS 27.0, International Business Machines Corporation, Armonk, New 
York) using an ANOVA with repeated measure for exercise condition as a between subjects 
factor. Bonferroni adjusted pairwise comparisons were used to identify specific differences in 
horizontal GRF, vertical GRF, propulsive H:V, subject/barbell displacement, and velocity 
between the H-HC conditions. Pearson’s correlation coefficients were used to assess the 
relationship between the propulsive H:V and subject/barbell horizontal displacement during H-
HC conditions, and the relationship between the kinetic characteristics of the H-HC conditions 
and the first and second steps of the SSS. The trial-to-trial reliability of each dependent variable 
was assessed using average measures Intraclass correlation coefficients and analysis of 
variance for each of the dependent variables. The a priori alpha level was set at p ≤ 0.05.  
 
RESULTS: Analysis of the kinetic variables for the H-HC conditions revealed significant main 
effects for the propulsive phase vertical GRF (p = 0.001, d = 1.00, ηp² = 0.74) and  H:V (p = 
0.001, d = 0.99, ηp² = 0.54). There was no significant main effects for propulsive phase 
horizontal GRF (p > 0.05). There was no significant differences between H-HC conditions for 
landing phase horizontal or vertical GRF or H:V (p > 0.05). Data and results of the post-hoc 
analysis are shown in Table 1.  
The analysis of the kinematic variables demonstrate significant main effects between the H-
HC conditions for subject/barbell displacement (p ≤ 0.001, d = 1.00, ηp² = 0.60) and 
subject/barbell velocity (p ≤ 0.001, d = 0.79, ηp² = 0.33). Data and results of the post-hoc 
analysis are shown in Table 2. 
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The propulsive H:V of the first step of the SSS was correlated to the propulsive H:V of the H-
HC 30 (p = 0.04, r = 0.55) but not the propulsive H:V of the H-HC 50 or H-HC 70 (p ˃ 0. 05). 
The propulsive H:V of the second step of the SSS was correlated to the propulsive H:V of the 
H-HC 30 (p = 0.03, r = 0.63), but not for the propulsive H:V of the H-HC 50 or H-HC 70 (p ˃ 0. 
05). The propulsive H:V of all H-HC test conditions were correlated with each other (p ≤ 0.01, 
r ˃ 0.70). Intraclass correlation coefficients were calculated for all dependent variables, with all 
values ranging between 0.82 and 0.99 (all p values > 0.05). 
 
Table 1. Comparison of the kinetics of the propulsive and landing phases between the three H-
HC conditions (N = 12). 

             H-HC 30            H-HC 50  H-HC 70 

Propulsive H-GRF (N) 383.68 ± 91.94 376.16 ± 64.48 379.99 ± 51.98 
Propulsive V-GRF (N)a  1924.67 ± 301.80 2108.59 ± 340.65 2376.83 ± 313.69 
Propulsive H:Vb 0.20 ± 0.04 0.18 ± 0.03 0.16 ± 0.02 
Landing H-GRF (N) 438.61 ± 97.41 406.42 ± 134.39 393.25 ± 170.92 
Landing V-GRF (N) 1656.29 ± 292.54 1655.71 ± 278.17 1748.58 ± 300.55 
Landing H:V 0.27 ± 0.08 0.25 ± 0.09 0.23 ± 0.10 

H-HC 30 = horizontal hang clean at 30% of subject’s estimated five repetition maximum of traditional hang clean; 
H-HC 50 = horizontal hang clean at 50% of subject’s estimated five repetition maximum of traditional hang clean; 
H-HC 70 = horizontal hang clean at 70% of subject’s estimated five repetition maximum of traditional hang clean. 
GRF = ground reaction force; Propulsive H:V = ratio of horizontal anterior to vertical ground reaction force during 
propulsive phase; Landing H:V = ratio of the horizontal posterior to vertical ground reaction force during the 
landing phase; V = vertical; H = horizontal; Propulsive H = horizontal anterior; Landing H = horizontal posterior.  
aSignificant difference between H-HC 30 and HHC 50 and H-HC 30 and H-HC 70 (p < 0.01) 
bSignificant difference between H-HC 30 and H-HC 70 (p < 0.01) 

 
Table 2. Comparison of subject/barbell displacement and velocity between the three H-HC 
conditions (N = 12). 

  HHC 30     HHC 50  HHC 70 

Displacement (m)a 1.24 ± 0.23 1.03 ± 0.23 0.90 ± 0.21 
Velocity (m·s-1)b 2.05 ± 0.78 1.82 ± 0.61 1.70 ± 0.62 

H-HC 30 = horizontal hang clean at 30% of subject’s estimated five repetition maximum of traditional hang clean; 
H-HC 50 = horizontal hang clean at 50% of subject’s estimated five repetition maximum of traditional hang clean; 
H-HC 70 = horizontal hang clean at 70% of subject’s estimated five repetition maximum of traditional hang clean. 
aSignificant difference between H-HC 30 and HH-C (p = 0.02) and H-HC 30 and H-HC 70 (p = 0.002) 
bSignificant difference between H-HC 30 and H-HC 70 (p = 0.038).   

 
DISCUSSION: This is the second known study to assess the H-HC, and the first to evaluate 
the effect of H-HC load on kinetic and kinematic variables for the purpose of evaluating the 
potential transfer of training to sprinting starts. This study demonstrates that there are 
significant differences in H-HC V-GRF, propulsive H:V, subject/barbell displacement, and 
subject velocity based on exercise load. Performing the H-HC 30 was superior to the higher 
load conditions for most of these variables.  
Previous research assessed the conventional hang clean and typically focused on only on V-
GRF (Comfort et al., 2011; Souza et al., 2002). However, vertically oriented exercises are 
believed to have limited transfer of training to athletic activities such as sprinting (Young et al., 
2015). As a result, whole body horizontally-oriented exercises have been recommended 
(Young et al., 2015) and exercises such as the H-HC have been investigated, demonstrating 
kinetics more similar to sprinting than the traditional hang clean (Gold et al., 2020). 
Results of the present study demonstrate a propulsive H:V of .20 for the H-HC 30 condition. 
Previous research revealed an propulsive H:V of .16 for the H-HC in a testing condition of 70% 
of the 5RM load (Gold et al., 2020). That H:V is identical to the finding for the H-HC 70 in the 
present study. Previous research assessing the propulsive H:V of a variety of horizontally 
oriented plyometric exercises demonstrated H:V in a range of .20 to .29 (Duffin et al., 2019). 
Thus, the H-HC 30 in the present study is similar to that of some horizontal plyometrics. 
Previous research shows that the propulsive H:V during weighted sled towing ranged from .28 
to .39 and increased with load (Kawamori et al., 2014). While, training exercises such as the 
H-HC and plyometrics do not produce propulsive H:V that are identical to sprinting, they are 
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more similar than other strategies that are performed more fully in the vertical plane such as 
the traditional hang clean, which yielded a propulsive H:V of .09 (Gold et al., 2020). In fact, in 
the present study, the propulsive H:V of the H-HC 30 was correlated with the sprint start H:V. 
The propulsive H:V of sprinting in the present study was .41. This finding is similar to previous 
findings of .36 to .40 (Duffin et al., 2019).    
In the present study subject/barbell velocity and displacement was highest in the 30% load 
condition. Subject/barbell horizontal displacement for the H-HC 30 was 98.39% larger than the 
traditional hang clean and is correlated with the H:V at the start of sprinting (Gold et al., 2020). 
Research with the traditional hang clean also displayed differences in RFD due to exercise 
load (Suchomel et al., 2014).  
Result of this study are consistent with other research demonstrating that V-GRF were higher 
as a function of increasing hang clean loads (Jensen & Ebben, 2002). Landing kinetics of the 
present study were not significantly different between conditions.  
 
CONCLUSION: To maximize the transfer of resistance training to sprinting, practitioners 
should use exercises such as the H-HC. When doing so, heavier loads will result in greater V-
GRF. However, lighter loads such as 30% of the 5 RM should be used if the goal is developing 
a propulsive H:V that is correlated to the propulsive H:V associated with the sprint start, and to 
maximize subject horizontal anterior displacement and velocity.  
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