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Detrended fluctuation analysis (DFA) and Higuchi’s fractal dimension (HG) have previously 
been used to characterise motor control during gait. However, there is limited evidence of 
either being applied to running gait within a race environment. The aims were to: i) examine 
statistical persistence and fractal dimension of stride dynamics during a marathon, and ii) 
explore the relationship between DFA and HG for running gait. Therefore, DFA and HG were 
applied to stride interval series of each km of the 2018 TCS New York Marathon. Results 
showed consistent persistence, variability, and fractal dimension of stride interval series 
throughout the marathon with no significant differences observed between the beginning, 
middle, and end of the Marathon. Moreover, HG was shown to correlate strongly with DFA, 
which may be useful in monitoring motor control using fractal analyses in real time, by 
decreasing computation time and improving robustness to changing time series lengths. 
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INTRODUCTION: Healthy running gait, although stable, is characterised by variable stride 
dynamics. Further to linear measures including standard deviation, average, and coefficient of 
variation, methods such as detrended fluctuation analysis (DFA) have been used to reveal 
important information about the time-dependent fluctuations within a time series. Briefly, DFA 
can be used to quantify the statistical persistence or anti-persistence of a time series returning 

a scaling exponent (DFA-). A time series can be considered persistent if deviations in a time 
series are followed by deviations in the same direction (e.g., a short stride interval followed by 
a short stride interval), and anti-persistent if deviations are more likely to occur in the opposite 

direction (e.g., a short stride interval followed by a long stride interval). A DFA- value 
approaching 1 indicates the presence of statistical persistence (i.e., stride times that persist 
over many strides that result in a predictable pattern), <0.5 indicates an uncorrelated series 
(i.e., a short stride time followed by a long stride time), and >1.0 indicates statistical persistence 
(i.e., long-range correlations that do not decay with increasing time lag). Importantly, these 
measures can be used to elucidate underlying motor control function.  
Previously, DFA has been used to quantify changes in gait dynamics in response to fatigue 
(Meardon et al., 2011; Mo & Chow, 2018; Bellenger et al., 2019). Statistical persistence has 
been shown to decrease over the course of a run performed at 5 km race pace (Meardon et 
al., 2011) and over a prolonged run, at a velocity equivalent to anaerobic threshold (Mo & 
Chow, 2018). Moreover, reductions in the persistence of stride intervals were noted after an 
overreaching protocol (Bellenger et al., 2019). These findings demonstrate statistical 
persistence of stride intervals, and therefore motor control, is affected by fatigue. Further to 

estimation of DFA-, methods have been developed to determine the fractal dimension 
including Higuchi’s Fractal Dimension (HG). However, HG has seldom been applied to gait 
research and has not previously been applied to running gait. HG is less affected by time series 
length when compared to DFA (Phinyomark et al., 2020). This has implications for stride 
dynamics as individuals will exhibit variable stride frequencies over a given distance. Briefly, 
HG computes the fractal dimension (DHG), which is the extent to which the curve that 
represents the analysed signal on a plane and returns a value between 1 and 2 (Phinyomark 
et al., 2020). A value of 1 corresponds to a regular time series, whereas Gaussian-type noise 
returns different values: 1.5 for Brownian, 1.8 for pink, and 2.0 for white noise. In contrast to 
other methods including DFA, HG may be more suitable for analysis of short time series of a 
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non-stationary signal (i.e., stride dynamics) and only requires one input parameter. The 
robustness and speed of HG may suit it to implementation of real-time feedback systems in 
consumer wearable devices during running. This may provide runners with an indication of 
fatigue status without the need for invasive measures, or the use of more lengthy algorithms 
prone to changes dependent on time series length (i.e., DFA). 
The popularity of footworn accelerometers, commonly known as foot pods, capable of 
sampling at high frequencies, gives the possibility of analysing stride interval characteristics in 
the field. Measures of fractal scaling have been applied to stride time series for longer events 
including a half marathon and marathon (Hoos et al., 2014; Norris et al., 2016). However, the 
utility of analysing the whole time series (Hoos et al., 2014) or sections equivalent to a third of 
the event (Norris et al., 2016), may be limited when considering the effects of fatigue. Given 
the onset of fatigue may be manifested at various points throughout a marathon due to dynamic 
pace fluctuations (Casado et al., 2020) and other processes, and stride interval dynamics are 
sensitive to fatigue (Meardon et al., 2011; Mo & Chow, 2018), a more granular analysis is 
warranted. The use of shorter time series may permit ongoing feedback with smaller 
computational demand. Interestingly, Norris et al. (2016) demonstrated the potential utility of 
DFA in a real-time monitoring system using 8 min epochs. However, this method resulted in 
differing numbers of strides per epoch, and thus different time series lengths being analysed. 

This has been shown to affect the accuracy of DFA- estimation. Therefore, the aim of this 
study was twofold. The primary aim was to examine variability, statistical persistence, and 
fractal dimension of stride dynamics over the course of a marathon. Given the robustness and 

rapid computability of HG, a secondary aim was to compare the estimation of DFA- and DHG. 

METHODS: The anonymised dataset for this study consisted of activity logged by 14 
participants (10 M; 4F, age: 38.3 ± 8.5 yr; finishing time: 210.49 ± 35.33 mins) running the 
2018 TCS New York Marathon. The study was reviewed by the ethics board at the University 
of Hertfordshire and deemed to be exempt from ethical approval since no data were 
collected. Each participant wore RunScribeTM IMUs (Scribe Labs Inc., San Francisco, CA, 
USA) on trainers in line with manufacturer’s instructions. RunScribeTM IMUs contain a tri-axial 
accelerometer, magnetometer and gyroscope, and a barometric altimeter. Data were recorded 
bilaterally at 500 Hz continuously during the entire 42.2 km. Data from the right foot were used 
for further analysis. Interstride interval (SINT) was defined as the time between consecutive foot 
strikes by a proprietary algorithm (Scribe Labs Inc., San Francisco, CA, USA). 

For each km, DFA-, DHG, standard deviation (SD), coefficient of variation (CV%), and means 
were computed for SINT using MATLAB (v2021a, Mathworks, Cambridge, UK). The DFA and 
HG algorithms have been described elsewhere (Phinyomark et al., 2020). The parameters for 
DFA and HG were determined a priori by analysing 20 signals of 240 data points using the 

ColoredNoise System object in MATLAB. The signals included white noise (DFA- ≃ 0.5, DHG 

≃ 2.0), pink noise (DFA- ≃ 1.0, DHG ≃ 1.8), and Brown noise (DFA- ≃ 1.5, DHG ≃ 1.5). The 
parameters that exhibited the smallest deviation from the theoretical values and lowest 

variability were used in subsequent analysis. Therefore, DFA- was calculated using box sizes 
ranging from 4 to 60 with an arithmetic progression of 6, and a polynomial order of 1, and DHG 

was computed using a maximum interval length of 16. 

As DFA- is sensitive to changes in series length, only the 240 consecutive strides 
corresponding to the midpoint of each km, were analysed for each participant. The first 20 
strides of the race were omitted to avoid start up effects and the last 195 m were also omitted. 
Outliers from each time series were removed if they were outside 1.5 times the inter-quartile 
range. This allowed for stride dynamics attributable to intrinsic factors to be analysed, rather 
than datapoints affected by external factors such as slowing at aid stations or Bluetooth 
dropout. The median number of outliers removed was 10. A repeated measures analysis of 
variance (ANOVA) was used to test for differences between the beginning (5 km), middle (23 
km), and end (37 km), representing the flattest sections of the race. Data were tested for 
normality using the Kolmogorov–Smirnov test. Non-normal data were log transformed. 
Sphericity was tested using Mauchly’s test, with Huynh–Feldt corrections made for violations 
(P < 0.05). All statistical analyses were performed in SPSS (v27, IBM, NY, USA). An alpha 
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level for significance was set at P < 0.05. Data are presented as means ± SD. Associations 

between DHG and DFA- were explored by using Spearman’s correlation coefficient. 

RESULTS & DISCUSSION: There were no significant effects for section on measures of 
variability, statistical persistence, and fractal dimension of SINT between the beginning, middle 
and end of the marathon (Table 1). Figure 1 shows that measures of statistical persistence 
and fractal dimension, as well as traditional measures of variability, exhibited steady state 

behaviour and with little variation throughout a marathon. The DFA- and DHG values showed 
a predictable and strongly persistent time series across all time points. Our results confirm the 

findings of Norris et al. (2016), which showed no significant change in DFA- during a 
marathon. However, the current study showed medium to large effect sizes, suggesting that 
persistence, fractal dimension, and mean SINT, may be affected by fatigue experienced during 
a marathon. The lack of significance may be a consequence of the small sample size. 

Table 1. Measures of DFA-, DHG, standard deviation, coefficient of variation, and mean of 
interstride interval at distance intervals corresponding to the beginning (5 km), middle (23 km) 
and end (37 km) of the marathon.  Mean ± SD. 

 Beginning Middle End η2 P 

DFA- 0.804 ± 0.134 0.802 ± 0.128 0.759 ± 0.134 0.063 0.427 

DHG 1.928 ± 0.047 1.928 ± 0.063 1.953 ± 0.045 0.133 0.156 
SD 8.893 ± 2.207 8.544 ± 1.988 8.545 ± 1.868 0.019 0.775 
CV 1.294 ± 0.322 1.237 ± 0.301 1.238 ± 0.305 0.023 0.736 
Mean (s) 0.688 ± 0.351 0.692 ± 0.399 0.695 ± 0.396 0.148 0.125 

Previously, significantly reduced DFA- has been shown during running tasks (Meardon et al., 
2011; Mo and Chow, 2018). The differences in findings may be due to disparities in task 
demands, with both studies designed to induce high levels of metabolic perturbation. As 
changes to motor control have been shown to be dependent on metabolic rate (Pethick et al., 
2016), stride dynamics may also be affected as a system output. Marathons are typically 
performed in the moderate and heavy intensity domains, where a metabolic steady state can 
be attained (Poole et al., 2016). It is unlikely that participants performed a significant portion of 
the race in the severe intensity domain, as to do so would result in accelerated fatigue and a 
marked decrease in pace, not seen in the current data set. However, given previously 
documented fatigue mediated changes to stride interval persistence (Bellenger et al., 2019) it 
is likely that central fatigue, as well as muscle damage, also mediate stride interval dynamics. 
Further research should examine whether stride dynamics change prior to a noticeable 
deterioration in pace during the marathon. The increase in mean SINT, evidenced by a large 
effect size, may be an adaptation to fatigue to potentially alter the degrees of freedom to 
mitigate the possibility of injury or harm. 

 
 

 

 

 

 

 

 

 

 
Figure 1. Stride interval time series from a representative participant (top panel) and mean 
changes to DFA-a and DHG of interstride intervals throughout the marathon of all participants 
(bottom panel). Shaded areas denote SD. 
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Correlation coefficients ρ between estimations of DFA- and DHG from all km intervals and 
participants were -0.866 (P < 0.001) as shown in Figure 2. The strong negative linear 

relationship between DFA- and DHG evident in the current study is congruent with the findings 
of Phiyomark et al. (2020), which showed a similar relationship (ρ > 0.8) during walking. 
Therefore, DHG could be a viable measure of stride interval characteristics during running, 
providing practitioners and researchers with a quick and robust measure of non-linear stride 
interval properties. This could be applied to wearable technology where simple data processing 
methods would be desirable to reduce computational demand and provide prompt real-time 
feedback. However, it has been suggested that estimations of both fractal exponent (e.g., DFA-

) and fractal dimension (e.g., DHG) could be in conjunction to provide a complete classification 
of gait (Dierick et al., 2017). Further research should examine this potential complimentary 
method of analysis and its utility during running gait. 
 

 

 
 

 

 
 
 

 
 
 

 

Figure 2. Correlation coefficients ρ between estimated DFA- and DHG on the entire dataset. 

CONCLUSION: Our findings show that stride time dynamics remain consistent throughout a 
marathon. However, further research should elucidate whether these parameters change in 
line with maladaptive pacing and resultant accumulation of fatigue. The strong negative 

correlation between DFA- and DHG, suggests that DHG may provide practitioners and 
researchers with a viable alternative to monitor stride time dynamics with shorter data sets. 
Moreover, the fast computation of HG can provide real-time analysis of data which may be 
useful for real time monitoring of motor control in athletes in conjunction with foot pods. 
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