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This study outlines a technique to leverage the wide availability of high resolution three-
dimensional (3D) motion capture data for the purpose of synthesising two-dimensional (2D) 
video camera views, thereby increasing the availability of 2D video image databases for 
training machine learning models requiring large datasets. We register 3D marker 
trajectories to generic 3D body-shapes (hulls) and use a 2D pose estimation algorithm to 
predict anatomical landmark keypoints in the synthesised 2D video views – a novel 
approach that addresses the limited data available in elite sport settings. We use 3D long 
jump data as an exemplar use case and investigate the influence of; 1) varying 
anthropmetrics, and 2) the 2D camera view, on keypoint estimation accuracy. The results 
indicated that 2D keypoint determination accuracy is affected by body-shape. Frontal plane 
camera views result in lower accuracy than sagittal plane camera views.  
KEYWORDS: machine learning, pose estimation, simulation.

INTRODUCTION: Biomechanical analysis of motion outside the laboratory is becoming 
increasingly popular thanks to the wide availability of high-resolution cameras and open access 
2D and pseudo 3D pose estimation algorithms. These pose estimation algorithms, e.g. 
DeepLabCut or OpenPose, are based on Convolutional Neural Networks (CNN) that determine 
keypoints which identify 2D anatomical landmarks (AL), from standard video data. They have 
been trained on large 2D standard video databases of manually digitised images – a common 
and longstanding approach of the sports biomechanics community. By applying pre-trained 
CNN models to newly collected video data, the time burden for AL keypoint determination may 
be significantly reduced, with no loss to accuracy (Cao, Hidalgo, Simon, Wei & Sheikh, 2019). 
Importantly, this would result in increased time availability for interpretation, translation and 
intervention between the sport biomechanist, coach and athlete.  
In addition to obtaining information about kinematic motion parameters, the estimation of 
kinetic parameters using 2D video data inputs into machine learning algorithms is of high 
interest as it provides insight surrounding an athlete’s internal biomechanical load (Morris, 
Mundt, Mian & Alderson, 2021; Mundt, 2021) and compliments applications of machine 
learning using 3D optoreflective motion capture trajectories, or inertial sensor data, as inputs 
(Johnson, Alderson, Lloyd & Mian, 2019; Mundt, Koeppe, David, Witter, Bamer, Potthast & 
Markert, 2020; Kipp, 2020). Importantly, the ecological validity of unobstructive 2D video as a 
capture and analysis medium, that is capable of providing high resolution data ouputs, is the 
holy grail of the sports biomechanics discipline, especially if we are to further our understanding 
of injury mechanisms on-the-field (Weir, Alderson, Smailes, Elliott & Donnelly, 2019).  
Since the late 1970s the high resolution and fidelity of outputs required by the biomechanists 
has required testing to be undertaken in laboratory settings using 3D motion capture 
techniques, electromyography or other highly specialised equipment. Computer and technical 
limitations have seen the vast bulk of this 3D motion data collected without concurrent 2D video 
streams. Consequently, these datasets are not ideal inputs to train machine learning models 
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for 2D video pose estimation application. However, historic 3D motion capture data is clearly 
valuable, especially when considering the small and elite cohort this data originates from.  
In this paper we propose a framework to simulate 2D video data images by leveraging existing 
3D motion capture trajectory data. We will also assess the sensitivity of the pose estimation to 
the body-shape used to animate 3D motion capture data across various camera views.  

METHODS: Eleven long jump trials of five athletes (3 trials of athlete 1, 1 trial of athlete 2, 2 
trials of athlete 3, 4 trials of athlete 4 and 1 trial of athlete 5) recorded by an author of this paper 
in a previous project were used in this study (for details see Willwacher, Funken, Heinrich, 
Müller, Hobara, Grabowski, Brüggemann & Potthast, 2017). Height, length, width and/or 
circumference of feet, shanks, thighs, torso, arms, neck and head were measured before 
motion capture. The 3D motion capture data contained the final three steps of the run-up 
(approach), the take-off and the first component of the flight phase. The 3D motion capture 
data was modelled in Vicon Nexus using a standard biomechanical model and joint centres 
determined. An animated rig was fitted to these (Figure 1) using the scripting language Python 
with Blender (version 2.79). In a subsequent step, a generic 3D avatar body-shape was fitted 
to the rig using the MakeHuman plug-in to Blender. The body-shape will now be driven by the 
motion of the rig. 

 
Figure 1 Workflow to estimate AL keypoints from 3D motion capture trials: (A) the motion capture 
data (.c3d files) are used to calculate joint centres and (B) animate a rig. (C) A human body-shape 
is morphed to the rig. The animation is able to be captured from varying planar camera views 
within the software and the 2D views are used to (D) estimate 2D AL keypoints in the reference 
frame of each image. 

This workflow enables the automated creation of video data from motion capture data. The 
initial personal anthropometric data of the athlete provided the ground-truth 3D body-shape. 
This initial data along with three varying human body-shapes (Figure 2) based on standard 
anthropometric data displaying the 5th, 50th and 95th percentile (Fryar, Gu & Ogden, 2012) were 
morphed to the rig and coupled to the rig’s movements. The animated body-shape was 
captured from eight different planar camera views within the software: frontal, anterior sagittal 
(AS), true sagittal (TS), posterior sagittal (PS), back, and contralateral to the original view from 
posterior sagittal (PSL), true sagittal (TSL) and anterior sagittal (ASL). The 2D video views 
were recorded at a resolution of 960 x 540 px and a frame rate of 100 Hz. Finally, 25 pose 
estimation AL keypoints were determined in all video frames using OpenPose (Cao et al., 
2019). Keypoints are provided as pixel coordinates in each image’s (u, v) reference frame with 
the origin in the top left corner of each image. The difference between the estimated keypoints 
of the four different body-shapes (in the same camera views) was compared to assess the 
influence of body-shape on keypoint location accuracy.  

 
Figure 2 Varying human body-shapes assessed based on anthropometric data (Fryar et al., 2012). 
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RESULTS: The mean difference between ground truth athlete body-shape and the imposed 
5th, 50th and 95th percentile body is displayed in Figure 3. The smallest mean differences and 
lowest variation were observed between the ground-truth athlete body-shape and the; 5th 
percentile (mean absolute difference 1.82±2.18 px), the largest for the 95th percentile 
(2.73±2.53 px) and the medium difference for the 50th percentile (2.34±2.33 px). 

 
Figure 3 Violin plots showing the distribution of the mean differences in keypoint estimation 
between the athlete ground-truth body-shape and the three imposed percentile body-shapes (5th, 
50th, 95th) across all trials. Mean and standard deviation are represented by horizontal dashed 
and dotted lines respectively. 

Figure 4 shows the mean difference between the estimated AL keypoints of all individual trials 
across the eight camera views, for all five athletes. The largest mean differences can be found 
in the frontal plane view (rear aspect) (mean absolute difference 4.54±3.59 px), and the 
smallest mean differences in the anterior sagittal view (0.95±0.59 px).  
 

  
Figure 4 Distribution of mean AL keypoint estimation differences for varying body-shapes across 
eight camera views; anterior sagittal from the left (ASL), anterior sagittal from the right (AS), 
back, front, posterior sagittal from the left (PSL), posterior sagittal from the right (PS), true 
sagittal from the left (TSL) and true sagittal from the right (TS), for all five athletes. 
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DISCUSSION: Eighty-eight animated videos and four different body-shapes applied to five 
athletes were used to estimate keypoints for eleven long jump trials using OpenPose. The 
results showed that off-the-shelf 2D pose estimation models do appear to be sensitive to 
human body-shape, although shapes with a higher similarity, like the athelete specific shape 
and a generic 5th percentile shape in this study, lead to a higher agreement in keypoint location.  
As the predefined body-shape is scaled and morphed to the rig, the height of all hulls is 
constant and only the influence of differences in girths are assessed. Based on our findings, 
when using 3D motion capture data to generate 2D camera views the body-shape selection 
can be simplified as it is not necessary to develop personalised human body-shapes to achieve 
accurate results for the estimation of keypoints. 
We also found that differences between AL keypoint estimation occur more frequently for some 
camera views, especially the one from the rear. In this camera view, the pose estimation 
algorithm confuses the right and left leg often towards the end of the trial — at beginning of the 
flight phase. The impact of this finding is likely dependent on application, e.g. the estimation of 
ground reaction forces during long jump take-off where only the approach and take-off frames 
are relevant would not be adversely impacted by pose estimation errors during the flight phase. 
Dependent on the application, a concise hygiene check of the AL keypoint data from the pose 
estimation model is necessary.  

CONCLUSION: This study outlined a workflow pipeline to enable to use of 3D motion capture 
data for the synthesis of 2D video data from a near-infinite number of camera views. When 
using these views to estimate AL keypoints using off-the-shelf pose estimation models the 
keypoint location did not appear to be sensitive if a similar body-shape is applied. Based on 
the motion analysed, the accuracy of pose estimation algorithms needs to be reviewed 
carefully and flawed trials need to be excluded.  
The recreation of animated 3D athletes and volumes within software facilitated the synthesis 
of 2D camera views that did not initially exist. The creation of these views and their use in 
increasing the size of 2D video databases, especially in cases where limited data is available 
as is commonly the case in elite sport, represents a novel and exciting approach to leveraging 
historical 3D data sets for field-based applications.  
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