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The accurate measurement of ground reaction forces (GRFs) is confined to laboratory-
based settings, posing an ongoing problem for sports biomechanists working in the field 
given the necessity of this variable for a variety of biomechanical modelling approaches. 
The ability to remote estimate on-field GRFs could facilitate the development of a tool that 
could positively impact the side-line management of athletes during match play. Using 
laboratory collected GRF side stepping and running data, alongside concurrently collected 
two-dimensional (2D) video, the aim of this study was to use a least squares estimator 
(LSE) matrix to estimate GRFs from 2D video. Results of r>0.8 were found for the vertical 
and horizontal GRF components which was slightly lower than the r>0.9 observed for the 
higher complexity convolutional neural network (CNN) approach which was used as a 
comparator model.  These results provide early support for the efficacy of remote on-field 
estimation of GRFs determined from 2D video footage in isolation. 
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INTRODUCTION: Anterior cruciate ligament (ACL) rupture is one of the most debilitating 
injuries that an athlete of any playing level, can sustain and is most commonly a career-ending 
event (Dallalana et al., 2007). The ACL injury mechanism can be considered an excessive 
load related event (Lloyd & Buchanan 2001). Alongside movement technique factors, studies 
have shown high knee joint moments, specifically external knee valgus (abduction) and 
internal rotation moments during unplanned sidestepping tasks, will increase ACL injury risk 
(Dallalana et al., 2007). Traditional estimation of joint loads during unplanned sidestepping 
tasks relies on an inverse dynamics approach that requires the direct recording of the forces 
between the foot and the ground. To achieve this, researchers can either bring athletes into a 
laboratory environment where ground embedded force plates directly record all components 
of the GRFs and moments (Besier et al., 2001), or instrument an athletes’ shoes with force 
transducers, or other sensors, to directly record or estimate these forces (Debbi et al. 2012, 
Price et al., 2016). Both approaches limit the ecological validity of collecting such data as they 
result in interference to the environment or successful task completion. Recent advances in 
the estimation of GRFs from wearable sensors (Karatsidis et al., 2016) are promising, 
however, these have only been tested in low velocity walking gait scenarios, have only 
estimated the vertical force component (Fz) (Wundersitz et al., 2013), and are limited in 
application by low-fidelity, low-resolution capture whilst overfitting simple movement patterns 
(Camomilla et al., 2018, Johnson et al, 2018 a,b). Recent advances in computer vision and 
data analytics provides an opportunity to bypass the traditional GRF data collection limitations. 
Johnson and colleagues (2018 a,b) recently used a pre-trained CaffeNet convolutional neural 
network (CNN) to estimate three-dimensional (3D) GRFs and moments for sidestepping. This 
work, while one of the first papers to establish the potential for machine learning to predict 
biomechanical data from related variables, is still reliant on laboratory collected marker data. 
The aim of the present study is to create a novel LSE matrix approach to predict GRFs from 
standard commercial grade 2D video, and to evaluate the lower computational method to a 
higher complexity CNN method. 
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METHODS: This study comprised of an experimental data collection phase and a computer 
model development phase. The study design was such that the LSE estimated GRFs were 
compared to the ground truth force plate data, and to assess model performance, was also 
compared to the CNN model of Johnson et al., (2018) which required traditional three-
dimensional (3D) trajectory marker inputs.  
 

Fifteen semi-professional and amateur female Australian Rules Football players (23  3.7 

years, 62.7  5.4 kilograms) attended a testing session at the University of Western Australia’s 
(UWA) sports biomechanics laboratory. All participants were injury free and provided informed 
consent prior to testing in accordance with UWA Human Ethics approval (RA/4/1/2593). A 23 
camera Vicon MX system (Vicon Peak, Oxford Metrics, Oxford, UK) collecting at 200Hz and 
synchronised with a 1.2 m x 1.2 m AMTI force plate (Advanced Mechanical Technology Inc., 
Watertown, MA) sampling at 2000 Hz, was used to capture 3D motion and force data. Three 
high-definition 2D video cameras (Sony HDR-CX700, 50 Hz) captured all trials and were 
positioned directly to the right of the force platform in the following locations: a) a true sagittal 
(TS) view, b) slightly anterior to true sagittal – named anterior sagittal (AS) view, and c) slightly 
posterior sagittal (PS) to the true sagittal view. Participants were affixed with 67 retro-reflective 
markers as per UWA’s custom marker set and model, however only eight of these markers 
were necessary inputs required by the CNN model of Johnson et al. (2018) (Caffenet). 
Participants performed a randomised series of sidesteps, crossover sidesteps and straight-
line runs. Timing gates were positioned three metres and five metres from the posterior edge 
of the force plate to trigger a large arrow task type stimulus when the participants were 0.5 m 
from the force plate. A total of 476 successful 3D motion capture trials were captured and 90% 
(n=428) were fed into the pre-trained CaffeNet prediction model of Johnson et al. (2018). Once 
passed through, the correlation (r) values between the predicted and ground truth waveforms 
were used as the comparison output to the new LSE method.  
 

An overview of the computer model development phase is presented in Figure 1. To begin 

1,428 2D videos passed through data hygiene checks and were labelled according to camera 

view, trial number and participant. For each video, frames were extracted as individual .png 

images using an FFmpeg script in MATLAB. Manual visual detection of foot strike (FS) and 

the foot off (FO) event frames was completed for all videos to identify stance phase, a process 

serving to sync and temporally normalise the video and force plate data data. Prior to 

developing the LSE matrix a surrogate projected 2D centre of mass (COM) was identified in 

each .png frame using a weighted image centroid calculation. This was to establish the 

correlation correspondence of the vertical and horizontal components (Cx, Cy) of the centroid 

and the GRFx,y,z waveforms. 2D surrogate COM trajectories for each individual frame were 

segmented from the background using an average frame padding technique in MATLAB.   

 

 

 

 

 

 

 

Figure 1. Computer model development: 2D video processing, 

through surrogate COM projection and the training and testing of 

the LSE matrix. 
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Custom MATLAB script calculated the average weighted image centroid and output Cx and Cy 

coordinate values for each silhouette frame. The LSE matrix was trained using 90% of the 

available 3D marker trajectory trials (n=428) by concatenating each trial’s AS, TS and PS 

camera view 2D surrogate COM (Cx and Cy) coordinate waveforms to the corresponding 

GRFx,y,z waveforms. This assembled the computational matrix for the LSE using non-linear 

regression. Transformation required the centroid and GRF matrices to be unit vector 

normalised (same dimension, length and height). GRF data vectors were down sampled by a 

factor of 10 to match the sample length of the centroid values. Centroid matrices were then 

repeated for each Fx , Fy, and Fz components, with separate and unique matrices computed 

for each waveform. The training set was passed through the LSE model to extract the vector 

features to estimate Fx , Fy, and Fz independently. The final 10% (n=48) of the concatenated 

trial centroids remained unseen until passed through the LSE model, thereby acting as the 

test validation set. Predicted waveforms of the test set were then compared with the Pearson 

correlation coefficients (r) calculated for each sidestepping and running trial estimated and 

ground truth GRFx,y,z(mean). LSE performance (r) was also compared against those obtained 

using the pretrained CaffeNet model from Johnson et al., (2018). 

 
RESULT: The deep CNN pre-trained CaffeNet model of Johnson et al., (2018) reported strong 
correlation coefficients ranging from (0.75-0.946) for prediction of all GRFx, y, z components 
(Table 1). Predicted GRFx, y, z components from application of the LSE model reported strong 
positive r values ranging from 0.806-0.903 for the Fy and Fz forces. LSE model predictions for 
Fx derived from running and sidestepping concatenated centroids were poor (0.263 running; -
0.114 sidestepping) which was not unexpected given stage one results which failed to 
establish a relationship between the Cx,y trajectories and the Fx force component waveform. 
The LSE method was implemented to find a computational matrix which was able to predict 
Fy and Fz waveforms with correlation coefficients above 0.800 for both running and 
sidestepping manoeuvres.  
 
DISCUSSION: The LSE estimated values were below the CaffeNet model results (coefficients 
above 0.900) which for the purpose of this study served as the GRF prediction model 
comparison. By comparison, the LSE method developed in this study was a much-simplified 
machine learning matrix approach. The results show that a lower computational complexity 
method is able to perform to a similar standard as a deep learning model, likely due to the 
nature of the feature vectors that were entered into the LSE matrix to be learned by the model 

Figure 2. Silhouette Segmentation – Original segmented frames (top), segmented 

frames (bottom) with red dot denoting the estimated 2D surrogate COM and the small 

white dots denoting the tracking of its Cx, Cy trajectory components throughout 

consecutive representative frames of a trial. 
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(i.e. surrogate COM centroids). A benefit of using the LSE method was that control over which 
exact features were passed to the machine learning model were the sole input features (i.e. 
known meaningful COM surrogate coordinates). The poorer results of the LSE prediction for 
medio-lateral forces compared with the CaffeNet model suggests that the video derived 2D 
surrogate COM as a single feature vector for training a machine learning model is not 
adequate for the prediction of Fx (medio-lateral) forces.  
 

  

 

 

 

 

 

 

 

CONCLUSION: The LSE method was implemented to create feature vectors and a 

computational matrix to predict anterior-posterior and medial-lateral ground reaction forces. 

Prediction results were slightly poorer using a simple LSE approach when compared with the 

more complex CNN CaffeNet model, however this study provides initial evidence for the ability 

of lower complexity methods to produce similar strength results without the need for additional 

processing power or computational time. With further fine-tuning, feature engineering and 

increased trial input data these results will likely improve. The overall significance and practical 

relevance of these results establishes early-stage efficacy of markerless machine learning 

methods to predict GRF components from 2D video. This exploratory investigation suggests 

that methods with lower computational complexity, such as the LSE model, are a viable option 

for non-invasive, 2D video-based prediction of key GRF components. 
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  Ground Reaction Forces 

  Fy (r) Fz (r) Fx (r) 

LSE    
Sidestepping 0.903 (± 0.076) 0.865 (± 0.217) -0.114 (± 0.775) 

Running 0.806 (± 0.135) 0.816 (± 0.251 0.263 (± 0.829) 

CaffeNet (Johnson et al., 2012)    
Sidestepping 0.946 0.942 0.930 

Running 0.930 0.750 0.484 

Table 1. LSE and CaffeNet mean correlation coefficient (r) for Fx, Fy and Fz predictions 

compared with ground truth data. Sidestepping trial n=158; running trial n= 318 for both 

model analyses. 
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