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ABSTRACT

Computable Model Theory on Loops

By

Josiah Schmidt

We give an introduction to the problem of computable algebras. Speci�cally, the

algebras of loops and groups. We start by de�ning a loop and group, then give some

of their properties. We then give an overview of comptability theory, and apply it

to loops and groups. We conclude by showing that a �nitely presented residually

�nite algebra has a solvable word problem.
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1 Introduction

1.1 Loops

The Main goal of this thesis is to give an overview on the topic of computable alge-

bras. We focus mainly on two speci�c algebraic structures, loops and groups. We

start by giving the simplest algebra to de�ne, the groupoid. A groupoid is a set G,

along with a binary (closed) operation, called multiplication (product), denoted as

� . A groupoid G is denoted as pG, �q. If we consider a �xed element in G, say a, we

have that a can either be multiplied on the right hand side, or the left hand side by

an arbitrary element, say x, in G. We let xRpaq � a � x and xLpaq � x � a denote

these two possible choices. Both Rpaq, and Lpaq are translation mappings of the

groupoid G, and are used to de�ne a quasigroup.

We de�ne a quasigroups as a groupoid pG, �q where both of its translation mappings

are bijections. A mapping is a bijection if it satis�es two conditions (1) if for ev-

ery u1 P B there exists u P A such that u1 � uα (surjective) (2) whenever u � v

where u, v P A, we have that uα � vα (injective).Given the bijectivity of these

translation maps, we are able to de�ne two inverses mappings Rpaq�1 and Lpaq�1.

These mappings are not necessarily translation mappings, and are denoted as { and

z respectively. These mappings are de�ned as xzy � yLpxq�1 and x{y � xRpyq�1

for all x, y P G. With these three operations, �, {, and z, we are able to de�ne a loop.

A loop can be de�ne as a set G together with three binary operations p�qpzqp{q,

denoted as pG, �, z, {q, such that (1) a � pazbq � b, pb{aq � a � b for all a, b P G,

(2)azpa � bq � b, pb � aq{a � b for all a, b P G, (3) aza � b{b for all a, b P G. Al-

ternatively, a loop can be de�ned as a quasigroup with an identity element. An

identity element is an element e inside a set G that satis�es the conditions of the

Lpeq : GÑ G and Rpeq : GÑ G mappings.
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We go onto look at some special types of loops with varying properties. The inverse

property loop is de�ned as a loops satisfying the equations aλ � pa � xq � x and

px � aq � aρ � x. A loop that is Lagrange-like, de�ned by a �nite loop G of order

n having a subloop (A non-empty subset of a loop that is also loop) H of order m

such that divides m|n. A commutative loop is a loop where the translation maps,

Lpaq and Rpaq, satisfy Lpaq � Rpaq for all a P G. And lastly, an associative loop is

a loop where the translation maps, Lpaq and Rpaq, satisfy Rpa � bq � RpaqRpbq for

all a, b P G.

We call an associative loop a group. The reason is due to the additional structure

a loop acquires when this property is assumed. All associative loops satisfy the

inverse property, as well as a stronger form of the Lagrange-like property, known as

the strong Lagrange-like property. These are the most researched loop structures.

The second most commonly studied loop was introduced by the German mathe-

matician Ruth Moufang. This loop structure, known as a Moufang loop, satis�es a

property that is very similar to the associative property, called the Moufang identity.

We show these two loops to have solvable word problem in the �nitely generated

case.

1.2 Computablilty Problems in Loops

Computablility theory had its early beginnings in the early 1930's when Gödel gave

his famous Incompleteness Theorem. To prove this theorem the notion of a prim-

itive recursive function was given. This notion led Church, Kleene, Post, Turing,

and Gödel himself to de�ne what a recursive function was. These de�nitions, all

varying from one another, were proved to all give rise to exactly the same class of

mathematical functions. We can think of these functions as being a computer pro-

gram which has in�nite storage capacity, that gives an answer after a �nite amount

2



of time.

A similar notion to computability is the notion of computably listable set of num-

bers. Said another way, a set which can be generated by a computable procedure.

We examine these computably listable sets (which we call computably enumerable)

and de�ne the interesting set K.

The word problem for groups was a question proposed by Dehn in 1911. The ques-

tion came about while he was studying the fundemental groups of manifolds. The

question asked is simply stated, yet the proof was something never seen before that

time. Let G be a group generated by a �nite set of elements a, b, c, ..., and relations

rpa, b, c, ...q. Is there a uniform test or algorithm for deciding whether an arbitrary

word wpa, b, c, ...q � 1 in G. The proof or this question did not come until 44 years

later. It was independently proven by both Boone in 1959 and Novicov in 1955 that

the word problem for �nitely generated groups is unsolvable. This proof could not

have come about without the works of Marcov, Church, Post, Turing, Kleene, and

many others who laid the foundations of what we now call computability theory.

Without their precise de�nition of an algorithm, one could not prove a problem

unsolvable.

The word problem, however, is not a question unique only to groups. A similar

problem was posed by Thue dealing with an "abstract language" L. A language L

has a �nite alphabet a, b, c, ..., a �nite list of words composed by that alphabet, and

a dictionary. The dictionary is a listing of a �nite set of pairs of words. If a word w

is of the form uvt, where u, v, are words with t being a word paired with the word

s in the dictionary, then the word uvt can be transformed into the word uvs. If

there is a �nite sequence of transformations connecting two words w, and w1, then

we say they are equivolent in L. This new system gave rise to the word problem

for the Language L, where the question became whether an algorithm existed to

determine if two words were equivalent in L.

3



The structure theory of algebras naturally give rise to these word problems when the

algebra is de�ned by generators and relations. With this one can ask the question,

is the word problem solvable for other algebraic structures? Or, are there other

instances where the word problem would be solvable for groups, i.e. not �nitely

generated groups? We prove one such word problem in the case of all algebras that

are �nitely presented and residually �nite.

The citation method for this thesis is Chicago.
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2 Loops and Groups

We start this section o� by covering some of the rudiments of set theory needed

for this paper, as well as the notation which is used when referring to algebraic

structures throughout the paper. We then brie�y discus the simple algebra of a

groupoid, then work our way through quasigroups to land in loops. We stay long

enough in loops to go through some of their structures and substructures to help

give a general understanding of them, which will prove bene�cial in the later half of

the paper. We then head up to one of the most structured algebras, groups, where

we also go though some of their structures and substructure.

Let A,B, and C be sets. We write α : AÑ B to mean that α is a map or function

from A to B with A serving as the domain of α. If we have that α : AÑ B where

a P A, we write aα or paqα to denote that element in B to which a corresponds

under the action or application of α. If α : A Ñ B and β : B Ñ C we de�ne

the composite αβ by paqαβ � paαqβ for all a P A. Also, note that the composite

αβ : A Ñ C. We say that a map α : A Ñ B is surjective if for every u1 P B there

exists u P A such that u1 � uα. A map α : A Ñ B is injective if, whenever u � v

where u, v P A, we have that uα � vα. A map is bijective whenever it is both

surjective and injective. We let A
�

B denote the Cartesian product of A and B

where we regard the elements of A
�

B as ordered pairs pa, bq with a P A and b P B.

Also, let BA denote the set whose members are those maps from A to B which have

A as their domain, and let 2A be the set of all subsets of A. The cardinality of a set

S is denoted as |S|. Whenever A and B are �nite we have that |A
�

B| � |A||B|,

|BA| � |B||A|, and |2A| � 2|A|. We shall denote by ι the identity mapping ι : x ÞÑ x.

Lastly, when the product notation is in use, we let the juxtaposition ab stand for

a � b, and ab � d stand for pa � bq � d.

A groupoid is a non-empty set G with a binary (closed) operation. A set G with

5



�nite order p|G| � nq has npn
2q possible binary operations in total. This can be seen

by considering it's power set GG
�

G. Let pG, �q be a groupoid and let a be any �xed

element in G. Then the translation maps Lpaq and Rpaq are de�ned by

xLpaq � a � x and xRpaq � x � a

for all x P G. Thus Lpaq : G Ñ G and Rpaq : G Ñ G for each a P G. With these

two translation maps Lpaq, and Rpaq of a groupoid, we now de�ne a quasigroup.

De�nition 2.1 A groupiod pG, �q is called a quasigroup if the maps Lpaq : GÑ G

Rpaq : GÑ G are bijections for all a P G

From de�nition 2.1 we see that if the groupoid pG, �q is a quasigroup, given any two

elements in G the third element is uniquely determined in G. Also, given that the

mappings L(a) and R(a) are bijective, quasigroups satisfy the cancellation laws (i.e.

for a, x, y P G, x � a � y � a implies that x � y, and a � x � a � y implies that x � y).

We now record this observation in the following theorem.

Theorem 2.1 Let pG, �q be a quasigroup. Then for pa, bq P G � G there exists a

unique px, yq P G�G so that a � x � y � a � b (unique solvability)

Proof: Assume for contradiction that the ordered pair px, yq was not unique. This

would mean that there existed another ordered pair pr, sq P G such that a � r �

a � x � s � a � y � a � b. However, the translation maps Rpaq and Lpaq of a quasi-

group are bijections. Hence, having a � r � a � x � b implies x � r, and having

s � a � y � a � b implies that y � s which is a contradiction of the of the assumption

that the ordered pair px, yq was not unique. ■

We also make note of the left and right inverse mappings, Lpaq�1, and Rpaq�1, that

come about from the bijectivity of Lpaq, and Rpaq. We denote these mappings as z

and / respectively. We de�ne these mappings as follows.

xzy � yLpxq�1 and x{y � xRpyq�1

6



for all x, y P G. Notice that xzy � z if and only if x � z � y and that x{y � z

if and only if z � y � x. Thus pG, zq and pG, {q are both quasigroups due to the

unique solutions of the quasigroup pG, �q. These quasigroups (pG, zq and pG, {q) are

called conjugates of pG, �q. It is also worth noting that there exist three additional

conjugates pG, �q, pG, �q, and pG,�q; however, the interest of this paper will only be

concerned with the two conjugate pG, zq and pG, {q. Also note that the operations

Lpaq�1 and Rpaq�1 are not necessarily translation mappings. This means that for

a given a P G there is no guarantee, in general, that there is a b P G such that

Lpaq�1 � Lpbq or Lpaq�1 � Rpbq.

We acknowledge that an example of a quasigroup, along with its two conjugates

pG, zq and pG, {q, would be of great help to our reader in understanding these. How-

ever, we �nd ourselves missing a way to create a �nite quasigroup to do so. We

remedy this with the following theorem.

Theorem 2.2 Let pG, �q be a �nite groupoid. Then the following are equivalent:

(i) pG, �q is a quasigroup

(ii) Lpaq : GÑ G and Rpaq : GÑ G are injective for all a P G

(iii) Lpaq : GÑ G and Rpaq : GÑ G are surjective for all a P G

(iv) The right an left cancellation laws hold for pG, �q

(v) Each element in G appears once and only once in each row and in each column

of a Cayley table pG, �q

Proof:

piq ñ piiq This follows directly from de�nition 2.3, since the both right and left

mappings of a quasigroup are bijective.
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piiq ñ piiiq Given that G is �nite, we have that |G| � n. Assuming that both trans-

lation Lpaq and Rpaq are injective means that the image space of these translation

maps contain at most n elements. However, the image of the translation maps

are contained in the �nite set G due to G being a groupoid. This means that the

image of the translation maps contain exactly n elements, and is therefore surjective.

piiiq ñ pivq Assuming that the translation map Lpaq is surjective means that for

each y in G there exists an x in G such that y � xLpaq. Given that G is a �nite

groupoid, we have that |G| � n. This implies that for every element x in G to cover

the image space G no two left translation mappings can send di�ering elements to

the same image, thus Lpaq is injective. Since Lpaq is injective, the left cancellation

property holds. (Prove?). Similarly it can be shown that right cancellation holds.

pivq ñ pvq We shall prove this by showing its contrapositive. Let at least one

element appear more than once in a row. This would mean that for two distinct

elements x, y P G xLpaq � yLpaq � z, thus the left cancellation law does not hold.

Now let at least one element appear more than once in each row. This would mean

that for two distinct elements x, y P G xRpaq � RLpaq � z, thus the right cancel-

lation law does not hold.

pvq ñ piq For every element to appear once and only once in each column and

row of a Cayley table means that there exists a unique px, yq P G
�

G so that

a � a � y � a � b. Thus, by Theorem 2.1, the Cayley table is a quasigroup. ■

With Theorem 2.2 now in hand, we present the following �nite quasigroup along

with the conjugates pG, zq and pG, {q.

8



Example 2.1

� 1 2 3 4 5

1 5 3 4 1 2

2 3 5 1 2 4

3 2 4 3 5 1

4 1 2 5 4 3

5 4 1 2 3 5

{ 1 2 3 4 5

1 4 5 2 1 3

2 3 4 5 2 1

3 2 1 3 5 4

4 5 3 1 4 2

5 1 2 4 3 5

z 1 2 3 4 5

1 4 5 2 3 1

2 3 4 1 5 2

3 5 1 3 2 4

4 1 2 5 4 3

5 2 3 4 1 5

2.1 Loops

We start this section o� by giving the algebraic de�nition of a loop. From there

we go onto to show two areas of interest for loops, their inverses, and substruc-

tures. We then go onto de�ning one of the more structured cases of a loop, called

a moufang loop, and end with some of the properties of commutative moufang loops.

De�nition 2.2 A loop pG, �, z, {q is a set G together with three binary operations

p�qpzqp{q such that

(i) a � pazbq � b, pb{aq � a � b for all a, b P G

(ii) azpa � bq � b, pb � aq{a � b for all a, b P G

(iii) aza � b{b for all a, b P G

Even though the de�nition of a loop can be given in this short and straight forward

manner, it is easy to �nd oneself struggling with the notation. In addition, dealing

with in�nite nonassociative objects is not something one deals with a lot of in

depth in mathematics. Much of this can be contributed to the alluring structured

properties one has when dealing with associative, and symmetric objects. To help

9



give a better feel for the objects of interest in this paper, we break down this

de�nition by going to the �nite setting. We start by giving the following de�nitions.

De�nition 2.3 Let pG, �q be a quasigroup and let e P G. Then e is a left (right)

identity element for pG, �q means that Lpeq : G Ñ G (Rpeq : G Ñ G) is the left

(right) identity map. Also e is an identity element for pG, �q means that e is a left

and a right identity element for pG, �q.

De�nition 2.4 A groupiod pG, �q is called a loop means that pG, �q is a quasigroup

and pG, �q has an identity element.

Notice that De�nition 2.6 is a reiteration of De�nition 2.4 part piiiq. We include

De�nition 2.6 to show that, in the �nite case, a Cayley table with an identity

element is a loop. We use this to create our �nite loop in the following example. In

the example we construct a �nite loop, and give its right and left inverse mappings.

Example 2.2

� 1 2 3 4 5

1 1 2 3 4 5

2 2 3 5 1 4

3 3 4 2 5 1

4 4 5 1 2 3

5 5 1 4 3 2

z 1 2 3 4 5

1 1 2 3 4 5

2 4 1 2 5 3

3 5 3 1 2 4

4 3 4 5 1 2

5 2 5 4 3 1

{ 1 2 3 4 5

1 1 5 4 2 3

2 2 1 3 4 5

3 3 2 1 5 4

4 4 3 5 1 2

5 5 4 2 3 1

We now break down De�nition 2.4 by going through each part, with a speci�c in-

stances of the given loop in Example 2.2.

10



Property (i): 2 � p2z3q � 3 ñ 2 � 2 � 3 ñ 3 � 3, and p5{3q � 3 � 5 ñ 2 � 3 � 5 ñ

5 � 5.

Property (ii): 4zp4 � 2q � 2 ñ 4z5 � 2 ñ 2 � 2, and p5 � 4q{4 � 5 ñ 3{4 � 5 ñ

5 � 5

Property (iii): 3z3 � 2{2 ñ 1 � 1

To further help with the notation, we rewrite these equations in function notation

by using the left and right inverse mappings.

Property (i): 3Lp2q�1Lp2q and 5Rp3q�1Rp3q

Property (ii): 2Lp4qLp4q�1 and 5Rp4qRp4q�1

Property (iii): 3Lp3q�1 and 2Rp2q�1

By De�nition 2.6 we have that every loop is a quasigroup. Also, by Theorem 2.1,

we have that if pG, �q is a loop, every element a P pG, �q has a unique local left and

right inverse such that bLpbq�1 � e, and bRpbq�1 � e. Note, however, that Lpaq�1

does not imply Lpaλq, nor does Rpaq�1 imply Rpaρq. That is to say, loops need not

contain unique elements which satisfy the identities aλ �pa �xq � x and px �aq�aρ � x.

We show this in the following example.

Example 2.3

� 1 2 3 4 5

1 1 2 3 4 5

2 2 4 5 1 3

3 3 1 2 5 4

4 4 5 1 3 2

5 5 3 4 2 1

11



In this example we have that 2 �4 � 1, however p4 �2q �4 � 5 �4 � 4. We will see that

loops which satisfy this property are unique, and carry many interesting properties

which are discussed in the following section.

2.1.1 Inverses

As mention previously in the last section, this section will focus mainly on the

restrictions needed for a loop to satisfy the identities aλ �pa�xq � x and px�aq�aρ � x,

which we will call inverse property loops. We then go on to discus some of the

de�ning properties of these loops. We will then end this section by giving some

additional inverse properties which loops may also posses. To begin this section we

de�ne the mappings needed for these inverse property loops, starting in quasigroups.

De�nition 2.5 Let pG, �q be a quasigroup. If there exists a bijection Jλ : a Ñ aλ

on G such that aλ � pa � xq � x for every x P G then G is a left inverse property

(L.I.P) quasigroup.

De�nition 2.6 Let pG, �q be a quasigroup. If there exists a bijection Jρ : a Ñ aρ

on G such that px � aq � aρ � x for every x P G then G is a right inverse property

(R.I.P) quasigroup.

With these two mappings in place, we give the following de�nition of interest for

the section.

De�nition 2.7 Let pG, �q be a quasigroup. If pG, �q satis�es both the L.I.P and a

R.I.P. then pG, �q is said to be an inverse property (I.P.) quasigroup.

We now give some of the basic properties of I.P. quasigroups.

Theorem 2.3 let pG, �q be an I.P. quasigroup, then the following hold:

(i) J2
λ � J2

ρ � ι, where ι is the identity mapping (i.e. paλqλ � a, and (aρqρ � a)

(ii) The equations a � x � b and y � a � b have solutions x � aλ � b and y � b � aρ

respectively.
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(iii) pa � bqλ � bρ � aρ and pa � bqρ � bλ � aλ.

(iv) Rpaq�1 � Rpaρq and Lpaq�1 � Lpaλq.

(v) JλRpaqJρ � Lpaλq

JρRpaqJλ � Lpaρq

JλLpaqJρ � Rpaλq

JρLpaqJλ � Rpaρq

Proof:

piq Note that paλqλpaλ � axq � paλqλx. We also have that, by De�nition 2.5,

paλqλpaλ � axq � ax. Thus paλqλpaλ � axq � paλqλx � ax � paλqλpaλ � axq. Therefore,

by the right cancellation property of quasigroups, paλqλ � a. Similarly paρqρ � a

piiq Let ax � b. By multiplying by aλ on the left of both sides we have aλpa�xq � aλb.

Thus, by De�nition 2.5, we have x � aλb. Similarly y�a � b has the solution y � b�aρ.

piiiq Let ab � c. We then have a � cbρ, cλa � bρ, cλ � bρaρ. Thus we have that

pa � bqλ � bρ � aρ. A similar argument can be made to show that pa � bqρ � bλ � aλ.

pivq Let Lpaq : xÑ y, then Lpaq�1 : y Ñ x. This means that a � x � y. Since pG, �q

is an I.P. loop, we have that x � aλ � y. Thus Lpaq�1 � Lpaλq.

pvq Consider xJλRpaqJρ � pxλ � aqρ � aλ � pxλqλ � aλ � x � xLpaλq.

Consider xJρRpaqJλ � pxρ � aqλ � aρ � pxρqρ � aρ � x � xLpaρq.

Consider xJλLpaqJρ � pa � xλqρ � pxλqλ � aλ � x � aλ � xRpaλq.

Consider xJρLpaqJλ � pa � xρqλ � pxρqρ � aρ � x � aρ � xRpaρq. ■

We now look into the loop case.

Theorem 2.4 If pG, �q is an L.I.P. or an R.I.P. loop then Jλ � Jρ � J (i.e.

aλ � aρ � a�1 where a � a�1 � a�1 � a � e).
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Proof: Let e be the identity element of an L.I.P. loop pG, �q. Then a � aρ � e,

aλ � a � e, aλpa � aρq � aρ and aλ � e � aλ, thus aλ � aρ � a�1.Similarly we can show

that if we have a R.I.P. loop pG, �q, then aρ � e � aρ � paλ � aqaρ � aλ. ■1

It is worth noting that associativity (de�nition 2.16) need not be assumed for a

quasigroups, or a loop to have the inverse property. We make a point to show this

in the following example of an I.P. loop.

Example 2.4

� 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7

2 2 3 1 6 7 5 4

3 3 1 2 7 6 4 5

4 4 7 6 5 1 2 3

5 5 6 7 1 4 3 2

6 6 4 5 3 2 7 1

7 7 5 4 2 3 1 6

x x�1

1 1

2 3

3 2

4 5

5 4

6 7

7 6

2

Notice that associativity fails in this example when we consider the instance p2 � 2q �

4 � 3 � 4 � 7, while 2 � p2 � 4q � 2 � 6 � 5. We also wish to highlight the inverse

property of the loop by showing three instances of it.

4 � p5 � 6q � 4 � 4 � 6

4 � p5 � 3q � 4 � 7 � 3

4 � p5 � 2q � 4 � 6 � 2.

1. Hala O. P�ugfelder, Quasigroups and Loops Introduction, ed. Prof. Dr. M. Hsek
Prof. Dr. B. Banaschewski Prof. Dr. H. Herrlich, vol. 7, Sigma Series in Pure Mathematics, 3-
88538-007-2 (Heldermann Verlag, 1990).

2. John Slaney and Asif Ali, �Generating loops with the inverse property.,� JProc. of ESARM,
2008, 55�66.
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As mentioned before, there are some classes of loops which lack the inverse property

yet have properties which are variations of the inverse property.

De�nition 2.8 A loop pG, �q with identity element e is called a cross inverse prop-

erty (C.I.P.) loop, if any two elements x, y P L satisfy the relation

px � yq � xρ � y

We now derive two additional properties of C.I.P. loops in the following lemma.

Lemma 2.1 Let pL, �q be a C.I.P. loop, then the following hold

(i) pxyqρ � xρyρ

(ii) x � yxρ � y

Proof:

piq Let xy � z. From this we have pxyq � xρ � zxρ, y � zxρ � zρ, yzρ � xρ,

yzρ � yρ � xρyρ, zρ � xρyρ. Thus pxyqρ � xρyρ.

piiq Consider the expression xy � xρ � y, then xρ � y � pxyqρ. But pL, �q is a C.I.P.

loop, so we have that yxρ � yρ � xρ � y � xρyρ. Thus, x � yxρ � y ■

Here we give one such example of a C.I.P. loop constructed by R. Artzy, who

discovered them.

Example 2.5

� 1 2 3 4 5

1 1 2 3 4 5

2 2 1 4 5 3

3 3 5 1 2 4

4 4 3 5 1 2

5 5 4 2 3 1

x x�1

1 1

2 2

3 3

4 4

5 5
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3

The loop in example 2.5 satis�es x � xρ � xλ for every x P L, but pG, �q does

not have the I.P. This can be seen when we consider p4 � 3q � 3 � 5 � 3 � 4, while

p3 � 4q � 3 � 2 � 3 � 4.

It is not the case for C.I.P. loops that x � xρ � xλ must be true for every x P L.

Instead "cycles of inverses" can be formed in these loops. This means x1, x2, ..., xn

such that pxkq
rho � xk�1, k � 1 taken modulo n, where n is called the length of the

cycle. We show this in the following example.

Example 2.6

� 1 2 3 4 5 6 7 8 9

1 1 2 3 4 5 6 7 8 9

2 2 3 1 7 6 9 8 5 4

3 3 1 2 5 8 7 4 9 6

4 4 7 9 8 1 2 6 3 5

5 5 4 8 6 9 1 3 7 2

6 6 9 5 3 7 4 1 2 8

7 7 6 4 9 2 8 5 1 3

8 8 5 7 2 4 3 9 6 1

9 9 8 6 1 3 5 2 4 7

4

In this loop the cycles are are {1}, {2,3}, and {4, 5, 6, 7, 8, 9}.

We end this section o� by giving a more general instance of the C.I.P. loops, the

weak inverse property loop (W.I.P. loop), which were introduced by J. M. Osborn.

3. P�ugfelder, Quasigroups and Loops Introduction.
4. P�ugfelder.
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De�nition 2.9 A loop pL, �q with the identity element e is called a weak inverse

property loop if it satis�es the identical relation

ypxyqρ � xρ

Theorem 2.5 Every C.I.P. loop has W.I.P.

Proof: Let pL, �q be a C.I.P. loop. Then pL, �q satis�es pxyq �xρ � y and pxyqρ. Thus

ypxyqρ � ypxρyρq � xρ, which gives ypxyqρ � xρ. ■5

2.1.2 subloops

In this section we explore the substructures of loops, in speci�c subloops. We �rst

start by de�ning what it means to be a subloop.

De�nition 2.10 A non-empty subset H of a set G is a subloop (subquasigroup) of

a loop (quasigroup) pG, �q means that pH, �q is a loop (quasigroup).

We mentioned in section 2.1 that if pG, �q is a quasigroup, it followed that pG, zq and

pG, {q are both quasigroups. with this fact in mind we give the following theorem.

Theorem 2.6 Let pG, �q be a loop. Then a non-empty subset H of G is a subloop

of the loop pG, �q if and only if pH, �q, pH, {q, and pH, zq are groupoids.

Proof: Assume pH, �q pH, zq, and pH, {q are all groupoids. Let a, b P H. Since

a, b P G there exists a unique x P G such that a � x � b. This implies that x � azb.

So x P H since a, b P H, and pH, zq is a groupoid. We have that x is the only

element in H such that a � x � b due to pG, �q being a quasigroup. Similarly, since

pH, {q is a groupoid, we have that there is a unique y P H suc that y � a � b. Thus,

pH, �q is a quasigroup meaning that H is a subquasigroup of pG, �q. ■6

5. P�ugfelder, Quasigroups and Loops Introduction.
6. P�ugfelder.
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One may now have some questions in regards to these substructures. Are there

any properties in relation between a loop and its subloops? Are there any shared

relations between the subloops of a given loop? We answer these questions in the

�nite case, seeing as it is the more interesting of the two cases. We start to answer

these questions by �rst understanding what a coset is.

Let pG, �q be a loop and let H be a subloop of G. If a P G, then aH and Ha are

de�ned by

aH � ta � h|h P Hu, and Ha � th � a|h P Hu

where both aH, and Ha are subsets of G. From this we de�ne what it is to be a

coset of H.

De�nition 2.11 Let pG, �q be a loop, let H be a subloop of G, and let K be a subset

of G. Then K is a left (right) coset module H means that K � aHpK � Haq for

some a P G.

Which gives us

De�nition 2.12 Let pG, �q be a loop, let H be a subloop of G. Then pG, �q has a left

(right) coset module H means that the set P of all left (right) cosets modulo H is a

partition of G.

Recall from set theory that if P is a partition of a non-empty set G, then P has the

following properties

(i) P � 2G

(ii) X � H whenever X P P

(iii) G � YXPPX

(iv) X � Y whenever X P P , Y P P and X X Y � H

18



With these two de�nitions in place we are ready to introduce the following important

theorem.

Theorem 2.7 Let pG, �q be a loop and let H be a subloop of G. Then pG, �q has a left

(right) coset decomposition modulo H if and only if pa � hqH � aH (Hph � aq � Ha)

for all a P G and all h P H

Proof: Let e denote the identity element of the loop pG, �q and let P be the set of

all left cosets modulo H.

pñq Assume that pG, �q has a left coset decomposition modulo H. Then P is a

partition of G. Notice that for a P G and h P H we have that a �h � pa �hq � e. This

means that a �h P aHXpa �hqH. Thus aH P P , pa �hqH P P , and pa �hqHXaH � H.

Since P is a partition of G we have pa � hqH � aH.

pðq Assume that pa � hqH � aH for all a P G and all h P H. We have P � 2G,

and for each g P G note that g � g � e P gH. Thus G �
�

xPP X. Also note that

X P P ñ X � gH for some g P G implies that g � g �e P gH meaning that X � H.

Lastly we show that aH � bH for all aH and bH in P , where aH X bH � H. If

aH X bH � H there exists a g P aH X bH. Thus g � a � x � b � y for some x, y P H.

But, given our assumption, we have that aH � pa �xqH � pb �yqH � bH. Therefore

P is a partition of G.

A similar argument can be used to show that pG, �q has a right coset decomposition

modulo H if and only if Hph � aq � Ha. ■7

We now de�ne those subloops who's order divides the order of the loop. This

property was originally studied in groups �rst by Joseph-Louis Lagrange, where he

proved that the order of the subgroup divides the order of the group in the �nite

7. P�ugfelder, Quasigroups and Loops Introduction.
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case. We go through this proof in detail later in Section 2.2, only mentioning this

fact so as not to confuse the reader as to why we call loops with this property

Lagrange-like. Since, as we will see, all groups are associative loops.

De�nition 2.13 Let pG, �q be a �nite loop, and let H be a subloop of G where |H|

divides |G|. Then the subloop H of pG, �q is said to be Lagrange-like.

De�nition 2.14 Let pG, �q be a �nite loop, then pG, �q satis�es the weak lagrange

property meand that every subloop of pG, �q is lagrange-like

De�nition 2.15 Let pG, �q be a �nite loop. Then pG, �q satis�es the strong lagrange

property means that pH, �q satis�es the weak lagrange property whenever H is a

subloop of pG, �q.

Cosets, de�ned before in De�nition 2.11, are what give us the relations we were

looking for between loops and their subloops. We show this in the following theorem.

Theorem 2.8 Let pG, �q be a �nite loop and let H be a subloop of G. If pG, �q has

a left (right) coset decomposition modulo H then H is Lagrange-like

Proof: Let pG, �q have a left coset decomposition modulo H and let P be the set of

all left cosets modulo H. Since P is a partition we have

|G| �
¸
xPP

|X|.

Let X P P . We now note that X � aH for some a P G. By de�ning α to be

hα � a � h for all h P H it is clear that α : H Ñ aH is a bijection since pG, �q is a

quasigroup. Hence, |H| � |X|. It follows then that

|G| �
¸
xPP

|X| � m|H|

where m � |P |. Thus, |H| divides |G|. A similar argument is made in the case

20



when G has a right coset decomposition modulo |H|. ■8

A consequence of Theorems 2.7, and 2.8 is the following.

Theorem 2.9 Let pG, �q be a �nite loop and let H be a subloop of G. If pa�hqH � aH

(Hph � aq � Ha) for all a P G and all h P H, then H is Lagrange-like. ■9

2.1.3 Moufang Loops

In this section we look at one of the most well known loops, Moufang loops, named

after Ruth Moufang. We start with the original de�nition given by Moufang, who

called them quasigroups, then give their current de�nition. We go onto giving some

of their basic properties, and end the section with the commutative Moufang loops.

A quasigroups Q�, as de�ned by Moufang, was said to be a set with multiplication

such that the following hold

pM1q for any two elements x, y there exist a unique product xy;

pM2q there exists an identity element 1, and to any element x, there is a unique x�1

such that x�1x � 1 � xx�1;

pM3q for any x and y: xpx�1yq � pxx�1qy and pyx�1qx � ypx�1xq;

pM4q for any x, y, z: rxpzxqsy � xrzpxyqs.

A quasigroup Q�� additionally satis�es

pM5q pxyqpzxq � xrpyzqxs.

Moufang went on to show that pM4q was equivalent to

8. P�ugfelder, Quasigroups and Loops Introduction.
9. P�ugfelder.
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pM6q rpxzqxsy � xrzpxyqs

and

pM7q rpyxqzsx � yrxpzxqs.

We now give our current de�nition of a Moufang loop, due to G. Bol, and R. H.

Bruce who proved the equivalence of the identities pM4q � pM7q, now called the

Moufang identities.

De�nition 2.16 A loop pM, �q with identity element 1 is called a Moufang loop if

it satis�es the Moufang identity

pMIq pxyqpzxq � rxpyzqsx.

We now give the smallest example of a non-associative Moufang loop.
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Example 2.7

� 1 2 3 4 5 6 7 8 9 a b c

1 1 2 3 4 5 6 7 8 9 a b c

2 2 1 4 3 6 5 8 7 c b a 9

3 3 6 5 2 1 4 9 a b c 7 8

4 4 5 6 1 2 3 a 9 8 7 c b

5 5 4 1 6 3 2 b c 7 8 9 a

6 6 3 2 5 4 1 c b a 9 8 7

7 7 8 b a 9 c 1 2 5 4 3 6

8 8 7 c 9 a b 2 1 4 5 6 3

9 9 c 7 8 b a 3 4 1 6 5 2

a a b 8 7 c 9 4 3 6 1 2 5

b b a 9 c 7 8 5 6 3 2 1 4

c c 9 a b 8 7 6 5 2 3 4 1

10

To show the Moufang property, we work through the following multiplications.

p23qp92q � 4 � c � b � a � 2 � p2 � bq2 � r2p39qs2

p4aqpc4q � 7 � b � 3 � 2 � 4 � p4 � 5q4 � r4pacqs4

pabqpcaq � 2 � 3 � 4 � 7 � a � pa � 4qa � rapbcqsa.

We also show that asoociativity fails when considering the following multiplication.

p2 � 3q � 7 � 4 � 7 � a � c � 2 � 9 � 2 � p3 � 7q.

We now prove and some additional properties of all Moufang loops which follow from

De�nition2.16. We go onto show that all the Moufang identities are equivalent in

10. Petr Vojtechovsky Michael Kinyon Kyle Pula, �Incidence Properties of Cosets in Loops.,� J.
Combinatorial Designs 20 (2012): 161�197, https://doi.org/arXiv:1108.3656.

23

https://doi.org/ arXiv:1108.3656


the following theorem.

Theorem 2.10 A Moufang loop is an I.P. loop and satis�es the identical relations

pxxqy � xpxyq xpyyq � pxyqy, and pxyqx � xpyxq. Furthermore, all Moufang

identities are equivalent.

Proof: Here we prove all 9 statements in the most convenient order.

(i) yλpyxq � x where yλy � 1, and yλ � yρ � y�1. (L.I.P.)

Let yλy � 1, and substitute yλ in for x in pMIq, thus we have that pzyλzq �

ryλpyzqsyλ. This implies that yλpyzq � z.

(ii) pxyqx � xpyxq (�exible law)

By setting y � 1 in pMIq, we have that xpzxq � pxzqx.

(iii) pM5q and pMIq are equivalent.

Trivial application of piiq.

(iv) pxyqy�1 � x where yy�1 � 1 (R.I.P.)

Let z � x�1 in pM5q to give:

xy � pxyqpx�1xq � xrpyx�1qxs, or pyx�1xq � y.

(Therefore we have that pM, �q is an I.P. loop.)

(v) pM7q and pMIq are equivalent.

We refer the reader to the orange book for this proof

(vi) pM6q and pM7q are equivalent.

These are inverses of one another.

(vii) pxxqy � xpxyq (left alternative law).

By letting z � 1 in pM6q, we have that ypyxq � pyyqx.

(viii) pxyqy � xpyyq

This is derived from pviiq
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(ix) pM4q and pMIq are equivalent.

A trivial application of piiq. ■11

We now give the de�nition for a commutative loop.

De�nition 2.17 A loop pL, �q is commutative means that Lpaq � Rpaq for all a P G

With De�nition 2.17 and the Moufang identity, we end this section by de�ning a

Commutative Moufang loop.

De�nition 2.18 A loop pM, �q with identity element 1 is called a commutative Mo-

ufang loop if it satis�es the relation

x2pyzq � pxyqpxzq.

2.2 Groups

We begin this section by giving the de�nition of a group. We then go on to prove

some basic properties of groups.

De�nition 2.19 A groupoid pG, �q is associative means that Rpa � bq � RpaqRpbq

for all a, b P G

De�nition 2.20 A groupoid pG, �q is a group means that pG, �q is an associative

quasigroup.

In the case of loops, one must assume an identity element. This, however, is not

the case for groups. An associative quasigroup necessarily has a unique identity

element, which we show in the following theorem.

Theorem 2.11 If pG, �q is a quasigroup which is associative, then pG, �q necessarily

has a unique identity element.

11. P�ugfelder, Quasigroups and Loops Introduction.
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Proof: Since G is non-empty, there is an element a in G. Now by Theorem 2.1 there

is e P G so that a � e � a. Let b be any element in G. Again by Theorem 2.1 there

is a y P G so that y � a � b. It follows that bRpeq � b � e � py � aqe � yRpaqRpeq �

yRpa � eq � yRpaq � y � a � b. Thus, Rpeq : G Ñ G is the identity map on G, and

so e is the right identity element for pG, �q.

Now let b be any element in G We have b � b � pb � eq � b � bRpeqRpbq � bRpe � bq.

By the left cancellation we note that b � b � b � pe � bq implies b � e � b. This is true

for all b P G, so bLpeq � b for all b G. But Lpeq : G Ñ G being the identity map

on G means that e is a left identity element for pG, �q. Thus, we know that e is an

identity element for pG, �q and is, in fact, the only one. ■12

In section 2.2 we saw some of the many types of inverse properties which can take

place in loops. This is due to associativity not being assumed. In groups, however,

we do not have this problem. All groups satisfy the property aλ � pa � xq � x and

px � aq � aρ � x. Thus they are all inverse property loops, which we prove in the

following theorem.

Theorem 2.12 If pG, �q is a group, then it satis�es the inverse property.

Proof: Since G is nonempty, there is an element a P G. Now by Theorem 2.1 there is

a aλ P G such that aλ�a � e. Since G is associative we have aλ �pa�xq � paλ�aq�x � x,

which is always true by Theorem 2.1. The other proof follows similarly. ■

We now give a theorem that lays most of the ground work for groups. The following

theorem is more of a corollary of the previous theorems found in Section 2.1. We,

however, choose to write new proofs to highlight the use of associativity which

greatly simplify those previous proofs.

Theorem 2.13 If pG, �q is a group, then

12. P�ugfelder, Quasigroups and Loops Introduction.
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(i) every a P G has a unique inverse in G:

(ii) the right and left cancellation laws hold

(iii) for every a P G, pa�1q�1 � a

(iv) for all a, b P G, pa � bq�1 � b�1 � a�1.

Proof:

(i) Since G is not empty, there exists an element a P G. Let b �a � e and a � c � e.

Using associativity we then have that

b � b � e � b � pa � cq � pb � aq � c � e � c � c.

Thus every element a P G has a unique inverse.

(ii) Assume that a � x � a � y � e for a, x, y in G. There exists an element b P G

such that b � a � e. Thus b � pa�q � b � pa � yq. By the associative law we have

x � e � x � pb � aq � x � b � pa � xq � b � pa � yq � pb � aq � y � e � y � y

Similarly we can prove that x � a � y � a implies that x � y. Thus the right

and left cancellation laws hold for groups.

(iii) Consider the equation a�1 � pa�1q�1 � e � a�1 �a. Cancellation on the left side

by a�1 gives us pa�1q�1 � a.

(iv) Consider the equation pa�bq�pb�1�a�1q � a�ppb�b�1q�aq � a�pe�a�1q � a�a�1 � e.

Thus pa � bq�1 � b�1 � a�1. ■13

13. I. N. Herstein, Topics in Algebra, 63-17982 (Blaisdell Publishing Company, 1964).
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2.2.1 Subgroups

In this section we outline what it means to be a subgroup. We then look at their

properties. We start by giving the de�nition of a group.

De�nition 2.21 A subset H of a group G is said to be a subgroup of G if, under

the product in G, H itself for a group.

From this de�nition we see that if H is a subgroup of G and K is a subgroup of

H, then K is also subgroup of G. We now need a method for determining when a

chosen subset of a group is a subgroup, which we give in the following theorem.

Theorem 2.14 A nonempty subset H of the group G is a subgroup of G if and

only if

(i) a, b P H implies that a � b P H

(ii) a P H implies that a�1 P H

Proof: If H is a subgroup of G, then piq, piiq must hold.

Suppose conversely that H is a subset of G for which piq and piiq hold. In order to

establish that H is subgroup all that is needed is to verify that e P H and that the

associative law holds for elements in H. Since the associative law does hold for G,

it holds all the more so for H which is a subset of G. If a P H, by piiq a�1 P H and

so by piq e � a � a�1 P H. ■14

We have previously seen what it means to be a right or left coset in loops. In

particular we saw that a given subloop needn't be a right or left coset of a loop.

Theorem 2.9 makes it clear what requirements are needed to guarantee that a given

subloop is a left or right coset. We will use Theorem 2.9 to prove that every subgroup

of a group is a left or right decomposition, thus every subgroup is Lagrange-like.

14. Herstein, Topics in Algebra.
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From this we can show that any groups satis�es the strong Lagrange property.

Before we prove that, we �rst de�ne a coset of a group.

De�nition 2.22 If H is a subgroup if G, a P G, then Ha � tha|h P Hu (aH �

tah|h P Hu). Ha (aH) is called a right (left) coset of H in G.

Theorem 2.15 Let pG, �q be a group, and let H be a subgroup of G. Then pG, �q

satis�es the strong Lagrange property.

Proof: Given theorem 2.9, we need only prove that pa �hqH � aH for all subgroups.

pa � hqH � a � ph �Hq � aH ■

It is worth noting that without the help of theorem 2.9, the original proof took a

very di�erent shape. So, in the spirit of Lagrange, we outline how the proof goes. To

do this, however, we must give some preliminary de�nitions, theorems, and lemmas.

De�nition 2.23 The binary relation, �, on A is said to be an equivalence relation

on A if for all , b, c in A:

(i) a � a

(ii) a � b implies b � a

(iii) a � b and b � c implies a � c

De�nition 2.24 If A is a set and if � is an equivalence relation on A, then the

equivalence class of a P A is the set tx P A|a � xu. We write it as cl(a).

Theorem 2.16 The distinct equivalence classes of an equivalence relation on A

provide us with a decomposition of A as a union of mutually disjoint subsets. Con-

versely, given a decomposition of A as a union of mutually disjoin, nonempty sub-

sets, we can de�ne an equivalence relation on A for which these subsets are distinct

equivalence classes.15

15. Herstein, Topics in Algebra.
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De�nition 2.25 Let G be a group, H a subgroup of G; for a, b P G we say a is

congruent to b mod H, written as a � b mod H if ab�1 P H

Lemma 2.2 The relation a � b mod H if ab�1 P H is an equivalence relation.16

With these previous statements above, we now give the to following two lemmas

which prove Lagrange's Theorem.

Lemma 2.3 For all a P G, Ha � tx P G|a � x mod Hu.17

Lemma 2.4 there is a 1-1 correspondence between any two right cosets of H in

G.18

Thus we have

Theorem 2.17 If G is a �nite group and H is a subgroup of G, then the order of

H divides the order of G (Lagrange's Theorem).19

16. Herstein, Topics in Algebra.
17. Herstein.
18. Herstein.
19. Herstein.
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3 Computability Theory

We start this section by �rst giving an informal sense of what it means to be com-

putable. Say you are handed a machine that, when given an input x, yields an

output after �nitely many steps. The machine may yield on all, or only on a given

subset of inputs. A machine which yields an output on all of its given inputs is

called computable. To make this generalization precise, we give two mathematical

formulations of computability. We will see that these, and many other such de�-

nitions, both describe the same class of functions which are called the computable

functions.

3.1 Formal De�nitions of Computable Functions

It has been shown that the two formal de�nitions we will introduce, partial recursive

and Turing machines, give rise to exactly the same class called the computable

functions. We give these two de�nitions to show that there are many intuitive ways

to think about computibility, where any one can be used based on the individuals

preference. This is due to Church's Thesis which asserts that these functions, along

with the many others, coincide with the intuitively computable functions. We will

assume Church's Thesis in this paper and will use the terms "partial recursive (p.r),"

"Turing computable," and "computable" interchangably.

3.1.1 Turing Machines

In this section we give a formal de�nition of a Turing machine, created by Alan

Turing. A Turing machine, M, contains a two-way in�nite tape, a reading head,

and a �nitie set of internal states. The tape of the Turing machine is divided into

cells similar to that of a �lm strip. The reading head scans one cell of the tape

at a time, and we denote the set of internal states as Q � tq0, q1, q2, ..., qnu, n ¥ 1.

The cells of the tape are either blank (B) or have the symbol 1 written on them.

The machine may simultaneously: (1) change from one state to another; (2) change
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the scanned symbol s to another symbol s1 P S � t1, Bu; and (3) move the reading

head one cell to the right (R) or left (L) in a single step. The operation of M is

controlled by a partial map δ : Q � S Ñ Q � S � tR,Lu (which may not be de-

�ned for all arguments). You can break this down as, if pq, s, q1, s1, Xq P δ then the

machine M in state q, scanning symbol s changes to state q1, replaces s by s1, and

moves to scan one cell to the right if X � R (left if X � L). The map δ, viewed

as a �nite set of quintuples, is called a Turing program. A given integer input x

is represented by a string of x+1 consecutive 1's (with all the other cells blank).

To help with breaking down this de�nition we give a diagram, and run through an

example of a Turing machine computing, as well as its program, for a given function.

Figure 1: Turing Machine

20

Here we lay out how a Turing machine would compute the function fpxq � x � 4.

M begins in the starting state, q1, scanning the left-most cell containing a 1. The

starting state, in this example, tells the reading head (1) if you read a 1 stay in q1

20. Robert I. Soare, Recursively Enumerable Sets and Degrees, 978-3-540-66681-3 (Springer-
Verlag Berlin Heidelber New York, 1987).
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replace the 1 with a 1 and move right, or (2) if you read a blank move to state q2

and replace the blank with a 1 and move right. In q2 the reading head need only

worry about the case where a blank is read, since the input x starts as a consecutive

sting of 1's. So q2 says if you read a blank move to state q3 and replace the blank

with a 1. In q3 the reading head reads a blank moves to the halting state q0 and

replace the blank with a 1. Once in in the halting state we have that, without loss

of generality, no further moves take place. Another way to think of these states is

as commands where q1 is the command "�nd �rst blank and replace it with a 1,"

q2 "change second blank to 1" and state q3 is the command "replace next blank

with one." The output is then the total number of 1's on the tape. Writing this in

Turing machine code gives:

q1 1 q1 1 R

q1 B q2 1 R

q2 B q3 1 R

q3 B q0 1 R

In general, if the halting state q0 is reached by M, we say M halts and the output y

is the total number of 1's on the tape. M computes the partial function ψ provided

that ψpxq � y if and only if M with input x eventually halts and yields output y.

The sequence of con�gurations c0, c1, ..., cn of a Turing program P with input x

are called the Turing computation. The machine in starting state q1 reading the

leftmost symbol of the input x is denoted by c0. The halting state q0 of the Turing

machine is denoted by cn. The transitions ci Ñ ci�1, for all i   n, is given by the

Turing program P . A partial function of n variables is associated with with each

Turing machine M by representing the input px1, x2, ..., xnq by the following initial

con�guration of M , q1α1Bα2...Bαn where αi consists of x� 1 consecutive 1's.
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3.1.2 Primitive Recursive Functions

In this section we give another formal de�nition of the computable functions called

the partial recursive function. We start o� by de�ning the primitive recursive func-

tions, but will see that the primitive recursive functions, even though they contain

all the computable functions from number theory, fail to contain all computable

functions. To allow for all computable functions we add an additional schemata

onto the de�nition of the primitive recursive functions to give the partial recursive

function of Kleene.

De�nition 3.1 The class of primitive recursive functions is the smallest class C

of functions closed under the following schemata.

(I) The successor function, λxrx� 1s, is in C.

(II) The constant functions, λx1...xnrms, is in C, 0 ¤ n,m.

(III) The identity functions, λx1...xnrxis, is in C, 1 ¤ n, 1 ¤ i ¤ m.

(IV) (Composition) if g1, g2, ..., gm, h P C, then

fpx1, ..., xnq � hpg1px1, ..., xnqq, ..., gmpx1, ..., xnqq

is in C where g1, ..., gm are functions of n variables and h is a function of m

variables.

(V) (Primitive Recursion), If g, h P C and n ¥ 1 then f P C where

fp0, x2, ..., xnq � gpx2, ..., xnq

fpx1 � 1, x2, ..., xnq � hpx1, fpx1, x2, ...xnq, x2, ..., xnq

assuming g and h are functions of n� 1 and n� 1 variables respectively.
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A primitive recursive function is called a derivation, or a sequence, f1, f2, ..., fk � f

such that each fi, i ¤ k is either an initial function ((I), (II), or (III)), or fi is

obtained from tfj : j   iu by (IV) or (V). We give an example of this with the

function fpx1, x2q � x1 � x2. and run through program with the inputs fp3, 2q.

Example 3.1 The derivation of the function fpx1, x2q � x1 � x2.

f1 � λxrx� 1s

f2 � λxrxs

f3 � λx1x2x3rx2s

f4 � λf1 �f3

f5p0, x2q � f2px2q

f5px1 � 1, x2q � f4px1, f5px1, x2q, x2q
21

We now work through the speci�c instance of fp3, 2q to give a better understanding

of schemata pV q.

fp3, 2q � f4p2, f5p2, 2q, 2q

fp2, 2q � f4p1, f5p1, 2q, 2q

fp1, 2q � f4p0, f5p0, 2q, 2q � f4p0, 2, 2q � 3

fp2, 2q � f4p1, f5p1, 2q, 2q � f4p1, 3, 2q � 4

fp3, 2q � f4p2, f5p2, 2q, 2q � fp3, 2q � f4p2, 4, 2q � 5.

As we mentioned before, the primitive recursive functions include all of the usual

functions from elementary number theory, yet they fail to give all computable func-

tions. We make this clear with the following theorem.

Theorem 3.1 The primitive recursive functions fail to include all computable func-

tions.

21. Soare, Recursively Enumerable Sets and Degrees.
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Proof: Given that each derivation of a primitive recursive function is a �nite string

of symbols from a �xed alphabet, all derivations can be listed. Let fn be the func-

tions corresponding to the nth derivation in this listing. Now consider the function

gpxq � fxpxq � 1. This function cannot be primitive recursive since g � fn for all

x, yet gn is computable. ■22

Seeing that gn is computabale on the other hand is not so obvious. To help aid in

seeing this fact note that to compute gn we call the nth primitive recursive pro-

gram, give it input n and add 1 to the output. Thus gn is computable. Similar

diagonalitation arguments can be used when applying any e�ective set of schemata

which produce only total functions. So, to avoid this and obtain all computable

functions, we use computable partial functions. These are those functions which

may not be de�ned on all arguments. Diagonalization arguments are no longer a

worry when considering partial functions. For example, let ψn be the partial func-

tion computed by the nth algorithm under some e�ective coding of all algorithms.

Suppose φpxq � ψxpxq � 1 if ψxpxq is de�ned and φpxq is de�ned otherwise. Now

if φ corresponds to the x0th algorithm then diagonalization does not imply that

φ � ψx0 since ψx0px0q may be unde�ned. So With this in mind we give our next

de�nition.

De�nition 3.2 The class of partial recursive (p.r.) functions is the least class ob-

tained by closing under schemata (I) through (V) for the primitive recursive func-

tions and the following schemata (VI). A total recursive function (abbreviated re-

cursive function) is a partial recursive function which is total.

(VI) (Unbounded Search) If θpx1, ..., xn, yq is a partial recursive function of n�1

variables, and

ψpx1, ..., xnq � µyrθpx1, ..., xn, yq Ó� 0 & p@z ¤ yqrθpx1, ..., xn, zq Óss

then ψ is a partial recursive function of n variables.

22. Soare, Recursively Enumerable Sets and Degrees.
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3.2 Computability Background

In the last section we gave two di�erent de�nitions of computability and assumed,

by Church's Thesis, that these de�nitions coincided with one another. In this sec-

tion we will go through some of the basic results, notations, and de�nitions of

computability theory. We omit the formal proofs of Theorems 3.2, and 3.4 given by

Kleene and Hermes. We instead give a general outline of how to prove them.

3.2.1 Basic Results

Notation 3.1 We let <x, y>denote the image of px, yq under the standard pairing

function β2px, yq �
1
2
px2�2xy�y2�3x�yq. This computable function is a bijection

that takes N �N Ñ N. Let π1 and π2 denote the inverse functions π1p<x, y>q � x,

and π2p<x, y>q � y. Let <x1, x2, x3>denote <<x1, x2,>x3>, and <x1, x2, x3, ..., xn>denote

<...<<x1, x2,>x3>, ..., xn>.

De�nition 3.3 A relation R � Nn, n ¥ 1, is recursive (primitive recursive, has

property P) if its characteristic function χR is recursive, (respectively primitive

recursive, has property P) where χRpx1, ..., xnq � 1 if px1, ..., xnq P R and = 0

otherwise. Note that a set A � N corresponds to the case n � 1 so we have the

de�nition of a set being recursive.

One such computable relation would be R � tx|x is evenu, since both the even

and odd numbers are primitive recursive. We give a stronger primitive recursive

derivation for both the even and odd numbers in the following example, but simply

substituting 2 in for x1 yields the wanted result.

Example 3.2 Derivation of the function fpx1, x2q � px1 � x2q.

f1 � λxrxs � 1

f2 � λxrxs

f3 � λx1x2x3rx2s
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f4 � f1 � f3

f5p0, x2q � f2px2q

f5px1 � 1, x2q � f4px1, f5px1, x2q, x2q

f6px1, x2, x3q � f5px1, x3q

f7px1, 0q � 0

f7px1, x2 � 1q � f6px1, x2, f7px1, x2qq.

Example 3.3 Derivation of the function fpx1, x2q � px1 � x2q � 1.

f1 � λxrxs � 1

f2 � λxrxs

f3 � λx1x2x3rx2s

f4 � f1 � f3

f5p0, x2q � f2px2q

f5px1 � 1, x2q � f4px1, f5px1, x2q, x2q

f6px1, x2, x3q � f5px1, x3q

f7px1, 0q � 0

f7px1, x2 � 1q � f6px1, x2, f7px1, x2qq.

f8 � f1 � f7

The relation R � tx|x is primeu can also be shown to be computable. If we

let p0, p1, ... denote the primes in increasing order we have that for any x P N

x � px0
0 p

x1
1 ...p

xn
n ..., is unique when �nitely many xi � 0. The function

pxqi � the exponent xi of pi

from the previous equation can also be shown to be computable. Thus any �nite se-

quence ta0, a1, ..., anu of positive integers has a unique code number a � pa0�1
0 ...pan�1

n

such that ai � paiq can be obtained primitive recursively from a. With this one

can shown that a code number can be assigned to each Turing program and con�g-
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uration, since that every Turing program is a �nite set of quintuples. These code

numbers are known as a Gödel number. With this we give the following de�nition.

De�nition 3.4 Let Pe be the Turing program with code number e (also called index

e) in this listing and let φ
pnq
e be the partial function of n variables computed by Pe,

where φe abbreviates to φ
p1q
e .

Lemma 3.1 Each partial recursive function φx has ℵ0 indices, furthermore for

each x we can e�ectively �nd an in�nite set Ax of indicies for the same partial

function.

Proof: For any program Px with internal states tq0, ..., qnu, we can add the addi-

tional instructions qn�1B qn�1B R, qn�2B qn�2B R, ... ,to give a new program for

the same function. ■23

Theorem 3.2 There exists a predicate T pe, x, yq and a function Upyq which are

recursive such that

φpxq � Upµy T pe, x, yqq.

Sketch of proof: Informally, the predicate asserts that y is the code number of

some Turing computation according to the program Pe with input x. To check that

T pe, x, yq holds, we recover from e the program Pe. We then recover from y the

computation c0, c1, ..., cn if y codes such a computation. Next we check whether

c0, c1, cn is a computation according to Pe with x as the input in c0. If x is, Upyq

simply outputs the number of 1's in the �nal con�guration cn. To prove that both

T and U are primitive recursive, use the unique coding of Turing programs and

computations.■24

We now introduce two theorems which are foundational to computability theory.

23. Soare, Recursively Enumerable Sets and Degrees.
24. Soare.
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Theorem 3.3 For every n ¥ 1 there exists a partial recursive function φznpe, x1, ..., xnq

of n�1 variables such that φznpe, x1, ..., xnq � φ
pnq
e px1, ..., xnq for all e and x1, ..., xn.

Proof: By Theorem 3.2 let φznpe, x1, ..., xnq � UpµyT pe, x1, ..., xnqq. ■25

Theorem 3.4 For every m,n ¥ 1 there exists an injective recursive function smn of

m� 1 variables such that for all x, y1, y2, ..., ym

φ
pnq
smn px,y1,y2,...,ymq � λz1, ..., znrφ

m�n
x py1, ..., ym, z1, ..., znqs.

Informal Proof: Consider the case m � n � 1The program Ps11
on input z �rst ob-

tains Px and the applies Px to input py, zq.By Church's Thesis we have that s � s11

is recursive since this is an e�ective procedure in x and y. If we have that s is not

already injective we may replace it with an injective recursive function s1 by Lemma

3.1 to give φspx,yq � φs1px,yq. This is done by de�ning s1px, yq in increasing order of

<x, y>, where <x, y>is the image of px, yq under the pairing function notation 3.1. ■26

3.2.2 Recursively Enumerable Sets

We end this section of computability theory with some of the interesting paradox's

and dilemmas that come about when studying the natural numbers. The question

of answering if a set or function is computable, computably enumerable, and or

non-computable is where much of computability theory lies. We start this section

by giving the standard de�nition of a computably enumerable set. We then end

this section with de�ning a computably enumerable set which is not computable.

De�nition 3.5 (i) A set A is computably enumerable (c.e.) if A is the domain

of some partial recursive function.

(ii) Let the eth c.e. set be denoted by

25. Soare, Recursively Enumerable Sets and Degrees.
26. Soare.

40



We � dom φe � tx|φepxq Óu � tx|pDyqT pe, x, yqu.

The existence of these c.e. sets, as we shall see in section 4, have been seen in other

various areas of mathematics. We look at the studies involving these unsolveable

problems in the case of the algebraic structures of groups and loops. Here we give

one such unsolvable set we call K, and look at some of its properties.

De�nition 3.6 Let K � tx|φxpxqconvergesu � tx|x P Wxu.

Proposition 3.1 K is c.e.

Proof: K is the domain of the following partial recursive function

ψpxq �

$'&
'%

x if φxpxqconverges

unde�ned otherwise

■27

One could also prove this using Theorem 3.3 by noting that, K �domθ where

θpxq � φ
p
z2qpx, xq.

Proposition 3.2 K is not computable.

Proof: Assume, for contradiction, that K had a computable characteristic function

χK . The function

fpxq �

$'&
'%

φxpxq � 1 if x P K

0 if x R K

Would then be computable. But f � φx for any x, thus a contradiction. ■28

27. Soare, Recursively Enumerable Sets and Degrees.
28. Soare.

41



4 Applied Computability

One area of mathematics where computability has been applied to is the structure

of a group. This was due to the question posed by Dehn in 1911, known as the

word problem for groups. This problem was independently proven to be unsolvable

by both Boone and Novicov if the group was �nitely generated. Instead of work-

ing through these challenging proofs, we instead give some di�erent examples of

computable and noncomputable groups. We do, however, prove later that �nitely

presented abelian groups have solvable word problem.

4.1 Computable Groups

De�nition 4.1 A computable group G consist of a set ta0, a1, a2, ...u, indexed by

elements of N or by a �nite subset of N, with binary operation p�q on these elements

such that:

(i) ta0, a1, a2, ...u forms a group under these operations, and

(ii) There exists computable functions f, g, h: N�NÑ N such that for all

elements ai and aj, ai � aj � afpi,jq

From de�nition 4.1, we see that the other basic operations on these structures are

also computable. The identity element can be found in a computable group by

computing fp0, 0q, fp1, 1q, ..., since the identity element ai has the unique index i

satisfying fpi, iq � i. With the identity, one can then compute the inverse function

(the function v such that a�1
n � avpnq), by computing fpn, 0q, fpn, 1q, ... until the

unique m with fpn,mq � i is found. We only concern ourselves with �nitely gener-

ated, and later �nitely presented structures, since computablility theory is de�ned

on the set of natural numbers N.

We now give our �rst example of a computable group using the free (nonabelian)

FGω on countably many generators. First we will index the domain ofG, ta0, a1, a2, ...u,
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using the bijection β : N� Ñ N de�ned previously, and also the bijection γ :

N Ñ Z with γpkq � p�1qk � tk�1
2

u. We let z0, z1, z2, ... be the generators, and let

βpk0, ..., knq � i. This gives us that a given group element ai represents the word

z
p�1qk0

|γpk0q|
...z

p�1qkn

|γpknq|
.

This gives us that the generators are aβp0q, aβp2q, aβp4q, ..., with aβp2m�1q � a�1
βp2mq.

The group multiplication on G is given by concatenation

aβpj0,...,jmq � aβpk0,...,knq � aβpj0,...,jm,k0,knq,

where if k0 � jm � p�1qjm , the middle terms cancel each other out and similarly

for the following middle terms. This gives us the computable group G isomorphic

to the free group on the generators aβp0q, aβp2q, aβp4q, ....
29

A surprising fact is that there are also many noncomputable group representations

with domain ta0, a1, ...u isomorphic to the FGω. To see this we use an arbitrary

bijection p taking N onto N. Notice that this forms a group under the following

multiplication:

ai � aj � ap�1pfpppiq,ppjqqq

where f is the same computable function used in the previous example. Since only

countably many of the continuum many bijections p can be computable, there must

exist many noncomputable representations of FGω on the domain ta0, a1, ...u.
30

There are also more concrete way of showing that a group is noncomputable. Let

H be a group de�ned in a similar way to the computable representation of FGω,

29. Russell Miller, An Introduction to Computable Model Theory on Groups and Fields, 2011,
https://qcpages.qc.cuny.edu/~rmiller/DK.pdf.
30. Miller.
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only changing the de�nition so as to make the generators aβp0q and aβp2nq commute

with each other i� n lies in the c.e. set K. We can see that H is not computable by

considering the function g which would compute it. If the group H was solvable,

then the function g that satis�es the logic statement

p@n P Nqrn PKðñ gp0, 2nq � gp2n, 0qs

would be solvable. However, deciding membership in K is impossible.31

It may now come as to no surprise to hear that there exists a computable representa-

tion isomorphic to the group H. Let J be de�ned similarly except for the generators

aβp0q and aβp2nq commute with each other i� n lies in the set of prime numbers P .

We previously stated before that the set of prime numbers is computable. If we let

k be the function on indices de�ned by its multiplication, then

pDn P Nqrn � P ðñ kp0, 2nq � kp2n, 0qs,

which is a computable statement. Hence k is a computable function, thus J is a

computable group.

4.2 Computable Loops

We can de�ne a computable loop in much the same way as we de�ned a computable

group in De�nition 4.1. However, it sometimes proves useful to deal with the words

of a loop, de�ned by its generators and relations, instead to prove whether the loop

is computable or noncomputable. Normal forms do exactly that since they solve

for uniquely determined words which represent equivalence classes of equal words

(e.g. reduced words in free groups). This is why normal forms are used as a way

31. Miller, An Introduction to Computable Model Theory on Groups and Fields.
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to determine the the solvability or unsolvability of the word problem for loops, and

other algebras. Normal forms, however, can require a great deal of ingenuity. We

give a normal form theorem by Evans in 1950 to help those unfamiliar with to

such theorems an example. The normal form we give, however, does not prove the

solvability or unsolvability of a loop. The normal form theorem we give shows that

for a loop de�ned by a closed set of relations there exists a unique word of shortest

length in each equivalence class which can be derived in a simple manner from any

other word in the class. We omit the proof of the normal form theorem as it is

rather long. However, we give the preliminary ideas which are needed to solve the

theorem. We then give an additional theorem and two corollaries which allow us to

state some properties of normal forms.

De�nition 4.2 We de�ne a word in a set of generators g1, g2, g3, ... by

(i) g1, g2, g3, ... are words;

(ii) if u, and v are words, then so is u � v

The words from which a given word is built up are called its components. That is,

(i) the only components of a generator is the generator itself;

(ii) the only components of a word w � u�v are the word itself and the components

of u, and v (called the major components).

The length of the word w is denoted as lpwq, and is de�ned as lpu � vq � lpuq� lpvq.

The length of a generator is taken as 1. We let ripg1, g2, g3, ...q � r1ipg1, g2, 3,...q

pi � 1, 2, ...q be the set of equations between words in g1, g2, g3, .... Two words in

pg1, g2, 3,...q are said to be equivalent if we can transform one word into the other

by a �nite sequence of applications of the loop axioms and the equations ri � r1i.

The resulting equivalence classes form a loop if one de�nes tuu � tvu to be tu � vu,

where twu denotes the equivalence class containing the word w. This loop is called

the loop generated by g1, g2, g3, ... with relations ripg1, g2, g3, ...q � r1ipg1, g2, 3,...q.
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We let the unit element of this loop be the equivalence class tazau. We assume,

that the unit element e,from now on for convenience, is included among the set of

generators.

De�nition 4.3 Let L be a loop generated by g1, g2, g3, .... We say that its relations

are in closed form if they satisfy the following conditions:

piq everyone of the relations is of the form x�y � z, where x, y, and z are generators;

piiaq if x � y � z is a relation, then so are xzz � y and z{y � x;

piibq if xzy � z, then so are x � z � y and y{z � x;

piicq if x{y is a relation, then so are z � y � x and zzx � y;

piiiq no two relations occur such as x � y � z, x � y � z1, identifying two generators

z, z1.

pivq For all x, x � e � x, e � x � x, are included in the set of relations.

De�nition 4.4 Let L be a loop de�ned by a closed set of relations. Let w be a word

in the generators e, g1, g2, g3, ... of L. By an elementary reduction of w, we mean

the replacing of a component of w of the form

piaq uzu by e;

pibq u{u by e;

piiaq e � u by u;

piibq u � e by u;

piiiaq ezu by u;

piiibq u{e by u;

pivaq u � puzvq by v;

pivbq pv{uq � u by v;

pvaq uzpu � vq by v;

pvbq pv � uq{u by v;

pviaq u{pvzuq by v;

pvibq pu{vqzu by v;

where u, v are words,
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pviiq x � y by z,

if x � y � z is one of the relations of the de�ning relations of L.

The opposite process to any one of these elementary reductions is called an elemen-

tary expansion. These elementary reductions and expansions are the applications of

the loop's axioms and relations. We say that two words in the generators of L rep-

resent the same element of L if, and only if a �nite sequence of transformation can

be given from one word to the other via the elementary reductions and expansions.

A word is said to be a normal form in the generators of a loop L if no elementary

reductions of the word is possible.

Notation 4.1 We denote a single elementary reduction from a word u to a word

v by u Ñ v. A sequence of of word reduction, denoted by w1 Ñ w2 Ñ ... Ñ wk, is

called a reduction chain.

We now give the following normal form theorem. We then give an additional theo-

rem and two corollaries that follow from the normal form theorem.

Theorem 4.1 Let w be any word in L. If w Ñ w1 Ñ ... Ñ wp and w Ñ w1
1 Ñ

...Ñ w1
q are two reduction chains such that wp, w

1
q are the same.

32

Theorem 4.2 If u and v are two equivalent words, then the reduction chains uÑ

u1 Ñ ... and v Ñ v1 Ñ ... end in the same normal form33

Corollary 4.1 Two normal forms are equivalent if, and only if, they are identical.34

Corollary 4.2 A normal form is the shortest word int the equivalence class con-

taining it.35

32. Trevor Evans, �On Multiplicative Systems De�ned by Generators and Relations: I. Normal
Form Theorems.,� Mathematical Proceedings of the Cambridge Philiso�cal Society 47, no. 4 (1951):
673�649, https://doi.org/10.1017/S0305004100027092.
33. Evans.
34. Evans.
35. Evans.
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From the previous theorems and corollaries we are able to give some additional

properties of normal forms. If w is a normal form then so is every component of w.

Conversely, if u, v are two normal forms then the word u � v is either normal or else

there is only one reduction possible which necessarily involves both major compo-

nents. The normal forms are the actual elements of the loop L, with the operations

de�ned in the obvious way. The relations between the length of the normal form

w, equivalent to u � v, and the lengths lpuq, lpvq are

piq if u � v is normal, lpwq � lpuq � lpvq,

piiq if u � v is not normal lpwq is |lpuq � lpvq|, lpuq, lpvq, or 1

We start this �nal section by looking at computability theory applied to �nitely

presented algebras in general. We de�ne an algebra.

4.3 Finitely Presented Algebras

In this �nal section we look at purely algebraic properties which allow for the

construction of an algorithm to solve the word problem.

De�nition 4.5 An algebra, A � pA,Ωq, is a nonempty set A with a �nite set Ω

of �nitary operations f : An Ñ A, where n � 1, 2, 3, ..., with each n-ary operation

being a mapping of An onto A.

We denote the general algebra with an unspeci�ed set of �nitary operations as

fpx1, x2, ..., xnq for the value of the n-ary operations f at px1, x2, ..., xnq. Examples

of some algebras we have shown are groupoids (having the one binary operation

x � y), quasigroups (having the three binary operations x � y, x{y, xz), and groups

(having the binary operation x � y, and the unary operation x�1).

De�nition 4.6 A variety of algebras, V, is the class of all algebras having a spec-

i�ed set of operations Ω which satisfy a speci�ed set of axioms each in the form of

an identity.
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An algebra A is in V if the identities of V are satis�ed by the operations and ele-

ments of A. Given a variety V, we can describe an algebra in terms of generators

g1, g2, g3, ... and relations r1 � r11, r2 � r12, r3 � r13, .... An element in a V-algebra

A is represented by expressions built from the generators g1, g2, g3, ... and the op-

erations of V. The relations in the de�ning identities of A are words in the gen-

erators g1, g2, g3, .... The de�ning identities of V are equations upx1, x2, x3, ...q �

vpx1, x2, x3, ...q, where u and v are words in variables x1, x2, x3, .... The elements of

A are equivalence classes of words in the generators. The words wpg1, g2, g3, ...q, and

w1pg1, g2, g3, ...q are equivalent if there is a �nite sequence of substitutions, using the

identities and relations of A, which transforms w into w1 denoted by w Ñ w1. We

depict this in the following example.

Example 4.1 Let V be a variety of groupoids de�ned by the identities x � x2 and

pxyq � x � y, for all x, y. Let A be the V-algebra generated by a, b with the de�ning

relation ba � ab � b. We have

ppbaq � ppaaqbqq � pab � bq Ñ ppbaq � ppaaqbqq � pbaq Ñ paaq � bÑ ab

Thus, the word ppbaq � ppaaqbqq � pab � bq � ab in A.

Let VH denote the the variety of all algebras of the same operation type as V.

VH can be thought of as having the same operations as V but de�ned by the

empty set of identities. Let F be the free algebra in VH generated by pg1, g2, g3, ...q.

A can be regarded as the quotient algebra F{θ where θ is the congruence of F

generated by all pairs pri, r
1
iq and all instances pu, vq of the de�ning identities of

V. An e�ective procedure can be given for generating θ. This is to say that, there

exists an algorithm for listing all equations w � w1 which hold in A; the subset of

all pwi, w
1
iq such that wi � w1

i in A is a recursively enumerable subset of the set of

all pairs of words in F .

De�nition 4.7 Let A be a �nitely presented algebra (both generators and relations

are �nite) in a variety V such that, for any elements x � y in A, there is a
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homomorphism α : A Ñ B onto a �nite algebra such that xα � yα in B. Then A

is residually �nite.

With this de�nition, we are able to construct an algorithm for solving the word

problem for A. We do this to prove the following theorem.

Theorem 4.3 A �nitely presented residually �nite algebra has a solvable word prob-

lem.

Proof: Let A be a �nitely presented algebra in a �nitely presented variety V and

let upg1, g2, g3, ...q, vpg1, g2, g3, ...q be two words in the generators of A. There is an

e�ective enumeration of all equations rpg1, g2, g3, ...q � spg1, g2, g3, ...q which follow

from the de�ning relations of A. To see this, imagine a machineM1 that systemati-

cally lists all pairs of words pw,w1q in the congruence on FnpV
Hq which is generated

by the de�ning identities of V and the de�ning relations of A. This equation will

eventually be produced by M1, if u � v holds in A.

Now assume that A is residually �nite. We now imagine a second machine M2

which systematically constructs all �nite algebras in V and computes for each one

all homomorphism of A into it. If u � v in A, then because of its residual �niteness

of A, in one of these homomorphisms the images u and v will be distinct. Combin-

ing these two machines, we see that after a �nite number of steps either machine

M1 stops because u � v has happened in its enumeration, or the machine M2 stops

because it has found a �nite homomorphic image of A which separates u and v. In

either case, the algorithm stops after a �nite number of steps, giving an answer to

the question: is u � v in A? ■36

From this we have that �nitely presented abelian groups, and commutative Mo-

ufang loops have solvable word problems, since they are residually �nite.

36. Trevor Evans, �Word problems.,� Bulletin of the American Mathematical Society 84, no. 5
(1978): 789�802, https://doi.org/bams/1183541140.
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There still exits many other open problems that are similar in nature to the word

problem.

1. The isomorphism problem: Is there an algorithm for deciding whether two

�nitely presented V-algebras are isomorphic

2. Is there an algorithm for deciding whether a �nitely presented V-algebra is

free?

3. Is there an algorithm for deciding, for an n-generator free mathdsV -algebra,

whether a set of n elements is a free generating set?
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