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ABSTRACT 

A DYNAMIC LANDSCAPE OF FEAR: HUMAN IMPACTS ON CARNIVORE 

COMMUNITIES 

By 

Tru McAlister Hubbard 

Mammalian carnivores play complex and sometimes keystone roles in structuring terrestrial 

ecosystems and facilitating biodiversity by driving trophic cascades that link predators to prey to 

plant communities. Carnivores have emerged as excellent ecological models that provide 

evidence that intraguild (IG) interactions (e.g., resource competition, intraguild predation) can 

reverberate across trophic levels, significantly affecting and even driving ecological processes. 

Yet, terrestrial carnivores have suffered the largest range contractions of all species on Earth in 

the last two centuries due to human activity. The profound impacts of various human activities 

on wildlife communities extend beyond physical changes in Earth’s land surface (i.e., 

agriculture, infrastructure, urbanization) to actual human presence on the landscape, which can 

influence wildlife behavior by disrupting movement, forcing changes in diel activity patterns, 

and mediating predator-prey interactions. Collaborating with Snapshot USA researchers, I 

explored variation in carnivore spatiotemporal activity and assessed carnivore co-occurrence by 

constructing diel activity density curves, applying multi-species occupancy models, and 

calculating attraction-avoidance ratios (AARs). My results suggest that carnivore responses to 

anthropogenic and environmental factors vary dependent on their status in the community (e.g., 

reproductive condition, subordinate, dominant), and coexistence is likely only possible through 

behavioral mechanisms allowing for plasticity in temporal, spatial, and dietary niches. 
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INTRODUCTION 

 

1.1 Human impacts on carnivore communities 

 

Mammalian carnivores play complex and sometimes keystone roles in structuring terrestrial 

ecosystems and facilitating biodiversity by driving trophic cascades that link predators to prey to 

plant communities (Suraci et al., 2019). Carnivores have emerged as excellent ecological models 

that provide evidence that intraguild (IG) interactions (e.g., resource competition, intraguild 

predation) can reverberate across trophic levels, significantly affecting and even driving 

ecological processes (Lombardi et al., 2020). However, worldwide most large carnivores are 

experiencing rapid population declines because of human-driven landscape change and 

disturbance of critical carnivore habitat (Ripple et al., 2014), yet human impact can extend 

beyond physical changes in Earth’s land surface (i.e., urbanization, farming). For example, actual 

human presence on the landscape, which experiences seasonal differences and is not spatially or 

temporally predictable, influences wildlife behavior by disrupting movement (Tucker et al., 

2018), forcing changes in diel activity patterns (Gaynor et al., 2018), and mediating predator-

prey interactions (Smith et al., 2015). In fact, growing evidence suggests human presence can 

result in a dynamic landscape of fear (Frid and Dill, 2002), referring to the relative level of 

predation risk as peaks and valleys reflecting the level of fear an individual prey experiences in 

different parts of its habitat that can induce stress responses and reduce fitness (Laundre et al., 

2010). Researchers have been using methods such as vigilance observations and foraging 

surveys of plants to quantify wildlife predation risk or the ‘landscape of fear’, which can be 

highly influenced by human activity across the landscape (Laundre et al., 2010). In particular, 

carnivores are especially affected by human disturbance due to the human ‘super predator’ 

perception (Suraci et al., 2019; Smith et al., 2015; Clinchy et al., 2016), causing carnivores to 
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respond by modifying their habitat use and behavior driving widespread changes of community 

and ecosystem-level processes (Smith et al., 2015; Wilmers et al., 2013). Thus, understanding 

the drivers of spatial and temporal dynamics as well as species co-occurrence among carnivore 

guild members across multi-use landscapes, can provide novel insights that can be used by 

natural resource managers to facilitate recolonization and population of diverse ecological 

communities by promoting multi-species carnivore conservation (Ripple et al., 2014).      

Furthermore, prior research has focused primarily on large carnivores that play a key role 

in maintaining ecological communities but make up a small portion of carnivore species 

worldwide. Mesocarnivores are small to medium in size (i.e., <15kg) and make up the majority 

of the carnivore community. The group is made up of highly adaptable species that are diverse in 

their ecology and behavior, yet little research has focused on the role they play in community 

structure (Roemer et al., 2009). For example, many small North American carnivores (i.e., kit 

fox [V. macrotis], black-footed ferrets [Mustela nigripes], kit fox [V. velox]) suffered apparent 

consequences following the extirpation of wolves, which allowed coyote populations to grow 

and expand as they moved into increasingly urbanized landscapes (Linnell and Strand, 2000). 

The ability of mesocarnivores to adapt to new environments and actively avoid competition both 

within and between species is a vital strategy for carnivore coexistence (López-Bao et al., 2016), 

therefore it is critical to further investigate these species and the relationships they share within 

their communities.  

1.2 Diversity of the U.S. carnivore guild 

The multi-use lands and variable land cover across the U.S. provide excellent systems to 

investigate a diverse carnivore community’s temporal and spatial patterns, but further delving 

into finer-scale variation across the local Marquette rural-wildland interface provides an 
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opportunity to understand the more subtle effects of human presences and forms of recreation. 

The area has a flourishing outdoor recreation scene (e.g., snowmobiling, mountain biking, 

hunting, hiking) that fluctuates seasonally, and supports a diverse carnivore guild (e.g., American 

black bear [Ursus americanus], gray wolf [Canis lupus], red fox [Vulpes vulpes], bobcat [Lynx 

rufus], fisher [Martes pennant], marten [Martes americanus], striped skunk [Mephitis mephitis]) 

as well as a myriad of prey species (e.g., white-tailed deer [Odocoileus virginianus], eastern gray 

squirrel [Sciurus carolinensis], eastern chipmunk [Tamias striatus]) that are found throughout 

much of the US.  

1.2 Research Overview 

As human-dominated landscapes continue to expand worldwide, understanding how 

carnivores respond to anthropogenic effects is becoming increasingly important. I investigated 

the responses of multiple carnivore species to human disturbance at various scales across the 

U.S., as well as their interactions with each other. In my first chapter, I focused my study in a 

small area of the Upper Peninsula of Michigan to further understand the temporal and spatial 

patterns of American black bears in response to human activities. Over the past several decades 

black bears recolonized parts of their historic range in many areas, thus the Upper Peninsula of 

Michigan may serve as an excellent model system to inform bear management in areas where the 

black bear population is growing, as well as areas that black bears have not previously inhabited.  

In my second chapter, I investigate the carnivore community of the United States by using 

Snapshot USA 2019 data with the bobcat as a focal species. I examined spatial and temporal 

patterns of nine carnivore species to determine if the bobcat functions in a mesocarnivore or de 

facto apex predator capacity, and also determined the strength of various factors driving 

differences among dominant and subordinate carnivores within the U.S. carnivore guild. 
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1.CHAPTER ONE: HUMAN RECREATION IMPACTS SEASONAL VARIATION IN 

AMERICAN BLACK BEAR (URSUS AMERICANUS) ACTIVITY AND OCCUPANCY 

ACROSS THE URBAN-WILDLAND INTERFACE 

 

 

 

1. Introduction 

Large mammalian carnivores are often elusive, wide-ranging species that have a history 

of controversial conservation due to mixed human perceptions (Chapron et al., 2014; Lute et al., 

2020) and contentious decision-making regarding management, resulting in most carnivore 

species experiencing continued rapid population declines and loss of habitat worldwide (Ripple 

et al., 2014; Gantchoff and Belant, 2017). As anthropogenic development continues to increase, 

carnivores’ large home range size, low population densities, high metabolic demands associated 

with large body size (Ripple et al., 2014), and direct persecution due to hunting (Smith et al., 

2014; Kays et al., 2016; Schipper et al., 2008; Støen et al., 2015; Stillfried et al., 2015) make 

them especially vulnerable to landscape changes. Yet, there are still many causes for 

conservation optimism due to the successful recolonization of some large carnivores across large 

swaths of their historic ranges despite substantial human-modified changes to the global 

landscape (Chapron et al., 2014; LaRue et al., 2012; Evans et al., 2017). Thus, the importance of 

effective land management and planning that balances the needs of humans and wildlife (Lute et 

al., 2020; Cove et al., 2019) is critical for promoting effective global carnivore conservation and 

recolonization (Evans et al., 2017).  

As urban environments continue to extend their reach, growing evidence suggests that 

human activity results in a dynamic landscape of fear (Frid and Dill, 2002), in which wildlife, 

particularly carnivore species with a history of persecution by humans, perceive humans as 

‘super predators’ (Smith et al., 2015; Clinchy et al., 2016; Suraci et al., 2019) and respond by 
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modifying their habitat use and behavior (Smith et al., 2015). Changes in predator-prey 

interactions (Smith et al., 2015), shifts in diel activity patterns (Gaynor et al., 2018; Suraci et al., 

2019; Smith et al., 2018) and wildlife movement (Tucker et al. 2018) associated with human 

activities have led to increased sightings, nuisance reports, and even increased harvest reports of 

some species, as well as an unprecedented rise in reported interactions between humans and 

carnivores (Carter et al., 2010). In particular, increased outdoor human recreation, which has 

become a popular incentive for nature-based tourism and conservation of natural ecosystems, has 

the potential to cause high levels of ecosystem disruption that may impact carnivore populations 

and lead to the deterioration of biodiversity (Naidoo and Burton, 2020; Kays et al., 2017). For 

example, as prey habituate to human activities associated with nature-based tourism I expect 

responses to predation risk to be reduced, thus bolder individuals will experience increased 

vulnerability to predators where humans are predominant across the landscape (Geffroy et al., 

2015). Observing the impacts of human recreation is challenging, wildlife responses to recreation 

activities can be subtle and vary dependent on species, while tracking human presence across the 

landscape is unpredictable and difficult to monitor in wild areas (Naidoo and Burton, 2020). 

Urbanization, human population growth, and recreational opportunities are responsible for 

driving people farther into areas where carnivore populations persist, making carnivore 

behavioral plasticity an important trait for co-existing in increasingly common human landscapes 

(Støen et al., 2015). 

The recolonization of many carnivores in North America is a result of species becoming 

more tolerant of developed areas and human activity (Evans et al., 2018; Evans et al., 2017; 

Gantchoff and Belant, 2017), allowing them to persist in human-dominated landscapes and even 

exploit human resources (Smith et al., 2018; Evans et al., 2017). For example, in urban 
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environments the American black bear (Ursus americanus), an omnivorous carnivore, is capable 

of modifying their foraging behavior (Evans et al., 2018) to consume human subsidies such as 

garbage, fruit trees, and birdseed (Carlos et al., 2009; Johnson et al., 2018). Although black bears 

have been recolonizing their former range and even dispersing into new environments (i.e., urban 

landscapes) over the past couple decades (Evans et al., 2017; Ditmer et al., 2018; Carter et al., 

2010), anthropogenic attractants can lead to increases in the number of bear-human conflicts. 

Indeed, American black bears are the most abundant large carnivore in the world (Ripple et al., 

2014), utilizing an array of landcover types (i.e., forest, shrubland, wetland), as well as 

occupying exurban areas (Evans et al., 2018) that have lower housing density and slower 

development. In the state of Michigan, the American black bear population is increasing and 

expanding farther south in the Lower Peninsula (McFadden-Hiller et al., 2016), presenting 

challenges for wildlife managers, and a growing indifferent public opinion of the species (Ladle 

et al., 2018; Wilbur et al., 2018; McFadden-Hiller et al., 2016). Following successful 

reintroductions, black bears are once again reclaiming parts of their historic ranges in the 

southeastern U.S. in Arkansas and Louisiana (Gantchoff and Belant, 2017) and are recolonizing 

portions of Mississippi, eastern Texas, Oklahoma (Lustig et al., 2021), Missouri (Gantchoff and 

Belant, 2017), portions of urban Connecticut (Evans et al., 2018), and father north into New 

York (Sun et al. 2017) and Maine. Variation in land use among these regions (i.e., forest, 

agriculture, housing density) and differences in wildlife management policies (i.e., hunting 

season vs. no hunting season) can have a significant effect on the success of recolonizing 

populations (Cove et al., 2019;Evans et al., 2018). As such, understanding the influence human 

activity has on the spatial and temporal dynamics of black bears is critical to determine 
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successful management practices of growing carnivore populations that persist across human-

dominated landscapes. 

For the American black bear, the period of hyperphagia when bears consume excessive 

food and water to gain weight as they enter the period of inactivity known as hibernation, plays a 

key role in their life history and is susceptible to influence caused by changing patterns of human 

activity, seasonal food availability, and climate (Johnson et al., 2018). For example, increasing 

temperatures and expanding urbanization have been postulated to reduce the time of hibernation, 

further increasing the number of bear-human conflicts along the urban-wildland interface 

(Johnson et al., 2018). Increased human activity in remote wild areas, particularly during annual 

bear hunting seasons, have been observed to cause circadian shifts in black bear temporal 

activity, increasing overall nocturnal activity (Støen et al., 2015). Human hunters acting as top 

predators are restricted in their predation to particular areas and times of the day and year in 

which hunting is allowed, thus black bears may be able to predict their spatial and temporal 

variation (Stillfried et al., 2015). In the Upper Peninsula of Michigan (U.P.), recreational bear 

hunting (2019 U.P. Bear Hunting Season: September 11-October 26; ~91,582km2) began in 1925 

and has become a long-standing tradition to manage bear populations, but in 2012 license quotas 

were dropped significantly due to expressed concerns from DNR biologists and bear hunting 

clubs (Michigan DNR, 2021). Further, the investigation of black bear spatial and temporal 

behavior during the period of “activity” in the U.P. offers tangible evidence for understanding 

how recolonizing black bear populations use multi-use lands and respond to anthropogenic 

activity, which is essential for conservation of black bears in areas where they have not 

previously persisted and as they recolonize portions of their historic range.  
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To better understand the influence of human activity on the seasonal spatial and temporal 

patterns of the American black bear, I used camera traps to examine anthropogenic and 

environmental factors that have the potential to influence black bear activity and occupancy 

across the urban-wildland interface of Marquette MI. The U.P. is home to most of Michigan’s 

black bears and hosts a stable population that has increased by about 1% since the year 2000 

(i.e., ~9,699 bears -- Michigan DNR, 2021). The pairing of a stable black bear population and 

popular outdoor recreation scene that hosts a range of activities throughout the year makes this 

study area an ideal ecological model for evaluating black bear behavior relative to human 

recreation patterns on a seasonal scale. Thus, my research objectives were to (1) determine 

whether black bears exhibit significant differences in spatial and temporal activity patterns 

before and after hibernation, while also considering the variation in human activity throughout 

the year, (2) determine which types of human activity and environmental factors influence black 

bear detection and occupancy across the landscape, and (3) determine if black bear display a shift 

in their activity patterns given the onset of hunting season. I predicted that black bear activity 

would be driven by the energy demands of hyperphagia before hibernation causing black bears to 

occupy a greater proportion of the landscape when resources are scarce, as well as the need for 

larger quantities of food and nutrients for cubs following hibernation that will increase black bear 

activity level when resources are plentiful. Finally, I predicted that black bears would exhibit 

greater nocturnality in the fall due to the increased risk associated with direct persecution by 

hunting, leading to an increased importance of protected areas before hibernation. 
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2. Materials and Methods 

2.1 Study Area 

I conducted my study in the U.P. of Michigan in the northeast region of Marquette 

County, along the urban-wildland interface just north of the peninsula’s largest city, Marquette 

(46.5436° N, -87.3954° W). The 60km2 study area (Fig. 1.1) is bordered to the east by Lake 

Superior and covers an area that includes several popular outdoor recreation areas (e.g., Harlow 

Lake, Sugarloaf Mountain, North Country Trail) as well as commercial forest lands that 

experience considerable seasonal changes throughout the year. Snow cover generally lasts from 

November to the following April with average temperatures reaching 74.5°F in July and 

dropping to 12.5°F in January (Weather Atlas). The area is under mixed management including 

Michigan Department of Natural Resources, The Nature Conservancy, and Hancock Timber 

Management Group. Land cover across the study area is diverse and includes coniferous, 

deciduous, and coniferous-deciduous-mixed forests, wetlands, occasional meadows, sand dunes, 

rocky outcrops, as well as a vast Lake Superior shoreline. In addition to myriad land cover, this 

thriving ecosystem supports a diverse carnivore guild (e.g., gray wolf [Canis lupus], red fox 

[Vulpes vulpes], bobcat [Lynx rufus], fisher [Pekania pennanti], marten [Martes americanus], 

striped skunk [Mephitis mephitis]), as well as various prey species (e.g., eastern gray squirrel 

[Sciurus carolinensis], eastern chipmunk [Tamias striatus], American red squirrel [Tamiasciurus 

hudsonicus], and white-tailed deer [Odocoileus virginianus]). 
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Figure 1.1 | Map of 60km2 study area displaying current land management with circles 

indicating locations of camera traps and whether black bear, human, or both or none (i.e., solid 

black circle) were detected. Inset map of the Upper Peninsula of Michigan with Marquette 

County highlighted, study area indicated, and city of Marquette marked with red dot.  

2.2 Camera Trap Surveys 

I deployed 30 trail cameras (Primos Proof Generation 2) equipped with infrared flash 

across the rural-wildland interface of Marquette, Michigan between August 31 and September 8, 

2019. To determine camera locations, I overlaid a 1 km2 grid across the study area and 

subsequently used a randomization method in the R package spatialEco (Evans, 2021) to identify 

a single random point for each of the 40 grid cells across my study area. While I only deployed 

30 cameras, generating an additional 10 points allowed deployment flexibility in the rare event a 

Hancock                                        

State of Michigan (MIDNR)               

The Nature Conservancy 
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grid cell was not usable (e.g., land ownership changes not registered on county plat maps [private 

land]). Upon arriving at the approximate center of a grid cell, I searched for animal signs (e.g., 

animal trails, scat, etc.) within 100m of the center point to identify locations that may increase 

the probability of capturing wildlife images. Cameras were strapped tightly 0.5m (Diaz-Ruiz et 

al. 2015) above the base of trees within a 60° window of north to reduce direct sunlight (Moore 

et al. 2020), and when possible, along linear features (e.g., river, trail, etc.) with no addition of 

bait or lure. Camera settings were chosen to increase the probability of capturing and accurately 

identifying fast-moving carnivores, thus cameras recorded multiple photographs per trigger, at a 

rate of 1 frame per second, re‐triggering immediately if the animal was still in view (Kays et al., 

2017; Moore et al., 2020; Parsons et al., 2019).  

I exchanged SD cards every 2-3 months, except during the winter when many cameras 

were not accessible. In early November 2019, cameras were shifted to a height of 1m above the 

ground in preparation of snowfall and any further height adjustments were made based on 

weather conditions and individual site conditions. As I was capturing images along an urban-

wildland interface, images were sorted and all license plates and human faces were blurred to 

remove identifiable features. Following this procedure all images were organized in events 

and/or subjects based on a 5s window (i.e., images were grouped if they were taken within 5s of 

the previous image) and were uploaded to the Yooper Wildlife Watch project on Zooniverse 

(https://www.zooniverse.org/projects/bergq105/yooper-wildlife-watch), an online imagery 

platform where wildlife images can be uploaded, managed, identified, and archived. Using this 

online platform allows for the global engagement of citizen scientists, as well as an efficient way 

to quickly gather species information and image metadata for further data analysis. After 

completion of subject identification, independent wildlife observations or detections were 
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determined using a 30-minute interval between the same species, assuming that if it were shorter, 

I was observing the same individual (Tian et al., 2020; Allen et al., 2020). To stay consistent, this 

method was used for both black bear and any human related detections, noting that on heavily 

traveled human trails there may have been different individual humans passing within 30 

minutes of each other.  

3. Data Analysis 

3.1 Analysis – Temporal Activity  

Daily activity patterns of American black bears and humans were analyzed using the 

package “overlap” (Meredith and Ridout, 2020) in RStudio version 1.3.1073 (RStudio Team, 

2020). Time was converted to radians to create kernel density estimation curves for (1) black 

bears before hibernation (i.e., all detections following camera deployment in September and 

before the final bear siting in the fall) and (2) black bears after hibernation (i.e., all detections 

following the first bear detection in the spring and before the month of September). The same 

was done for humans, domestic dogs, and vehicles using the timeframe established by the 

temporal span of black bear detections. Overlap estimates were made for black bears before and 

after hibernation as well as for the different types of human activity using the overlap coefficient 

(Δ), which is scaled from 0 to 1, where (Δ=1) signifies complete overlap (Ridout and Linkie, 

2009; Tian et al., 2020; Allen et al., 2020). I also investigated the effect of cub presence on black 

bear daily activity patterns to determine if their presence contributed to significant changes in 

activity but given the smaller sample size of cub detections, I calculated this metric using 

combined data for both the before and after hibernation (Lashley et al., 2018). Further, activity 

level estimates were calculated using the package “activity” (Rowcliffe et al., 2021) by fitting a 

flexible circular distribution to calculate the proportion of time a single species or group of 
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individuals is active within a 24-hour period (Ridout and Linkie, 2009). After calculating activity 

level estimates, I used a Wald test to determine whether there was a significant difference 

between the black bear activity level before and after hibernation, as well as between black bears 

and differing types of human impact. Finally, I extracted temperature data from the black bear 

images to plot monthly and hourly changes to determine if black bears display any threshold for 

activity based on temperature.  

3.2 Analysis – Occupancy Modelling  

I created single species, single-season occupancy models to determine: (a) the probability 

of black bear detection at a site and (b) the probability of a site being occupied by a black bear 

given a number of anthropogenic and environmental variables before and after hibernation 

(MacKenzie et al., 2006). Binary detection histories (1 = detected, 0 = not detected) were created 

for the black bear before hibernation and after hibernation at each camera site. I accounted for 

imperfect detection by using weekly sampling occasions (Before: n=13; After: n=18), which 

reduced the number of observations where the count of detections is zero (Naidoo and Burton, 

2020, MacKenzie et al., 2003). Camera trappers were not included when running occupancy 

models due to my presence at every site, which could impact the results. Data for environmental 

covariates and some human impact covariates, which consisted of large-scale human factors 

across the landscape, were extracted from geo-spatial layers available on the government 

Landfire database (https://www.landfire.gov/), USDA database (https://www.nass.usda.gov/), 

and SEDAC (https://sedac.ciesin.columbia.edu/). All data for human recreation covariates, which 

included fine-scale human presence across the landscape, were calculated from my collected 

camera dataset. 

https://www.landfire.gov/
https://www.nass.usda.gov/
https://sedac.ciesin.columbia.edu/
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I checked for correlations between all numeric covariate pairs using the package corrplot 

(Wei and Simko, 2017) with a threshold of 0.7 to indicate high correlation for eliminating 

covariates that encompass the same variation from my final models. Highly correlated covariates 

included human count, humans on-foot, domestic dogs, and humans on non-motorized recreation 

vehicles (i.e., bikes), which all had correlation values greater than 0.9. Covariates were grouped 

into three categories (1) human impact, (2) human recreation, and (3) environmental impact 

(Table 1.1). Single-species occupancy models were run to compare each covariate's effect on 

black bear occupancy, with the covariate ‘season’ accounting for the difference before and after 

hibernation as well as when hunting season occurred. After removing the highly correlated 

covariates, I retained human presence, human population density, and season in my final model. 

I also investigated the probability of detecting black bears at individual sites based on whether 

sites were located in protected areas as well as variable by season, which I predicted would have 

a significant effect on black bear detections.  
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Table 1.1 | Summary of environmental and human covariates included in occupancy models 

based on values for each camera site before and after hibernation. (*) Indicates significant effect. 

Model/Covariate                               Description                   Max    Min    AIC Value 

Human Impact  

*Human Presence               yes/no                              NA         NA           480.70 

*Human Population Density    pop. density per 1km sq.                      10.35        0              481.12 

Road                           distance to nearest road (m)                  1541.60    8.69  483.54 

Land Ownership        Hancock, Nat. Conservancy, MIDNR         NA         NA  484.57 

Protected Land                            yes/no                    NA          NA  484.37 

Human Recreation 

* Human Count                  total # of humans                          589             0  481.84 

*Human On-Foot                total # of humans on foot     14.97         460  482.20 

*Human Non-Motorized   total # of non-motorized rec.               129            0  482.33 

*Domestic Dog Presence                 yes/no                          NA            NA  482.77 

Recreation Vehicle Presence                 yes/no                 NA             NA  485.14 

*Passenger Vehicle Presence                 yes/no                 NA            NA  483.09 

Utility Vehicle Presence                 yes/no                 NA            NA          484.80 

Gun Present                              yes/no                            NA            NA  484.69 

*Sum of Human Activity       # of dogs, humans, and vehicles             1034            0  482.84 

Environmental Impact  

Landcover Type   primary forest species (i.e., hemlock, etc.)      NA          NA          484.85 

Water Source                             nearest water source (m)     781             10  485.14 

Elevation                      meters above sea level                435.02     183.06       484.85 

Season            before hibernation/after hibernation    NA            NA          483.37 

 

4. Results  

Detections were recorded before hibernation (i.e., September 1st, 2019 to November 26th, 2019 

and September 1st, 2020- September 8th, 2020 [95 days]) and after hibernation (i.e., April 12th, 

2020 to August 30th, 2020 [141 days]) for a total of 110 detections, 15 of which had a mother and 

cub, 2 of which had multiple adults, and 2 of which had only multiple cubs. Of the total 

detections, 46 were recorded before hibernation while 66 were recorded after hibernation. Black 

bear detections were captured at 23 of the 30 camera sites with 42 independent black bear 

detections recorded at a single location. Upon further investigation, this location had a mother 

and cub frequently visiting the camera and likely denning nearby, yet other adults were still 
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distinguishable when reviewing images collected at this site (Table 1.2). Approximately 48% of 

all black bear detections included direct physical interaction by the black bear with the camera. 

Human detections totaled 1,191 with on-foot making up 898 of the detections and non-motorized 

accounting for 163 detections. There was an increase in human activity rate following 

hibernation in the spring by approximately 0.40 detections per day or about 9% (Before: 4.3/day; 

After: 4.7/day). Further, images were inspected for the presence of guns (i.e., hunters), which 

were recorded only before hibernation at three different sites and 13 independent detections 

(Table 1.2). 

Domestic dog detections totaled 611 with 480 collared dogs being captured at six different sites, 

124 non-collared dogs being captured at seven sites, and seven detections where collars were 

indeterminate. Non-collared dogs made up approximately 20% of the total dog detections. 

Before hibernation, we recorded 1.8 dog detections per day and after hibernation 3.1 per day, 

thus there was approximately a 41% increase in the rate of dog detections in the spring (Table 

1.2). 

We recorded 113 independent detections of vehicles that were grouped into three categories: (1) 

recreational vehicle (i.e., four-wheeler, ATV, snowmobile), (2) passenger vehicle (i.e., average 

car or truck), and (3) utility vehicle (i.e., logging truck, dump truck, etc.). Vehicles were 

recorded at five different camera sites with a total of 43 recreational vehicles, 47 passenger 

vehicles, and 24 utility vehicles. Vehicles were recorded at a rate of 0.4/day after hibernation and 

a rate of 0.5/day before hibernation for an approximate 20% increase (Table 1.2).  
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Table 1.2 | Summary of detections for American black bears, humans, domestic dogs, and 

vehicles before and after hibernation.  

Species                    # of Locations         Before Hibernation         After Hibernation        Total 

Black bear 

Adult/Subadult  23            46              50     96 

Cubs    10            13              16     29 

Human 

On-foot   18          372            526   898 

Non-motorized  1          34            129   163 

With gun   3          13   0   13 

Dog 

Collared   6          125            355  480 

Not collard   7          49   75  124 

Vehicle 

Recreational                   5          20   23  43 

Passenger                     3          36              11  47 

Utility               2          16   7                      23 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 | Summary of when black bear and human detections were recorded throughout study 

period and further broken down into before hibernation (top), and after hibernation (bottom).  
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4.1 Temporal Activity  

Comparing before and after hibernation temporal activity in the American black bear, I 

observed an increase in activity during diurnal hours by over 30% after hibernation (Before: 

42.5%; After: 78.4%) with an overlap estimate of 0.661 (Fig. 1.2). Diurnal time boundaries were 

determined by calculating the average sunrise/sunset time from all black bear detections for 

before and after hibernation. A slight increase in black bear activity level was also observed after 

hibernation (Before: 0.574; After: 0.641) suggesting they were active for a greater proportion of 

the day though not statistically significant (p = 0.560). Variation in activity was also compared 

for bears with and without cubs utilizing all detections recorded during the study period. I 

calculated an overlap estimate of 0.799 with bears having greater diurnal activity without cubs 

(With: 56.4%; Without: 59.6%) as well as a lower activity level (With: 0.669; Without: 0.594) 

that was not significantly different from bears with cubs (p=0.598). I briefly investigated the 

relationship between black bear activity and temperature, where I observed a consistent increase 

in the mean temperature from April (7.1°C) to July (24.1°C), and then a decrease moving into 

November 0.6°C) as expected. Only two (~0.02%) black bear detections occurred at 

temperatures below freezing during the month of November. 
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Figure 1.3 | (a) Black bear activity before and after hibernation. (b) Black bear activity with and 

without the presence of cubs. The gray area under the curves represents the overlap between the 

two activity patterns. (c) Minimum and maximum temperatures recorded for all black bear 

detections grouped by month and hour of the day.  

Non-motorized human activity (i.e., biking) levels differed significantly before and after 

hibernation with an increase in the proportion of day they were occurring following black bear 

hibernation. Human activity consistently had higher overlap with black bear activity after 

hibernation, which could be a result of the overall increase in human activity observed in the 

spring. Among the different types of human activity, similar overlap estimates with bear activity 

were calculated that had no significant differences.  
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Table 1.3 | Human activity overlap with black bears and activity level estimates before 

hibernation (BH) and after hibernation (AH).  

Human Activity  BH Overlap Est.  AH Overlap Est.   BH Activity Level   AH Activity Level 

All recreation  0.325         0.621      0.361    0.340 

On-foot  0.332         0.635      0.375    0.342 

Non-motorized 0.229         0.582      0.209                         0.339  

Vehicles  0.317         0.573      0.328    0.292 

 

4.2 Occupancy Modeling 

Black bear occupancy was driven by human presence, human population density, and 

changes in seasonality that resulted in greater occupancy before hibernation (i.e., 18 sites 

occupied) than after hibernation (i.e., 14 sites occupied). My final model showed a near 

significant negative effect caused by human presence (β = -1.128, ±0.633SE) and human 

population density (β = -0.159, ±0.605SE) (Fig. 1.3).  

The probability of detecting a black bear in my final model was found to be significantly 

associated with protected areas (β = 1.851, ±0.326SE) and the season (β = - 0.668, ±0.326SE) 

(Fig. 1.3). Season had a negative effect on black bear detection probability after hibernation, but 

I suspect this may be influenced by a shorter time period of data collection before hibernation. 

Protected land areas greatly increased the probability of detecting black bears with a strong 

positive effect given only 3 sites lie within protected boundaries.  
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Figure 1.4 | Graphs in left column show the relationship between estimated detection probability 

and (A) protected land [0-unprotected, 1-protected], and (B) season [0-before hibernation, 1-after 

hibernation]. Graphs in right column show the relationship between estimated occupancy 

probability and (C) human presence [0-not present, 1-present], and (D) population density. 

Shaded region represents the standard error.  

 

5. Discussion 

My research provides critical insights into the effects that human activity exerts on 

American black bear activity and occupancy across the urban-wildland interface, thus furthering 

our knowledge and ability to create better management practices in the region and in areas with 

recolonizing populations more broadly. Specifically, I investigated how different forms of 
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human activity (i.e., human presence, domestic dogs, vehicles, etc.) and other environmental 

factors altered black bear occupancy before and after hibernation. My results showed that black 

bears are significantly affected by human presence across the landscape with variation in activity 

and occupancy observed before and after hibernation. However, because I found no clear 

differences in black bear activity based on the different types of human activity and recreation 

detected, my results suggest black bears might not differentiate among the different types of 

human activity and recreation occurring in my study area. Similar results have been found in past 

studies showing that differences in bear activity patterns did not differ between sites with 

motorized or non-motorized recreation (Ladle et al., 2018).  

I used kernel density estimation curves to analyze the temporal activity patterns of black 

bears finding a consistent trend for increased overlap between bears and humans following 

hibernation, which I expect is partially due to a substantial rise in outdoor human recreation as a 

result of COVID-19 restrictions during my study (Blount et al., 2021). This increase was 

observed for all types of recreation (>38%) after hibernation, thus through further analysis, I 

concluded that the different types of recreation were highly correlated and human presence 

captured their effect in a single covariate. Given this, I observed no difference in black bear 

temporal activity due to variable human activity across the landscape. I also investigated the 

effect of cub presence on black bear temporal activity, observing a small increase in diurnal 

activity when cubs were not present. The small sample size of detection with cubs present 

prevented me from analyzing before and after hibernation data separately, which may have 

limited my ability to detect an effect, though I do not expect black bear cub activity to vary 

substantially across seasons. I observed an increase in cub detections in the spring as expected, 

yet I would also expect the birthing of new cubs to increase the activity level and demand for 
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resources by black bears after hibernation forcing them to spend greater time searching for and 

consuming food. Similarly, before hibernation I would expect to observe a high demand for 

resources that are becoming scarcer, forcing black bears to travel and search greater distances to 

support the energy costs of entering and sustaining hibernation. As such, having a larger dataset 

might provide greater evidence to support black bear activity being driven by the energy 

demands of hyperphagia before hibernation and the need for larger quantities of food and 

nutrients to support cubs following hibernation.  

To explore the spatial scale of black bear activity, I used occupancy models and an array 

of human and environmental covariates. I found black bears to be negatively associated with 

human presence and human population density. Further, my results indicate that black bears are 

influenced strongly by human activity across the landscape, with little to no impact from the 

environmental factors that I measured (Table S1.1). Due to my small dataset for some human 

activity covariates, I think further investigation into specific types of recreation is necessary to 

fully understand black bear occurrence on the landscape. For example, my study only included a 

total of 13 detections where a hunter with a gun was clearly identified. I expected hunters to have 

a greater effect on black bear occupancy than the average human (i.e., hiker), but my sample size 

for this covariate was too small to provide meaningful insight. Moreover, I did observe a 

significant effect on black bear occupancy due to the season (i.e., before or after hibernation), yet 

a negative effect on occupancy was observed after hibernation, which does not correlate with 

hunting season. A possible explanation for this observation may be due to high resource needs 

before hibernation, driving bears to move greater distances in search of food that is becoming 

more limited moving into winter. The risk of finding food that allows for successful hibernation 

may outweigh the risk associated with human activity during the hunting season. Further, I found 
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that protected areas had a strong positive association with black bear occupancy. Given only 3 

sites (10%) were located within protected lands, no hunting zone or protected areas could also 

play a key role in determining how black bears use the landscape during hunting seasons. 

Finally, the increased amount of nocturnal activity displayed by black bears in the fall could 

substantially increase their chance of avoiding hunters across the landscape due to legal hunting 

hours beginning 30 mins before sunrise and continuing 30 mins after sunset in the state of 

Michigan (Michigan DNR, 2021).    

American black bears play important functional roles across variable ecosystems of 

North America, having critical life history traits that can be highly influenced by variation in 

human activity, weather, and resource availability across the landscape (Johnson et al. 2018). As 

such, ensuring black bear populations can meet their hibernation requirements should be a 

primary consideration for wildlife managers, which may influence hunting regulations and the 

number of tags made available each season for bear harvest. I observed the highest number of 

black bear detections throughout the months of September and October, which takes place during 

hunting season and the time when black bears are preparing for hibernation. Although the U.P. 

has had an active hunting season for many years, continuous monitoring of the population is a 

necessity to keep a stable population and will provide knowledge for wildlife managers in areas 

where hunting seasons may need to be established in the future. Moreover, increasing our 

knowledge of how human hunting activity affects black bear temporal and spatial patterns is 

critical for understanding the impact that humans have on successful hyperphagia in black bears.  

American black bears are a well-known and a frequently studied large carnivore that has 

been recolonizing and expanding their range across much of North America. Although highly 

impacted by human presence and population density across the landscape, black bears have the 
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capacity to coexist in human impacted landscapes and even thrive in these altered systems 

(Evans et al., 2017). Investigating black bear temporal and spatial activity patterns in the U.P. 

where wildland is abundant yet easily accessible by humans could provide substantial 

information to inform management practices associated with recolonizing populations across 

North America.   
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CHAPTER TWO: HUMANS OVERRIDE ENVIRONMENTAL DRIVERS OF CARNIVORE 

INTERACTIONS 

 

 

 

1. Introduction 

 

Large apex mammalian carnivores often play complex and sometimes keystone roles in 

structuring terrestrial ecosystems by driving trophic cascades that link predators to prey and prey 

to plant communities (2015; Miller et al., 2018; Suraci et al., 2019; Dröge et al., 2016; Clinchy et 

al., 2016). Yet, most carnivores are considered neither large nor apex, but instead are 

mesocarnivores, which are small to medium in size (i.e., <15kg). Given their smaller size and 

adaptability to varying environmental and anthropogenic conditions, mesocarnivores far 

outnumber large carnivores and are more diverse in their ecology and behavior (Roemer et al., 

2009). Consequently, mammalian carnivore guilds have emerged as exciting ecological models 

for examining the many ways in which intraguild interactions (e.g., resource competition, 

intraguild predation) reverberate across trophic levels to affect and even mediate ecological 

processes (Lombardi et al., 2020; Gompper et al., 2016; López-Bao et al., 2016; Green et al., 

2018). Intraguild interactions can facilitate or limit species’ coexistence by driving carnivore 

temporal and spatial distributions (Miller et al., 2018), mediating carnivore and prey densities, 

and influencing species’ behavior (Gompper et al., 2016; Grassel et al., 2015). Thus, 

understanding the drivers of spatial and temporal dynamics as well as species co-occurrence 

among carnivore guild members across heterogeneous landscapes can provide novel insights into 

intraguild structure. 

Wildlife communities can be influenced strongly by competition between interacting 

carnivore species, and changes in the population density of even a single carnivore species can 

have significant ecological effects throughout an ecosystem (Miller et al., 2018; Suraci et al., 
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2019; Dröge et al., 2016; Clinchy et al., 2016). In fact, large carnivores have the potential to 

initiate top-down effects that influence mesocarnivores’ behavior, abundance, and distribution 

through both consumptive and non-consumptive pathways (Shores et al., 2019; Dellinger et al., 

2018). For example, following the reintroduction of gray wolves (Canis lupus) on Isle Royale 

(Michigan, U.S.A.) in 1958, coyotes (Canis latrans) were driven to near extirpation (Linnell & 

Strand, 2000). In contrast, coyote population growth and range expansion across much of North 

America following historical wolf extirpation in conjunction with the remarkable adaptability of 

coyotes to urban environments resulted in population changes for several smaller carnivore 

species such as kit fox (Vulpes macrotis), black-footed ferrets (Mustela nigripes), and swift fox 

(Vulpes velox) (Linnell & Strand, 2000), especially as coyotes began to fulfill the role of a de 

facto apex predator.  

Multiple behavioral mechanisms are essential for carnivore coexistence: temporal 

partitioning, habitat segregation (López-Bao et al., 2016; Dröge et al., 2016), and the ability of 

subordinate species to adopt strategies (e.g., active avoidance [Ruiz-Villar et al., 2021], prey-

switching [Ghoddousi et al., 2017]) to avoid or reduce competition with dominant sympatric 

species. However, carnivore community structure is also mediated by environmental factors 

(e.g., temperature, climate, vegetation), and varying levels of human disturbance (e.g., 

urbanization, roads, recreation). Environmental factors play a key role in carnivores’ associations 

with distinct land cover characteristics (Gompper et al., 2016), wherein traits related to resource 

use are critical for carnivore co-occurrence and moderating conflict within the guild (Davies et 

al., 2007; Green et al., 2018). Further, carnivores are highly sensitive to human disturbance that 

can increase species spatiotemporal overlap (Murphy et al. 2021) due to their large home range 

requirements, high metabolic demands associated with large body size (Ripple et al., 2014), and 
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direct persecution via hunting (Smith et al., 2015; Kays et al., 2017). Human disturbance and 

subsequent landscape transformation can also affect carnivores indirectly by impeding species 

movement, shifting when and where encounters occur (Murphy et al. 2021), and further diverting 

time and energy to risk avoidance behaviors (i.e., vigilance, fleeing [Breck et al., 2019]).  

The bobcat (Lynx rufus), a widespread mesocarnivore that serves as a de facto top 

predator in many ecosystems across their North American range, can mediate the structure of 

wildlife communities, and influence ecosystem functions (Roberts & Crimmins, 2010). Like 

many mesocarnivores, bobcat populations across much of the continental United States suffered 

from landscape transformation associated with human development (Rose et al., 2020) and 

overexploitation for pelts (Johnson et al., 2010). However, since the early 1990s, many bobcat 

populations have recovered and are increasing (Roberts & Crimmins, 2010). Still, many 

mesocarnivores, including bobcats, are still viewed as harvestable resources or pests that require 

active management (Roemer et al., 2009). Despite exploitation, bobcat populations have shown 

remarkable resilience with their capacity to respond and adapt to such anthropogenic pressures, 

as indicated by an expanding geographic range into peri-urban spaces and the exploitation of 

new niches (Young et al., 2019; Johnson et al., 2010). Thus, bobcats serve as an excellent 

ecological model to investigate predators that operate at two functional levels (e.g., apex, 

subordinate) in the carnivore hierarchy depending on local community structure as well as 

habitat characteristics (Roemer et al., 2009). Further, understanding how bobcats coexist with 

potentially dominant (e.g., puma [Puma concolor], gray wolf, red wolf [Canis rufus], coyote) 

and subordinate (e.g., red fox [Vulpes vulpes], gray fox [Urocyon cinereoargenteus]) sympatric 

carnivores can provide new insights for understanding carnivore guild dynamics and 
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implementing effective carnivore conservation and management strategies in a world 

increasingly impacted by humans (Robert & Crimmins, 2010). 

To investigate species co-occurrence and the drivers of bobcat spatiotemporal activity 

within the carnivore guild of the United States (U.S.), we used the Snapshot USA camera trap 

dataset (Cove et al., 2021), using bobcats as a focal species. We explored variation in bobcat 

spatiotemporal activity and assessed carnivore co-occurrence by constructing diel activity 

density curves (Lashley et al., 2018), applying multispecies occupancy models (Rota et al., 

2016), and calculating attraction-avoidance ratios (AARs – Parsons et al., 2016). We tested three 

hypotheses: (1) bobcat spatial and temporal activity would vary based on the presence or absence 

of dominant carnivores among the communities represented across the U.S., (2) bobcats, as a de 

facto apex predator, would influence subordinate mesocarnivores in the absences of dominant 

predators, and (3) environmental variability and human disturbance (i.e., human intensity) would 

influence bobcat spatiotemporal activity differently depending on which species are present in 

the carnivore community. We predicted that bobcats would reduce temporal overlap with 

dominant carnivores (i.e., pumas, gray wolves, red wolves) and avoid sites previously visited by 

both dominant and subordinate carnivores. Bobcats will also avoid sites previously visited by a 

dominant carnivore for a longer period of time than a subordinate carnivore, reflecting a greater 

avoidance response. Our research findings provide novel insights into carnivore co-occurrence 

and community structure across a diverse range of ecosystems that can aid future management of 

expanding bobcat populations across the U.S.A. 
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2. Materials and Methods 

2.1 Study Area  

This study was conducted across the contiguous lower 48 states of the U.S.A. (Fig. 1). 

The 48 states extend across a vast latitudinal range of 25.17° to 46.07° and consist of varying 

levels of elevation and climates resulting in a variety of land cover types and vegetation 

communities that comprise 10 unique ecoregions and highlight the major ecological areas of the 

U.S.A. (EPA, 2016; Cove et al., 2021). Further, each U.S.A. state contained at least one camera 

array that could be categorized by land cover type (i.e., forest, grassland, wetland, etc.) and 

presence along the urban-wildland gradient (i.e., urban, suburban, wildland). The myriad lands of 

the U.S.A. support abundant medium to large-sized predators and prey (e.g., >500 g) commonly 

captured on camera traps (i.e., ~192 mammal species – [Cove et al., 2021]). Members of the 

carnivore guild make up a substantial portion of these numbers including species such as coyote, 

bobcat, puma, and several foxes; some exhibit extensive ranges reaching coast to coast that 

experience considerable variation in environmental conditions, hunting practices, and 

management strategies.  
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Figure 2.1 | Map of study area consisting of the 48 contiguous United States with the color of 

each state representing the relative abundance of bobcats inferred from camera trap detections 

across camera trap arrays. Dots signify whether bobcats were detected (i.e., solid) or not detected 

(i.e., open) at an array. 

 

2.2 Data Acquisition  

We used the Snapshot USA 2019 dataset, generated through a highly collaborative 

nation-wide camera-trapping initiative (Cove et al., 2021) that resulted in the first systematic 

effort to document annual trends and distributions of mammal communities across the United 

States. Snapshot USA uses the eMammal platform, a data management system and archive for 

camera trap research projects, to identify and store image information (McShea, 2016 - 

https://emammal.si.edu/snapshot-usa). A full description of Snapshot USA 2019 methods and 

full dataset are available at (https://doi.org/10.1002/ecy.3353).  

We queried Snapshot USA 2019 data by selecting all detections from nine carnivore 

species (i.e., American badger [Taxidea taxus], bobcat, coyote, fisher [Pekania pennanti], gray 

fox, gray wolf, red fox, red wolf, and puma) that exhibit primarily carnivorous diets and 

appropriate sample sizes. Previous research demonstrates that 30-50 detections can provide 
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acceptable diel pattern estimates when investigating rare species such as carnivores (Lashley et 

al., 2018), and we included carnivores that had at least 30 detections, as well as puma with only 

29 detections because puma are expected to elicit a strong effect on bobcat activity. Our query 

resulted in 108 camera trap arrays from all 48 contiguous states. We defined an independent 

event as a single eMammal aggregated sequence, grouped as (a) consecutive images with 

individuals of the same or different species, and (b) images that were taken within one minute of 

the previous image. We calculated the relative abundance (RAB) of each carnivore species to 

summarize relative abundance of carnivores across ecoregions at the individual camera level 

using the following formula:  

RAB = events (per species) / total trap nights X 100 

Due to the difficulty of estimating true abundance of species at a national scale, RAB offers a 

simple method for estimation, but does not account for potential bias arising from imperfect 

detection (Palmer et al., 2018). To accommodate these limitations, I averaged the RAB across 

species, ecoregions, and states and included an offset term to account for variation in survey 

effort across camera trap arrays (Fig 2.1).  

2.3 Statistical Analyses  

Statistical tests and models for all temporal and spatial analyses were implemented in 

RStudio version 1.3.1073 (RStudio Team, 2020). 

2.3.1 Temporal Activity 

We determined diel activity patterns using detection times for nine carnivore species 

across four different U.S.A. time zones. We anchored times to sunrise and sunset events using 

NOAA calculations in a Microsoft Excel VBA translation (https://peltiertech.com/ 2021). We 
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converted sunrise and sunset times to radians via the ‘transtime’ function in the package 

‘activity’ (Rowcliffe, 2021) to express detection times relative to the two solar events. We 

constructed 95% kernel density estimation curves using the package ‘overlap’ (Meredith & 

Ridout, 2020) and the estimator ∆1 when the smaller sample was less than 50 and ∆4 when the 

smaller sample was greater than 50 (Ridout and Linkie, 2009). We then estimated the mean 

temporal overlap coefficient (Δ;scaled from 0 to 1), and calculated confidence intervals using a 

bias-corrected logit-scale bootstrap of 10,000 resampled estimates for each species-species pair 

to determine if the two species have exclusionary (Δ=0) or complete overlap (Δ=1) (Ridout & 

Linkie, 2009; Schmid & Schmidt, 2006; Miller et al., 2018). We then performed a Watson’s 

Two-Sample Test of Homogeneity (Rao & SenGupta, 2001) in the package ‘circular’ 

(Agostinelli & Lund, 2017) to determine if times of detection for each species differed 

significantly from each other, as well as a Wald Test bootstrapped 1,000 times to compare 

activity level estimates among species. Activity level is an ecological metric that refers to the 

proportion of time that an animal spends active, providing an index for energy expended, 

foraging effort, and even vulnerability to risk (Rowcliffe et al., 2014). Finally, we repeated this 

process using only bobcat detections to determine whether bobcat activity patterns showed any 

significant differences across ecoregions, and areas of various harvest management (Elbroch, 

2017) or population status (e.g., furbearer, threatened) (Roberts & Crimmins, 2010). 

2.3.2 Multispecies and Single-species Occupancy Models 

We created binary detection history matrices (1 = detected, 0 = not detected) using the 

start and end date for each camera array in the package ‘camtrapR’ version 2.0.3 (Niedballa et 

al., 2016), for 6 of the 9 carnivore species. We excluded badger and fisher from the occupancy 

analyses because these species occupy distinct ranges in the U.S.A., as well as coyotes due to the 
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species occurring at almost every site where bobcats were detected resulting in a strong positive 

correlation between bobcat and coyote. Further, we combined red wolf and gray wolf into a 

single category, ‘wolf’, given that we expect similar responses from bobcat to both species. For 

our analysis, we summarized detection events at the camera array level by aggregating data 

across all deployments within each array. We accounted for imperfect detection by using weekly 

sampling occasions that included data for 8 weeks of collection, which reduced the number of 

observations where the count of detections is zero (Naidoo & Burton, 2020). Although this 

excluded data from analysis, we determined that adding additional weeks had little to no effect 

on improving our probability estimates given that few sites collected data longer than eight 

weeks, and no additional array captured a bobcat that had not been detected in the previous eight 

weeks. We developed two independent hypotheses: (1) Dominant Hypothesis: both wolf and 

puma will have top-down effects on bobcat spatiotemporal behavior, and (2) Subordinate 

Hypothesis: bobcat will elicit top-down effects on red and gray fox spatiotemporal behavior. 

 
To develop our multi-species models (Rota et al., 2016), we scaled all numerical 

covariates (Table 2.1) and checked for correlations between all covariate pairs using the package 

corrplot (Wei & Simko, 2017), with a threshold of 0.7 (Dormann et al., 2013) to indicate a high 

correlation and a need to remove one of the correlated covariates. The only covariates that were 

highly correlated were minimum and maximum temperature (0.87), as well as minimum and 

maximum temperature with average latitude (-0.8, -0.86), thus we used latitude to account for 

temperature variation. We then evaluated a select group of covariates including survey days and 

latitude independently on the detection probability of bobcats (Table S2.2), finding that only 

latitude exceeded the null model. Next, we generated single-species occupancy models that 

included one independent covariate on occupancy probability to determine the environmental 
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and anthropogenic factors that impact bobcat occupancy most based on AIC values (Burnham & 

Anderson, 2002). After investigating each covariate’s effect on bobcat occupancy, we created 

two additive impact models: (1) Human Impact Model (i.e., human intensity and human 

population density [Table 2.1]) and (2) Environmental Impact Model (i.e., precipitation and 

gross primary production [Table 2.1]).  

determine the main driver of interactions among bobcats and the two carnivore groups.  

Table 2.1 | Descriptive statistics of environmental, human, and sampling covariates included in 

GLMMs and Occupancy models for the detections of 9 carnivore species across 108 camera trap 

arrays in the U.S. AIC value was calculated by running single-species occupancy models and 

bolded if ranked above the null model. Starred (*) Indicated inclusion in final model.  
Model/Covariate                        Description                                 Max      Min    AIC Value  

Human Impact Model 

Sum of buildings       # of buildings within 500m                          9071.00    0             639.16 

Nearest building       average distance to nearest building (m)     5289.19    28.32 643.62 

*Human population        human pop. density (GPW) at 1km sq.       8084.00     0  643.99 

*Human intensity            # of individual human detections                6142.00     0             641.63 

Cultivated land                  average cultivated land at 1km sq.              0.49           0             645.18 

Bobcat harvest status       protected, harvested                      NA            NA 644.91 

Environmental Impact Model 

Max Temperature             max temp. from nearest NOAA station (F)  31.16         8.41 644.41 

Min Temperature              min temp. from nearest NOAA station (F)  25.05         -4.47 645.66 

*Precipitation        3-hour avg. accumulation of precipitation   0.61           0        645.50 

*GPP         average cumulative GPP at 1km sq.            25318.50   1567.99 644.32 

Ecoregion        given ecoregion based on EPA Level I        NA            NA 653.40 

Sampling Covariates  

Survey Days         total # of survey days                                   1674.00     94.00 644.90 

Latitude                   average latitude by array                              48.12         25.23 642.82 

Bobcat Pop. Status           decreasing, stable, increasing, unknown       NA            NA 648.77 

Coyote Detection Rate   coyote detections per array/survey days       0.44           0           627.59 

 

Additionally, we included a covariate for coyote detection rate in a second pair of our 

impact models for the dominant carnivores due to the strong association between coyote and 

bobcat occupancy (Table 2.1). Finally, we implemented species detection histories into 

multispecies occupancy models for both our dominant and subordinate hypotheses to investigate 

the influence of two or more interacting species (Rota et al., 2016). Each model identified the 
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probability that two or more species would occupy the same site as a function of our selected 

model covariates (Rota et al., 2016).  

2.3.3 Spatiotemporal Avoidance 

We used detection data from 5 species (puma, coyote, gray fox, red fox, and bobcat) that 

had large enough sample sizes across the 108 arrays to test the relative attraction and/or 

avoidance of a site by bobcat after the previous visitation by another carnivore, as well as the 

relative attraction and/or avoidance of a site by another carnivore after a visitation by a bobcat 

(Parsons et al., 2016). This approach estimates spatiotemporal avoidance, or to what extent a site 

visited by species A is influenced by visitations of species B (Niedballa et al., 2019). We carried 

over our top-down effect hypotheses from our occupancy models, thus we continued to use a 

dominant and subordinate group of carnivores for our analyses. We used Avoidance Attraction 

Ratios (AARs) (Parsons et al., 2016) where odds ratios (i.e., odds of detecting species B in the 

absences of species A relative to the odds of detecting species B directly after an observation of 

species A) were calculated holding bobcat as both our species A and species B (Niedballa et al., 

2019). We created AARs by converting detection times to Julian Hours, then comparing the time 

interval after/before a bobcat and another carnivore visited a site, referred to as the T2/T1 ratio, 

and then the time interval with/without the visitation of a bobcat or another carnivore, referred to 

as the T4/T3 ratio (Parsons et al., 2016).  

Following AAR calculations, we performed three analyses using log-transformed ratios: 

(1) We used T4/T3 ratios, which are influenced solely by avoidance, to run two-tail t-tests to 

determine if bobcat avoided or were attracted to a site after visitation from another species, and 

vice versa. A mean greater than zero indicates species avoidance, whereas a mean less than 0 

indicates species attraction. (2) We also used T4/T3 ratios to run an analysis of variance 
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(ANOVA) to determine (a) if bobcat are avoiding any carnivore species more than another, and 

(b) if any species are avoiding bobcat more than another. If we found significant effects based on 

an α = 0.05, we performed a post-hoc Tukey-Pairwise Comparison to determine which pair of 

carnivores was displaying a significant relationship, as well as the magnitude difference between 

that pair. And (3) using General Linear Mixed Models (GLMMs) and the T2/T1 ratios that 

include effects of both attraction and avoidance, we investigated whether human or 

environmental variables had a significant effect on bobcat response to dominant (i.e., coyote) or 

subordinate (i.e., foxes) carnivores based on our previously developed impact models (Table 1). 

An AAR value greater than 0 suggests nonrandom movement between the species, indicating 

that species A is avoiding the area following visitation by species B. An AAR value less than 0 

suggests random movement, meaning species A is showing less avoidance/attraction of an area 

after the passage of species B (Parsons et al., 2016). We ran two impact models and a null model 

for the dominant and subordinate groups and used the package AICcmodavg (Mazerolle, 2020) 

to compare the strength of the model effects on bobcat avoidance and attraction. 

3. Results 

With data from 108 independent camera arrays across the contiguous U.S.A., I recorded a 

total of 4,645 detections of my nine target carnivore species (i.e., American badger, bobcat, 

coyote, fisher, gray fox, gray wolf, red fox, red wolf, puma). Bobcats were captured 417 times 

and occurred at 52 different camera arrays (Fig. 2.1). Seven other carnivore species were 

captured with greater than 30 detections, with coyotes having the largest sample size (2,405 

detections) and making up almost half of the total detections (Table 2.3).  

Coyotes had the highest nationwide RAB (4.61) and were the only carnivore detected in 

the Tropical Wet Forests ecoregion, which was unsurprising given that coyotes were detected at 
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>90% of sites. Red fox was also highly prevalent nationwide with a total RAB of 3.68. At the 

ecoregion level, bobcats were most prevalent in the southern semi-arid highlands, but this 

ecoregion consisted of only one independent site. Further, the Mediterranean ecoregion consisted 

of multiple sites and hosts the highest RAB for both coyote (19.79) and gray fox (18.79), along 

with the second highest for bobcat (4.03). In addition, I observed increasing coyote RAB with 

increasing bobcat RAB across all ecoregions (Table 2.2). 

Table 2.2 | Summary of RAB values for each carnivore species at the national level and 

ecoregion level. Bolded values represent the highest RAB value for each species. (N = northern, 

E.T.=eastern temperate, N.W.F.M.=northwestern forested mountains, S.S.=southern semiarid, 

T.W.=tropical wet). 

Group             A. Badger   Bobcat   Coyote   Fisher   G. Wolf    G. Fox   Puma  R. Fox  R. Wolf 
Nationwide    0.09          0.78 4.61   0.17      0.05         0.95       0.05 3.68   0.04 

Ecoregions 

Marine     0.00          0.79        4.40   0.26      0.00         1.34       0.18 0.00   0.00 
Desert     0.70          1.63 7.61   0.00      0.00         0.14       0.00      13.08   0.00 
Great Plains    0.28           0.25 5.32   0.00        0.01         0.04       0.03      0.01       0.00 

Mediterranean    0.00          4.03 19.79   0.00        0.00         18.79     0.00 0.00   0.00 
N. Forests    0.02          0.24 1.96   0.47      0.31         0.17       0.00 0.49   0.00  
Temp. Sierra    0.68          2.61 7.85   0.00      0.00         2.61       0.33 0.00   0.00 
E.T. Forest         0.00          0.45 3.47   0.21      0.01         0.45       0.00 4.37   0.12 
N.W.F.M.          0.02          0.60 3.69   0.02      0.21         2.96       0.49 2.84   0.00 
T.W. Forest       0.00            0.00 0.48   0.00      0.00         0.00       0.00 0.00   0.00 
S.S. Highlands   0.42            13.57      7.52   0.00      0.00         2.61       0.33 0.00   0.00 
 

3.1 Temporal Overlap 

All carnivores showed primarily nocturnal activity patterns (Fig. 2.2), with the percent of 

time being active during nocturnal hours (i.e., between sunset and sunrise) being over 50% for 

eight out of the nine species, with the exception being the fisher with 48% nocturnal activity 

(Table 2.3). The bobcat had the third lowest percent nocturnality at 65%, while the red wolf had 

the highest percent of nocturnal activity at 93%. Daily activity peaks occurred before sunrise and 

after sunset for all species except for fisher and gray wolf, which have a large peak following 
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sunrise. Temporal activity overlaps between bobcat and each carnivore species varied from 0.69 

to 0.90 with the coyote showing the highest overlap and the red wolf showing the lowest (Table 

2.3).  

Table 2.3 |  Summary of detections, overlap estimates, overlap confidence intervals, and activity 

level estimates for bobcat and 8 carnivore species at the national scale. Percent nocturnal 

includes all detection occurring outside the approximate bounds of sunrise and sunset throughout 

the study period.  

Species     Sample Size       OverlapEst           Overlap CI        Activity Level Est.     % Nocturnal 
Bobcat           417                  ------------        -------------------               0.640                           65% 
Coyote           2405             0.9046           0.8519 – 0.9344              0.632                           68% 
Fisher           75             0.7674           0.6335 – 0.8501              0.444                           48% 
Gray Fox       466             0.7383           0.6637 – 0.7735              0.464                           85% 
Gray Wolf     32                      0.8061           0.6828 – 0.9098              0.475                           50% 
Red Fox        1570             0.8102           0.6932 – 0.9173              0.463                           81% 
A. Badger      37             0.8391           0.7351 – 0.9234              0.508                           74% 
Red Wolf       31             0.6942           0.5847 – 0.7781              0.340                93% 
Puma           29                      0.7583           0.2248 – 0.9961              0.431                85% 

 
 

 

 

 

 

 

 

 

 

 

Figure 2.2 | The kernel density graph displays the temporal activity patterns of all nine 

carnivores using nationwide detections. Vertical black lines indicate sunrise and sunset. 
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Activity level estimates reveal that bobcats spend the greatest proportion of the day active 

(0.640), followed by coyote (0.632), both spending greater than 10% more time active than the 

other seven carnivore species examined. When further comparing activity level estimates, the 

bobcat had a significantly higher activity level than the fisher, gray fox, red fox, red wolf, and 

puma (Table 2.4). Distribution of bobcat temporal activity was significantly different from all 

eight carnivores considered, with the greatest variation between the bobcat and gray fox (U2 test 

= 1.717) (Table 2.4). No significant differences for activity distribution were found between 

harvest status and population status, but activity level estimates were significantly different for 

regions where the bobcat population was increasing (act = 0.616) vs. decreasing (act = 0.375). 

The decreasing populations’ activity plot shows little to no activity in the afternoon but then a 

strong peak nearing midnight, while the increasing populations’ have a steadier activity pattern 

throughout the day (Figure S2.1). Two pairings of ecoregions returned significant values when 

comparing the activity distribution (Northern Forests-Eastern Temperate Forests [U2 test = 

0.194]; Southern Semiarid Highlands-Eastern Temperate Forests [U2 test = 0.229]) (Table S2.4 

and Table S2.5). Several paired ecoregions also displayed significant differences in bobcat 

activity level (Table S2.5), which could be a result of different carnivore community make-up as 

you move across the U.S.  
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Table 2.4 | Displays a matrix using two statistical tests to compare the temporal activity of nine 

carnivore species. I set my alpha value at 0.05 and all significant differences between species are 

bolded. Top Right: Watson’s non-parametric two sample U2 test to determine if samples of two 

species differ significantly. Test statistic is significant when >0.187. Lower Left: Wald test with 

1000 bootstraps to statistically compare activity level estimates for fitted activity distributions 

between two species. Wald statistic is provided. 

 

 Bobcat Coyote Fisher 
Gray 

Fox 

Gray 

Wolf 

Red 

Fox 

Red 

Wolf 
Badger Puma 

Bobcat  0.299 0.343 1.717 0.191 1.291 0.291 0.139 0.234 

Coyote 0.022  0.428 1.506 0.243 1.441 0.180 0.080 0.166 

Fisher 4.759 2.117  1.035 0.028 0.839 0.462 0.308 0.364 

G. Fox 8.821 21.713 0.011  0.594 0.492 0.053 0.072 0.097 

G. Wolf 2.008 2.165 0 0.011  0.484 0.438 0.238 0.355 

R. Fox 9.605 27.376 0.013 0 0.013  0.071 0.059 0.077 

R. Wolf 12.619 17.289 1.188 2.964 1.208 3.080  0.056 0.036 

Badger 1.836 2.099 0.059 0.250 0.059 0.268 2.507  0.039 

Puma 6.034 8.009 0.127 0.207 0.129 0.208 0.927 0.520  

 

3.2 Occupancy Modelling 

3.2.1 Single-species Occupancy Modeling 

The highest ranked single-species models for bobcat included only human-related 

covariates, latitude, and coyote detection rate, but no environmental covariates. Latitude was 

excluded from our final models despite its significance as there was no biological reason to 

include it, and given that our dataset had an eight-week cumulative detection probability of 

~99% when bobcats were present. Further, bobcat were detected across the entire north-south 

range of the study area and their detection rate was not correlated with latitude. Sum of buildings 

was also excluded despite its significance, which was attributed to the idea that human 

population density would capture the same information as buildings despite them not being 

highly correlated, as well as complicating the “Human Impact Models” and minimizing effects 

of other covariates.  
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3.2.2 Multispecies Occupancy Modeling 

Dominant Hypothesis | The ‘Human Impact’ model with the addition of coyote 

detection rate as a covariate was the top ranked model for investigating top-down effects of 

wolves and pumas on bobcats (Table S2.6). Bobcat occupancy was negatively affected by human 

population (β = -0.054, ±0.393SE) and human presence (β = -3.604, ±1.891SE), but a positive 

association with coyote detection rate (β = 1.932, ±0.520SE) was observed. Human population 

had a strong negative association with interactions between the bobcat and wolves (β = -4.588, 

±8.537SE), as well as between bobcat and puma (β = -3.557, ±7.274SE). Increasing human 

intensity β = 0.062, ±4.454SE) and increased coyote rate (β = 0.006, ±0.357SE) both had a 

positive effect on the interaction between pumas and bobcats but for wolves these effects were 

negative (Table S2.7).  

Subordinate Hypothesis | The ‘Environmental Impact’ model was the top-ranked model 

for the top-down effects that bobcats have on red and gray foxes (Table S2.8). Bobcat occupancy 

showed a positive relationship with both gross primary production (β = 0.073, ±0.266SE) and 

precipitation (β = 0.398, ±0.245SE). Interactions between the red fox and bobcat were also 

positively correlated and increased with gross primary production (β = 0.452, ±0.341SE) and 

precipitation (β = 0.136, ±0.297SE), but a different trend was observed for the gray fox (Figure 

S2.2). The interaction between bobcats and gray foxes were positively associated with increased 

gross primary production (β = 0.186, ±0.314SE), but precipitation was found to have a 

significant negative association (β = -1.348, ±0.469SE) with the species interactions (Table 

S2.9). 
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3.3 Spatiotemporal Avoidance 

T-Tests | Due to the low sample size for multiple carnivores, AARs were only calculated 

for the coyote and foxes (i.e., gray fox and red fox) when performing t-tests. When holding the 

bobcat as species A, the bobcat displayed avoidance of coyotes (T-test: meanT4/T3 = 0.815, t = 

6.199, p = 1.256e-06) as well as avoidance of foxes (T-test: meanT4/T3 = 0.677, t = 3.481, p = 

0.006). When holding bobcat as species B, coyote (T-test: meanT4/T3 = -0.184, t = -2.807, p = 

0.007) displayed attraction to bobcats while foxes (T-test: meanT4/T3 = 0.036, t = 0.147, p = 

0.885) avoided bobcats (Table S2.10).  

Analysis of Variance (ANOVA) | I used one-way ANOVA to (a) determine if bobcats 

were avoiding any species more than another, and (b) determine if any species was avoiding 

bobcats more than another species. For this analysis, I included all species that had multiple 

AAR values, even with low sample sizes (i.e., red fox [4], puma [4]). Bobcats were found to 

avoid species differently (F = 2.843, df = 3, p = 0.050) (Table S2.11), but there was only one 

significant pairing in which bobcats avoided pumas more than coyotes (Tukey Pairwise 

Comparison, mean diff = -1.058, CI [-2.034, -0.082]). Further, no carnivore species were found 

to avoid bobcats significantly more than another (F = 0.688, df = 4, p = 0.603) (Table S2.12).  

General Linear Mixed Models | Linear mixed effects models were run to determine 

what effect covariates have on the avoidance or attraction of bobcats to other carnivores using 

the two impact models as well as a null model for comparison.  

Dominant | The dominant model held bobcat as species A and the dominant carnivores as 

species B. The 3 models were compared using AIC weights, but neither impact model had a 

greater model weight than the null model (AICc = 0.70; Table S2.13 and Table S2.14). 
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Subordinate |The subordinate models held subordinate carnivores as species A and the 

bobcat as species B. Comparing the 3 models using AIC weights, the human impact model 

ranked highest with the greatest model weight (AICc = 0.80, R2 = 0.400). Human intensity 

showed a near significant positive effect (β = 0.164; p = 0.059) and population density had a 

significant negative effect (β = -0.204; p = 0.024) (Table S2.14). Although population density 

was found to be significant, this strong relationship was primarily driven by two values that were 

extreme outliers following an outlier test using percentiles (97.5 percentile < 2760.456) (Fig. 

2.3). However, I did not exclude these data from my analysis as it still reflected real-world data 

that could potentially reveal an important relationship if I were to add additional data to the 

model. 

 

 

 

 

 

 

 

 

 

Figure 2.3 | (A) Displays the covariate effects and 95% confidence interval for all ‘impact 

model’ covariates for both dominant and subordinate carnivores. (B) Displays the relationship 

between each model covariate and the logT2/T1 ratio for dominant (i.e., blue) and subordinate 

(i.e., red) carnivores with bands representing 95% confidence intervals.  
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4. Discussion 

Many studies have investigated the spatiotemporal behavior of carnivores across a single 

habitat type or region, yet few have encompassed a study area as large and diverse in both 

ecosystem structure and carnivore diversity as the contiguous United States. My large-scale 

survey of carnivore activity included nine species including my focal species (i.e., bobcat). The 

bobcat was found to show a consistent distribution of temporal activity across the variable U.S. 

landscape, with some variation seen among ecoregions providing evidence that the bobcat can 

persist and possibly adapt to many different types of ecosystems with variable environmental 

factors. However, I found the distribution of activity to be significantly different from each of the 

eight other carnivore species. Furthermore, I found evidence that bobcats respond differently on 

a large spatial scale to dominant carnivores (i.e., wolves, puma) and subordinate carnivores (i.e., 

foxes), with fluctuating impacts mediated by human and environmental factors. Based on my 

‘Human Impact’ model, I determined that bobcats displayed a weaker random avoidance 

response to dominant carnivores when there was an increase in human intensity, but a stronger 

nonrandom avoidance response to subordinate carnivores (Fig. 2.3). This could support the 

human-shield hypothesis (Clinchy et al., 2016), which would suggest that bobcats are using 

humans to shield themselves from potential interactions with dominant carnivores. Thus, when 

human intensity is high, I found bobcats seemingly paying less attention to avoiding dominant 

carnivores. Finally, my multispecies occupancy models provided evidence that the relationships 

between bobcats and either dominant or subordinate carnivores are primarily influenced by 

different types of variability. Dominant carnivores were observed to be strongly impacted by 

human-related factors, while subordinate carnivores were affected more by environmental 

factors. My findings suggest that across the bobcats’ range their responses to dominant and 



46 
 

subordinate carnivores vary, as well as what types of factors drive these responses. Given that 

the ‘Human Impact’ model best explained the dominant carnivores’ effects on bobcat occupancy 

and that bobcats themselves were primarily impacted by anthropogenic factors, these 

results suggest that bobcats may act in a dominant or apex capacity in the absence of wolves and 

pumas.  

Throughout this study, I addressed the differing effects that both dominant and 

subordinate carnivores had on the temporal and spatial activity of bobcats. My findings indicate 

that bobcats had the highest detected activity level of the species I evaluated, suggesting that 

bobcats may be able to mediate competition through increased behavioral plasticity allowing for 

a flexible temporal activity pattern (Frey et al., 2017). Greater plasticity in temporal behavior can 

allow bobcats to adjust their daily activity and respond to the presence or absence of potential 

competitors, as well as avoid being constrained by accessibility to prey by utilizing time periods 

when many common prey species (i.e., squirrels chipmunks) are most active (Monterroso et al., 

2014). Spatiotemporally, I found a similar trend. Bobcats showed avoidance of all species tested 

(Stable S2.10), while no carnivore avoided bobcats more than another. However, I found that the 

small subordinate foxes (i.e., red and gray) did avoid bobcats (Table S2.10), although not 

significant, still suggests bobcats being dominant over foxes, especially in more urban areas 

(Suraci et al., 2017).  

My multispecies occupancy models revealed differing trends for what factors impacted 

and affected relationships among carnivore community members. Dominant carnivores and their 

relationship with bobcats were highly associated with human factors (i.e., population density, 

human presence), but varying effects were observed for wolves and pumas. Human factors 

negatively affected bobcat-wolf interactions, which may be a result of wolves commonly 
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utilizing man-made features such as low-use roads and trails to traverse the landscape 

(Lesmerises et al., 2013), a trend not observed in bobcats. On the other hand, human intensity 

resulted in a positive effect on bobcat-puma interactions as well as coyote detection rate. 

Although these positive interactions were weak, these results provide an example of how humans 

may act as shields (Clinchy et al., 2016) against pumas (Table S2.7), and how coyotes adapt, 

associate, and can be rewarded by living in urban environments (Breck et al., 2019; Cove et al., 

2012). The relationship between bobcats and the fox species was most supported by 

environmental factors (i.e., GPP, precipitation), with increased GPP having an overall positive 

effect for increasing interactions (Stable S2.8). Increased GPP could result in areas with more 

vegetative growth and land cover that could be beneficial for these smaller species to hide and 

avoid potential threats. Interactions between the bobcat and gray fox were strongly driven by 

precipitation, with an increase in average 3-hour precipitation throughout the study period 

decreasing the interactions of the two species. This negative effect was not observed for the red 

fox, thus precipitation is affecting the two foxes differently. Increased average precipitation 

could serve as an index for vegetative growth, which could have an additive effect with GPP 

making certain environments less suitable for gray foxes which are present across many rocky, 

grassland areas. The differences in how the red and gray fox respond to environmental variables 

may allow them to spatial partition themselves across the landscape and avoid direct 

competition.   

The relationship between bobcats and coyotes was found to be different than that of 

bobcats and any other carnivores. Specifically, coyotes were recorded at nearly every site 

bobcats were captured, were the only species to show an attraction to bobcats, and to have ~90% 

temporal overlap with bobcats (Table 2.3). Given the high correlation between these two species 
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that share both time and space, I would expect to find differences in their diet that allow them to 

coexist at such a high level (Hutchinson, 1957). For example, bobcats are strictly carnivorous, 

whereas coyotes are highly adaptable and omnivorous allowing them to be ubiquitous across the 

U.S. and feed on a variety of food sources (Breck et al., 2019; Drake et al., 2021). The 

differences in diet may allow these two species to coexist so closely in space and time, but 

coyotes being attracted to bobcats could potentially be a result of coyotes seizing opportunities to 

locate bobcat kills that they may be able to scavenge (Allen et al., 2015). Finally, coyotes had a 

strong influence on the effect of human intensity when running the single-species occupancy 

models. When predicting the interaction between human intensity and the detection rate of 

coyotes on bobcat occupancy, I observed a rapid decrease in occupancy as human intensity 

increased. Given that coyotes have been found to adapt and utilize human-modified habitats 

(Breck et al., 2019) and bobcats are known to exhibit a preference to avoid coyotes spatially, and 

the interaction of these two factors greatly increased the negative effect of human intensity on 

bobcat occupancy. Based on my findings there is a strong correlation between bobcat and coyote 

site use, but bobcats display higher sensitivity to human factors which is observed in the negative 

effect from human intensity across the landscape.  

The Snapshot USA data used for analyses was the result of a highly collaborative effort 

by researchers across the country, giving us the first ever nationwide camera trapping dataset, yet 

for many carnivores that are considered rare, more data is still needed to produce robust results 

that allow us to fully understand the complex carnivore community across the U.S. My findings 

revealed that the bobcat is an adaptable predator that coexists with several dominant and 

subordinate carnivores across the U.S., showing variation in activity and occupancy based on the 

community structure, environmental and anthropogenic factors. Bobcats have the potential to act 
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in different capacities among the Carnivora, driven by the presence of dominant carnivores such 

as wolves and pumas. Furthermore, my results provide evidence that bobcats may help facilitate 

a behavioral cascade among dominant carnivores (i.e., wolves, puma) and subordinate carnivores 

(i.e., foxes), but more research must be conducted to assess whether these findings hold across 

the U.S. (Shores et al., 2019). Addressing the relationships within diverse carnivore communities 

such as the one found in the U.S. is essential for understanding how anthropogenic change will 

continue to influence wildlife communities. 
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SUMMARY AND CONCLUSIONS 

I investigated intraguild interactions among members of the U.S. carnivore guild, which 

can be mediated by a variety of anthropogenic and environmental factors that influence species’ 

temporal and spatial patterns. For example, I found that human activity is the primary driver of 

large carnivore temporal and spatial activity across the landscape, with different types of human 

recreation resulting in similar effects. I was also able to discern variation in factors that drive 

interactions among dominant and subordinate carnivores within the U.S. carnivore community 

using a well-established mesocarnivore that inhabits a variety of ecosystems across the country 

as a focal species.   

My research addresses relationships within a diverse carnivore community and how it can 

be strongly influenced by guild make-up and human activity ranging from urbanization to human 

recreation. My findings help to better understand intraguild interactions among members of the 

carnivore community and how their differing activity patterns support carnivore coexistence, and 

how anthropogenic change can influence entire wildlife communities by driving top-town 

effects. As such, my work will inform wildlife managers and policy makers on decisions to 

reduce the negative impact of recreational activities on sensitive and recolonizing wildlife, as 

well as educate the public on the importance of preserving protected spaces to benefit species of 

conservation and management concern. 
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APPENDIX A 

 

 

 

SUPPLEMENTARY 1: CHAPTER 1 TABLES 

 

 

 

Table S1.1 | Detection history of American black bears. Locations 1-30 represent detections 

before hibernation. Locations 31-60 represent detections after hibernation. 

Location 
o

1 

o

2 

o

3 

o

4 

o

5 

o

6 

o

7 

o

8 

o

9 

o1

0 

o1

1 

o1

2 

o1

3 

o1

4 

o1

5 

o1

6 

o1

7 

o1

8 

Camera 1 1 0 0 0 0 0 0 0 0 0 0 0 0 NA NA NA NA NA 

Camera 2 1 0 0 0 0 0 0 0 0 0 0 0 0 NA NA NA NA NA 

Camera 3 0 0 0 0 0 0 0 0 0 0 0 0 0 NA NA NA NA NA 

Camera 4 0 0 0 0 0 0 0 0 0 0 0 0 0 NA NA NA NA NA 

Camera 5 0 0 0 0 0 0 0 0 0 0 0 0 0 NA NA NA NA NA 

Camera 6 0 0 0 1 0 0 0 0 0 0 0 0 0 NA NA NA NA NA 

Camera 7 0 0 0 0 0 0 0 0 0 0 0 0 0 NA NA NA NA NA 

Camera 8 1 1 0 0 0 0 0 0 0 0 0 0 0 NA NA NA NA NA 

Camera 9 1 1 1 0 1 0 1 0 0 0 0 0 0 NA NA NA NA NA 

Camera 10 1 1 1 1 1 0 1 1 1 0 0 0 0 NA NA NA NA NA 

Camera 11 0 0 0 0 0 0 0 0 0 0 0 0 0 NA NA NA NA NA 

Camera 12 0 1 0 0 0 0 0 0 0 0 0 0 0 NA NA NA NA NA 

Camera 13 0 1 0 0 0 0 0 0 0 0 0 0 0 NA NA NA NA NA 

Camera 14 0 0 0 0 0 0 0 0 0 0 0 0 0 NA NA NA NA NA 

Camera 15 1 0 1 0 0 0 0 0 0 0 0 0 0 NA NA NA NA NA 

Camera 16 0 0 1 1 0 0 0 0 0 0 0 0 0 NA NA NA NA NA 

Camera 17 0 0 1 1 0 0 0 0 0 0 0 0 1 NA NA NA NA NA 

Camera 18 1 1 0 0 0 0 0 0 0 0 1 0 0 NA NA NA NA NA 

Camera 19 0 0 0 0 0 0 0 0 0 0 0 0 0 NA NA NA NA NA 

Camera 20 0 0 0 0 0 1 0 0 0 1 0 0 0 NA NA NA NA NA 

Camera 21 0 1 0 0 0 0 0 0 0 0 0 0 0 NA NA NA NA NA 

Camera 22 0 1 1 1 0 0 0 1 0 0 0 0 0 NA NA NA NA NA 

Camera 23 0 0 0 0 0 0 0 0 0 0 0 0 0 NA NA NA NA NA 

Camera 24 0 0 0 0 0 0 0 0 0 0 0 0 0 NA NA NA NA NA 

Camera 25 1 0 0 0 0 0 0 0 0 0 0 0 0 NA NA NA NA NA 

Camera 26 0 0 0 0 0 0 0 0 0 0 0 0 0 NA NA NA NA NA 

Camera 27 0 0 0 0 0 0 0 0 0 0 0 0 0 NA NA NA NA NA 

Camera 28 0 0 0 0 0 0 0 0 0 0 0 0 0 NA NA NA NA NA 
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Camera 29 0 0 0 0 1 0 0 1 0 0 0 0 0 NA NA NA NA NA 

Camera 30 0 0 0 0 0 0 0 0 0 0 0 0 0 NA NA NA NA NA 

Camera 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Camera 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Camera 33 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 

Camera 34 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 

Camera 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Camera 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Camera 37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Camera 38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Camera 39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Camera 40 1 1 1 0 1 1 1 1 1 0 1 1 0 0 0 0 0 0 

Camera 41 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

Camera 42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Camera 43 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

Camera 44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Camera 45 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 1 0 

Camera 46 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 

Camera 47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Camera 48 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

Camera 49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

Camera 50 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 

Camera 51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Camera 52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Camera 53 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Camera 54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Camera 55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Camera 56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Camera 57 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

Camera 58 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Camera 59 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

Camera 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table S1.2 | Results for all single-species single factor models on detection probability of black 

bears in order of weighted AIC.  

 

Table S1.3 | Results for all single-species single factor models on occupancy probability of black 

bears in order of weighted AIC. Detection covariates included in all models. 

 

 

 

 

Model Group Covariate AIC ΔAIC Model Weight 

Human Impact Protected Land 458.27 0.00 1.00 

------------------------------- Null 483.14 24.88 <0.01 

Environmental Impact Season 483.67  25.40 <0.01 

Model Group Covariate AIC ΔAIC Model Weight 

Human Impact Population Density 454.65 0.00 0.144 

Human Impact Human Presence 455.06 0.41 0.117 

Human Impact Human Count 455.61 0.96 0.089 

Human Impact Human On-Foot 455.90 1.25 0.077 

Human Impact Domestic Dog Present 456.09 1.44 0.065 

Human Impact Human Non-motorized 456.25 1.60 0.065 

Human Impact Passenger Vehicle Present 456.39 1.74 0.060 

Human Impact Sum of Human Impact 456.64 1.99 0.053 

------------------------------- Null Model 457.00 2.35 0.044 

Human Impact Number of Dogs 457.22 2.57 0.040 

Human Impact Recreation Vehicle Present 457.46 2.81 0.039 

Human Impact Distance to Road 457.46 2.81 0.035 

Environmental Impact Season 458.34 3.69 0.023 

Environmental Impact Elevation 458.52 3.87 0.021 

Human Impact Gun Present 458.68 4.03 0.019 

Human Impact Utility Vehicle Present 458.68 4.04 0.019 

Environmental Impact Landcover Type 458.79 4.15 0.018 

Human Impact Protected Land 458.95 4.30 0.017 

Environmental Impact Nearest Water Source 458.99 4.34 0.016 

Human Impact Number of Vehicles 459.00 4.35 0.016 

Human Impact Land Ownership 459.18 4.53 1.015 
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APPENDIX B 

 

 

 

SUPPLEMENTARY 2: CHAPTER 2 FIGURES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2.1 | Displays bobcat activity in states with increasing (red) vs decreasing (blue) 

populations.  
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Figure S2.2 | Displays the effects of selected environmental covariates (i.e., precipitation and 

gross primary production) on the subordinate carnivores (i.e., red and gray fox).  
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APPENDIX C 

 

 

 

SUPPLEMENTAL 3: CHAPTER TWO TABLES 

 

 

Table S2.1 | Bobcat detection history across all 108 arrays for 8 weeks. 

o1 o2 o3 o4 o5 o6 o7 o8 

0 0 0 0 NA NA NA NA 

0 0 0 0 0 1 0 NA 

1 1 1 1 1 1 1 1 

0 0 0 1 1 1 1 1 

1 0 1 1 0 1 0 0 

0 0 0 0 0 0 0 0 

1 1 1 1 0 1 0 0 

1 1 1 1 1 1 1 1 

0 0 1 1 1 1 1 0 

0 0 1 0 0 1 0 0 

0 0 0 0 0 0 0 NA 

1 0 1 0 0 1 NA NA 

0 1 0 NA NA NA NA NA 

0 0 0 0 NA NA NA NA 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

1 1 1 1 1 0 NA NA 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 NA NA 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 NA NA NA 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 NA NA 

0 0 1 0 1 1 0 1 

1 1 0 0 NA NA NA NA 

1 0 0 0 0 0 0 NA 

0 0 1 0 1 1 0 0 

0 0 0 0 0 0 0 0 
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0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 NA NA NA NA NA 

0 0 0 0 0 0 0 NA 

0 0 0 0 0 0 0 0 

1 0 0 0 1 0 NA NA 

0 0 0 0 0 0 NA NA 

1 0 0 1 1 0 1 1 

0 0 0 0 0 0 0 1 

1 0 0 0 0 1 1 NA 

0 1 0 1 0 1 0 0 

1 1 0 0 0 0 1 1 

0 0 0 0 NA NA NA NA 

0 1 0 0 NA NA NA NA 

0 0 0 0 NA NA NA NA 

0 0 1 0 0 0 1 0 

0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 1 0 1 0 

1 1 0 1 1 0 0 NA 

0 0 0 0 0 0 0 NA 

0 0 0 0 0 1 1 0 

1 0 0 0 1 1 1 0 

0 0 0 1 0 0 0 NA 

0 0 0 0 0 0 0 NA 

1 0 0 0 1 1 0 NA 

0 0 0 0 NA NA NA NA 

1 1 0 0 0 0 0 NA 

0 0 0 0 0 0 NA NA 

0 0 0 1 0 0 NA NA 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 NA NA NA 

0 1 1 1 0 1 1 0 

0 0 0 0 0 NA NA NA 

0 1 0 0 0 0 0 0 

0 0 1 0 0 0 NA NA 

0 0 0 0 0 0 0 1 
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0 0 0 0 0 0 0 0 

1 0 0 NA NA NA NA NA 

0 0 1 NA NA NA NA NA 

0 1 1 0 1 1 0 NA 

1 1 1 1 0 0 NA NA 

0 0 1 0 0 NA NA NA 

0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

1 1 1 1 1 1 1 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 1 0 0 0 1 1 NA 

0 0 0 0 0 0 0 0 

1 0 0 NA NA NA NA NA 

0 0 0 0 1 0 0 1 

0 0 0 0 0 0 0 0 

0 0 1 0 0 1 0 1 

0 1 1 1 1 1 1 1 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 NA NA NA 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 NA 

0 0 0 0 0 0 0 0 

0 0 1 0 1 0 0 0 

1 1 0 1 1 1 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 NA NA NA 

1 0 0 0 0 0 0 1 
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Table S2.2 | Results for selected single factor detection covariate models on probability of 

detecting a bobcat in order of weighted AIC.  

 

 

 

Table S2.3 | Results for all single-species single factor models on occupancy probability of 

bobcats in order of weighted AIC. No detection covariates included. 

 

 

 

 

 

 

 

Model Group Covariate AIC ΔAIC Model Weight 

Sampling Latitude 638.98 0.00 0.891 

------------------------------- Null 643.84 4.86 0.078 

Sampling Survey Days 645.73  6.75 0.030 

Model Group Covariate AIC ΔAIC Model Weight 

Sampling Coyote Detection Rate 627.59 0.00 0.99 

Human Impact Human Presence 639.16 11.57 <0.01 

Human Impact Human Population Density 641.63  14.05 <0.01 

Sampling Latitude 642.82 15.23 <0.01 

Human Impact Sum of Buildings 643.62 16.03 <0.01 

------------------------------ Null 643.84 16.26 <0.01 

Human Impact Nearest Building 643.99 16.40 <0.01 

Environmental Impact Gross Primary Production 644.32 16.73 <0.01 

Environmental Impact Maximum Temperature 644.41 16.82 <0.01 

Sampling Survey Days 644.90 17.31 <0.01 

Human Impact Hunting Status 644.91 17.32 <0.01 

Human Impact Cultivated Land 645.18 17.60 <0.01 

Environmental Impact Precipitation 645.50 17.91 <0.01 

Environmental Impact Minimum Temperature 645.66 18.08 <0.01 

Sampling Population Status 648.77 21.19 <0.01 

Environmental Impact Ecoregion 654.40 25.81 <0.01 
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Table S2.4 | Results for bobcat activity level estimates by ecoregion, harvest status, and 

population status. 

 

Table S2.5 | Results for temporal analysis comparing bobcat harvest status categories, bobcat 

population status categories, and ecoregions to determine if times of detections differed for the 

between any pairings. Significance level 0.05. Critical value = 0.187. Near Significant 0.05< p-

value<0.10.  

Marine = Marine West Coast Forest; Plains = Great Plains; N. Forest = Northern Forests; E.T. 

Forests = Eastern Temperate Forests; Desert = North American Deserts; Sierras = Temperate 

Sierras; N.W.F.M. = Northwestern Forested Mountains; Mediterranean = Mediterranean 

California; S.S. Highlands = Southern Semiarid Highlands. 

Categories                                   Wald U2        Significance    Wald Statistic     Significance 

Hunt/Harvest Status 

 Protected – Harvested    0.137   --------- 0.004         --------- 

 

Population Status 

 Increasing – Decreasing   0.027   ---------- 4.118        Significant 

 Stable – Increasing    0.105   ---------- 0.013         ----------  

 Decreasing – Stable    0.037   ---------- 3.294                    ---------- 

 

Ecoregions 

 Marine – Plains    0.050   ---------- 0.074         ---------- 

Marine – N.W.F.M.    0.047   ---------- 0.003         ---------- 

Marine – Sierras     0.086   ---------- 3.008          Near Significant 

Marine – N. Forests    0.108   ---------- 0.005         ---------- 

Marine – Desert     0.063   ---------- 1.759         ---------- 

Marine – Mediterranean   0.086   ---------- 3.033          Near Significant 

Marine – Highlands     0.091   ---------- 0.471         ---------- 

Ecoregion Activity 

Level Est. 

Population 

Status 

Activity 

Level Est. 

Hunting 

Status 

Activity 

Level Est. 

Southern Semiarid Highlands 0.503 increasing 0.616 hunted 0.583 

Temperate Sierras  0.184 decreasing 0.375 protected 0.576 

Northwestern Forested Mtns. 0.419 stable 0.605  

Marine West Coast Forest 0.411  

Northern Forests 0.423 

Great Plains 0.452 

Mediterranean  0.184 

North American Deserts 0.584 

Eastern Temperate Forest 0.601 



74 
 

Marine – E.T. Forests    0.045   ---------- 2.406         ---------- 

Plains – N.W.F.M.    0.062   ---------- 0.055         ---------- 

Plains – Sierras    0.140   ---------- 4.409        Significant 

Plains – N. Forests    0.073   ---------- 0.037         ---------- 

Plains – Desert    0.045   ---------- 1.086         ---------- 

Plains – Mediterranean   0.140   ---------- 4.447        Significant 

Plains – Highlands    0.063   ---------- 0.154         ---------- 

Plains – E.T. Forests    0.046   ---------- 1.581         ---------- 

Desert – N.W.F.M.    0.078   ---------- 1.913                    ---------- 

Desert – Sierras    0.125   ---------- 14.841       Significant 

Desert – N. Forests    0.107   ---------- 1.477         ---------- 

Desert – Mediterranean   0.125   ---------- 15.035       Significant 

Desert – Highlands    0.052   ---------- 0.578         ---------- 

Desert – E.T. Forests    0.142   ---------- 0.035         ---------- 

Sierras – N.W.F.M.     0.179        Near Significant 3.826          Near Significant 

Sierras – N. Forests    0.102   ---------- 3.186          Near Significant 

Sierras – Mediterranean   0.023   ---------- 0.000         ---------- 

Sierras – Highlands    0.107   ---------- 8.759       Significant 

Sierras – E.T. Forests    0.142   ---------- 19.701       Significant 

N. Forests – N.W. F. M.   0.175         Near Significant 0.001         ---------- 

N. Forests – Mediterranean    0.102   ---------- 3.211          Near Significant 

N. Forests – Highlands   0.058   ---------- 0.349               ---------- 

N. Forests – E.T. Forests   0.194  Significant 2.035         ---------- 

Highlands – Mediterranean   0.107   ---------- 8.865        Significant 

Highlands – N.W.F.M.   0.113   ---------- 0.467         ---------- 

Highlands – E.T. Forests   0.229  Significant 1.027         ---------- 

N.W.F.M. – Mediterranean   0.179        Near Significant 3.863        Significant 

N.W.F.M – E.T. Forests   0.056   ---------- 2.706          Near Significant 

Mediterranean – E.T. Forests   0.142   ---------- 20.015        Significant 

 

 

Table S2.6 | Model selection results from multispecies occupancy models for dominant 

carnivores.  

 

 

 

 

 

  

Model  AIC ΔAIC Model Weight 

Human Impact w/ Coyote 881.23 0.00 0.87 

Environmental Impact w/ Coyote 885.10 3.87 1.00 

Human Impact 900.54 19.31 1.00 

Environmental Impact 905.95 24.72 1.00 
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Table S2.7 | Full results for top human and top environmental impact occupancy models for 

dominant carnivores. 

Model  Interaction Covariate Estimate SE P-value 

Human Impact 

w/ Coyote 

bobcat Human Population 

Density 

-0.054 0.393 8.91e-01 

Human Impact 

w/ Coyote 

bobcat Human Presence -3.604 1.8191 5.67e-02 

Human Impact 

w/ Coyote 

bobcat Coyote Detection 

Rate 

1.932 0.520 2.05e-04 

Human Impact 

w/ Coyote 

bobcat Intercept -0.502 0.395 2.04e-01 

Human Impact 

w/ Coyote 

wolves Intercept -2.425 0.547 9.22e-06 

Human Impact 

w/ Coyote 

puma Intercept -2.730 0.629 1.43e-05 

Human Impact 

w/ Coyote 

bobcat:wolves Human Population 

Density 

-4.588 8.537 5.91e-01 

Human Impact 

w/ Coyote 

bobcat:wolves Human Presence -0.409 6.673 9.51e-01 

Human Impact 

w/ Coyote 

bobcat:wolves Coyote Detection 

Rate 

-1.066 0.907 2.40e-01 

Human Impact 

w/ Coyote 

bobcat:wolves Intercept -0.999 2.993 9.51e-01 

Human Impact 

w/ Coyote 

bobcat:puma Human Population 

Density 

-3.557 7.274 6.25e-01 

Human Impact 

w/ Coyote 

bobcat:puma Human Presence 0.062 4.454 9.89e-01 

Human Impact 

w/ Coyote 

bobcat:puma Coyote Detection 

Rate 

0.006 0.357 9.86e-01 

Human Impact 

w/ Coyote 

bobcat:puma Intercept -0.117 2.503 9.63e-01 

Environ. Impact 

w/ Coyote 

bobcat Gross Primary 

Production 

0.719 0.284 1.15e-02 

Environ. Impact 

w/ Coyote 

bobcat Precipitation 0.216 0.303 4.75e-01 

Environ. Impact 

w/ Coyote 

bobcat Coyote Detection 

Rate 

1.991 0.590 7.36e-04 

Environ. Impact 

w/ Coyote 

bobcat Intercept 0.005 0.295 9.87e-01 

Environ. Impact 

w/ Coyote 

wolves Intercept -2.415 0.547 1.02e-05 

Environ. Impact 

w/ Coyote 

puma Intercept -2.703 0.618 1.21e-05 

Environ. Impact 

w/ Coyote 

bobcat:wolves Gross Primary 

Production 

-0.679 0.627 2.78e-01 
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Table S2.8 | Model selection results from multispecies occupancy models for subordinate 

carnivores.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Environ. Impact 

w/ Coyote 

bobcat:wolves Precipitation 0.567 0.481 2.38e-01 

Environ. Impact 

w/ Coyote 

bobcat:wolves Coyote Detection 

Rate 

-1.301 0.979 1.84e-01 

Environ. Impact 

w/ Coyote 

bobcat:wolves Intercept 0.228 0.814 7.79e-01 

Environ. Impact 

w/ Coyote 

bobcat:puma Gross Primary 

Production 

-0.498 0.499 2.89e-01 

Environ. Impact 

w/ Coyote 

bobcat:puma Precipitation 0.136 0.412 3.19e-01 

Environ. Impact 

w/ Coyote 

bobcat:puma Coyote Detection 

Rate 

-0.062 0.377 7.41e-01 

Environ. Impact 

w/ Coyote 

bobcat:puma Intercept 0.839 0.791 8.70e-01 

Model  AIC ΔAIC Model Weight 

Environmental Impact 1571.46 0.00 0.53 

Human Impact 1577.17 5.71 1.00 
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Table S2.9 | Full results for top human and top environmental impact occupancy models for 

subordinate carnivores. 

 

 

 

 

 

Model  Interaction Covariate Estimate SE P-value 

Environmental 

Impact 

bobcat Intercept 0.231 0.317 0.467 

Environmental 

Impact 

bobcat Gross Primary Production 0.073 0.266 0.784 

Environmental 

Impact 

bobcat Precipitation 0.398 0.245 0.104 

Environmental 

Impact 

gray fox Intercept -1.147 0.333 0.001 

Environmental 

Impact 

red fox Intercept 0.223 0.285 0.436 

Environmental 

Impact 

bobcat:grayfox Intercept 0.385 0.517 0.457 

Environmental 

Impact 

bobcat:grayfox Gross Primary Production 0.186 0.314 0.553 

Environmental 

Impact 

bobcat:grayfox Precipitation -1.321 0.451 0.004 

Environmental 

Impact 

bobcat:redfox Intercept -1.321 0.451 0.003 

Environmental 

Impact 

bobcat:redfox Gross Primary Production 0.452 0.341 0.185 

Environmental 

Impact 

bobcat:redfox Precipitation 0.136 0.297 0.647 

Human Impact bobcat Intercept 0.143  0.374 0.702 

Human Impact bobcat Human Population Density -0.778 0.612 0.203 

Human Impact bobcat Human Presence -0.934 1.039 0.369 

Human Impact gray fox Intercept -1.117 0.336 0.001 

Human Impact red fox Intercept 0.237 0.289 0.412 

Human Impact bobcat:grayfox Intercept 0.585 1.057 0.291 

Human Impact bobcat:grayfox Human Population Density -0.431 0.837 0.606 

Human Impact bobcat:grayfox Human Presence 0.631 1.426 0.658 

Human Impact bobcat:redfox Intercept -1.258 0.601 0.036 

Human Impact bobcat:redfox Human Population Density 0.837 0.647 0.195 

Human Impact bobcat:redfox Human Presence -0.866 2.097 0.680 
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Table S2.10 | Results for all two-tail t-tests analyzing spatiotemporal avoidance using AARs 

(T4/T3).  

 

Table S2.11 | Results for ANOVAs analyzing spatiotemporal avoidance using AARs (T4/T3). 

(1) Bobcats avoiding one carnivore more than another, and (2) carnivore avoiding bobcat more 

than another. 

 

 

 

 

 

 

Table S2.12 | Results for Tukey Pairwise Comparison for ANOVA 1 that resulted in a 

significant p-value. 

 

 

 

 

 

 

  

 

 

 

 

 

Species A Species B mean t Df 95% CI p-value 

bobcat coyote 0.815 6.199 27 0.545 – 1.085 1.256e-06 

bobcat gray & red fox 0.677 3.481 10 0.244 – 1.110 0.006 

coyote bobcat -0.184 -2.807 51 -0.316 - -0.0525 0.007 

gray & red fox bobcat 0.036 0.147 14 -0.492 – 0.565 0.885 

ANOVA Group df Sum Sq Mean 

Sq 

F 

value 

p-value 

1 Species 3 3.947 1.316 2.843 0.050 

1 Residuals 39 18.047 0.463 ------ ------------ 

2 Species 4 1.057 0.264 0.688 0.603 

2 Residuals 65 24.987 0.384 ------ ------------ 

Species 1 Species 2 diff lwr upr p adj 

gray fox coyote -0.155 -0.827 0.518 0.926 

puma coyote -1.058 -2.034 -0.082 0.029 

red fox coyote 0.025 -1.833 1.883 0.999 

puma gray fox -0.903 -1.983 0.177 0.129 

red fox gray fox 0.180 -1.735 2.094 0.994 

red fox puma  1.083 -0.958 3.124 0.493 
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Table S2.13 | Model selection results from linear models analyzing spatiotemporal avoidance 

(AARs) for subordinate and dominant carnivores. 

 

Table S2.14 | Results for linear models analyzing spatiotemporal avoidance with the effects of 

anthropogenic and environmental factors using AARs (T2/T1). 

 

 

 

 

 

Hypothesis Model  AIC ΔAIC R2 Model Weight 

Subordinate Human Impact 14.46 0.00 0.400 0.80 

Subordinate Null 17.43 2.96 --------- 0.18 

Subordinate Environmental Impact 22.41 7.95 -0.020 0.02 

Dominant Null 67.05 0.00 --------- 0.70 

Dominant Environmental Impact 69.82 2.77 0.007 0.17 

Dominant Human Impact 70.42 3.37 -0.013 0.13 

Model Hypothesis Covariate Estimate Std. 

Error 

t-value p-value 

Human Impact Subordinate Intercept -0.201 0.110 -1.825 0.093 

Human Impact Subordinate Human Presence 0.004 0.002 2.086 0.0590 

Human Impact Subordinate 
Population 

Density 
-0.0002 0.0001 -2.593 0.024 

Human Impact Dominant Intercept -0.129 0.164 -0.789 0.437 

Human Impact Dominant Human Presence 0.001 0.004 0.311 0.758 

Human Impact Dominant 
Population 

Density 
0.004 0.004 0.851 0.402 

Environmental 

Impact 
Subordinate Intercept 8.212e-02 3.406e-01 0.241 0.814 

Environmental 

Impact 
Subordinate GPP -6.972e-06 2.448e-05 -0.285 0.781 

Environmental 

Impact 
Subordinate Precipitation -1.825e+00 1.425e+00 -1.281 0.224 

Environmental 

Impact 
Dominant Intercept -3.473e-01 2.588e-01 -1.342 0.190 

Environmental 

Impact 
Dominant GPP 4.103e-01 1.108e+00 0.370 0.714 

Environmental 

Impact 
Dominant Precipitation 2.979e-05 2.217e-05 1.344 0.190 
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APPENDIX D 

 

 

 

SUPPLEMENTAL 3: IACUC EXEMPTION DOCUMENT 
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APPENDIX E 

 

 

 

SUPPLEMENTAL 4: IRB EXEMPTION DOCUMENT 
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APPENDIX F 

 

 

 

SUPPLEMENTAL 5: R SCRIPT FOR CHAPTER 1 ANALYSIS 

 

 

######American black bear Supplemental Temporal Activity Code for Analysis in R########## 

 

##Set working directory 

setwd("C:/Users/truhubba/Documents/Research Project/Manuscripts/American Black Bear/") 

##Install packages 

install.packages(c("ggplot2", "dplyr", "gridExtra", "lubridate", "ggthemes", "readr", "hrbrthemes", 

"circular")) 

##Load packages 

library(circular) 

library(ggplot2) 

library(dplyr) 

library(lubridate) 

library(gridExtra) 

library(ggthemes) 

library(readr) 

library(hrbrthemes) 

library(overlap) 

library(chron) 

library(activity) 

############################ONLYBEAR####################################### 

##Read in csv with only bear detections for entire study period 

bear <- read.csv("only_bear.csv") 

View(bear) 

############################################################ 

###Format time data 

bear_de<-60 * 24 * as.numeric(times(bear$time)) 

bear_de2<-(bear_de/1440) 

View(bear_de2) 

range(bear_de2) 

timeRad<-(bear_de2*2*pi)   

 

###Create dataset for before and after hibernation 

bear_detB<- timeRad[bear$period =="before"] 

bear_detA <- timeRad[bear$period=="after"] 
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########Graph Detections throughout study period (before [b1] or after [d1])################ 

############################################################################## 

bear2<-read.csv("after_BH.csv") 

bear2$date<-as.Date(bear2$date,"%m/%d/%Y") 

bear2$choice<-factor(bear2$choice, levels=rev(levels(bear2$choice))) 

ggplot(bear2,aes(x=date, fill=choice, order=-as.numeric(choice)))+ 

  geom_bar(mapping = aes(),colour="black")+ 

  scale_fill_manual("Legend", values = c("HUMAN"="darkslateblue", "BEAR"="gold1"))+ 

  theme_economist_white()+ 

  theme(plot.title=element_text(hjust=0.5))+ 

  theme(axis.title.x = element_text(face="bold", size=12))+ 

  theme(axis.title.y = element_text(face="bold", size=12))+ 

  theme(axis.text.y =element_text(size=8, face="bold"))+ 

  theme(axis.text.x = element_text(size=8, face="bold"))+ 

  ggtitle("Total American Black Bear Detections Across Study Time Period")+ 

  theme(plot.title = element_text(hjust = 0.5, face= "bold",size=16))+ 

  xlab("Date")+ 

  ylab("Number of Detections") 

d1 

b1 

grid.arrange(b1,d1, nrow=1) 

 

###############BLACK BEAR OVERLAP ESTIMATES#################### 

##################################################################### 

##Create overlap plot for before and after hibernation 

overlapPlot(bear_detB, bear_detA) 

overlapPlot(bear_detB, bear_detA, xcenter="noon", main=" Bear Before & After Hibernation", 

linetype=c("solid","solid"),linecol=c("darkgoldenrod1","darkblue"), linewidth=c(3,3),lty=3) 

legend("bottom",c("Before","After"),lty=c(1,1),bty='n',col=c("darkgoldenrod1","darkblue")) 

 

######Percent of activity between sunrise and sunset (% Nocturnal or % Diurnal)############ 

###before hibernation 

beforeden<-densityPlot(bear_detB, rug = TRUE) 

wanted <- beforeden$x > 6+57/60 & beforeden$x <20+36/60 

wanted 

mean(beforeden$y[wanted]) *14  # probability mass for the 14 hr period. 

 

###aftern hibernation 

afterden<-densityPlot(bear_detA, rug = TRUE) 

wanted <- afterden$x > 5+20/60 & afterden$x <20+20/60 

wanted 

mean(afterden$y[wanted]) *15  # probability mass for the 14 hr period. 

 

########################OVERLAP CALCULATIONS############################# 

###Check sample sizes to determine which estimate to use 

length(bear_detB) 
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length(bear_detA) 

 

## If the smaller sample is less than 50, Dhat1 gives the best estimates, together with 

## confidence intervals from a smoothed bootstrap with norm0 or basic0 confidence interval. 

## Dhat4 is recommended if both samples are larger then 50, otherwise use Dhat1 

############################################################################## 

###Calculate Estimates of Overlap################################################## 

(Dhats <- overlapEst(bear_detB, bear_detA, type="Dhat4"))   

###Bootstrap for confidence intervals  

bsA <- resample(bear_detB, 1000)  

bsAA <- resample(bear_detA, 1000)  

 

###Analyse with bootEst, estimating with proper Dhat 

bs <- bootEst(bsA, bsAA, type = "Dhat4") 

###Find the mean 

mean(bs) 

##Get Confidence Intervals 

bootCI(Dhats,bs, conf = 0.95) 

bootCIlogit(Dhats,bs, conf = 0.95) 

###The percentiles CI, "perc", gives quantiles of the bootstrap values, interpolated if necessary. 

However, in general, the bootstrap estimates are biased, so "perc" should be corrected. 

###"basic" is a bias-corrected version of "perc", analogous to t1: 2 x t0 - perc. 

###"norm" gives tail cutoffs for a normal distribution with  = t1 and sd = sd(bt). 

 

#######WITH/WITHOUT CUBS (before and after hibernation combined)################# 

cub_time<-60 * 24 * as.numeric(times(bear$time)) 

cub_time2<-(cub_time/1440) 

View(cub_time2) 

range(cub_time2) 

timeRad<-(cub_time2*2*pi)   

 

no_cub <- timeRad[bear$cub_present =="N"]#NO CUBS PRESENT 

cub <- timeRad[bear$cub_present=="Y"]#CUBS PRESENT 

 

densityPlot(no_cub,extend=NULL,lwd=2,ylim=c(0,0.08),col='plum1',main="Cubs")+lty=3 

overlapPlot(no_cub, cub) 

overlapPlot(no_cub,cub,xcenter="noon",main="CubAcitivity",linetype=c("solid","solid"),linecol

=c("mediumorchid4","darkorange2"),linewidth=c(3,3),lty=3) 

                                                                                                                                                   

legend("bottom",c("WithoutCubs","WithCubs"),lty=c(1,1),bty='n', 

col=c("mediumorchid4","darkorange2")) 

par(bg="gray97") 

 

############################################################ 

###########OVERLAP ESTIMATE BETWEEN CUBS AND NO CUBS################# 

(Dhats <- overlapEst(no_cub, cub, type="Dhat1")) 
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############################################################################## 

###PROPORTION OF DAY SPENT ACTIVE WITH AND WITHOUT CUBS############## 

cubden<-densityPlot(cub, rug = TRUE) 

wanted <- cubden$x > 5+57/60 & cubden$x <19+36/60 

wanted 

mean(cubden$y[wanted]) *14  #probability mass for the 14 hr period. 

 

nocubden<-densityPlot(no_cub, rug = TRUE) 

wanted <- nocubden$x > 5+57/60 & nocubden$x <19+36/60 

wanted 

mean(nocubden$y[wanted]) *14  #probability mass for the 14 hr period. 

############################################################################## 

###ACTIVITY LEVEL WITH AND WITHOUT CUBS################################# 

f_cub <- fitact(cub, sample="data", reps=1000) 

f_nocub <- fitact(no_cub, sample="data", reps=1000) 

f_cub@act 

f_nocub@act 

compareAct(list(f_cub,f_nocub))  

 

############################################################################## 

############################################################################## 

######################ONLY HUMAN DATA#################################### 

human<-read.csv("human.csv") 

############################################################ 

####before/after hibernation##################### 

hums<-60 * 24 * as.numeric(times(human$time)) 

hums2<-(hums/1440) 

View(hums2) 

range(hums2) 

timeRad<-(hums2*2*pi)   

hum_before <- timeRad[human$period =="before"] 

hum_after <- timeRad[human$period=="after"] 

############################################################################## 

###OVERLAP ESTIMATES- BEFORE HIBERNATION- HUMAN AND BEAR############ 

###Check Sample Sizes 

## If the smaller sample is less than 50, Dhat1 gives the best estimates, together with 

## confidence intervals from a smoothed bootstrap with norm0 or basic0 confidence interval. 

## Dhat4 is recommended if both samples are larger then 50, otherwise use Dhat1 

length(bear_detA) 

length(bear_detB) 

(Dhats <- overlapEst(hum_before,bear_detB, type="Dhat4")) 

(Dhats <- overlapEst(hum_after,bear_detA, type="Dhat4")) 

###PROPORTION OF DAY SPENT ACTIVE  

humbden<-densityPlot(hum_before, rug = TRUE) 

wanted <- humbden$x > 5+57/60 & humbden$x <19+36/60 
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wanted 

mean(humbden$y[wanted]) *14  # probability mass for the 6 hr period. 

 

humaden<-densityPlot(hum_after, rug = TRUE) 

wanted <- humaden$x > 5+57/60 & humaden$x <19+36/60 

wanted 

mean(humaden$y[wanted]) *14  # probability mass for the 14 hr period. 

 

############################################################################## 

###ACTIVITY LEVEL BEFORE AND AFTER####################################### 

f_before <- fitact(hum_before, sample="data", reps=1000) 

f_after <- fitact(hum_after, sample="data", reps=1000) 

f_before@act 

f_after@act 

compareAct(list(f_before,f_after))  

############################################################################## 

#########SORTING BY TYPE OF RECREATION (on foot activity)###################### 

###sort and set data into radians 

human2<-subset(human, period=="before") 

human_b<-60 * 24 * as.numeric(times(human2$time)) 

human_b<-(human_b/1440) 

timeRad<-(human_b*2*pi)   

hum_foot_before <- timeRad[human2$on_foot=="TRUE"] 

 

human3<-subset(human, period=="after") 

human_a<-60 * 24 * as.numeric(times(human3$time)) 

human_a<-(human_a/1440) 

timeRad<-(human_a*2*pi)  

hum_foot_after <- timeRad[human3$on_foot=="TRUE"] 

 

############################################################################## 

###OVERLAP ESTIMATE BETWEEN BEFORE AND AFTER HIBERNATION 

###Check Sample Sizes 

## If the smaller sample is less than 50, Dhat1 gives the best estimates, together with 

## confidence intervals from a smoothed bootstrap with norm0 or basic0 confidence interval. 

## Dhat4 is recommended if both samples are larger then 50, otherwise use Dhat1 

length(bear_detA) 

length(bear_detB) 

(Dhats <- overlapEst(hum_foot_before,bear_detB, type="Dhat4")) 

(Dhats <- overlapEst(hum_foot_after,bear_detA, type="Dhat4")) 

###PROPORTION OF DAY SPENT ACTIVE  

humbden<-densityPlot(hum_foot_before, rug = TRUE) 

wanted <- humbden$x > 5+57/60 & humbden$x <19+36/60 

wanted 

mean(humbden$y[wanted]) *14  # probability mass for the 14 hr period. 
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humaden<-densityPlot(hum_foot_after, rug = TRUE) 

wanted <- humaden$x > 5+57/60 & humaden$x <19+36/60 

wanted 

mean(humaden$y[wanted]) *14  # probability mass for the 14 hr period. 

 

############################################################################## 

###ACTIVITY LEVEL BEFORE AND AFTER####################################### 

f_before <- fitact(hum_foot_before, sample="data", reps=1000) 

f_after <- fitact(hum_foot_after, sample="data", reps=1000) 

f_before@act 

f_after@act 

compareAct(list(f_before,f_after)) 

############################################################################## 

########SORTING BY TYPE OF RECREATION (Non-motorized activity)################ 

human2<-subset(human, period=="before") 

human_b<-60 * 24 * as.numeric(times(human2$time)) 

human_b<-(human_b/1440) 

timeRad<-(human_b*2*pi)   

hum_non_before <- timeRad[human2$non_motorized=="TRUE"] 

 

human3<-subset(human, period=="after") 

human_a<-60 * 24 * as.numeric(times(human3$time)) 

human_a<-(human_a/1440) 

timeRad<-(human_a*2*pi)  

hum_non_after <- timeRad[human3$non_motorized=="TRUE"] 

 

############################################################################## 

###OVERLAP ESTIMATE BETWEEN BEFORE AND AFTER HIBERNATION########### 

###Check Sample Sizes 

## If the smaller sample is less than 50, Dhat1 gives the best estimates, together with 

## confidence intervals from a smoothed bootstrap with norm0 or basic0 confidence interval. 

## Dhat4 is recommended if both samples are larger then 50, otherwise use Dhat1 

length(bear_detA) 

length(bear_detB) 

(Dhats <- overlapEst(hum_non_before,bear_detB, type="Dhat4")) 

(Dhats <- overlapEst(hum_non_after,bear_detA, type="Dhat4")) 

###PROPORTION OF DAY SPENT ACTIVE  

humbden<-densityPlot(hum_non_before, rug = TRUE) 

wanted <- humbden$x > 5+57/60 & humbden$x <19+36/60 

wanted 

mean(humbden$y[wanted]) *14  # probability mass for the 6 hr period. 

 

humaden<-densityPlot(hum_non_after, rug = TRUE) 

wanted <- humaden$x > 5+57/60 & humaden$x <19+36/60 
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wanted 

mean(humaden$y[wanted]) *14  # probability mass for the 14 hr period. 

 

############################################################################## 

###ACTIVITY LEVEL BEFORE AND AFTER####################################### 

f_before <- fitact(hum_non_before, sample="data", reps=1000) 

f_after <- fitact(hum_non_after, sample="data", reps=1000) 

f_before@act 

f_after@act 

compareAct(list(f_before,f_after)) 

 

############################################################################## 

############################################################################## 

###COMPARE ACTIVITY OF VEHICLES BEFORE AND AFTER HIBERNATION######## 

############################################################################## 

##read in csv 

veh<-read.csv("vehichle_data.csv") 

##convert times and compare 

veh2<-subset(veh, time.period=="before") 

veh_b<-60 * 24 * as.numeric(times(veh2$time)) 

veh_b<-(veh_b/1440) 

veh_b<-timeRad<-(veh_b*2*pi)   

 

veh3<-subset(veh, time.period=="after") 

veh_a<-60 * 24 * as.numeric(times(veh3$time)) 

veh_a<-(veh_a/1440) 

veh_a<-timeRad<-(veh_a*2*pi)  

 

############################################################################## 

###PROPORTION OF DAY SPENT ACTIVE########################################  

humbden<-densityPlot(veh_b, rug = TRUE) 

wanted <- humbden$x > 5+57/60 & humbden$x <19+36/60 

wanted 

mean(humbden$y[wanted]) *14  # probability mass for the 14 hr period. 

 

humaden<-densityPlot(veh_a, rug = TRUE) 

wanted <- humaden$x > 5+57/60 & humaden$x <19+36/60 

wanted 

mean(humaden$y[wanted]) *14  # probability mass for the 14 hr period. 

 

############################################################################## 

###ACTIVITY LEVEL BEFORE AND AFTER####################################### 

f_before <- fitact(veh_b, sample="data", reps=1000) 

f_after <- fitact(veh_a, sample="data", reps=1000) 

f_before@act 

f_after@act 
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compareAct(list(f_before,f_after)) 

 

############################################################################## 

###OVERLAP ESTIMATE BETWEEN BEARS AND VEHICLES####################### 

###Check Sample Sizes 

## If the smaller sample is less than 50, Dhat1 gives the best estimates, together with 

## confidence intervals from a smoothed bootstrap with norm0 or basic0 confidence interval. 

## Dhat4 is recommended if both samples are larger then 50, otherwise use Dhat1 

length(veh_a) 

length(veh_b) 

(Dhats <- overlapEst(veh_b,bear_detB, type="Dhat4")) 

(Dhats <- overlapEst(veh_a,bear_detA, type="Dhat1")) 

##############################################################################

############################################################################## 

 

 

##########American black bear Supplemental Occupancy Modeling Code for Analysis in R### 

library(unmarked) 

library(AICcmodavg) 

library(ggplot2) 

library(ggthemes) 

library(hrbrthemes) 

library(jtools) 

setwd("C:/Users/truhubba/Documents/ResearchProject/Manuscripts/AmericanBlack 

Bear/Occupancy/") 

#########################BlackbearSingle-SpeciesModels################## 

##load in Detection csv and covariate csv 

bear<-read.csv("combined_bear_occ.csv") 

covs<-read.csv("final_covariates.csv") 

View(bear) 

View(covs) 

head(covs) 

################################################################## 

##Format the data for unmarked. Use ?unmarkedMultFrame? and  

#specify the number of primary periods 

siteCovs<-

(covs[,c("number_humans","number_human_on_foot","landowner","number_dogs","number

_vehicles","Sum_of_human_impact","hum_pop","elevation","m_watsource","m_road","land_

cover","human_present","human_present_foot","dog_present","protected","cubs_present","n_

vehicle","rec_vehicle","u_vehicle","non_motor_human","gun_present" 

"number_non_motor_human","season")]) 

 

###Create unmarked object##### 

bearumk<-

unmarkedFrameOccu(y=bear,siteCovs=data.frame(nnomotor=scale(covs$number_non_motor
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_human),nhuman=scale(covs$number_humans),nhumfoot=scale(covs$number_human_on_f

oot),nveh=scale(covs$number_vehicles),land=factor(covs$landowner),ndog=scale(covs$numb

er_dogs),humP=scale(covs$human_present),season=factor(covs$season),pro=factor(covs$pro

tected),lcover=factor(covs$land_cover),hum=scale(covs$Sum_of_human_impact), 

wat=scale(covs$m_watsource),passveh=factor(covs$n_vehicle),recveh=factor(covs$rec_vehicl

e),uveh=factor(covs$u_vehicle),dog=factor(covs$dog_present),gun=factor(covs$gun_present),

pop=scale(covs$hum_pop),elv=scale(covs$elevation), 

road=scale(covs$m_road),cub=factor(covs$cubs_present))) 

summary(bearumk)  

 

# occu(~detection ~occupancy) 

################################################################## 

#############DETECTION PROBABILITY MODELS########################## 

null<-occu(~1 ~1, bearumk) #null 

det1<-occu(~cub ~1, bearumk )#cubs---excluded 

det2<-occu(~season ~1, bearumk) #season 

det3<-occu(~pro ~1, bearumk) #protected areas 

 

fl2<-fitList(null,det1,det2,det3) 

modSel(fl2) 

summary() 

 

################################################################## 

###############OCCUPANCY PROBILITY MODELS########################## 

occ1 <- occu( ~season+pro ~1, bearumk)  #Null 

occseason<-occu(~season+pro ~season, bearumk) #season 

occhuman<- occu(~season+pro ~nhuman, bearumk) #number of total humans 

occhumfoot<-occu(~season+pro ~nhumfoot, bearumk) #number of humans on foot 

occpop<- occu(~season+pro ~pop, bearumk) #population density 

occndog<- occu( ~season+pro ~ndog, bearumk) #number of dogs 

occpro<- occu( ~season+pro ~pro, bearumk) #protected areas 

occhum<- occu( ~season+pro ~hum, bearumk) #sum of human impact 

occrecveh<- occu( ~season+pro ~recveh, bearumk) #recreation vehicle 

occelv<- occu( ~season+pro ~elv, bearumk) #elevation 

occwat<- occu( ~season+pro ~wat, bearumk) #water source 

occroad<- occu( ~season+pro ~road, bearumk) #road 

occdog<- occu( ~season+pro ~dog, bearumk) #dog present 

occlcover<- occu( ~season+pro ~lcover, bearumk) #landcover 

occnveh<- occu( ~season+pro ~nveh, bearumk) #nubmer of vehicles 

occland<- occu( ~season+pro ~land, bearumk) #land ownership 

occpveh<- occu( ~season+pro ~passveh, bearumk) #passenger vehicle 

occnnomotor<- occu( ~season+pro ~nnomotor, bearumk) #number of non-motorized 

occgun<- occu( ~season+pro ~gun, bearumk) #gun 

occuveh<-occu(~season+pro ~uveh, bearumk) #utility vehicle 

occhumP<-occu(~season+pro ~humP, bearumk) #human presence 
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####Compare single factor models#### 

fl<-fitList(occ1, occseason,occgun,occnnomotor,occpveh, occnveh, occpop, occlcover, occdog, 

occroad,occhum,occpro,occwat,occelv,occuveh,occland,occrecveh,occndog,occhumfoot,occhum

an,occhumP) 

modSel(fl) 

 

####Create additive models to test for final occupancy model#### 

occbear<-occu(~season+pro ~)  

summary() 

 

##Compare additive models#### 

fl2<-fitList() 

modSel(fl2) 

 

##check confidence intervals 

##Non-overlapping with zero! That suggests the covariate is a strong predictor!  

##Overlaps with zero then this is a weak predictor 

confint( , type="state") 

confint( ,type="det") 

##############################################################################

############################################################################## 

########################Plot Occupancy Model Predictions########################## 

PLOTTING COMBINED DETECTION AND OCCUPANCY COVARIATES############## 

occbear<-occu(~pro+season ~pop+humP, bearumk) 

summary(occbear) 

 

pop.data <- data.frame(pop=seq(from=1.60, to= 10.50, length=60), humP=rep(0, 60), 

season=rep(0,60), pro=rep(0,60)) 

predictions <- predict(occbear, type='state', newdata=pop.data, appendData=TRUE) 

View(predictions) 

ggplot(data=predictions, aes(x=pop, y=Predicted,ymin=Predicted-SE, ymax=Predicted+SE))+ 

  geom_ribbon(fill="darkslateblue", alpha=0.1)+ 

  geom_line(color="darkslateblue", size=1)+ 

  labs(x="Population Density", y = "Occupancy Probability")+ 

  theme_clean() 

 

 

human.data <- data.frame(pop=rep(0,60), humP=seq(from=0, to=1, length=60), 

season=rep(0,60), pro=rep(0,60)) 

predictions2 <- predict(occbear, type='state', newdata=human.data, appendData=TRUE) 

View(predictions2) 

 

human<-read.csv("humP.csv") 
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ggplot(data=human, aes(x=humP, y=Predicted))+ 

  geom_col(fill="darkslateblue", width = 0.2, alpha=1)+ 

  scale_x_discrete(limits = c(0,1))+ 

  geom_errorbar(aes(ymin=min, ymax=max), width=0.1)+ 

  labs(x="Human Presence", y = "Occupancy Probability")+ 

  theme_clean() 

 

protected<- data.frame(season=rep(0,60), pro=seq(from=0, to=1, 

length=60),pop=rep(0,60),humP=rep(0, 60)) 

prediction3 <- predict(occbear, type='det', newdata=protected, appendData=TRUE) 

View(prediction3) 

protect<-read.csv("protected.csv") 

ggplot(data=protect, aes(x=protected, y=Predicted))+ 

  geom_col(fill="gold1", width=0.2, alpha=1)+ 

  geom_errorbar(aes(ymin=min, ymax=max), width=0.1)+ 

  scale_x_discrete(limits = c(0,1))+ 

  labs(x="Protected Land", y = "Detection Probability")+ 

  theme_clean() 

 

sea<- data.frame(season=seq(from=0, to=1, length=60),pop=rep(0,60),humP=rep(0, 60), 

pro=rep(0,60)) 

prediction <- predict(occbear, type='det', newdata=sea, appendData=TRUE) 

View(prediction) 

 

season<-read.csv("season.csv") 

ggplot(data=season, aes(x=season, y=Predicted))+ 

  geom_col(fill="gold1", width=0.2, alpha=1)+ 

  geom_errorbar(aes(ymin=min, ymax=max), width=0.1)+ 

  scale_x_discrete(limits =c(0,1))+ 

  labs(x="Season", y = "Detection Probability")+ 

  theme_clean() 
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APPENDIX G 

 

 

 

SUPPLEMENTAL 6: R SCRIPT FOR CHAPTER 2 ANALYSIS 

 

 

######Carnivore Supplemental Temporal Activity Code for Analysis in R########## 

 

setwd("C:/Users/truhubba/Documents/ResearchProject/Manuscripts/Snapshot-Carnivore 

Community/") 

library(activity) 

library(dplyr) 

library(lubridate) 

library(chron) 

library(overlap) 

library(ggplot2) 

##############################################################################

############################################################################## 

 

###Anchoring by sunrise and Sunset Test on small dataset 

###read in dataset####uses small subset of random detections to test code 

snapshot<-read.csv("Anchor-Test.csv") 

View(snapshot) 

 

snapshot2<-mutate(snapshot, rawtimes=60 * 24 * as.numeric(times(snapshot$Time))/1440*2*pi)   

##convert time to radians 

 

snapshot3<-mutate(snapshot2, sunrise=60 * 24 * 

as.numeric(times(snapshot2$sunrise))/1440*2*pi)  ##convert sunrise time to radians 

 

snapshot4<-mutate(snapshot3, sunset=60 * 24 * as.numeric(times(snapshot3$sunset))/1440*2*pi) 

##convert sunset time to radians 

View(snapshot4) 

 

##create object with the original detectition times after being converted to radians 

dat<-snapshot2$rawtimes  

View(dat) 

 

##create a two coloumn vector with radians of sunrise and sunset 

anchor<-cbind(snapshot4$sunrise, snapshot4$sunset) 

View(anchor) 

 

##run transtimes to express time expressed relative to the two solar events (i.e., sunrise, sunset) 
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eqntimes<-transtime(dat, anchor, type = "equinoctial") 

View(eqntimes) 

 

##plot and compare 

rawAct<-fitact(dat) 

eqnAct<-fitact(eqntimes) 

plot(rawAct) 

plot(eqnAct) 

##############################################################################

############################################################################## 

###############USE FULL SNAPSHOT CARNIVORE DATASET##################### 

###read in dataset 

snapshot<-read.csv("snapshot_data_carnivores.csv") 

View(snapshot) 

 

snapshot2<-mutate(snapshot, rawtimes=60 * 24 * as.numeric(times(snapshot$Time))/1440*2*pi)   

##convert time to radians 

snapshot3<-mutate(snapshot2,sunrise=60*24* as.numeric(times(snapshot2$sunrise))/1440*2*pi)  

##convert sunrise time to radians 

snapshot4<-mutate(snapshot3, sunset=60 * 24 * as.numeric(times(snapshot3$sunset))/1440*2*pi) 

##convert sunset time to radians 

View(snapshot4) 

 

##create object with the original detection times after being converted to radians 

dat<-snapshot4$rawtimes  

View(dat) 

 

##create a two coloumn vector with radians of sunrise and sunset 

anchor<-cbind(snapshot4$sunrise, snapshot4$sunset) 

View(anchor) 

 

##run transtimes to express time expressed relative to the two solar events (i.e., sunrise, sunset) 

eqntimes<-transtime(dat, anchor, type = "equinoctial") 

View(eqntimes) 

 

##plot and compare including all species in data set 

rawAct<-fitact(dat) 

eqnAct<-fitact(eqntimes) 

plot(rawAct) 

plot(eqnAct) 

plot(eqnAct, add=TRUE, data="n", tline=list(col="magenta")) 

##############################################################################

############################################################################## 

###########Create Density Curves################################################ 



95 
 

###subset for specific species 

subcoy<-subset(snapshot4, Common.Name=="Coyote")##coyote 

View(subcoy) 

##create object with the original detectition times after being converted to radians 

dat<-subcoy$rawtimes  

View(dat) 

##create a two coloumn vector with radians of sunrise and sunset 

anchor<-cbind(subcoy$sunrise, subcoy$sunset) 

View(anchor) 

##run transtimes to express time expressed relative to the two solar events (i.e., sunrise, sunset) 

eqncoyote<-transtime(dat, anchor, type = "equinoctial") 

View(eqncoyote) 

 

##plot and compare 

rawAct<-fitact(dat) 

eqnAct<-fitact(eqncoyote) 

plot(rawAct) 

plot(eqnAct) 

plot(eqnAct, add=TRUE, data="n", tline=list(col="magenta")) 

 

##density curve 

densityPlot(eqncoyote,extend=NULL,col='purple',main="CoyoteActivity")+ 

abline(v=c(6+31/60, 19+26/60), lty=3)  

##############################################################################

############################################################################## 

###subset for specific species 

subbob<-subset(snapshot4, Common.Name=="Bobcat")##bobcat 

View(subbob) 

##create object with the original detectition times after being converted to radians 

dat<-subbob$rawtimes  

View(dat) 

##create a two coloumn vector with radians of sunrise and sunset 

anchor<-cbind(subbob$sunrise, subbob$sunset) 

View(anchor) 

##run transtimes to express time expressed relative to the two solar events (i.e., sunrise, sunset) 

eqnbobcat<-transtime(dat, anchor, type = "equinoctial") 

View(eqnbobcat) 

 

##plot and compare 

rawAct<-fitact(dat) 

eqnAct<-fitact(eqnbobcat) 

plot(rawAct) 

plot(eqnAct) 

plot(eqnAct, add=TRUE, data="n", tline=list(col="magenta")) 

 

##density curve 
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densityPlot(eqnbobcat,extend=NULL,col='purple',main="BobcatActivity")+ 

abline(v=c(6+31/60, 19+26/60), lty=3) 

############################################################################## 

##overlap plot of coyote and bobcat 

overlapPlot(eqnbobcat, eqncoyote, xcenter="noon", main="Acitivity Overlap Bobcat vs. Coyote", 

linetype=c("solid","solid"),linecol=c("darkgoldenrod1","darkblue"),linewidth=c(3,3), 

olapcol="white",) 

legend("bottomleft",c("Bobcat","Coyote"),lty=c(1,1),bty='n',col=c("darkgoldenrod1","darkblue")

) 

par(bg="gray97") 

################################Calculate Overlap ############################### 

###Check Sample Sizes 

length(eqnbobcat) 

length(eqncoyote) 

## If the smaller sample is less than 50, Dhat1 gives the best estimates, together with 

## confidence intervals from a smoothed bootstrap with norm0 or basic0 confidence interval. 

## Dhat4 is recommended if both samples are larger then 50, otherwise use Dhat1 

 

(Dhats <- overlapEst(eqnbobcat, eqncoyote, type="Dhat4")) 

###Bootstrap for confidence intervals (999 datasets) 

bsBOB <- resample(eqnbobcat, 10000) 

bsCOY <- resample(eqncoyote, 10000) 

 

###Analyse with bootEst, estimating with proper Dhat 

bsBC <- bootEst(bsBOB, bsCOY, type = "Dhat4") 

mean(bsBC) 

 

##Get Confidence Intervals 

bootCI(Dhats,bsBC, conf = 0.95) 

bootCIlogit(Dhats,bsBC, conf = 0.95) 

###The percentiles CI, "perc", gives quantiles of the bootstrap values, interpolated if necessary. 

However, in general, the bootstrap estimates are biased, so "perc" should be corrected. 

###"basic" is a bias-corrected version of "perc", analogous to t1: 2 x t0 - perc. 

###"norm" gives tail cutoffs for a normal distribution with  = t1 and sd = sd(bt). 

############################################################################## 

############################################################################## 

###subset for specific species 

subfish<-subset(snapshot4, Common.Name=="Fisher")##fisher 

View(subfish) 

##create object with the original detectition times after being converted to radians 

dat<-subfish$rawtimes  

View(dat) 

##create a two coloumn vector with radians of sunrise and sunset 
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anchor<-cbind(subfish$sunrise, subfish$sunset) 

View(anchor) 

##run transtimes to express time expressed relative to the two solar events (i.e., sunrise, sunset) 

eqnfisher<-transtime(dat, anchor, type = "equinoctial") 

View(eqnfisher) 

 

##plot and compare 

rawAct<-fitact(dat) 

eqnAct<-fitact(eqnfisher) 

plot(rawAct) 

plot(eqnAct) 

plot(eqnAct, add=TRUE, data="n", tline=list(col="magenta")) 

densityPlot(eqnfisher,extend= NULL, col='purple',main="Fisher Activity")+  

abline(v=c(6+31/60, 19+26/60), lty=3) 

 

##overlap plot of fisher and bobcat 

overlapPlot(eqnbobcat, eqnfisher, xcenter="noon", main="Acitivity Overlap Bobcat vs. Fisher", 

linetype=c("solid","solid"),linecol=c("darkgoldenrod1","darkblue"),linewidth=c(3,3), 

olapcol="white",) 

legend("bottomleft",c("Bobcat","Fisher"),lty=c(1,1),bty='n',col=c("darkgoldenrod1","darkblue")) 

par(bg="gray97") 

################################Calculate Overlap############################### 

###Check Sample Sizes 

length(eqnbobcat) 

length(eqnfisher) 

## If the smaller sample is less than 50, Dhat1 gives the best estimates, together with 

## confidence intervals from a smoothed bootstrap with norm0 or basic0 confidence interval. 

## Dhat4 is recommended if both samples are larger then 50, otherwise use Dhat1 

 

(Dhats <- overlapEst(eqnbobcat, eqnfisher, type="Dhat4")) 

###Bootstrap for confidence intervals (999 datasets) 

bsBOB <- resample(eqnbobcat, 10000) 

bsFISH <- resample(eqnfisher, 10000) 

 

###Analyse with bootEst, estimating with proper Dhat 

bsBF <- bootEst(bsBOB, bsFISH, type = "Dhat4") 

mean(bsBF) 

 

##Get Confidence Intervals 

bootCI(Dhats,bsBF, conf = 0.95) 

bootCIlogit(Dhats,bsBF, conf = 0.95) 

###The percentiles CI, "perc", gives quantiles of the bootstrap values, interpolated if necessary. 

However, in general, the bootstrap estimates are biased, so "perc" should be corrected. 
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###"basic" is a bias-corrected version of "perc", analogous to t1: 2 x t0 - perc. 

###"norm" gives tail cutoffs for a normal distribution with  = t1 and sd = sd(bt). 

##############################################################################

############################################################################## 

###subset for specific species 

subgfox<-subset(snapshot4, Common.Name=="Grey Fox")##greyfox 

View(subgfox) 

##create object with the original detectition times after being converted to radians 

dat<-subgfox$rawtimes  

View(dat) 

##create a two coloumn vector with radians of sunrise and sunset 

anchor<-cbind(subgfox$sunrise, subgfox$sunset) 

View(anchor) 

##run transtimes to express time expressed relative to the two solar events (i.e., sunrise, sunset) 

eqngreyfox<-transtime(dat, anchor, type = "equinoctial") 

View(eqngreyfox) 

 

##plot and compare 

rawAct<-fitact(dat) 

eqnAct<-fitact(eqngreyfox) 

plot(rawAct) 

plot(eqnAct) 

plot(eqnAct, add=TRUE, data="n", tline=list(col="magenta")) 

densityPlot(eqngreyfox, extend = NULL, col='purple',main="Grey Fox Activity")+ 

abline(v=c(6+31/60, 19+26/60), lty=3) 

lines(eqnbobcat, col="red") 

 

 

##overlap plot of greyfox and bobcat 

overlapPlot(eqnbobcat, eqngreyfox, xcenter="noon", main="Acitivity Overlap Bobcat vs. Grey 

Fox",linetype=c("solid","solid"),linecol=c("darkgoldenrod1","darkblue"),linewidth=c(3,3), 

olapcol="white",) 

legend("bottomleft",c("Bobcat","GreyFox"),lty=c(1,1),bty='n',col=c("darkgoldenrod1","darkblue

")) 

par(bg="gray97") 

################################Calculate Overlap############################### 

###Check Sample Sizes 

length(eqnbobcat) 

length(eqngreyfox) 

## If the smaller sample is less than 50, Dhat1 gives the best estimates, together with 

## confidence intervals from a smoothed bootstrap with norm0 or basic0 confidence interval. 

## Dhat4 is recommended if both samples are larger then 50, otherwise use Dhat1 

 

(Dhats <- overlapEst(eqnbobcat, eqngreyfox, type="Dhat4")) 

###Bootstrap for confidence intervals (999 datasets) 
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bsBOB <- resample(eqnbobcat, 10000) 

bsGF <- resample(eqngreyfox, 10000) 

 

###Analyse with bootEst, estimating with proper Dhat 

bsBGF <- bootEst(bsBOB, bsGF, type = "Dhat4") 

mean(bsBGF) 

 

##Get Confidence Intervals 

bootCI(Dhats,bsBGF, conf = 0.95) 

bootCIlogit(Dhats,bsBGF, conf = 0.95) 

###The percentiles CI, "perc", gives quantiles of the bootstrap values, interpolated if necessary. 

However, in general, the bootstrap estimates are biased, so "perc" should be corrected. 

###"basic" is a bias-corrected version of "perc", analogous to t1: 2 x t0 - perc. 

###"norm" gives tail cutoffs for a normal distribution with  = t1 and sd = sd(bt). 

##############################################################################

############################################################################## 

 

###subset for specific species 

subgw<-subset(snapshot4, Common.Name=="Gray Wolf")##graywolf 

View(subgw) 

##create object with the original detectition times after being converted to radians 

dat<-subgw$rawtimes  

View(dat) 

##create a two coloumn vector with radians of sunrise and sunset 

anchor<-cbind(subgw$sunrise, subgw$sunset) 

View(anchor) 

##run transtimes to express time expressed relative to the two solar events (i.e., sunrise, sunset) 

eqngraywolf<-transtime(dat, anchor, type = "equinoctial") 

View(eqngraywolf) 

 

##plot and compare 

rawAct<-fitact(dat) 

eqnAct<-fitact(eqngraywolf) 

plot(rawAct) 

plot(eqnAct) 

plot(eqnAct, add=TRUE, data="n", tline=list(col="magenta")) 

densityPlot(eqngraywolf,extend=NULL,col='purple',main="GrayWolfActivity")+ 

abline(v=c(6+31/60, 19+26/60), lty=3) 

 

##overlap plot with bobcat 

overlapPlot(eqnbobcat, eqngraywolf, xcenter="noon", main="Acitivity Overlap Bobcat vs. Gray 

Wolf", linetype=c("solid","solid"),linecol=c("darkgoldenrod1","darkblue"),linewidth=c(3,3), 

olapcol="white",) 

legend("bottomleft",c("Bobcat","GrayWolf"),lty=c(1,1),bty='n',col=c("darkgoldenrod1","darkblu

e")) 

par(bg="gray97") 
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################################Calculate Overlap############################## 

###Check Sample Sizes 

length(eqnbobcat) 

length(eqngraywolf) 

## If the smaller sample is less than 50, Dhat1 gives the best estimates, together with 

## confidence intervals from a smoothed bootstrap with norm0 or basic0 confidence interval. 

## Dhat4 is recommended if both samples are larger then 50, otherwise use Dhat1 

 

(Dhats <- overlapEst(eqnbobcat, eqngraywolf, type="Dhat4")) 

###Bootstrap for confidence intervals (999 datasets) 

bsBOB <- resample(eqnbobcat, 10000) 

bsGW <- resample(eqngraywolf, 10000) 

 

###Analyse with bootEst, estimating with proper Dhat 

bsBGW <- bootEst(bsBOB, bsGW, type = "Dhat4") 

mean(bsBGW) 

 

##Get Confidence Intervals 

bootCI(Dhats,bsBGW, conf = 0.95) 

bootCIlogit(Dhats,bsBGW, conf = 0.95) 

###The percentiles CI, "perc", gives quantiles of the bootstrap values, interpolated if necessary. 

However, in general, the bootstrap estimates are biased, so "perc" should be corrected. 

###"basic" is a bias-corrected version of "perc", analogous to t1: 2 x t0 - perc. 

###"norm" gives tail cutoffs for a normal distribution with  = t1 and sd = sd(bt). 

 

############################################################################## 

###subset for specific species 

subpuma<-subset(snapshot4, Common.Name=="Puma")##puma 

View(subpuma) 

##create object with the original detectition times after being converted to radians 

dat<-subpuma$rawtimes  

View(dat) 

##create a two coloumn vector with radians of sunrise and sunset 

anchor<-cbind(subpuma$sunrise, subpuma$sunset) 

View(anchor) 

##run transtimes to express time expressed relative to the two solar events (i.e., sunrise, sunset) 

eqnpuma<-transtime(dat, anchor, type = "equinoctial") 

View(eqnpuma) 

 

##plot and compare 

rawAct<-fitact(dat) 

eqnAct<-fitact(eqnpuma) 

plot(rawAct) 

plot(eqnAct) 

plot(eqnAct, add=TRUE, data="n", tline=list(col="magenta")) 
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densityPlot(eqnpuma,extend=NULL,col='maroon',main="GrayWolfActivity")+ 

abline(v=c(6+31/60, 19+26/60), lty=3) 

 

##overlap plot with bobcat 

overlapPlot(eqnbobcat, eqnpuma, xcenter="noon", main="Acitivity Overlap Bobcat vs. Puma", 

linetype=c("solid","solid"),linecol=c("darkgoldenrod1","darkblue"),linewidth=c(3,3), 

olapcol="white",) 

legend("bottomleft",c("Bobcat","Puma"),lty=c(1,1),bty='n', col=c("darkgoldenrod1","darkblue")) 

par(bg="gray97") 

 

################################CalculateOverlap################################ 

###Check Sample Sizes 

length(eqnbobcat) 

length(eqnpuma) 

## If the smaller sample is less than 50, Dhat1 gives the best estimates, together with 

## confidence intervals from a smoothed bootstrap with norm0 or basic0 confidence interval. 

## Dhat4 is recommended if both samples are larger then 50, otherwise use Dhat1 

 

(Dhats <- overlapEst(eqnbobcat, eqnpuma, type="Dhat1")) 

###Bootstrap for confidence intervals (999 datasets) 

bsBOB <- resample(eqnbobcat, 10000) 

bsGW <- resample(eqnpuma, 10000) 

 

###Analyse with bootEst, estimating with proper Dhat 

bsBP <- bootEst(bsBOB, bsP, type = "Dhat4") 

mean(bsBP) 

 

##Get Confidence Intervals 

bootCI(Dhats,bsBP, conf = 0.95) 

bootCIlogit(Dhats,bsBP, conf = 0.95) 

###The percentiles CI, "perc", gives quantiles of the bootstrap values, interpolated if necessary. 

However, in general, the bootstrap estimates are biased, so "perc" should be corrected. 

###"basic" is a bias-corrected version of "perc", analogous to t1: 2 x t0 - perc. 

###"norm" gives tail cutoffs for a normal distribution with  = t1 and sd = sd(bt). 

 

############################################################################## 

###subset for specific species 

subab<-subset(snapshot4, Common.Name=="American Badger")##american badger 

View(subab) 

##create object with the original detectition times after being converted to radians 

dat<-subab$rawtimes  

View(dat) 

##create a two coloumn vector with radians of sunrise and sunset 

anchor<-cbind(subab$sunrise, subab$sunset) 

View(anchor) 

##run transtimes to express time expressed relative to the two solar events (i.e., sunrise, sunset) 



102 
 

eqnab<-transtime(dat, anchor, type = "equinoctial") 

View(eqnab) 

 

##plot and compare 

rawAct<-fitact(dat) 

eqnAct<-fitact(eqnab) 

plot(rawAct) 

plot(eqnAct) 

plot(eqnAct, add=TRUE, data="n", tline=list(col="magenta")) 

densityPlot(eqnab,extend=NULL,col='teal',main="AmericanBadgerActivity")+ 

abline(v=c(6+31/60, 19+26/60), lty=3) 

 

##overlap plot with bobcat 

overlapPlot(eqnbobcat, eqnab, xcenter="noon", main="Acitivity Overlap Bobcat vs. American 

Badger", linetype=c("solid","solid"),linecol=c("darkgoldenrod1","darkblue"),linewidth=c(3,3), 

olapcol="white",) 

legend("bottomleft",c("Bobcat","GrayWolf"),lty=c(1,1),bty='n', 

col=c("darkgoldenrod1","darkblue")) 

par(bg="gray97") 

 

################################CalculateOverlap################################ 

###Check Sample Sizes 

length(eqnbobcat) 

length(eqnab) 

## If the smaller sample is less than 50, Dhat1 gives the best estimates, together with 

## confidence intervals from a smoothed bootstrap with norm0 or basic0 confidence interval. 

## Dhat4 is recommended if both samples are larger then 50, otherwise use Dhat1 

 

(Dhats <- overlapEst(eqnbobcat, eqnab, type="Dhat4")) 

###Bootstrap for confidence intervals (999 datasets) 

bsBOB <- resample(eqnbobcat, 10000) 

bsGW <- resample(eqnab, 10000) 

 

###Analyse with bootEst, estimating with proper Dhat 

bsBGW <- bootEst(bsBOB, bsAB, type = "Dhat4") 

mean(bsBAB) 

 

##Get Confidence Intervals 

bootCI(Dhats,bsBAB, conf = 0.95) 

bootCIlogit(Dhats,bsBAB, conf = 0.95) 

###The percentiles CI, "perc", gives quantiles of the bootstrap values, interpolated if necessary. 

However, in general, the bootstrap estimates are biased, so "perc" should be corrected. 

###"basic" is a bias-corrected version of "perc", analogous to t1: 2 x t0 - perc. 

###"norm" gives tail cutoffs for a normal distribution with  = t1 and sd = sd(bt). 

 

############################################################################## 
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###subset for specific species 

subrf<-subset(snapshot4, Common.Name=="Red Fox")##red fox 

View(subrf) 

##create object with the original detectition times after being converted to radians 

dat<-subrf$rawtimes  

View(dat) 

##create a two coloumn vector with radians of sunrise and sunset 

anchor<-cbind(subrf$sunrise, subrf$sunset) 

View(anchor) 

##run transtimes to express time expressed relative to the two solar events (i.e., sunrise, sunset) 

eqnrf<-transtime(dat, anchor, type = "equinoctial") 

View(eqnrf) 

 

##plot and compare 

rawAct<-fitact(dat) 

eqnAct<-fitact(eqnrf) 

plot(rawAct) 

plot(eqnAct) 

plot(eqnAct, add=TRUE, data="n", tline=list(col="magenta")) 

densityPlot(eqnrf, extend = NULL, col='green',main="Red Fox Activity")+ abline(v=c(6+31/60, 

19+26/60), lty=3) 

 

##overlap plot with bobcat 

overlapPlot(eqnbobcat, eqngraywolf, xcenter="noon", main="Acitivity Overlap Bobcat vs. Red 

Fox",linetype=c("solid","solid"),linecol=c("darkgoldenrod1","darkblue"),linewidth=c(3,3), 

olapcol="white",) 

legend("bottomleft",c("Bobcat","RedFox"),lty=c(1,1),bty='n',col=c("darkgoldenrod1","darkblue"

)) 

par(bg="gray97") 

################################CalculateOverlap################################ 

###Check Sample Sizes 

length(eqnbobcat) 

length(eqnrf) 

## If the smaller sample is less than 50, Dhat1 gives the best estimates, together with 

## confidence intervals from a smoothed bootstrap with norm0 or basic0 confidence interval. 

## Dhat4 is recommended if both samples are larger then 50, otherwise use Dhat1 

 

(Dhats <- overlapEst(eqnbobcat, eqnrf, type="Dhat4")) 

###Bootstrap for confidence intervals (999 datasets) 

bsBOB <- resample(eqnbobcat, 10000) 

bsGW <- resample(eqnrf, 10000) 

 

###Analyse with bootEst, estimating with proper Dhat 

bsBRF <- bootEst(bsBOB, bsRF, type = "Dhat4") 

mean(bsBRF) 
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##Get Confidence Intervals 

bootCI(Dhats,bsBRF, conf = 0.95) 

bootCIlogit(Dhats,bsBRF, conf = 0.95) 

###The percentiles CI, "perc", gives quantiles of the bootstrap values, interpolated if necessary. 

However, in general, the bootstrap estimates are biased, so "perc" should be corrected. 

###"basic" is a bias-corrected version of "perc", analogous to t1: 2 x t0 - perc. 

###"norm" gives tail cutoffs for a normal distribution with  = t1 and sd = sd(bt). 

 

############################################################################## 

###subset for specific species 

subrw<-subset(snapshot4, Common.Name=="Red Wolf")##red fox 

View(subrw) 

##create object with the original detectition times after being converted to radians 

dat<-subrw$rawtimes  

View(dat) 

##create a two coloumn vector with radians of sunrise and sunset 

anchor<-cbind(subrw$sunrise, subrw$sunset) 

View(anchor) 

##run transtimes to express time expressed relative to the two solar events (i.e., sunrise, sunset) 

eqnrw<-transtime(dat, anchor, type = "equinoctial") 

View(eqnrw) 

 

##plot and compare 

rawAct<-fitact(dat) 

eqnAct<-fitact(eqnrw) 

plot(rawAct) 

plot(eqnAct) 

plot(eqnAct, add=TRUE, data="n", tline=list(col="magenta")) 

densityPlot(eqnrw,extend = NULL, col='green',main="Red Wolf Activity")+ abline(v=c(6+31/60, 

19+26/60), lty=3) 

 

##overlap plot with bobcat 

overlapPlot(eqnbobcat, eqnrw, xcenter="noon", main="Acitivity Overlap Bobcat vs. Red Wolf", 

linetype=c("solid","solid"),linecol=c("darkgoldenrod1","darkblue"),linewidth=c(3,3), 

olapcol="white",) 

legend("bottomleft",c("Bobcat","RedWolf"),lty=c(1,1),bty='n',col=c("darkgoldenrod1","darkblu

e")) 

par(bg="gray97") 

################################CalculateOverlap################################ 

###Check Sample Sizes 

length(eqnbobcat) 

length(eqnrw) 

## If the smaller sample is less than 50, Dhat1 gives the best estimates, together with 

## confidence intervals from a smoothed bootstrap with norm0 or basic0 confidence interval. 

## Dhat4 is recommended if both samples are larger then 50, otherwise use Dhat1 
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(Dhats <- overlapEst(eqnbobcat, eqnrw, type="Dhat4")) 

###Bootstrap for confidence intervals (999 datasets) 

bsBOB <- resample(eqnbobcat, 10000) 

bsGW <- resample(eqnrw, 10000) 

 

###Analyse with bootEst, estimating with proper Dhat 

bsBRW <- bootEst(bsBOB, bsRW, type = "Dhat4") 

mean(bsBRW) 

 

##Get Confidence Intervals 

bootCI(Dhats,bsBRW, conf = 0.95) 

bootCIlogit(Dhats,bsBRW, conf = 0.95) 

###The percentiles CI, "perc", gives quantiles of the bootstrap values, interpolated if necessary. 

However, in general, the bootstrap estimates are biased, so "perc" should be corrected. 

###"basic" is a bias-corrected version of "perc", analogous to t1: 2 x t0 - perc. 

###"norm" gives tail cutoffs for a normal distribution with  = t1 and sd = sd(bt). 

 

##############################################################################

############################################################################## 

 

 

#############COMPARING ACTIVITY BETWEEN ECOREGIONS#################### 

#########################BOBCAT############################################ 

 

###Set up data 

bobcat<-subset(snapshot4, Common.Name=="Bobcat") 

setwd("C:/Users/truhubba/Documents/ResearchProject/Manuscripts/Snapshot-Carnivore 

Community/AAR/") 

covs<-read.csv("Site_Detection_Covariates.csv") 

view(covs) 

View(snapshot4) 

###Combine activity data and covariate data 

bob2<-full_join(covs, bobcat, by= "Array", stringAsFactors=FALSE)%>% 

  na.omit() 

View(bob2) 

 

####Sorting Data by Ecoregion###################################### 

subnorth<-subset(bob2, Ecoregion=="Northern Forests") 

dat<-subnorth$rawtimes 

anchor<-cbind(subnorth$sunrise, subnorth$sunset) 

eqnnorth<-transtime(dat, anchor, type = "equinoctial") 

 

subdesert<-subset(bob2, Ecoregion=="North American Deserts") 

dat<-subdesert$rawtimes 

anchor<-cbind(subdesert$sunrise, subdesert$sunset) 

eqndesert<-transtime(dat, anchor, type = "equinoctial") 
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submed<-subset(bob2, Ecoregion=="Mediterranean California") 

dat<-submed$rawtimes 

anchor<-cbind(submed$sunrise, submed$sunset) 

eqnmed<-transtime(dat, anchor, type = "equinoctial") 

 

subeast<-subset(bob2, Ecoregion=="Eastern Temperate Forest") 

dat<-subeast$rawtimes 

anchor<-cbind(subeast$sunrise, subeast$sunset) 

eqneast<-transtime(dat, anchor, type = "equinoctial") 

 

subarid<-subset(bob2, Ecoregion=="Southern Semiarid Highlands") 

dat<-subarid$rawtimes 

anchor<-cbind(subarid$sunrise, subarid$sunset) 

eqnarid<-transtime(dat, anchor, type = "equinoctial") 

 

subsierra<-subset(bob2, Ecoregion=="Temperate Sierras") 

dat<-subsierra$rawtimes 

anchor<-cbind(subsierra$sunrise, subsierra$sunset) 

eqnsierra<-transtime(dat, anchor, type = "equinoctial") 

 

submtn<-subset(bob2, Ecoregion=="Northwestern Forested Mountains") 

dat<-submtn$rawtimes 

anchor<-cbind(submtn$sunrise, submtn$sunset) 

eqnmtn<-transtime(dat, anchor, type = "equinoctial") 

 

subplain<-subset(bob2, Ecoregion=="Great Plains") 

dat<-subplain$rawtimes 

anchor<-cbind(subplain$sunrise, subplain$sunset) 

eqnplain<-transtime(dat, anchor, type = "equinoctial") 

 

submarine<-subset(bob2, Ecoregion=="Marine West Coast Forest") 

dat<-submarine$rawtimes 

anchor<-cbind(submarine$sunrise, submarine$sunset) 

eqnmarine<-transtime(dat, anchor, type = "equinoctial") 

 

####Sort Data by Hunting Status############################################# 

subprotected<-subset(bob2, Hunting.Status=="protected") 

dat<-subprotected$rawtimes 

anchor<-cbind(subprotected$sunrise, subprotected$sunset) 

eqnprotected<-transtime(dat, anchor, type = "equinoctial") 

 

subhunt<-subset(bob2, Hunting.Status=="hunted") 

dat<-subhunt$rawtimes 

anchor<-cbind(subhunt$sunrise, subhunt$sunset) 

eqnhunt<-transtime(dat, anchor, type = "equinoctial") 
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#########Sort Data by Pop Status######################################## 

subin<-subset(bob2, Population.Status=="increasing") 

dat<-subin$rawtimes 

anchor<-cbind(subin$sunrise, subin$sunset) 

eqnin<-transtime(dat, anchor, type = "equinoctial") 

 

substable<-subset(bob2, Population.Status=="stable") 

dat<-substable$rawtimes 

anchor<-cbind(substable$sunrise, substable$sunset) 

eqnstable<-transtime(dat, anchor, type = "equinoctial") 

 

subde<-subset(bob2, Population.Status=="decreasing") 

dat<-subde$rawtimes 

anchor<-cbind(subde$sunrise, subde$sunset) 

eqnde<-transtime(dat, anchor, type = "equinoctial") 

 

##############RUN WATSON U2 TESTS-ACTIVITY DISTRIBUTION################ 

library(circular) 

watson.two.test(eqnmed,eqneast) 

############################################################################ 

##############RUN WALD TEST-ACTIVTY LEVEL############################## 

###Wald Test: statistical difference between two or more activity level estimates...is the difference 

between estimates 1 and 2 significantly different from 0  

#Bootstrap reps  

 

###Hunting Status###### 

f_hunt <- fitact(eqnhunt, sample="data", reps=1000) 

f_pro <- fitact(eqnprotected, sample="data", reps=1000) 

f_hunt@act 

f_pro@act 

compareAct(list(f_pro,f_hunt)) ###Ho is no difference between estimates of activity level 

 

###Population Status#### 

f_in <- fitact(eqnin, sample="data", reps=1000) 

f_de <- fitact(eqnde, sample="data", reps=1000) 

f_stable <- fitact(eqnstable, sample="data", reps=1000) 

f_in@act 

f_de@act 

f_stable@act 

compareAct(list(f_stable,f_in)) ###Ho is no difference between estimates of activity level 

 

###Ecoregions####### 

f_desert <- fitact(eqndesert, sample="data", reps=1000) 

f_mtn <- fitact(eqnmtn, sample="data", reps=1000) 

f_north <- fitact(eqnnorth, sample="data", reps=1000) 
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f_east <- fitact(eqneast, sample="data", reps=1000) 

f_plain <- fitact(eqnplain, sample="data", reps=1000) 

f_med <- fitact(eqnmed, sample="data", reps=1000) 

f_marine <- fitact(eqnmarine, sample="data", reps=1000) 

f_sierra <- fitact(eqnsierra, sample="data", reps=1000) 

f_arid <- fitact(eqnarid, sample="data", reps=1000) 

f_arid@act 

f_sierra@act 

f_mtn@act 

f_marine@act 

f_north@act 

f_east@act 

f_plain@act 

f_med@act 

f_desert@act 

compareAct(list(f_marine,f_east)) ###Ho is no difference between estimates of activity level 

##############################################################################

############################################################################## 

 

 

##########Bobcat Supplemental Single-species Occupancy Code for Analysis in R########## 

 

library(unmarked) 

library(AICcmodavg) 

library(ggplot2) 

library(scales) 

setwd("C:/Users/truhubba/Documents/Research Project/Manuscripts/Snapshot-Carnivore 

Community/Occupancy/") 

 

##load in Detection csv and covariate csv 

bob<-read.csv("Bobcat_weekly_history.csv") 

covs<-read.csv("Site_Detection_Covariates.csv") 

View(bob) 

View(covs) 

 

##Format the data for unmarked. Use ?unmarkedMultFrame? and  

#specify the number of primary periods 

siteCovs<-(covs[,c("Sum.of.survey_days", "Average.of.Latitude", "Hunting.Status", 

"Population.Status", "Ecoregion", "Average.of.cultiv1km","Average.of.nearest_building_m", 

"Sum.of.n_buildings_500m", "Average.of.gpw_v4_pop", "Average.of.GPP_VAR1km", 

"Average.of.daily.TMAX", "Average.of.daily.TMIN", 

"Sum.of.Human.Presence","Average.of.3hr_precip", "Average.of.CUM_GPP1km", 

"coyote_rate")]) 
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bobumk<-unmarkedFrameOccu(y=bob, 

siteCovs=data.frame(nbuild=scale(covs$Average.of.nearest_building_m), 

pop=scale(covs$Average.of.gpw_v4_pop),days=scale(covs$Sum.of.survey_days), 

lat=scale(covs$Average.of.Latitude), hunt=factor(covs$Hunting.Status), 

popstat=factor(covs$Population.Status), cult=scale(covs$Average.of.cultiv1km), 

gpp=scale(covs$Average.of.CUM_GPP1km),hum=scale(covs$Sum.of.Human.Presence),  

hum2=scale(covs$Sum.of.Human.Presence),                     

precip=scale(covs$Average.of.3hr_precip), maxt=scale(covs$Average.of.daily.TMAX),  

mint=scale(covs$Average.of.daily.TMIN), 

eco=factor(covs$Ecoregion),sbuild=scale(covs$Sum.of.n_buildings_500m), 

coy=scale(covs$coyote_rate))) 

summary(bobumk)  

        

View(siteCovs) 

###can run individual correlation checks between covariates 

cor(covs$coyote_rate,covs$Sum.of.Human.Presence) 

 

############################################################################# 

# occu(~detection ~occupancy) 

#####Detection Models######################################################### 

det1 <- occu( ~days ~1, bobumk) #survey days affect on bobcat detection when site is occupied 

det2 <- occu (~lat ~1, bobumk) # latitude 

detnull<-occu(~1~1, bobumk) #null 

 

fl <- fitList(det1,detnull, det2) 

ms_det <- modSel(fl)  #Model Selection of detection covariates 

ms_det  

summary(det1) 

 

######Bobcat Occupancy models################################################## 

occ1 <- occu( ~1 ~1, bobumk)  #Null 

occbuild<- occu(~1 ~nbuild, bobumk) #nearest of buildings 

occsbuild<-occu(~1 ~sbuild, bobumk) #sum of buildings 

occpop<- occu(~1 ~pop, bobumk) #population 

occlat<- occu( ~1 ~lat, bobumk) #latitude 

occdays<-occu(~1 ~days, bobumk) #survery days 

occcult<- occu( ~1 ~cult, bobumk) #cultivated land 

occgpp<- occu( ~1 ~gpp, bobumk) #gross primary production 

occhum<- occu( ~1 ~hum, bobumk) #human presence 

occprecip<- occu( ~1 ~precip, bobumk) #precipitation 

occhunt<- occu( ~1 ~hunt, bobumk) #harvest/hunt status 

occpopstat<- occu( ~1 ~popstat, bobumk) #population status 
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occeco<- occu( ~1 ~eco, bobumk) #ecoregion 

occmaxt<- occu( ~1 ~maxt, bobumk) #max temp 

occmint<- occu( ~1 ~mint, bobumk) #min temp 

occcoy<- occu(~1 ~coy, bobumk) #coyote detection rate 

 

fl<-fitList(occcoy,occdays,occ1,occsbuild,occmaxt,occmint, occbuild, occpop, occlat, occcult, 

occgpp, occhum, occprecip, occhunt, occpopstat, occeco) 

modSel(fl) 

 

###Final Models with Coyote################################### 

occbobhumancoy<-occu(~1 ~pop+hum+coy, bobumk)##human 

occbobenvironmentcoy<-occu(~1 ~gpp+precip+coy, bobumk)##environment 

 

###Final Models without Coyote###################################### 

occbobhuman<-occu(~1 ~pop+hum+lat, bobumk)##human 

occbobenvironment<-occu(~1 ~gpp+precip+lat, bobumk)#environment 

 

fl<-fitList(occbobenvironment,occbobenvironmentcoy,occbobhuman,occbobhumancoy,occbob3) 

modSel(fl) 

##############################################################################

############################################################################## 

 

 

###############3Carnivore Supplemental AAR Code for Analysis in R################### 

 

 

#set working directory 

setwd("C:/Users/truhubba/Documents/Research Project/Manuscripts/Snapshot-Carnivore 

Community/AAR/") 

 

#read in AAR files 

bobcatA<-read.csv("BobcatA.csv")#use for dominant species with covs 

bobcatB<-read.csv("BobcatB.csv")#use for subordinate species with covs 

View(bobcatB) 

 

#load required packages 

library(dplyr) 

library(ggplot2) 

library(ggpubr) 

library(tidyverse) 

library(AICcmodavg) 

library(lme4) 

library(brms) 
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library(lattice) 

library(rstan) 

library(rstanarm) 

library(lmerTest) 

library(jtools) 

 

############################################################################## 

####PART 1: TWO TAIL T-TESTS TO DETERMINE ATTRACTION OR AVOIDANCE BY 

THE BOBCAT################################################################# 

####Are bobcats attracted to or avoiding other species? 

############################################################################## 

##USING T2/T1 RATIOS (includes avoidance and attraction) 

##Check normality 

coyote<-subset(bobcatA, Species=="Coyote")###COYOTE 

hist(coyote$T2.T1) 

# One-sample t-test 

coyoteAAR <- t.test(coyote$T2.T1, mu=0) 

# Printing the results 

coyoteAAR  

############################################################################## 

##Check normality 

badger<-subset(bobcatA, Species=="American Badger")###AMERICAN BADGER 

hist(badger$T2.T1) 

# One-sample t-test 

badgerAAR <- t.test(badger$T2.T1, mu=0) 

badgerAAR  

############################################################################## 

redfox<-subset(bobcatA, Species=="Red Fox")###RED FOX 

hist(redfox$T2.T1) 

# One-sample t-test 

redfoxAAR <- t.test(redfox$T2.T1, mu=0) 

redfoxAAR 

############################################################################## 

greyfox<-subset(bobcatA, Species=="Grey Fox")###GRAY FOX 

hist(greyfox$T2.T1) 

# One-sample t-test 

greyfoxAAR <- t.test(greyfox$T2.T1, mu=0) 

greyfoxAAR 

############################################################################## 

puma<-subset(bobcatA, Species=="Puma")###PUMA 

hist(puma$T2.T1) 

# One-sample t-test 

pumaAAR <- t.test(puma$T2.T1, mu=0) 
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pumaAAR 

############################################################################## 

 

############################################################################## 

##USING T4/T3 RATIOS (only accounts for avoidance)  

coyote<-subset(bobcatA, Species=="Coyote")##COYOTE 

hist(coyote$T4.T3) 

# One-sample t-test 

coyoteAAR <- t.test(coyote$T4.T3, mu=0) 

# Printing the results 

coyoteAAR  

################################################################# 

puma<-subset(bobcatA, Species=="Puma")##PUMA 

hist(puma$T4.T3) 

# One-sample t-test 

pumaAAR <- t.test(puma$T4.T3, mu=0) 

pumaAAR 

################################################################### 

greyfox<-subset(bobcatA, Species%in% c("Grey Fox","Red Fox"))##FOXES 

hist(greyfox$T4.T3) 

# One-sample t-test 

gfoxAAR <- t.test(greyfox$T4.T3, mu=0) 

gfoxAAR 

############################################################################## 

############################################################################## 

####PART 2: REVERSE T-TEST TO INVESTIGATE OTHER CARNIVORES RESPONSE 

TO BOBCAT################################################################## 

##Are other carnivores avoiding or attracted to bobcat?  

############################################################################# 

##Check normality 

coyote<-subset(bobcatB, Species=="Coyote")##COYOTE T2/T1 

hist(coyote$T2.T1) 

# One-sample t-test 

coyoteAAR <- t.test(coyote$T2.T1, mu=0) 

# Printing the results 

coyoteAAR  

############################################################################## 

coyote<-subset(bobcatB, Species=="Coyote")##COYOTE T4/T3 

hist(coyote$T4.T3) 

# One-sample t-test 

coyoteAAR <- t.test(coyote$T4.T3, mu=0) 

# Printing the results 

coyoteAAR #mean=0.815 
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##################################################################### 

greyfox<-subset(bobcatB, Species%in%c("Grey Fox", "Red Fox"))##FOXES T4/T3 

hist(greyfox$T4.T3) 

##############################################################################

############################################################################## 

####PART 3: ANOVA TO DETERMINE VARIATION AMONG SPECIES 

RESPONSE################################################################### 

###Are bobcats avoiding one species more than another?  

####Analysis of Variance (ANOVA)################################################ 

 

hist(bobcatA$T4.T3)#Normality Test 

one.way <- aov(T4.T3 ~ Species, data = bobcatA) 

summary(one.way) 

 

##Tukey-Pairwise comparison 

tukey.one.way<-TukeyHSD(one.way) 

tukey.one.way 

############################################################################## 

####Is any species avoiding bobcat more than another?  

 

hist(bobcatB$T4.T3)#Normality Test 

one.way <- aov(T4.T3 ~ Species, data = bobcatB) 

summary(one.way) 

 

##Tukey-Pairwise comparison 

tukey.one.way<-TukeyHSD(one.way) 

tukey.one.way 

############################################################################## 

############################################################################## 

##PART 4: INVESTIGATING COVARIATE EFFECTS ON DOMINANT AND 

SUBORDINATE SPECIES####################################################### 

##How do environmental and human variables effect bobcats avoidance of other species? 

########################################### 

##read in covariate csv 

covs<-read.csv("Site_Detection_Covariates.csv") 

view(covs) 

 

###Combine AAR data with covariate data (Dominant & Subordinate Hypothesis)  

##dominant join 

data<-full_join(covs, bobcatA, stringAsFactors=FALSE)%>% 

  na.omit() 

##subordinate join 

data2<-full_join(covs, bobcatB, stringAsFactors=FALSE)%>% 
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  na.omit() 

 

###subset data for required species 

dataAA<-subset(data, Species%in%c("Gray Wolf", "Red Wolf", "Puma", "Coyote")) #dominant 

dataB<-subset(data2, Species%in%c("Grey Fox", "Red Fox")) #subordinate 

view(dataB) 

 

##scale numeric covariates 

dataB$Average.of.3hr_precip<-scale(dataB$Average.of.3hr_precip) 

dataB$Average.of.Latitude<-scale(dataB$Average.of.Latitude) 

dataB$Sum.of.survey_days<-scale(dataB$Sum.of.survey_days) 

dataB$Average.of.CUM_GPP1km<-scale(dataB$Average.of.CUM_GPP1km) 

dataB$Sum.of.Human.Presence<-scale(dataB$Sum.of.Human.Presence) 

dataB$Sum.of.n_buildings_500m<-scale(dataB$Sum.of.n_buildings_500m) 

dataB$Average.of.gpw_v4_pop<-scale(dataB$Average.of.gpw_v4_pop) 

 

dataAA$Average.of.3hr_precip<-scale(dataAA$Average.of.3hr_precip) 

dataAA$Average.of.Latitude<-scale(dataAA$Average.of.Latitude) 

dataAA$Sum.of.survey_days<-scale(dataAA$Sum.of.survey_days) 

dataAA$Average.of.CUM_GPP1km<-scale(dataAA$Average.of.CUM_GPP1km) 

dataAA$Sum.of.Human.Presence<-scale(dataAA$Sum.of.Human.Presence) 

dataAA$Sum.of.n_buildings_500m<-scale(dataAA$Sum.of.n_buildings_500m) 

dataAA$Average.of.gpw_v4_pop<-scale(dataAA$Average.of.gpw_v4_pop) 

############################################################################## 

#RUN GENERALIZED LINEAR MIXED MODELS################################## 

###SUBORDINATE MODELS################################################### 

 

#####HUMAN IMPACT MODEL 

model1<-lm(T2.T1~Sum.of.Human.Presence+Average.of.gpw_v4_pop, data = dataB) 

summary(model1) 

 

####NULL MODEL 

null<-lm(T2.T1~1, data = dataB) 

 

####ENVIRONMENTAL IMPACT MODEL 

model2<-lm(T2.T1~Average.of.3hr_precip+Average.of.CUM_GPP1km, data=dataB) 

summary(model2) 

##############################################################################

###PLACE MODELS IN LIST TO COMPARE USING AIC VALUES (SUBORDINATE)#### 

cand.models<-list() 

cand.models[[1]]<-lm(T2.T1~Average.of.gpw_v4_pop+Sum.of.Human.Presence, data=dataB) 

cand.models[[2]]<-lm(T2.T1~Average.of.3hr_precip+Average.of.CUM_GPP1km, data=dataB) 

cand.models[[3]]<-lm(T2.T1~1,data = dataB) 
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Modnames<-c("human","environment","null") 

 

#view output 

aictab(cand.set=cand.models, modnames = Modnames,sort = TRUE)   

summary(cand.models[[3]]) 

##############################################################################

#####DOMINANT MODELS#################################################### 

 

###HUMAN IMPACT MODEL 

model11<-lm(T2.T1~Sum.of.Human.Presence+Average.of.gpw_v4_pop, data = dataAA) 

summary(model11) 

 

####NULL MODEL 

null2<-lm(T2.T1~1,data=dataAA) 

 

####ENVIRONMENTAL IMPACT MODEL 

model22<-lm(T2.T1~Average.of.3hr_precip+Average.of.CUM_GPP1km, data=dataAA) 

summary(model22) 

############################################################################## 

#PLACE MODELS IN LIST TO COMPARE USING AIC VALUES (LARGE CARNIVORES) 

cand.modelsb<-list() 

cand.modelsb[[1]]<-lm(T2.T1~Average.of.gpw_v4_pop+Sum.of.Human.Presence,data=dataAA) 

cand.modelsb[[2]]<-lm(T2.T1~Average.of.3hr_precip+Average.of.CUM_GPP1km, 

data=dataAA) 

Modnames<-c("human","environment","null") 

 

#view output 

aictab(cand.set=cand.modelsb, modnames = Modnames,sort = TRUE)  

##############################################################################

PLOT FULL MODELS TO COMPARE EFFECTS OF DOMINANT AND 

SUBORDINATE############################################################### 

plot_summs(model1,model2, scale=T, model.names = c("Human Impact","Environmental 

Impact", "Null"), colors = c("palevioletred4","midnightblue")) 

plot_summs(model1,model11, scale=T, model.names = c("Subordinate","Dominant",), colors = 

c("palevioletred4","midnightblue")) 

plot_summs(model2,model22, scale=T, model.names = c("Subordinate","Dominant"),colors = 

c("palevioletred4","midnightblue")) 

plot_summs(null,null2, scale=T, model.names = 

c("Subordinate","Dominant"),line.thickness=5,colors = c("palevioletred4","midnightblue"))  

plot_summs(bigmodel) 

############################################################################## 

 

############################################################################## 
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#####VISUALIZING RELATIONSHIPS 

###LINEAR MODEL SCATTER PLOTS#################################### 

 

####################################### 

#A-B SUBORDINATE HUMAN MODEL 

####################################### 

a<-ggplot(dataB, aes(x=Sum.of.Human.Presence, y=T2.T1))+ 

  geom_point(size=5)+ 

  theme(text = element_text(size=26))+ 

  stat_smooth(method="lm", col="palevioletred4", fill="palevioletred4") 

a 

b<-ggplot(dataB, aes(x=Average.of.gpw_v4_pop, y=T2.T1))+ 

  geom_point(size=5)+ 

  theme(text = element_text(size=26))+ 

  stat_smooth(method="lm", col="palevioletred4", fill="palevioletred4") 

b 

 

###Check Population Outlier 

max(covs$Average.of.gpw_v4_pop) 

 

lower_bound <- quantile(covs$Average.of.gpw_v4_pop, 0.025) 

lower_bound 

upper_bound <- quantile(covs$Average.of.gpw_v4_pop, 0.975) 

upper_bound 

outlier_ind <- which(covs$Average.of.gpw_v4_pop < lower_bound | 

covs$Average.of.gpw_v4_pop > upper_bound) 

outlier_ind 

 

########################################### 

#C-D SUBORDINATE ENVIRONMENTAL MODEL 

########################################### 

c<-ggplot(dataB, aes(x=Average.of.CUM_GPP1km, y=T2.T1))+ 

  geom_point(size=5)+ 

  theme(text = element_text(size=26))+ 

  stat_smooth(method="lm", col="palevioletred4", fill="palevioletred4") 

c 

d<-ggplot(dataB, aes(x=Average.of.3hr_precip, y=T2.T1))+ 

  geom_point(size=5)+ 

  theme(text = element_text(size=26))+ 

  stat_smooth(method="lm", col="palevioletred4", fill="palevioletred4") 

d 
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