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ABSTRACT 

 

CEREBELLUM-SEEDED FUNCTIONAL CONNECTIVTY CHANGES IN TRAIT-

ANXIOUS INDIVIDUALS UNDERGOING ATTENTION BIAS MODIFICATION 

TRAINING 

 

By 

 

Katherine A. Elwell 

 

 

Anxiety and anxiety related disorders are increasing at a drastic rate in the past decade, 

with the NIMH reporting that 31.1% of U.S. adults will experience an anxiety disorder at some 

point in their lives. Anxiety is commonly characterized by increased attention bias to threat. 

Attention Bias Modification (ABM) is a new treatment used to reduce individual’s attention bias 

towards threat.  The extent to which ABM leads to underlying neural changes is still unknown. 

The cerebellum is a neglected brain structure, with new research provides evidence that 

cerebellum’s functional connectivity and shared networks with threat processing regions has a 

direct impact on anxiety etiology and symptomology. Therefore, the current study assessed 

functional connectivity changes seeded in cerebellum as an outcome of ABM training. The 

experiment consists of a 6-week ABM or control training period bookended by pre and post 

resting state functional magnetic resonance imaging (rsfMRI) sessions. Heightened trait anxiety 

was correlated with heightened connectivity from the cerebellum to threat processing regions. 

(i.e., the amygdala, ACC, and the thalamus). Decreased cerebellar connectivity to threat 

processing regions (i.e., the amygdala, ACC, and the thalamus) was observed following ABM 

training. This suggests that ABM may underlie neural changes within the cerebellum—resulting 

in decreased attention bias.  This also suggests the cerebellum may contribute to the etiology and 

maintenance of anxiety and attention bias. Limitations and future directions concerned with both 

ABM and the functional role of the cerebellum are discussed. 
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INTRODUCTION 

 

Anxiety is a state of tension, worry, and apprehension regarding uncertain, and 

potentially negative, future events (Gallo et. al., 2012). Anxiety and anxiety related disorders are 

increasing at a drastic rate in the past decade, with the National Institution of Mental Health 

(NIMH) reporting that an estimated 19.1% of U.S. adults had an anxiety disorder in the past 

year, while 31.1% of U.S. adults will experience an anxiety disorder at some point in their lives 

(NIMH 2019). Reports from the NIMH indicate a higher prevalence rate for anxiety disorders in 

females (23.4%) compared to males (14.3%; NIMH 2019). Anxiety disorders have astronomical 

communal and economic impacts. Per Hoffman et. al. (2008), 

 The total cost of anxiety disorders was estimated to be approximately $42.3 billion in the 

United States alone. Anxiety disorders account for one third of all money spent on psychological 

disorders in the United States. This statistic does not include the cost of causal illness related to 

anxiety, as anxiety disorders have been proven to have a causal relationship with substance 

abuse, bi-polar disorder, depression, obsessive-compulsive disorder, etc. (Provencher et. al., 

2012; Stein & Hollander, 2002; Sutton, 2011). The current therapies and treatments available for 

anxiety are not only time consuming, but restrictive in nature, as their efficacy and cost tend to 

be undesirable for the majority of individuals (Haratian & Karbasi, 2018; Hedman et. al., 2012; 

Hedman et. al., 2014). The need for easy-to-access and cost-effective anxiety therapies has never 

been more prevalent, as the burden of anxiety and its related disorders poses on society is 

monumental.  

Attention Bias Modification (ABM) therapy is an emerging therapy for anxiety with the 

potential to eliminate monetary and efficacy problems currently inflicting current anxiety 

therapies. ABM therapy is similar to the most utilized therapy: Cognitive Behavioral Therapy
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 (CBT), as they both account for the well-known notion that cognitive bias is rooted in the 

pathology of anxiety disorders. CBT therapy elicited to combat attention bias utilizes an 

integrative process by employing verbalization, coupled with exposure to feared situations, 

allowing patients to interpret or learn that threatening stimuli are safe. (Bar-Haim et. al., 2007; 

Hakamata et. al., 2010).  

ABM treatment differs from CBT in that its therapeutic action targets a specific bias in 

attention, extending work implicating threat-related attention bias in anxiety (Hakamata et. al., 

2010). Despite it being a newly emerging therapy, preliminary studies (Britton et. al., 2015; 

Browning et. al., 2010; Taylor et. al., 2014) support ABM therapy as an effective treatment for 

the reduction of attentional bias to threat and anxious symptoms. Randomized control trials 

(Hakamata et. al., 2010) have shown ABM treatment to be as effective as CBT and medication 

(Hakamata et. al., 2010). Additional studies (Kuckertz, 2014; MacLeod et. al., 2007; See et. al., 

2009) provide evidence indicating that ABM therapy can successfully be self-administered while 

maintaining long-term benefits associated with the reduction of anxiety-related symptomatology. 

Despite the current literature supporting the effectiveness of ABM treatment, there is a 

lack of knowledge encompassing the extent to which ABM results in long-term changes in brain 

structure that persist after the treatment has been terminated, as well as the neuroplastic effect 

ABM therapy has on specific brain regions and neural circuitry. The aim of the current study is 

to assess the effects of an anxiety reduction intervention on initiating long-term changes in brain 

circuitry; specifically, the current study assessed the degree to which attention bias modification 

training leads to sustained changes in the cerebellum and its neural circuitry and function post-

treatment, and the extent to which such changes are linked to long-term symptom reduction.  The 

cerebellum is an often-neglected brain structure, with its functional role in psychological, 



  3 

psychiatric, and neuropsychological disorders only recently being investigated (Fair, 2018; 

Moreno-Rius, 2018; Phillips et. al., 2015; Shakiba, 2014;).  

New and converging research provides empirical evidence that not only is the cerebellum 

involved in higher cognitive functions such as attention, working memory, associative learning, 

and sensory processing (Smet et. al, 2015; Baumann & Mattingley, 2012; Dickson et. al., 2017), 

but that its functional connectivity and shared networks with threat processing regions (i.e the 

limbic system and amygdala) have a direct impact on anxiety related symptoms (Etkin et. al., 

2009; Baumann & Mattingley, 2012; Talati et. al., 2015). Likewise, the current study aims to 

provide confounding evidence for the role of the cerebellum in anxiety related symptomatology, 

as well as contribute to the newly emerging research supporting the role of the cerebellum 

outside of its emblematic functions.  

Hypotheses:                                                                                                                                     

  It was hypothesized that  

1. Heightened levels of trait anxiety would be associated with statistically significant, 

widespread cerebellar functional connectivity with regions previously implicated in both 

motor and cognitive processing involved in various resting-state networks linked to the 

cerebellum. 

2. Functional connectivity between the cerebellum and threat and emotion processing 

regions (i.e., amygdala, insula, caudate nucleus, cingulate gyrus) would decrease in the 

ABM training condition following training.  

Review of Literature 

Anxiety and Fear. Anxiety disorders have one of the highest prevalence rates of all 

psychological disorders, with the National Institution of Mental Health (NIMH) reporting that an 
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estimated 19.1% of U.S. adults had an anxiety disorder in the past year, while 31.1% of U.S. 

adults will experience an anxiety disorder at some point in their lives (NIMH 2019). Reports 

from the NIMH indicate a higher prevalence rate for anxiety disorders in females (23.4%) 

compared to males (14.3%; NIMH 2019).  Anxiety, a commonly experienced affective state, can 

be characterized by sustained levels of arousal, apprehension, avoidance, and vigilance (Linetzky 

et al., 2015; Xu et al., 2015). These characteristics arise from all three levels of the triune 

forebrain: primal (neomammalian), emotional (paleomammalian), and instinctive (reptilian; 

Kroes et al., 2006; Price, 2003;).  

The forebrain is historically attributed to the display of emotions, and has been proven to 

be at the forefront of the evolutionary development of the implementation of escalating and de-

escalating strategies. From an evolutionary standpoint, Anxiety is a component of de-escalating 

strategies mediated by the paleomammalian and reptilian forebrains (Corbetta & Shul, 1998; 

Gardner, 2002; Price, 2003). Anxiety is attributed to the inability of the neomammalian brain to 

effectively process conspecific danger; thus, continuously initiating primitive de-escalating 

situations. Anxiety is thought to be evolved from this defect in the neomammalian brain, and can 

currently be attributed to the over-attenuation to threatening stimuli seen in anxiety and its 

disorders. From an evolutionary perspective, the detection of threat is critical for the survival of a 

species. This rapid and imprudent mechanism likely survived as an adaptive advantage, and is 

consistent with current models of threat processing (Green & Philips, 2003; Price, 2003).  

Clear definitional distinctions between fear and anxiety have been elusive. There is also 

ambiguity in relating clinical classifications to preclinical laboratory models. The functional 

purpose of anxiety and fear is to trigger responses, both adaptive and intrinsic in nature, to 

signals of danger or threat (Carlson et al., 2013). Although fear and anxiety are similar in their 
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implementation and execution, there are differences in their etiologies, allowing for a distinction 

between the two. Anxiety is classified as a response to an unknown threat or internal conflict, 

whereas fear is rooted in external dangers known to the individual experiencing the (Hakamata 

et. al., 2010). Trait fear is the result of an individual over-attenuating to several distinct threat 

cues, while also avoiding any situational circumstances involving such threats. Trait anxiety is 

the result of an individual’s lack of ability to avoid any prolonged fearful situations while also 

overestimating the fear itself, the impact it may have, or experiencing disarray between 

expectations and reality surrounding the threat. Models of both trait and state anxiety suggest 

that the neural correlates of state and trait anxiety differ. Some literature (Sylvers et al., 2011) 

suggests that fear is an emotional response that results from the interpretation of specific 

environmental cues as threatening and manifests itself in avoidance and escape behaviors.  

Other literature regards anxiety as a product of one of three causes. The first construct 

identifies anxiety as a result of a disruption in the avoidance of a fearful stimulus (Fadardiet al., 

2016). In this case, anxiety is rooted in the inability to avoid fearful stimuli (Öhman, 2008). 

Overestimation is another construct of anxiety, and occurs when an individual grossly 

overestimates the potential for threat in situations that are ambiguous. In this case, the treat is 

often nonspecific. This concept is regarded in ample literature (Carlson & Mujica-Parodi, 2015; 

Carlson & Reinke, 2008; Fadardiet al., 2016), and stems from anxious individuals associating a 

benign feature of a prior dangerous experience with actual danger. The third construct occurs 

when one’s expectations of an environment or situation do not match. In this regard, anxiety is 

classified as hypervigilance in the face of uncertainty (Carlson & Aday, 2018; Fox, 2002). 

Nonetheless, the classifications of both fear and anxiety are similar yet inherently different. 

Öhman (2008) suggested that fear and anxiety share similar underlying processes and are 
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differentiated based on perceived avoidance options. Supporting this, (Fadardi, et al., 2016), 

suggest that trait fearful individuals who are concerned primarily with physical threat react more 

strongly than healthy individuals to physically threatening stimuli. Literature supports this 

concept, as fearful individuals tend to not experience elevated trait anxiety as one actively avoids 

perceived threat whereas individuals whose trait fear is concerned primarily with social threat 

also show elevated levels of trait anxiety (Delchau, et al., 2019). Therefore, the relationship 

between trait anxiety and fear differs according to whether the fear is primarily physical or 

social. 

Other literature identifies trait anxiety as aversive arousal in uncertain situations where 

avoidance does not seem possible and, in contrast, conceptualized trait fear as hypersensitivity to 

danger cues leading to avoidance behavior (Graham & Labar, 2012). Fischer (2008) found that trait 

fear (as assessed by a “Harm avoidance” scale) and trait anxiety (as assessed by a “Stress Reaction” 

scale) are separable and nearly orthogonal constructs in the development of the Multidimensional 

Personality Questionnaire (Patrick, et al., 2002). Tellegen (1985) also found that, when embodying 

this conceptualization of trait anxiety and fear, trait fear loads on a higher-order Constraint factor. 

However, trait anxiety loads on a higher-order Negative Emotionality factor (see also Watson et al., 

1994). Individuals who score highly on the Constraint factor “convey caution, playfulness, a 

tendency to avoid danger, conventionality, and adherence to traditional values (Tellegen, 1982). 

Individuals who scored high on the Negative Emotionality factor, in contrast, “describe themselves 

as often stressed and harassed, prone to respond with strong negative emotions to everyday 

vicissitudes, and as enmeshed in adversarial relationships (Tellegen, 1982). These findings suggest 

that anxiety and fear relate to, and stem from, different etiological classifications. 
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Attention Bias Modification. The rationale underlying this manipulation is that the covert 

allocation of spatial attention to one of the two lateralized cues will result in facilitation of the 

response to a subsequent probe that appears at the congruent (“attended”) location. Accordingly, 

with the neutral‐threat cue pairs typically used, researchers compare response times for trials in 

which the probe replaces a threat cue and trials in which the probe replaces a neutral cue. Relatively 

faster responses to probes replacing threat cues are interpreted as an attention bias toward the 

threatening stimulus (Yiend et al., 2013). 

Threat is viewed as a physiological and behavioral response to the actual or anticipated 

occurrence of an explicit threatening stimulus (Phan, 2015). Anxiety crucially involves 

uncertainty as to the expectancy of threat (Phan, 2015), and is triggered by less explicit or more 

generalized cues (Helbig-Lang, et al., (2014). Attentional Bias towards threat refers to the 

phenomenon of hyper-attention to threatening material. This simply means that a person 

selectively attends to a certain category or certain categories of stimuli in the environment while 

tending to overlook, ignore, or disregard other kinds of stimuli (Fadardi, et al., 2016). Anxious 

individual’s tendency to excessively attend to threatening stimuli has been demonstrated in 

different forms of anxiety via attentional tasks (Bar-Haim et. al., 2007). Attentional bias towards 

threat has been slated to have a causal relationship with the development of anxiety symptoms 

and disorders (Eldar, et al., 2008; MacCleod et al., 2002), and is known to be a hallmark 

symptom of anxiety disorders (Fox, 2002; MacLeod & Mathews, 1988; Mogg & Bradley, 2002).  

Literature regarding the role of cognitive models of anxiety provide ample evidence that 

anxious individuals show increased attentional bias to threatening stimuli, and are more likely to 

interpret emotionally ambiguous stimuli in a threat-related manner. It has been suggested that 

these cognitive biases are implicated in the maintenance, and possibly even the etiology, of 

https://onlinelibrary-wiley-com.cmich.idm.oclc.org/doi/full/10.1111/psyp.13058#psyp13058-bib-0103
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anxiety (MacLeod et. al., 2002; Matthews & MacLeod; 2002). Although it is evident that 

anxious individuals elicit a threat-related attention bias, the underlying mechanisms of this bias is 

not particularly understood (Cisler & Koster, 2010; Ouimet, Gawronski, & Dozois, 2009; 

Pergamin-Hight et. al., 2015).  

Models of attention bias. A common disaccord surrounding literature is whether 

attentional bias to threatening stimuli is a top-down or bottom-up mechanism. The notion that 

attentional bias to threat is a bottom-up process is rooted in perspectives concerning evolution, as 

the main justification for this mechanism is concerned with the development of adaptive 

purposes for the attentional biases (Kenrick et al., 2010; LoBue et al., 2010; Mogg & Bradley, 

1998; Öhman, 2007). In bottom-up processing, it is understood that selective attention to 

threatening stimuli plays a causal role in anxiety; thus, ample research has been done to identify 

potential models for this form of selective attention. Early models of attention, threat, and 

anxiety are centered around evolutionary perspectives concerning the adaptive necessity of the 

latter. Previous literature has indicated that our visual-attention system is selectively adapted to 

rapidly attenuate to stimuli that offer a biological significance, such as stimuli indicating a threat 

(i.e., a predator) as well as stimuli indicating reward and survival (i.e., food; Kenrick et al., 

2010). Bottom-up processing of these stimuli is instantaneous, and is designated to triage the 

stimuli being presented to initiate a quick response to the threat being presented (Busse et al., 

2008; Delchau et al., 2019). The operations surrounding bottom-up processing are considered 

automatic; that is, they are only concerned with immediate stimuli—no considerations are 

utilized for factors such as competing goals, individualistic intentions, or deductive reasoning.  

Bottom-up processing of threat detection can be classified as simplistic, as it only 

attenuates to simple features (i.e., shape, color, size, movement, etc.) Because of its lack of 
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intricacy, one must consider the deficits that ensure when stimuli which are multidimensional are 

presented. “Threatening” stimuli can take ample forms, and can be specific to the individual 

eliciting the response; thus, providing difficulty in the attenuation to complex stimuli 

(O’Kearney & Goodhew, 2019). Literature shows that attentional biases elicited in the bottom-up 

processing of threats are induced by specific features known to be associated with generalized 

threatening stimuli (LoBue, 2014; LoBue et al., 2017; LoBue & Larson, 2010). For example, 

LoBue & Larson (2010) demonstrate that anxious individuals, when compared to non-anxious 

individuals, have a more rapid attenuation to downward “V” and triangle shapes—this is noted to 

be similar to the shape of angry eyebrows on a face (Kenrick et al., 2010), which also has been 

shown to elicit attentional biases in anxious individuals (O’Kearney & Goodhew. 2019). These 

biases draw further support for the idea that threat detection, along with attentional bias towards 

threat, is both automated and a result of evolutionary adaptations.  

Although it has been established that bottom-up processing plays a role in attention bias 

to threat, recent literature has indicated that top-down processing not only modulates this 

process, but also, it may completely direct it. Unlike bottom-up processing which is innate and 

automatic, top-down processing is endogenous and is context or goal-driven. This means that 

this type of processing is more individualized, and is largely up to the individual to interpret the 

threat and react accordingly, rather than simply reacting. Top-down processing predominantly 

involves the role of visual perception by which predictive models are entirely constructed 

implementing previous experiences, along with current sensory information (Gregory, 1968; 

Summerfield et al., 2006). According to this model, prior experiences are constantly evolving 

our perception while refining both the accuracy and speed at which we react to stimuli.  
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Top-down processing encompasses the idea that preemptive biases impact threat 

detection and processing, and is consistent which current literature that shows the operation of 

threat detection and processing occurs prior to the encounter with the threatening stimulus (Chen 

& Zelinsky, 2006; Sussman et al., 2016; Wolfe et al., 2003). These biases that exist before the 

stimulus is even presented is of particular importance to the conceptualization and understanding 

of anxiety, as anxiety has been shown to be associated with the over-perturbation of potential 

negative occurrences (Aue & Okon-Singer, 2015; Grupe & Nitschke, 2013).  This notion has 

been established by studies identifying that cues perceived as threatening, which occur in 

anxious individuals at a rate upwards of five times more than non-anxious individuals (Aue & 

Okon-Singer, 2015), substantially impacts rates of anxiety (Sussman, Szekely et al., 2016).  Top-

down processing in anxiety disorders has been indicated as having a causal role in both 

developing and maintaining biases in one’s perception. Anticipating future negative occurrences, 

one of the most-common anxiety symptoms, is thought to be a direct result of over-regulation of 

top-down processing (Grupe & Nitschke, 2013). This over-regulation results in anxious 

individuals continuously scanning their environment for threats that their convoluted perception 

has made imminent to them—even if they are nonexistent. Thus, this over-regulation creates a 

perpetual loop of never-ending anxiety and biases. 

Neuro-cognitive models of attention attribute difficulty regulating and allocation 

attention; specifically, threat-related attention, as a rationalization for attentional bias towards 

threat (Bishop, 2007; Eysenck et.al., 2007; Pergamin-Hight et. al., 2015). These models have 

elaborated on biased competition models of attention (Desimone, 1995), claiming that selective 

attention to threat has a causal relationship with the relative signal strength from a pre-attentive 

threat evaluation mechanism versus that from top-down control mechanisms (Mathews, 1998). 
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The ideology of attentional threat in anxiety is formed by the notion that increasing the output 

from the threat evaluation mechanism causes a biased attentional competition in a threat-related 

direction, even when conscious awareness of the threat-related stimuli(s) is not present (Bishop, 

2007). Studies have shown that individuals with anxiety exhibited a poorer performance on 

attention control tasks involving threat-stimuli compared to non-anxious individuals (Bitton et. 

al., 2015; Monk, 2006). For instance, it was found that anxious individuals showed poorer 

performance on attention control tasks with threat stimuli relative to non-anxious individuals 

(Bishop, 2004; Monk et al., 2006). 

Attentional bias towards threat can not only be attributed to attention itself, but also, the 

way the threatening memories are stored, interpreted, and judged (Bar-Haim et. al., 2007). Other 

models of threat processing encompass individual-specific biases in threat evaluation processes 

by which attention allocation to threat is impacted. These models are largely theorized around 

schema-driven processing based on substantiated associations to learning and memory which 

comprises the role of content specific aspects of attention bias. (Bar-Haim et al., 2007; Mogg and 

Bradley, 1998; Öhman, 1996; Pergamin-Hight et. al., 2015). These models are driven by a 

specific threat to an individual which are idiosyncratically relevant to that individual’s anxiety. 

This is referred to as attention bias specificity, and is explored by testing whether disorder-

congruent stimuli (e.g., socially relevant stimuli for social phobia or trauma-related stimuli for 

posttraumatic stress disorder) render larger threat-related attention bias than do general threat 

stimuli, or stimuli that are congruent with the threat content of a different anxiety disorder (i.e., 

disorder-incongruent stimuli; Pergamin-Hight et. al., 2015). Most studies, including the current 

one, compare the magnitude of threat-related attention bias of disorder-congruent and disorder-

incongruent stimuli using response times in the classic visual attention task, the dot-probe task. 
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Neural correlates of Attention Bias in Anxiety. A hallmark symptom of anxiety is 

attention bias to threatening stimuli (Beck et. al., 1985), and an abundance of studies have 

indicated a significant relationship between attention bias and the maintenance of anxiety 

disorders—with similar neural mechanisms driving them. The majority of neuroimaging studies 

have fixated on the roles of the anterior cingulate cortex (ACC), the prefrontal cortex (PFC) and 

the amygdala as key regions for attention bias apparatus (Hakamata et al. 2018).  Cognitive 

theories of attention bias, which are the most widely accepted, elucidate that biases towards 

perceived threatening stimuli in anxious individuals occurs by increasing the sensitivity of threat 

evaluation by the amygdala while coincidentally diminishing attentional control within the ACC 

and PFC (Bishop, 2007; Carlson, et al., 2013; Yun et al., 2017).  

This notion is supported by functional magnetic resonance imaging (fMRI) studies which 

demonstrate an increase in activation in the amygdala and ACC and a stark increase in activation 

in the PFC during the presentation of threatening stimuli (Britton et. al., 2015). Britton et al. 

(2015) and Månsson et al. (2013) revealed increased amygdala activation to threatening stimuli 

in anxious individuals undergoing ABM, compared to non-anxious control groups, which did not 

demonstrate increased amygdala activation. Furthermore, additional studies have indicated 

resting-state strength in both ACC and amygdala-based functional connectivity networks to the 

insula and PFC have been reported to predict ABM treatment response, which increased resting-

state connectivity associated with greater response to treatment (White et. al., 2017).  

Previous literature implementing both fMRI measures and the dot-probe task have 

indicated a disarray in their findings. Britton et al. (2012), Fani et al. (2012), Monk et al. (2006, 

2008), and Telzer et al. (2008) show that there are ample differences in brain regions uncovered 

via functional connectivity measures relating to anxiety (i.e., the amygdala, ACC, and insula) 
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and attention processing (ventrolateral prefrontal cortex [vlPFC], dorsolateral prefrontal cortex 

[dlPFC], the orbitofrontal cortex [OFC], etc.). Monk et. al., 2008 indicates that attention bias is 

deeply rooted within increased amygdala activation, which is associated with both anxiety and 

attention bias. Meta analyses concerning the matter are just as varied. Hakamata et al., 2010 

asserts that attention bias, above all, is predominantly housed within the amygdala, and is 

demonstrated by an associated linear increase between the amygdala and levels of anxiety. 

However, Beard et al., 2012 states that attentional bias towards threat is primarily housed within 

the lateral PFC—demonstrating duplicate linear increases between functional connectivity within 

lateral PFC and anxiety levels. The vast array of discrepancies regarding attention bias in anxiety 

has brought to attention the need for further investigation into its neural correlates. 

The Cerebellum. The cerebellum is a fascinating neural structure, which contains 10% of 

our brain’s volume while accommodating about half of all of the brain’s neurons (Villanueva, 

2012).  The cerebellum is composed of two hemispheres, which are mirror structures of each 

other, contain three nuclei, and are divided into several sections: Crus I, Crus II, and lobules I-X 

(Guell et al., 2018). The cerebellum is typically divided into two hemispheres with a midline 

region (the vermis) separating them. These hemispheres are further subdivided into 10 lobules. 

These lobules are organized into an anterior lobe (lobule I-V), a posterior lobe (lobule VI-IX), 

and then flocculonodular lobule (lobule X; Brissenden & Somers, 2019, see Figure 1 for further 

details). Afferent fibers from the cerebral cortex reach the cerebellum via the pons and the 

inferior olivary nucleus (Brissenden & Somers, 2019). Efferent connections are sent to the 

cerebral cortex via the thalamus (Evarts & Tach, 1969).  

Despite its large mass and ample neural connectivity, there is little research concerning 

the role of the cerebellum outside of its emblematic functioning. Typically, the cerebellum has 
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been established as having roles in muscle movement, coordination, balance, and spatial 

orientation (Guell et al., 2018). Much of what we understand about functional aspects of the 

cerebellum is due to findings within tasked-based neuroimaging studies. Previous literature 

shows that the vermis, along with lobules I-V, are responsible for facilitating motor processing 

(Debaere et al., 2001; Ouchi et al., 1999, 2001; Sang et al., 2012); lobules VI and VII mediate 

fine-motor movements (i.e., eye movements; Nagel, 2001); lobules III-V direct pain-related 

processing (Dimitrova et al., 2003, 2004; Maschke et al., 2002); and lobules IX-X are involved 

in both balance and spatial orientation (Walker et al., 2010; Yakusheva et al., 2008). Previous 

research efforts focused predominantly on the cerebellum’s role in mortar functioning. Thus, 

there is little research regarding the cerebellum outside of its emblematic role.  

 Imaging studies repeatedly indicate significant changes in cerebellar activity of patients 

with anxiety disorders compared to healthy controls. Close examination of the reported data 

reveals significant changes in the cerebellum during resting state and anxiety-provoking tasks in 

anxiety disorders (Blair et al., 2018; Chen, 2011). New and converging research has identified 

the cerebellum as having a causal role in higher cognitive functions such as attention, working 

memory, associative learning, and sensory processing (Baumann & Mattingley, 2012; Dickson et 

al., 2017, Smet et al., 2015) and that the cerebellum has widespread functional connectivity 

across the brain, as seen in the default mode network (DFN), attention networks, as well as to a 

wide array of brain structures (i.e., the prefrontal cortex, limbic system, hippocampus, visual 

cortex, etc. (Lee et. al, 2020). This functional connectivity may have a direct impact on 

maintaining anxiety and its symptomatology.                                                                       

There is converging evidence supporting the role of the cerebellum from both animal and 

human studies in anxiety circuity. Studies show that the cerebellum has robust connectivity to 
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the amygdala, insula, basal ganglia, and the ventral tegmental area, as well as other well-

established brain regions for their role in anxiety (Kelly & Strick, 2003; Llinás, 1985) The role of 

the cerebellum is apparent, as there is cerebellar connections to cortical areas that are responsible 

for both perception and the anticipation of stimuli—particularly those that are perceived as 

fearful (Stoodley & Schmahmann, 2009)—providing further notion for the non-emblematic roles 

of the cerebellum in anxiety. In fact, the dentate nucleus of the cerebellum is referred to as the 

“limbic cerebellum” for its connectivity to the mesolimbic dopaminergic pathway which 

originates from the VTA (Lee et al., 2020). Dopamine is known as one of the key 

neuromodulators of both fear and anxiety, with literature suggesting that the mechanisms 

underlying this pathway are responsible for varying aspects of affective memory—most notably 

fearful memory formation, expression, retrieval, and extinction (Pezze & Feldon, 2004). The 

mesolimbic dopaminergic pathway, via the VTA, is one of the key structures that is associated 

with an over-activated salience network (Le, Pardo, & Hu, 1998). The projections originating 

from this pathway also project to the pre and postcentral gyrus, which also has been linked to 

aberrant cerebellar seeded functional connectivity in anxious individuals (Lee et al., 2020).  

Previous studies concerned with functional connectivity in the cerebellum to areas 

concerned with cognition implicate that functional connectivity within the dentate nucleus of the 

cerebellum correlates with changes in regions such as the: the parietal cortex, the amygdala, 

thalamus, and hippocampus (Allen et al., 2005). Connectivity between the cerebellum and 

anterior cingulate cortex, a region typically associated with error detection, anticipation, 

attention, and emotional responses, has also been reported in other resting state studies (Yan et 

al., 2009). Corroborating this is evidence is other research indicating that the cerebellum 

contributes to the intrinsic connectivity networjks, a series of brain structures that correspond to 
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basic functions such as vision, audition, language, episodic memory, executive functioning, and 

salience detection (Habas et al., 2013).  Other studies have identified that cerebellum-seeded 

functional connectivity is correlated with activity in the default mode network, the executive 

network, and the salience network, providing further evidence that the cerebellum has 

contributions to resting-state networks (Heath & Harper, 1974). Novel research shows us that 

resting state functional connectivity (rsFC) occurs between several regions within the cerebellum 

and the amygdala, indicating that the cerebellum has some involvement in emotional 

processing—specifically fear (Dickson et al., 2017).  The rsFC demonstrated between the 

cerebellum and the amygdala indicate a possible involvement of the cerebellum in emotional 

memory. 

Other studies have shown patterns of functional connectivity between the cerebellum 

across varying structures in the limbic system as well as the hippocampus (Sacchetti et al., 2005), 

all of which are structures responsible for producing and facilitating emotional behavior. Both 

prior (Reiman, 1997) and recent (Dimitrova et al., 2004) studies indicate there is a functional role 

of the vermis in the processing of affective and fear related emotions, such as anxiety.  

Previous neuroimaging studies (see Kelly & Strick, 2003; Schmahmann et al., 2019) have 

focused on the plausible role of the cerebellum in anxiety disorders. These studies have indicated 

increased, hyperactive functional connectivity in the cerebellum when presented with angry 

faces, such as in the current study (Allen et al., 1997) relative to non-anxious, healthy control 

subjects. This is supported by rsFC studies which show increased activation within the 

cerebellum in anxious individuals (Kirschen et al., 2005). When compared to healthy, non-

anxious individuals, those with anxiety have shown increased cerebellar-seeded functional 

connectivity changes to brain regions already implicated in heighted anxiety and anxiety 
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disorders (i.e., the limbic system and prefrontal cortical areas). For example, previous studies 

have shown that those clinically diagnosed with generalized anxiety disorder show enhanced 

connectivity from the cerebellum to the amygdala—a key brain region that has been 

implemented for its role in negative affective processing, and has been reported as a key region 

in the etiology of anxiety and anxiety disorders (Kirschen et al., 2005; Lee et al., 2020; 

Schmahmann, 2019).  

The cerebellum has also displayed increased, aberrant connectivity within both the 

salience network (Lee et al., 2020; Stoodley & Schmahmann, 2009) and the default mode 

network (DMN; Guell et al., 2019). The salience network is housed within the insular cortex, and 

is known for its role in the detection and subsequent response to behaviorally and emotionally 

relevant stimuli (Shakiba, 2014). Aberrant connectivity within the salience network is linked to 

dysregulated attention allocation and affective response—such as what we see in anxious 

individual’s attention bias towards threat (Hiler et al., 2019). The default mode network is a 

resting-state network that is most active when an individual is at rest. Several studies have 

investigated the role of increased connectivity in the DMN in the psychopathology of anxiety 

disorders (Kim and Yoon, 2018; Peterson et al., 2014), with other studies indicating that high 

trait-anxious individuals show significant increases in the connectivity within both the default 

mode network and the cerebellum (Modi et al., 2015). Functional connectivity increases within 

the cerebellum, as well as the DMN, have been found in non-clinical, high trait-anxious 

individuals (Guell et al., 2019; Lee et al., 2020) suggesting that the cerebellum may have a role 

in the predisposition of anxiety.  

Attention bias, specifically to stimuli perceived as potentially threatening or fearful, is 

one of the hallmark symptoms of anxiety. Schmahmann and Sherman (1998) were the first to 
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suggest the role of the cerebellum in attention abnormalities. They described the occurrence of 

‘cerebellar cognitive affective syndrome’ in adolescents and adults exhibiting behavior, emotion, 

and attention deficits. This syndrome is described as exhibiting impairments in 

psychopathological areas of what we now know contribute to anxiety, such as executive 

functions, disturbances in spatial cognition, language deficits, and personality changes 

(Schmahmann and Sherman, 1998). The deficits linked to these abnormalities are attributed to 

disruptions within neural circuits linking the cerebellum to threat and affective processing 

regions, such as the amygdala, limbic cortices, the thalamus, and the cingulate cortex (Lee et al., 

2020). These brain regions are known for their importance in the role of attention; thus, making 

the close anatomical connections to the cerebellum ever relevant. Yet, there are few studies that 

investigate the cerebellum and both its connections to such areas and its role in attention deficits, 

such as attention bias. It is important to note that the cerebellum has vast connectivity to the 

neocortex, making its role in attention bias even more plausible.  

Previous research indicates there are associations between prefrontal areas, which are 

critical for focused attention, and are connected to the cerebellum via the central pontine nuclei 

(Roš et al., 2010). These connections are modulated by ponto-cerebelar projections—with 

aberrant functional connectivity within this system being linked to dysregulated attention control 

(Salmi et al., 2010; Timmann & Daum, 2007). This notion is supported by current neuroimaging 

studies--showing increased functional activation of the cerebellum during attention tasks (Lee et 

al., 2020; Moreno-Rius, 2018; Schmahmann, 2019). Increased activity within the cerebellum has 

also been shown in neuroimaging studies that require shifting attention and focused attention--

both of which are known to be dysregulated in anxious individuals (Lee et al., 2020; Moreno-

Rius, 2018; Schmahmann, 2019).  
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Attention bias to fearful or threatening stimuli in anxious individuals may, in part, be 

modulated by specific cerebellar regions. The right cerebellum, especially lobule V, is a region 

that has been shown to have a preference for aversive stimuli, as indicated by hyperactivation to 

fearful stimuli, as compared to neutral stimuli (Lanius et al., 2018; Terpou., 2019). The observed 

pattern of increased activation in the cerebellum is exceedingly similar to that of the amygdala—

providing support to their co-involvement and activation during adverse states Baumann & 

Mattingley, 2012; Eippert et al., 2007).  This co-activation may be a result of amygdala 

activation maintaining the aversive affective state, while the cerebellum maintains attenuations to 

appreciate affective responding (Shutter & Van Hon, 2009; Terpou., 2019).  Nonetheless, 

although there is a lack of literature particularly focusing on the role of the cerebellum in 

attention dysregulation and biases, there is enough evidence to infer that the cerebellum may 

play a role in modulating attention bias seen in anxious individuals.                                     

Rationale 

 This study is an extension of the National Institution of Mental Health (NIMH) grant: 

R15MH1109051. (See Appendix A, Appendix B, Appendix C). The funds will be used to assess 

the effects of an ABM-training cell phone application, elicited via an altered version of the dot-

probe task. Previous research has identified structural changes in ACC grey matter following 

ABM treatment (Hakamata et al., 2010). Previous studies have implemented the use of MRI 

scans to assess structural changes in the brain following treatment; however, previous studies 

have not addressed the use of fMRI following ABM treatment in anxious individuals, as well as 

assess the functional role of the cerebellum in anxiety and its symptomatology. fMRI scans work 

by detecting the changes in blood oxygenation and flow that occur in response to neural activity 

– when a brain area is more active it consumes more oxygen and to meet this increased demand 
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blood flow increases to the active area. fMRI can be used to produce activation maps showing 

which parts of the brain are involved in a neurological process. New and converging research has 

identified the cerebellum as having a causal role in higher cognitive functions such as attention, 

working memory, associative learning, and sensory processing (Baumann & Mattingley, 2012; 

Dickson et al., 2017; Smet et al., 2015) and that the cerebellum has widespread functional 

connectivity across the brain. This functional connectivity may have a direct impact on 

maintaining anxiety and its symptomatology.                                                                         

Methods 

Participants 

 

Participants were recruited through advertisements across the NMU campus and 

Marquette community. The current study is an extension of the project NIMH R15MH110905; 

thus, participants were subject to the same inclusion criteria. Participants had to be between the 

ages of 18-42, be right-handed (not ambidextrous), and have normal and/or corrected to normal 

vision. Participants had to have a trait anxiety score of 40 or more (STAI-T) as well as an 

attention bias score of 7 ms or greater (measured by the dot-probe task). Participants were 

excluded if they had any known neurological disorders, a recent head injury or loss of 

consciousness (6 months or less), were currently or had recently taken any psychoactive 

medications, or if they were currently seeking counseling/therapy. Due to the MRI portion of this 

study, participants were also excluded if they did not meet the criteria to undergo an MRI.  One-

hundred-and-one (102) men and women between the ages of 18-38 (M = 21.83, SD = 4.82) were 

recruited to partake in this study. Participants were chosen at random to be placed either in the 

control group (N=32) or the experimental group (N=56). Sixty-one (61) participants were not 

included in the final results due to attrition from the study (N=18), excessive motion or missing 
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50% or more of either their sMRI or fMRI (N=10), and missing data due to quarantine as a 

response to the COVID-19 pandemic (N=33). This left the current study with 41 participants 

(control group N= 23; experimental group N=18) included for data analyses. 

General Procedure 

Participants that met inclusion criteria (see Appendix D and Appendix E, for a full list of 

inclusion and exclusion criteria) underwent a fMRI scan and then immediately began six weeks 

of at-home ABM (or control) training. Following their six weeks of training, participants 

underwent another fMRI scan followed by a post-screening implementing the same measures as 

their initial screening. If participants did not meet the inclusion criteria, their participation ended 

following the screening, and they were compensated $10. Participants meeting inclusion criteria 

were compensated $65 following the completion of their initial fMRI, 6-week app training, and 

post-fMRI (see Appendix F for full protocol of the screening; Appendix G for the consent form). 

Screening             

The screening was performed on a 60 Hz 16” LCD c Dell 570L computer within the 

CABIN laboratory. The screening process consisted of the dot-probe task followed by three self-

report measures—the State Trait Anxiety Inventory (STAI), the Depression and Stress Scale 

(DASS), the Cognitive Emotion Regulation Questionnaire (CERQ). Participants were required to 

have an AB incongruent - congruent score of 7 ms or greater on the dot-probe task as well as a 

trait anxiety score (STAI-T) of 40 or greater to be eligible for inclusion in the current study. 

Questionnaires 

State-Trait Anxiety Inventory. The Spielberger State-Trait Anxiety Inventory (STAI; 

Spielberger, et al., 1970) consists of two, 20-item scales and is implemented to assess both state 

and trait anxiety. The STAI utilizes a 4-point Likert scale, with 1 equating to “almost never” and 
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4 equating to “almost always”. This scale asks participants how much the question applies to 

them generally (trait anxiety) and how much it applies to them in the current moment (state 

anxiety). The STAI evaluates both short-term and long-term feelings of apprehension, tension, 

nervousness, and worry—with scores increasing in response to physical danger and 

psychological stress. A STAI score of 39 indicates clinically significant levels of anxiety (Julian, 

2011) 

Depression Anxiety Stress Scale. The Depression Anxiety Stress Scale (DASS) is a set of 

three self-report scales designed to measure the negative emotional states of depression, anxiety 

and stress. The DASS was constructed not merely as another set of scales to measure 

conventionally defined emotional states, but to further the process of defining, understanding, 

and measuring the ubiquitous and clinically significant emotional states usually described as 

depression, anxiety and stress. Each of the three DASS scales contains a total of 42 items, 

divided into subscales of 2-5 items with similar content. The Depression scale assesses 

dysphoria, hopelessness, devaluation of life, self-deprecation, lack of interest/involvement, 

anhedonia, and inertia. The Anxiety scale assesses autonomic arousal, skeletal muscle effects, 

situational anxiety, and subjective experience of anxious affect. The Stress scale is sensitive to 

levels of chronic non-specific arousal. It assesses difficulty relaxing, nervous arousal, and being 

easily upset/agitated, irritable/over-reactive and impatient. Subjects are asked to use 4-point 

severity/frequency scales to rate the extent to which they have experienced each state over the 

past week. Scores for Depression, Anxiety and Stress are calculated by summing the scores for 

the relevant items (Lovibond & Lovinbond, 1995; Parkinty & Mcauley, 2010).  

Cognitive Emotion Regulation Questionnaire. The Cognitive Emotion Regulation 

Questionnaire (CERQ) is a 36-item self-report measure questionnaire that was designed to 
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identify nine different cognitive and emotion regulating strategies (i.e., coping strategies) one 

implements following the elicitation of a negative event. The CERQ is unique, as rather than 

differentiating the differences between one’s thoughts and actions, this questionnaire is entirely 

focused on one’s thoughts following a negative event. The CERQ utilizes nine different emotion 

regulation strategies: self-blame, other-blame, rumination or focus on thought, catastrophizing, 

putting into perspective, positive refocusing, positive reappraisal, and acceptance. Self-blame 

refers to implementing blame on oneself for experiences and situations out of their control. 

Rumination is describing the thoughts and feelings elicited by negative events. Catastrophizing is 

when ones thoughts are focused, or emphasized, on the negative feelings arising from 

experiences. Putting into perspective refers to the occurrence of dismissing the seriousness of an 

event relative to a prior event that occurred. Positive refocusing is when someone is able to shift 

his or her focus from thinking about a negative event to thinking about a positive one. Positive 

reappraisal is when one is able to identify positive meaning to an event to aid in his or her 

personal growth. Acceptance refers to accepting an experience for what it really is, along with 

the outcomes of this experience. Refocus is when one thinks about the proper way to handle a 

negative event (for a more elaborated explanation of the way the particular dimensions were 

chosen, see Garnefski et al., 2001; Garnefski, van den Kommer et al., 2002, Garnefski, Kraaij et 

al., 2002). 

Dot Probe Task. The dot-probe task was implemented utilizing E-Prime 2.0 presentation 

software (Psychology Software Tools, Sharpsburg, PA). Responses were recorded via a button 

press on a Chronos response box (Psychology Software Tools, Sharpsburg, PA). Stimuli for the 

task utilized grayscale faces: 20 fearful and neutral, with 10 different actors from two 

databases—faces were half male, half female (Gur et al., 2002; Lundqvist, et al, 1998). Fearful 
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and neutral face stimuli were from actors: 207, 208, 213, and 217 (Gur et al., 2002) as well as 

AF14, AF19, AF22, AM10, AM22, AM34 (Lundqvist, et al, 1998). This task employed five 

blocks consisting of 90 trials in each block—for a total of 450 trials. Each block consisted of 

three different stimuli trials: incongruent trials, congruent trials, and neutral-same trials. During 

incongruent trials, the stimuli were always neutral-fearful paired, and the dot always appeared 

behind the neutral face.   

During congruent trials, there was a neutral-fearful stimulus pairing, with the dot always 

appearing behind the fearful face. During neutral-same trials, the stimulus pairings were always 

neutral-neutral, with the dot appearing behind the neutral face. During incongruent trials, there 

was a neutral-fearful stimulus pairing, with the dot always appearing behind the neutral face. 

During each trial, a black screen with white fixation cue (+) at the center was displayed for 

1000ms. This was then immediately followed by one of the three latter stimulus pairings. This 

stimulus appeared for 200ms, and was presented horizontally to the fixation cue. Following the 

stimulus presentation, a dot would appear behind one of the faces (dependent on the trial and 

stimulus pairing). This dot remained in place until the participant responded by indicating which 

side the dot was on via the use of the Chronos box. Participants were instituted to respond as 

quickly and as accurately as possible. An intertrial interval of 1000ms occurred following the 

participant's response (see Figure 2). 

Attention Bias Modification Training. The only difference between the dot-probe task and 

ABM training is the frequency of congruent vs incongruent trials (see figure 2). Similar to the 

dot-probe task, each trial starts with a white fixation cue (+) centered on a black background. 

Two valanced stimuli (face or words) are then simultaneously presented to the left and right of 

fixation. Unlike the dot-probe task, however, ABM sessions only contain incongruent trials (i.e., 



  25 

target-dot – neutral stimulus 100% pairing). The rationale is that through repeated training, 

attention is implicitly reprogrammed to prioritize the neutral stimulus over the threat-related 

stimulus (i.e., due to the location of the task-relevant target dot). The app training featured both 

face and word stimuli and increased in difficulty as the training progressed. The words utilized 

for the training were implemented via the Affective Norms for English Words (ANEW) dataset 

(Bradley & Lang, 1999). Words within the ANEW dataset are classified via their valence and 

arousal into neural and fearful word pairs (30 pairs total). These pairings were based on 

frequency and length (Bradley & Lang, 1999). 

Responses were recorded using touch screen technology on participant’s cellphones. 

Participants performed a total of 36 training sessions (each session will contain 200 trials) over 

the course of six weeks (7200 total training trials) with each week containing six training 

sessions (no more than three in a single day). Prior to the start of the trial, a black screen 

appeared and instructed participants to set their phone to ‘do not disturb’, to turn their brightness 

to the highest level, and to find a distraction-free environment (see Appendix H for full 

instructions provided to participants at the beginning of the app training). Once the participants 

confirmed they had done the latter, they were issued a ten-item PANAS questionnaire utilizing 

the Likert scale, as previously mentioned. Following the completion of this questionnaire, the 

participants were presented with the following prompt: “Please try your best to concentrate on 

the task. Your performance may be compared anonymously with other participant’s performance 

at a later time.” Once the participants confirmed they had read the instructions, they were then 

presented with the instructions to complete their task “Focus your gaze on the cross. You will 

briefly see two stimuli. Tap the half of the screen where the dot appears next as promptly as you 

can!” Following these instructions, the training session began. Control groups partook in an 
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equal number of congruent and incongruent trials, whereas the ABM treatment group received 

only incongruent trials (see Figure 3).  Participants were excluded from further participation in 

the study if they fell behind in their sessions by more than seven days. 

Analysis 

Behavioral Data Analysis 

 Trials that had an incorrect response and/or trials that had a RT < 150 ms or > 750 ms 

were excluded from analysis (Aday & Carlson, 2018); pre- and post-training attention bias was 

calculated by taking the average reaction times (RT) for both incongruent and congruent trials 

and subtracting the mean congruent RT from the incongruent RT. A 2 (ABM training vs. control 

training) x 2 (pre-attention bias vs post-attention bias) mixed ANOVA was conducted to test for 

changes in attention bias following training. Assumptions for normal distributions were checked 

by surveying Q-Q plots, and Levene’s Test of Equality of Error Variances was used to check for 

homogeneity of variance. 

fMRI Acquisition and Analysis 

Functional MRI data were collected with a 1.5 Tesla General Electric whole-body scanner 

within 1 week following the behavioral session. Two-hundred and forty functional volumes were 

collected in a 10-minute resting state scanning protocol using the following T2* weighted gradient 

echo pulse sequence: TR = 2500 ms, TE = 35 ms, flip angle = 90°, FOV = 220, matrix = 64 × 64, 

voxel size = 3.4 mm × 3.4 mm, slice thickness = 5 mm; see Appendix I for all fMRI parameters. 

In addition, high-resolution 3D Fast Spoiled Gradient Echo (FSPGR) T1-weighted structural 

images were obtained using the following sequence: TR = 5.6 ms, TE = 2.1 ms, TI = 450 ms, flip 

angle = 9°, FOV = 250, matrix =256 × 256, voxel size = 0.98 × 0.98 × 1.2 mm. 
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Resting-state fMRI scans were preprocessed by the functional connectivity toolbox in 

CONN via MATLAB (Math Works, Natick, MA). First, images were realigned to correct for head 

movement. Next, images were re-sliced to match the timing sequence of the first image. This 

subject motion was both calculated and removed via CONN’s artifact detection (subject-motion 

threshold = 0.2 mm, global-signal z-value threshold = 5). Images were normalized to MNI space 

and smoothed with an 8-mm FWHM Gaussian kernel. First-level general linear model (GLM) 

analyses were conducted utilizing Pearson correlation coefficients for the following the time 

course for the seed region and the time course for all voxels across each participant’s brain. 

Following the latter, scans were then Fisher transformed to z-scored for second-level analyses. The 

current study implemented cerebellar regions implicated in rsFC analyses as seeds in CONN. The 

results were coded to have an initial threshold at p < .001 (uncorrected) with a minimum cluster 

size of 20 voxels and then subjected to family wise error rate (FWE) correction p < .05 at the 

cluster level.  

Analytic Plan 

Hypothesis 1: Heightened levels of trait anxiety will be associated with significant, 

widespread cerebellar functional connectivity within regions and networks previously implicated 

in both motor and cognitive processing involved in various resting-state networks linked to the 

cerebellum.  Heightened levels of trait anxiety will be associated with widespread cerebellar 

functional connectivity with regions previously implicated in both motor and cognitive 

processing involved in various resting-state networks linked to the cerebellum. This was  

assessed utilizing cerebellar seed regions of interest (ROIs) and functional connectivity analyses 

identified within the CONN software. The current study anticipated to see a main effect 

regarding functional connectivity; that is, there will be functional connectivity observed between 
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cerebellar cognitive regions (cerebellar vermis and Crus I and II ), cerebellar non-cognitive 

regions (hemispheric areas VI, VIIb, and VIII) , threat processing regions (i.e., the limbic 

system; the ACC) emotion processing regions (i.e., the insula, thalamus, caudate, and cingulate 

gyrus) as well as within functional networks (i.e., the default mode network, the salience 

network, the frontoparietal network). The current study anticipated these associations would be 

greater in individuals with higher levels of trait anxiety. 

Hypothesis 2: Functional connectivity between the cerebellum and threat/emotion 

processing regions (i.e., amygdala, insula, thalamus, cingulate gyrus) will decrease in the ABM 

training condition following their training. The current study anticipated that functional 

connectivity between the latter regions and networks will decrease in the ABM training group 

following the completion of their training.  

Results 

Effects of ABM on Behavioral Measures 

A 2 × 2 mixed factors analysis of variance (ANOVA) was conducted to assess the impact 

of training session (pre vs post) and training group (ABM training vs control) on attention bias. 

There was a main effect of training session, F(1, 39) = 20.49, p < .001, ηp
2 = .35. Compared to 

pre-attention bias (M=17.20, SD=11.48), there was a decrease in attention bias scores following 

training (M = 6.75, SD = 8.86). There was no interaction effect of the training group F(1, 39) = 

0.95, p = .38, ηp
2 = .02, as attention bias scores decreased for both the ABM group (Pre: M = 

15.24, SD = 10.28; Post: M = 7.24, SD = 10.23) and the control group (Pre: M = 18.73, SD = 

12.34; Post: M = 6.37, SD = 7.85; see Figure 4).  

A 2 x 2 mixed-factors ANOVA was conducted to assess to assess the effect of training 

type on trait anxiety. No main effect of training session was observed F(1, 39) = 0.11, p = .92, ηp
2 
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= .000. There was no training session × group interaction, F(1, 39) = 0.06, p = .85, ηp
2 = .001, 

see Figure 5.  

Hypothesis One: Heightened Levels of Trait Anxiety Will Be Associated with Significant 

Cerebellar Functional Connectivity to Threat-Processing Regions and Networks.  

Seed-to-voxel analysis were implemented for analysis of hypothesis 1 (N = 41 

participants; 18 ABM vs. 23 control). No associations were significant for cerebellar seeds at 

pFWE< .05. Heightened levels of trait anxiety correlated with increased connectivity between the 

cerebellar vermis (Ver45; xyz = 6, 14, 32) and both the ACC (xyz = 42, -02, 40), t(39) = 6.14,  p 

< .001,  k= 21, and the right insular cortex (xyz = 40, -02, 40), t(39) = 6.14,  p <.001, k = 21. 

Heightened trait anxiety was also linked to increased connectivity from the right cerebellum 

(Cereb3; xyz = 24, -82, 40) to the right insula (xyz = -34, 18, 4), t(39) = 6.36, p < .001,  k= 21. 

Increased connectivity was also noted between the right cerebellum (Cereb3; xyz = 12, -35, -19) 

and the lateral occipital cortex (LOC; xyz = 52, -70, -02), t(39) = 5.93, p < .001,  k = 33, as well 

as the lateral thalamus (Cereb10; xyz= -56, 32, 10), t(39) = 5,07,  p <.001,  k = 28.  Heightened 

levels of trait anxiety also correlated with increased connectivity between the right cerebellum 

(Cereb8; xyz= 24, -82, 40) and the right insula via the salience network (xyz= 24, -56, -46), t(39) 

= 5.93, p <.001,  k = 21). See Figure 6 for rsFC associated with trait anxiety; see Table 1 for 

further results. 

Hypothesis Two: Functional Connectivity Between the Cerebellum and Threat/Emotion 

Processing Regions Will Decrease in the ABM Training Condition Following Training.  

No associations were significant for cerebellar seeds at pFWE < .05. Relative to control, 

ABM training resulted in decreased connectivity between the crus II (xyz=25 −75 −40) and the 

ACC (xyz= 06, -8, 30), t(39) = 6.59,  p< .001,  k = 27, as well as the posterior cingulate gyrus 
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(xyz = -04, -42, 02), t(39 )= 4.74, p < .001, k = 20. In the training group, decreased connectivity 

in the vermis (Ver45; xyz = 1, -52, -7) was associated with decreased connectivity within the 

posterior cingulate cortex (PCC; xyz = 04, -60, 24), t(39) = 5.86, p <. 001, k = 34. The vermis, in 

the training group, was also associated with decreased connectivity to several other threat and 

emotion processing regions. The vermis (Ver6; xyz = 4, 44, 10) was associated with decreased 

connectivity to the right amygdala (xyz = 60, -58, 16), t(39) = 4.80, p <.001,  k= 26. Decreased 

connectivity was also observed between the vermis (Ver45; xyz = 6, 14, 32) and the left 

parahippocampal gyrus (xyz= 36, -36, -10), t(39) = 5.89, p <.001, k = 34; the vermis (Ver9; xyz 

= 20, 0, 72; xyz = 18, -32, 30) and the left hippocampus (xyz = 28, -62, 64; xyz = -46, -74, 24), 

t(39)= 5.70,  p <.001, k = 29; t(39) = 5.56, p <.001, k =25; as well as the vermis (Ver6; Ver8; xyz 

= 1, -66,-16; xyz =11, -45, -76) and the right angular gyrus (xyz = 46, -62, 42), t(39) = 4.97, p 

<.001, k = 26; t(39) = 4.58,  p<.001, k = 21.  

ABM training also resulted in decreased connectivity between the left cerebellum 

(Cereb8 & Cereb10; xyz = 25, -56, -49; xyz = 26, -34, -41) and the thalamus (xyz = -16, -58, -

30), t(39) = 5.22, p <.001, k = 24; (xyz =00, -02, -04), t(39) = 5.86, p <.001, k = 27. Decreased 

connectivity from the right cerebellum (Cereb10; xyz = 26, -34, -4) was also associated with 

decreased connectivity to the thalamus (xyz = -14, -05, -12), t(39) = 5.86, p <.001,  k = 

27.  Decreased connectivity between the left cerebellum (Cereb3, Cereb7b Cereb8, & Cereb10) 

was correlated to decreased connectivity within varying threat and emotion processing regions 

(i.e., the ACC and postcentral gyrus; see Table 2 for further results).  

 Lastly, cerebellar-seeded decreases in connectivity were noted between varying regions 

of the right cerebellum and threat/emotion processing regions, such as the thalamus (xyz= -16, -

58. 64), t(39) = 5.22, p <.001, k = 24 and the ACC (xyz = -34, -58, 64), t(39) = 4.80, p <.001, k = 
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24 (Table 2). Decreases in connectivity within cerebellar-seeded regions were also observed 

across varying resting-state networks—most notably to hubs within the salience network and the 

default mode network (DMN). Connectivity between the left cerebellum (Cereb8; xyz=25, -56, -

49) and the insula in the salience network (xyz = 32, -46, 36), t(39) = 5.45, p <. 001, k = 31, 

decreased in the ABM group. rsFC seeded in Crus I (xyz= 36, -10, 54) was also associated with 

decreased connectivity within the salience network (rooted in the left anterior insula; xyz = 34, -

54, -34), t(39) = 6.12, p <.001, k= 20.  rsFC between both the Crus I (xyz = 54, 06, -04), t(39) = 

5.84, p <.001, k = 27, and the crus II (xyz = -02, -48, -42), t(39) = 4,82, p <.001, k = 21 was 

associated with decreased connectivity within the DMN (rooted in the posterior cingulate cortex 

and the lateral parietal region; see Table 2 for further results).  

It is important to note, that although not considered a threat or emotion processing region 

or network, the lateral occipital cortex (LOC) had noticeable interactions to the right cerebellum 

in the present study’s sample. Relative to the control group, connections to the LOC decreased 

following ABM training from several cerebellar-seeded regions—most noticeably between the 

crus II (xyz = 48, -62, 04), t(39)= 4.83, p <.005, k = 20, the right cerebellum (xyz = -34, -58, 64), 

t(39) = 4.80,  p<.001,  k = 24, and the vermis (xyz = 28, -62, 64), t(39)= 5.70,  p<.005,  k= 29 

(see Table 2 for further results). No associations were significant for cerebellar seeds to the LOC 

at pFWE < .05. 

Discussion 

Measures of Trait-Anxiety and Attention Bias Pre and Post Training 

The aim of the current study was to provide further insight into the role of the cerebellum 

in anxiety while utilizing its functional connectivity patterns as an outcome-measure in attention 

bias modification training. The findings provide evidence that rsFC increases within the 
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cerebellum may be associated with, or may play a role in, the etiology of anxiety disorders. Both 

ABM and control training did not lead to an overall decrease in anxiety. This is inconsistent with 

previous literature, which shows that ABM is effective (compared to control groups) at reducing 

trait-anxiety (i.e., Kraft et al., 2019; Mogg, et al., 2017). Teng et al. (2019) demonstrated that 

ABM and control training resulted in the reduction of anxiety symptomatology. Cognitive 

theories concerning anxiety state that attention bias towards negative stimuli is associated with 

the onset and maintenance of anxiety (Disner et al. 2011; Lazarov et al., 2018). Previous studies 

are consistent with this concept, finding that ABM therapy modifies anxiety and reduces the 

severity of symptomatology among individuals with heightened levels of anxiety (Wells & 

Beevers, 2010; Yang et al. 2015) as well as with patients with diagnosed anxiety disorders 

(Browning et al. 2012).  

Criticism of utilizing the STAI to assess trait anxiety have been noted, with some 

researchers claiming that the STAI actually assesses more depression-based symptomatology 

than that of anxiety (Beck et al., 1998; Knowles & Olatunji, 2020). In fact, ABM has also been 

shown to decrease depressive symptoms (Browning et al., 2012; Julian, 2011).  Knowles & 

Olatunji (2020) conducted a meta-analysis to assess the STAI and how effective it is to evaluate 

levels of anxiety. Their results from 388 published studies indicate that depressed individuals 

have higher STAI-T scores than anxious individuals, anxiety and depressive symptoms are both 

significantly correlated with STAI-T scores, the STAI-T does not appear to specifically measure 

trait anxiety, and the STAI-T should be considered a nonspecific measure of negative affectivity 

Knowles & Olatunji (2020). Further studies should implement differing measures (i.e., the 

Worry Domains Questionnaire; WDQ or the Penn State Worry Questionnaire; PSWQ, see 
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Meyer, Miller, Metzger, & Borkovec, 1990; Tallis, et al., 1994) to explicitly assess anxiety 

symptomatology.  

Both ABM and control training led to decreases in attention bias scores. The current 

study’s findings may be attributed to the desired outcomes of both control training and ABM 

training. Previous studies (Kuckertz & Amir, 2015; Kuckertzet al., 2019; Mogg & Bradley, 

2018) have shown that both ABM and control conditions resulted in reductions in attention bias. 

It has been noted by the authors of these studies that varying aspects of the training were not 

made clear to their participants (i.e., no understanding of control training mechanism vs ABM 

training mechanisms)—as did the current study. It can be argued that an observed effect in both 

training and control groups is a result of the outcomes of both control and ABM training.  

The aim of ABM training is to reduce attention bias to threat, a key trait noted in anxiety 

disorders; thus, decreasing overall levels of anxiety. The control training in the current study was 

a version of the dot-probe measure. The dot-probe paradigm was originally designed to assess 

selective attention towards threat (MacLeod et al, 1986), but utilizing it for training has been 

shown to have generalized outcomes in increases in top-down control to threat, as inhibited top-

down control has been associated with anxiety disorders (Sussman, et al., 2016). The two similar 

outcomes of these types of training may be as a result of differing neurocognitive mechanisms 

implemented by both trainings in which a similar outcome is observed. Britton et al. (2015) and 

Kuckertz et al. (2014) argue that similar training outcomes in both ABM and control groups is a 

result of the similar cognitive loads they implement, in which resulting implicit learning occurs--

even in the absence of explicit learning outcomes (Mogg & Bradley, 2016).  This suggests that 

engaging implicit systems may elicit anxiety, and that anxiety may be a result of poor regulation 

of implicit association and learning.  
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It is important to note that mechanisms underlying the changes in attention bias prior to 

and following training is hard to assess, as all of the mechanisms underlying it co-occur. It is 

unknown to the extent in which both ABM and control training influence other mechanisms 

underlying anxiety (i.e., attentional control and allocation); because of this, the observed 

attention bias reduction may be a result of increased attentional control and allocation (rather 

than being a result of anxiety reduction). The current study supports this notion, as a decrease in 

trait-anxiety was not observed—but a decrease in attention bias was observed. Attention control 

is the ability to use cognitive resources selectively to inhibit the processing of certain stimuli 

(Najmi et al., 2015). Impairments in attentional control have demonstrated effects of poor 

emotion regulation Gross & Barrett, 2011; Rothbart et al., 2004).  

Previous literature indicates that poor regulation of emotional control results in attention 

bias towards threat (Rothbart, et al., 2004). For example, anxious individuals tend to divert most 

of their attention towards stimuli they perceive as threatening stimuli. These threatening stimuli 

compete for attentional resources with non-threatening information—by either attending 

preferentially to threatening information (Rothbartet al., 2004). This lack of attentional control 

away from stimuli perceived as threatening has a direct effect on anxiety and its symptomatology 

(Najmi et al., 2015; Reinholdt-Dunne et al., 2012). This notion implies that increased ability to 

regulate attentional control may allow one to inhibit the involuntary attention to threat 

(Derryberry & Reed, 2002; Reinholdt-Dunne, et al., 2012). Further studies should assess changes 

in attention bias in terms of both changes in anxiety and changes in attentional control. It is 

important to note that the similar effects seen in both groups could, in part, be due a regression to 

the mean effect.  
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Hypothesis One: Heightened Levels of Trait Anxiety Will Be Associated with Cerebellar 

Functional Connectivity to Threat-Processing Regions and Networks.  

Resting state functional connectivity (rsFC) refers to the measurement of the temporal 

correlation of spontaneous blood oxygenation level dependent (BOLD) signals arising from 

brain structures and regions, with the assumption that the BOLD signals arising from these 

structures and regions correlate with neural activity (Woodward & Cascio, 2015). This simply 

means that brain structures or regions with functional connectivity while at rest are thought to 

contribute to certain cognitive processes (Decoet al., 2011). Statistically significant widespread 

connectivity seeded within the cerebellum associated with heightened levels of trait anxiety was 

no overly apparent. However, an array of resting-state connections between the cerebellum and 

threat-processing regions in high trait-anxious individuals were observed (see Figure 6 & Table 

1 for rsFC results). 

Associations between the cerebellum and right precentral gyrus, ACC, thalamus, and 

insular cortex were noted. The cerebellum has been shown to have roles in the neurocognitive 

mechanism pertaining to anxiety disorders, while also previously showing connectivity to threat 

and emotion processing regions known to be associated with anxiety disorders (Hilber et al., 

2019; Lee, et al., 2020). The precentral gyrus, ACC, and the insular cortex are structures that 

have been well-established as having roles in the development, maintenance, and etiology of 

anxiety and its related disorders (Robinson et al., 2019; Xu et al., 2019), and meta-analyses have 

shown that abnormal functional connectivity between these structures is associated with 

dysregulated emotion regulation, emotional expression, attention allocation, and anxiety-induced 

physiological reactions (Shang et al., 2014), which are factors that are thought to contribute to 

the onset of anxiety disorders.  
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Tovote, et al. (2015) found that stimulation of the vermis elicited varying complex 

patterns of attention-to-threat behavior, heightened stress and anxiety, as well as increased 

connectivity from the vermis to the ACC and the insular cortex—indicating that increased 

connectivity between these structures may, in part, have a causal role in the development of 

anxiety and its symptomatology. Similar to the current study, research indicates that heightened 

connectivity between the cerebellar vermis and the ACC and the insula in individuals with 

generalized anxiety disorder is linked to abnormal fear processing, heightened trait-anxiety, and 

attention bias (Roy et al., 2013; Sacchetti, Sacco & Strata, 2005; Sacchetti, Sacco & Strata, 

2007). This suggests that increased rsFC connectivity within the cerebellar vermis correlated 

with dysregulated rsFC connectivity within the ACC and insula—thus, plausibly contributing to 

anxiety disorders. Ample research has unveiled the potential role of the precentral gyrus in 

anxiety disorders. Yet, there is some dispute as to whether hypoactivity or hyperactivity within 

this structure correlates with anxiety (Boshuisen et al., 2002; Kitls et al., 2006; Li et al., 2019; 

Picó-Pérez et al., 2017).   

Trait-Anxiety and Increased Cerebellum-Thalamus rsFC      

 The current study found connectivity from the right cerebellum, which is responsible for 

both motor and cognitive functioning (Lee et al., 2020; Moreno-Rius, 2018), to the lateral 

thalamus. The lateral thalamus has been associated with negative reactions to visual threats, and 

has been attributed to heightened levels of trait anxiety (Salayet al., 2018). The dentate nuclei 

directly project to the thalamus—allowing for streamlined connectivity between the cerebellum 

and the thalamus (Lee et al., 2020; Middleton & Strick, 1994). Previous meta-analyses have 

indicated that functional connectivity between the cerebellum and the thalamus may contribute to 
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anxiety etiology (Chavanne & Robinson, 2021; Leicht & Mulert, 2020; Pergamin-Hight et al., 

2015)—with the current results supporting this prior work.  

The thalamus has ample projections to various brain regions via their nuclei (including 

the anterior nucleus, the mediodorsal nucleus, and the pulvinar nucleus; Asami et al., 2018). The 

thalamus has shared connection with both the amygdala and the medial prefrontal cortex, both of 

which appear to have a are linked to the development of anxiety (Gorman, 2000; Ironside et al., 

2019). Although the thalamus has literature regarding its role in the development of anxiety and 

anxiety disorders, the cerebellum does not. Given the vast rsFC between the thalamus and 

cerebellum in anxious individuals (Lee et al., 2020; Moreno-Ruis, 2018; Phillips et al., 2015), as 

well as support arising from the results of the current study, it is apparent that the cerebellum 

may have contributions to the etiology of anxiety. The decrease in rsFC from the cerebellum to 

the thalamus following ABM training supports the notion that the cerebellum may be a relay 

station for areas, such as the thalamus, that contribute to anxiety disorders. The current finding 

provides further precedent for the role of the cerebellum in anxiety.  

Trait-Anxiety and Increased Cerebellum-Inferior Frontal Gyrus rsFC    

 New research shows that trait-anxiety is linked to the right inferior frontal gyrus (IFG)—

specifically when selectively trying to reallocate attention away from threatening stimuli (Shadli 

et al., 2020). A meta-analysis conducted by Chavanne & Robinson (2021) demonstrates 

increased connections between the cerebellum and the inferior frontal gyrus in individuals with 

clinical anxiety, as well as recruitment of the inferior frontal gyrus and cerebellum in allocation 

of attention towards threat. Li et al. (2020) found that the functional connectivity between the 

right cerebellum (cereb 8) and the left inferior frontal gyrus was related to levels of trait anxiety. 

The rsFC noted in previous literature, as well as the rsFC in the current study, provide further 
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corroboration regarding the role of the cerebellum as a “hub” for connections to regions well 

established as having a causal role in the etiology of anxiety. Other studies indicate that aberrant 

functional connectivity between the cerebellum and the inferior frontal gyrus has a direct 

relationship with dysregulated attention control and increased inhibitions of top-down control—

both of which are known factors of anxiety and attention bias (Brissenden et al., 2016; Liew et 

al., 2018; Schmahmann, 2019).  

The findings in the current study may demonstrate the role of the cerebellum in threat 

perception—particularly allocating resources within the brain to determine how much attention 

is being granted to threatening vs non-threatening stimuli. Disruptions of allocation of attention 

to threatening stimuli, also known as attention bias to threat, is a hallmark symptom of anxiety 

(Britton et al., 2014; Hakamata et al., 2010). Thus, the rsFC observed between the cerebellum 

and the right inferior frontal gyrus further contribute to the notion that rsFC seeded within the 

cerebellum may contribute to anxiety. 

Trait-Anxiety and Increased Cerebellum-Insula rsFC        

An individual’s perceived control over negative events has been thought of as important 

to the psychopathology of certain cognitive schemas that are linked to experience emotion, such 

as fear (Rapee et al., 1996), and is thought to be a mediator between high trait-anxiety and over-

activation of certain enroll processing of emotionally aversive events and stimuli (Strigo, 

Matthews, & Simmons, 2013). Previous functional neuroimaging studies utilizing non-clinically 

diagnosed, high-trait anxious individuals (such as in the current study) suggest that insular cortex 

hyper activation is correlated with the anticipation of potentially aversive events and stimuli, 

including negatively valence pictures (Andrzejewski, Greenberg, & Carlson, 2019; Nitschke et 

al., 2006; Simmons et al., 2004). Although these same previous studies suggest that increased 

https://www.nature.com/articles/tp201584#ref-CR7
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activation to the insula is involved in the anticipation surrounding anxiety, more specific studies 

suggest that weighted insular activation occurs during the anticipation of unpredictable, adverse 

events (Carlsson et al., 2006; Shankman et al., 2016). These findings suggest that the insula has a 

critical role in the anticipation of aversive events—most notably, this is supported by evidence of 

hyperactive insular activation in individuals with both anxiety and dysregulated moods and 

attention (Avery et al., 2014; Paulus & Stein, 2010; Shin & Liberzon, 2010).  

Trait-Anxiety and Increased Cerebellum-ACC rsFC   

The ACC has been shown to be involved in monitoring and resolving emotional 

conflicts—particularly those conflicts related to threat and fear (Kim et al., 2016). Given its 

direct anatomical associations to the amygdala and higher cortical areas, it is no surprise that the 

ACC may have a role in modulating response to negative events (Etkin et al., 2006). Previous 

studies show that high trait anxious individuals display heightened functional connectivity with 

the ACC and ACC networks (Carlson et al., 2012; Carlson & Reinke, 2010). This 

hyperconnectivity has been associated with dysregulated prioritization of visual processing and 

localization to potential threat— resulting in hyperactive attention to irrelevant stimuli (Carlson 

& Reinke, 2010). ACC hyperactivation has been associated with predisposition of individuals to 

focus their attention to stimuli they perceive as threatening, even when no threat is present 

(Carlson, et al., 2013; Greenberg et al., 2012). 

Tovote et al. (2015) found that stimulation of the vermis elicited varying complex 

patterns of attention-to-threat behavior, heightened stress and anxiety, as well as increased 

connectivity from the vermis to the ACC and the insular cortex—indicating that increased 

connectivity between these structures may, in part, have a causal role in the development of 

anxiety and its symptomatology. Similar to the current study, research indicates that heightened 
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connectivity in vermis-based ACC-cerebellar networks and vermis-based insula-cerebellar 

networks in individuals with generalized anxiety disorder is linked to abnormal fear processing, 

heightened trait-anxiety, and attention bias (Roy et al., 2013; Sacchetti, et al., 2005; Sacchetti, et 

al., 2007). This suggests that heightened rsFC connectivity seeded in the cerebellar vermis 

impacts rsFC connectivity within the ACC and insula—thus, plausibly contributing to anxiety 

disorders.  

Trait-Anxiety and Increased Cerebellum-Precentral Gyrus rsFC   

Ample research has unveiled the potential role of the precentral gyrus in anxiety 

disorders—yet there is some dispute as to whether hypoactivity or hyperactivity within this 

structure correlates with anxiety, as there are studies supporting sides to this notion. Boshuisen et 

al., 2002; Kitls et al., 2006; Li et al., 2019; Picó-Pérez et al., 2017).  The precentral gyrus is 

mainly a motor region that is related to body movement (Li et al., 2019). Nonetheless, similar to 

the role of the cerebellum, little research has been conducted to assess its role in cognition and 

psychological disorders. There has been miniscule investigation into the functional connectivity 

between the precentral gyrus and the cerebellum: specifically, the role of this connectivity in 

terms of anxiety or attention bias to threat. This connectivity may play a role in biasing defensive 

anxiety-related behaviors. Hadj-Bouziane et al. (2008) uncovered evidence for the role of the 

precentral gyrus in emotional regulation—specifically when it comes to fear. Pagliaccio et al. 

(2015) uncovered increased connectivity between the postcentral gyrus, the ACC, and the 

amygdala in non-anxious individuals, indicating the possibility of greater emotion regulation. 

Picó-Pérez et al. (2017) found that individuals with clinically diagnosed anxiety had increased 

activations and connectivity between other cortical regions such as the precentral gyrus, the 

cerebellar vermis and the left anterior insula.  
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Individuals with anxiety have been shown to elicit increased activation of the precentral 

gyrus, as compared to non-anxious individuals (Makovac et al., 2016). This hyperactivation has 

been linked to dysregulated top-down control of attentional focus (Hopfinger et al., 2000). 

Previous research shows that increased trait anxiety is correlated with increased activation of the 

precentral gyrus, which in turn, increases activation in the left cerebellar gyrus (Geng et al., 

2018; Li et al., 2019). Given these findings, it is plausible that hyperactivation in such regions is 

associated with attentional deficits that are linked to excessive worry, which is what we observe 

in individuals with anxiety Eysenck et al., 2007).  

The current findings, coupled with previous investigations into rsFC connectivity 

between the cerebellum and precentral gyrus, may indicate that dysfunctional connectivity 

between these two structures may have a causal relationship with the lack of cognitive control 

and negative-emotion regulation seen in anxiety disorders. Abnormal hypoactivation or 

hyperactivation between these two structures may result in disrupted connectivity between other, 

more notable regions responsible for anxiety and attention bias (i.e., the amygdala, the ACC, 

etc.). This disrupted connectivity may be a consequence of, or compensation for impaired 

cognitive function as a result of the connectivity between the cerebellum and the precentral 

gyrus. Further investigation into the functional relationship between the cerebellum and the 

precentral gyrus is needed to further explore this assumption.  

Trait-Anxiety and Increased Cerebellum-Salience Network rsFC  

The right cerebellum was noted to have rsFC to the right insula via the salience network. 

The salience network, which is primarily seeded within the ACC and the insula, is involved in 

detecting, integrating and filtering relevant interoceptive, autonomic, and emotional information 

(Seeley, 2019). Prior research has shown that heightened connections within the salience 
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network plays a pivotal role in attention bias to threat (Hilland et al., 2019). Previous 

investigation into the role of the salience network in anxiety disorders shows increased resting-

state connectivity between the amygdala and insula in individuals with anxiety, as well as 

significant intra-network BOLD correlations within the salience network, indicating potential 

involvement of the salience network in anxiety disorders (Caulfield et al., 2016; Bernard et al. 

2012; Buckner et al. 2011; Habas et al. 2009; O’Reilly et al. 2010; Seeley et al., 2019).  

Of more importance, these same studies show that specific regions of the cerebellum 

(Crus I, Crus II and vermis) have direct contributions to salience network activity, as well as 

direct connectivity to the amygdala and insula, indicating that the cerebellum may have a role in 

attention bias to threat (Minlanyuan et al., 2017). Supported by the functional connectivity 

patterns noted in the current study, it appears that the rsFC in the cerebellum may have 

contributions to the salience network, potentially modulating observed increases in anxiety 

symptomatology.  

There was an overall pattern of increased activation associated with trait anxiety to brain 

regions and networks implicated for their role in anxiety and affective processing. The current 

study saw a correlation between high trait anxiety associated with several cerebellar-seeded 

regions—mostly the Crus I, Crus II, and vermis (see Table 1 for further results). This increased 

cerebellar-seeded connectivity associated with trait anxiety was connected to several brain 

regions and networks which have previously been implicated in their roles for the etiology and 

maintenance of anxiety (i.e, the ACC, thalamus, insular cortex, precentral gyrus, and the salience 

network). The heightened rsFC observed between the cerebellum and these brain regions and 

networks may have a causal role in the etiology of anxiety and the maintenance of the symptoms 

associated with anxiety. For example, increased cerebellar-ACC rsFC may, in part, explain why 
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anxious individuals exhibit abnormal, dysregulated fear processing by over-attenuating 

themselves to potentially threatening stimuli.   

Cerebellar-insular hyperactivity may explain the anticipation of negative events—a 

hallmark symptom of anxiety; whereas increased cerebellum-insula activation may also, in part, 

contribute to the lack of emotion regulation seen in anxious individuals. Dysregulated cerebellar-

salience network activation may explain why anxious individuals have trouble with properly 

filtering relevant interoceptive, autonomic, and emotional information. The cerebellar-seeded 

rsFC in anxious individuals may contribute to anxiety and provide a target for future therapeutic 

avenues. However, further research into these associations is required to better understand how 

hyperactive cerebellar connectivity may contribute to the etiology and maintenance of anxiety.  

Hypothesis Two: Functional Connectivity Between the Cerebellum and Threat/Emotion 

Processing Regions Will Decrease in the ABM Training Group Following Training.  

The current study compared pre to post-training changes in rsFC in both the ABM and 

control training groups. Compared to changes in the control group, the ABM group had 

decreased rsFC from the cerebellum to several key brain regions and networks. The decrease in 

functional connectivity from the cerebellum to these regions may indicate that ABM results in 

neural changes, which in turn, may result in changes in behaviors linked to these regions. 

Connections from the left crus, right cerebellum, left cerebellum, and vermis to the ACC and 

amygdala decreased in the ABM group relative to the control group. Previous research suggests 

that the cerebellum, especially the left cerebellum, is involved in oculomotor control as well as 

control in covert visual attention (Townsend et al., 1999; Baier et al., 2010; Striemer et al., 2015; 

see Figure 7 and Table 2 for rsFC results). 
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Attention bias, specifically towards threat, heavily relies on the brain to rapidly attend to 

stimuli and elicit responses to stimuli that are relevant. In anxious individuals who exhibit 

attention bias, we typically see this attention heavily biased towards stimuli the individual sees as 

threatening, even when that stimulus is not an actual threat. Both the left crus and the vermis are 

thought to contribute to prediction and prediction errors when selecting relevant stimuli to attend 

to. Specifically, these regions of the cerebellum contribute to prediction errors when attending to 

fearful stimuli (Aps et al., 2018; Ernst et al., 2019). The right cerebellum plays a role in cognitive 

processing whereas the vermis is thought to be the ‘limbic cerebellum’ for its role in affective 

processing (Gawda & Szepietowska, 2016). The cerebellar-seeded rsFC observed from these 

regions has been shown to have a causal role in the adjustment of emotional and cognitive 

processes to situational context; specifically, research shows that these two regions play a critical 

role in rapid detection and response to negative/fearful stimuli. (Gawda & Szepietowska, 2016; 

Parvizi et al., 2001). Similar research indicates that abnormal connectivity or disruptions within 

these neural circuits subserving sensorimotor, cognitive, or emotional processing disrupts 

connectivity from the cerebellum to threat-processing regions (i.e., the amygdala and ACC) 

causing accompanying cognitive-affective and attention-regulation deficits (Gawda & 

Szepietowska, 2016; Schmahmann, 2004). It is important to note that the mechanism underlying 

behavioral changes in the ABM group, and differing mechanisms could potentially underly the 

same behavioral changes in the control group.  

Cerebellum-ACC rsFC Decreases Following ABM 

The ACC is among one of the core regions that indicates a preference when responding 

to negative stimuli in non-anxious individuals, and functional connectivity to the ACC has 

repeatedly been reported across a range of experiments that use emotional tasks with cognitive 
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demand and negative or fearful stimuli, such as the current study (Hilland et al., 2020; Lindquist 

et al., 2016). Neural responses to negative stimuli in the ACC are more pronounced in anxious 

individuals than in healthy controls (Hilland et al., 2020).  The ACC translates an individual's 

intentions into conceivable and appropriate responses—doing so by combining motor control, 

arousal state, and attention to relevant stimuli translating intentions into action, by integrating 

motor control, motivational drives/arousal state, and cognitive messages (Aviram-Friedman et 

al., 2018; Stevens et al., 2011). Increased connectivity to the ACC has been shown to result in 

abnormal biobehavioral processing in anxious individuals with an attention bias towards threat 

(Bar-Haim et al., 2007; Britton et al., 2014; Carlson et al., 2013; Lazarov et al., 2019). This may 

be, in part, due to impaired affective processing when presented with emotionally laden stimuli 

(i.e., fearful faces), often resulting in failure of the ACC to regulate attentional control. The ACC 

has been well-established in regard to its role in anxiety disorders (Carlson, et al., 2013; Kim et 

al., 2016; Stevens et al., 2011). There are ample studies that note functional connectivity patterns 

from the cerebellum to the ACC in anxious individuals (see Aminto et al., 2013; Klumpp, et al., 

2018; Seo et al., 2017), yet there has been insufficient discussion regarding this connectivity and 

how it’s increase may be contributing to anxiety disorders and how these changes may be related 

to treatment, such as ABM.   

One explanation for this heightened connectivity is the neural circuitry underlying the 

functional connectivity between the cerebellum and the ACC. These two brain regions are 

connected through the cingulate–pontine–cerebellar neural circuit (Aminto et al., 2013; Clausi et 

al., 2017). This neural circuit connects the cingulate gyrus to the cerebellum, and is responsible 

for recognizing the underlying characteristics and intentions of social stimuli and producing 

appropriate responses via affective response to these stimuli (Olson et al., 2007). Treatments 
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targeting attention bias and abnormal attention allocation, similar to ABM, have been shown to 

decrease functional connectivity within this circuit (see Fortenbaugh et al., 2017; Kim et al., 

2016; Shao et al., 2016), making it plausible why a decrease in attention bias was only seen in 

the ABM training group and not the control group  

Hyperactivation in this circuit has been linked to anxious symptomatology, impulse 

control, and attention regulation deficits (Aminto et al., 2013). It is presumed that heightened 

rsFC between the cerebellum and the ACC is modulated by heightened rsFC within the circuit 

that connects it: the cingulate–pontine–cerebellar neural circuit—leading to decreased emotion 

regulation and disruptions with attention allocation: two hallmark symptoms of anxiety. This 

notion is consistent with the results of the current study, as decreased connectivity between the 

cerebellum and the ACC decreased following ABM training in anxious individuals, leaving 

speculation as to whether this decrease was modulated by the latter neural circuit. Further studies 

should focus their efforts on the cingulate–pontine–cerebellar neural circuit to further investigate 

precisely how the cerebellum may be contributing to anxiety through its connections within this 

circuit.                         

Functional connectivity between the ACC and the amygdala are believed to be the 

hallmark indicator of attention bias towards threat (Hilland et al., 2020). Cognitive models 

concerned with the neural correlates of attention bias claim that the amygdala non-consciously 

monitors and evaluates stimuli for their threat potential, whereas the ACC monitors conflict 

between threatening and non-threatening stimuli competing for attention (Carlson & Aday, 

2018). Disruptions in ACC-amygdala networks result in attention bias towards threat, which may 

be due to the inability of the network to properly differentiate what stimuli deserve attention 

allocation. The ability of the cerebellum, the amygdala, and ACC to potentially modulate more 
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goal-directed cognitive control over attention allocation allows the anxious individual to better 

control their attentional regulation to threat-relevant stimuli; thus, decreasing the amount of time 

and attentional control expended upon threatening stimuli. When compared to control training, 

ABM has been shown to underlie more neural changes (Delchau at al., 2020; Lee et al., 2020; 

Mogg et al., 2017)—in turn, these neural changes increase the ability to elicit goal-directed 

attention allocation. ABM training may modulate more neural-based changes compared to 

control training, as concluded by the results of the current study. These underlying neural 

changes may be why we see decreased rsFC from the cerebellum to the ACC and the amygdala 

in the ABM group and not the control group. 

Cerebellum-Amygdala rsFC Decreases Following ABM 

The amygdala is one of the most-well known structures when it comes to the neural 

correlates of anxiety and attention bias. The amygdala is crucial to the rapid detection of 

emotionally salient stimuli—most notably threatening stimuli (Carlson & Aday, 2018; Carlson, 

et al., 2013; Ledoux and Muller, 1997).  The amygdala unconsciously detects and evaluates 

visual stimuli that are perceived as threatening (Liddell et al. 2005; Roy et al., 2013). Previous 

studies indicate that the amygdala initiates increased responses to threat-relevant stimuli—even 

when these stimuli are not at the forefront of one’s attention (Roy et al., 2013; Vuilleumier, 

2005), suggesting the amygdala mediates attentional bias to threat. The amygdala has 

bidirectional connections to sensory and attention-regulation areas, indicating the amygdala may 

be responsible for the early, automatic response to attention to threat (Freese and Amaral, 2009; 

Jenks et al., 2020; LeDoux, 2007, Vuilleumier, 2005). Other neuroimaging studies indicate that 

the amygdala response to fearful faces is enhanced in individuals with anxiety (Jenks et al., 

2020; Rotshtein et al., 2010, Vuilleumier et al., 2005).  
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Given the perceptible role of the noted cerebellar regions in attention bias, as well as its 

decreased rsFC to the amygdala, it is intelligible why we see cerebellar-seeded functional 

changes in individuals who re-trained their attention bias via ABM. The results of the current 

study suggest the recruitment of the cerebellum aids in varying aspects of cognitive control and 

attention allocation. The attenuated connectivity from the cerebellum to the amygdala in the 

ABM training group suggests that anxious individuals may engage the cerebellum, alongside the 

amygdala to direct attention to threat-relevant stimuli. Since anxious individuals who exhibit 

attention bias are known to favor negative/fearful stimuli versus other types of stimuli (Carlson 

& Aday, 2018; Fani et al., 2012), it is presumed that ABM training (compared to control 

training) underlies relevant neural changes in critical regions to reduce attention bias to threat. 

This is believed to be, in part, due to the communication between the cerebellum and amygdala-

ACC networks in order to elicit more goal-directed control versus aberrant threat related 

attentional-control, as seen in attention bias.  

It is important to note that it is unclear whether the cerebellum is a direct inhibitor of the 

amygdala and the affective responses it elicits towards negative or fearful stimuli (Baumann & 

Mattingley, 2012; Moreno-Rius, 2018) or whether the amygdala has a moderating effect on the 

cerebellum (Lee et al., 2020). Nonetheless, the cerebellum has extensive functional connectivity 

to areas such as prefrontal cortex and other limbic regions. Coupled with the results observed in 

the current study, amygdala-cerebellar connectivity may play a role in the pathophysiology of 

both anxiety and attention bias. It is no surprise that functional connectivity between the 

cerebellum and the amygdala decreased following ABM in the current study. Individuals with 

anxiety eliciting an attention bias to threat may be activating the cerebellum in order to engage in 

regulation of attenuation and response deployment of threat reactivity via allocation of attention 
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to support performance following the initial limbic response. This supports the notion that ABM 

treatment, when compared to control, may be more effective at modulating response deployment 

of threat reactivity; thus, decreasing rsFC between the cerebellum and amygdala (and greater 

limbic system).   

Cerebellum, Thalamus, and Hippocampus rsFC Changes Following ABM  

There were observed decreases in rsFC between the right cerebellum, as well as the 

vermis, to the thalamus. The right cerebellum has been correlated with mechanisms involved in 

cognitive processing, whereas the vermis has been shown to have a role in affective processing 

(Gawda & Szepietowska, 2016), allowing the cerebellum to have a role in the detection and 

response of negative and fearful stimuli. (Gawda & Szepietowska, 2016; Parvizi et al., 2001). 

The thalamus and hippocampus, are regions which have ample research to procure their role in 

attention bias towards threat. The thalamus has direct anatomical and functional connectivity to 

the cerebellum (Allen et al., 2005; Gornati et al., 2018; Hintzen et al., 2018). Yet, the 

connectivity between these structures has hardly been investigated—especially in terms of 

anxiety and attention bias.  

Research suggests that the thalamus may represent the junction between regulation of 

mnemonic and control functions, such as action or attentional selection of relevant stimuli 

(Kirouac, 2021). This regulation involves focusing a spotlight on important information, as well 

as inhibiting unnecessary background information (De Bourbon-Teles et al., 2014). The thalamus 

has been shown to filter un-attended emotional stimuli, with increased rsFC linked to threat 

related attentional bias and attentional control (Hakamata et al., 2016). The thalamus prioritizes 

processing based on affective significance of the stimuli. In the case of anxious individuals with 

attention bias towards threat, the decreased regulatory ability of the thalamus to evaluate stimuli 
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may result in increased rsFC to other areas of the brain (i.e., the amygdala, cerebellum, and 

hypothalamus) for aide in attenuating to relevant stimuli (Kirouac, 2021; Todd et al., 2012). 

Individuals with anxiety exhibit functional connectivity abnormalities in brain regions 

involved in attention and reward during attention allocation tasks (Oldrati & Schutter, 2018). 

This suggests a dysfunctional interplay between attention allocation and cognition in individuals 

with anxiety, whereas anxious individuals appear less capable of upregulating attention networks 

relative to non-anxious individuals—hence why we see attention bias deficits in anxious 

populations. In studies concerned with rewarding sustained attention away from aversive (i.e., 

negative, fearful) stimuli (Chantiluke et al., 2012; Oldrati & Schutter, 2018), there was an 

observed decrease in functional connectivity within neural circuits concerning the thalamus, 

ACC, cerebellum, and hippocampus (i.e., the fronto-striato cerebellar network; the cingulate–

pontine–cerebellar circuit). Furthermore, similar studies show a decrease in sustained attention 

from aversive stimuli is modulated by a decrease in cerebellar activation (Chantiluke et al., 

2012).  

Brain activation deficits between the cerebellum, thalamus, and hippocampus in 

individuals with anxiety are more pronounced during attention control tasks relating to negative, 

aversive stimuli, presumably reflecting poor upregulation of attention allocation within attention 

networks. ABM treatment has been shown to target neural changes within networks associated 

with the cerebellum, thalamus, and hippocampus (Britton et al., 2014; Lazarov et al., 2018; Liu 

et al., 2018). The results of the current study extend these previous findings by showing 

decreased rsFC between these regions and the cerebellum.  
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Cerebellar-seeded rsFC changes in resting-state networks following ABM  

Altered functional connectivity in resting state networks have been shown to sustain cognitive 

and affective deficits in anxiety. However, little research has explored the effects of ABM on 

these neural networks, and associated decreases in symptomatology—such as decreased attention 

bias. There was several cerebellum-seeded resting-state decreases in the ABM training group 

within resting state networks following their training. Left cerebellum and the right crus rsFC 

decreases within the salience network, whereas left cerebellum and left crus rsFC decreases 

within the DMN. Abnormalities in both the salience network and the DMN have been linked 

with anxiety and its symptomology—most notably attentional control deficits (Kaiser et al., 

2015; Sharma et al., 2017).  

The current study provides further evidence that these cerebellar-regions are connected to 

the salience network. This network to two main regions within the cerebellum: the lateral portion 

of the left lobules VI and the right crus I. Lobules VI–VII (crus I) are connected, through the 

pontine and dentate nuclei, with posterior and lateral hypothalamus (Habas et al. 2009; Sharma et 

al., 2017). As the lateral cerebellum is mainly connected to associative cortices, it is postulated 

that the cerebellum-insula functional connectivity clusters detected within the salience network 

in the current study are preferentially linked with lobules VI– crus I of the cerebellum.  

Previous research confirmed the role of vermal lobule VI and the hemisphere of lobules 

VI– crus I in threat-related processes like, fear, and startle reactions, and attention deficits 

(attention bias) concerned with threat (Dimitrova et al., 2004; Sang et al., 2012). rsFC studies 

indicate that neural-circuit changes housed within the salience network were positively related to 

state anxiety (Kim & Whalen., 2011; Baur et al., 2013), suggesting that increased connections 

https://www.frontiersin.org/articles/10.3389/fnbeh.2015.00350/full#B3
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within this network reflects an increased sensitivity to salient events, which  allows for biased, 

inaccurate attentional and perceptual processing (Baur et al., 2013; Geng et al., 2016). 

 In the current study, the heightened cerebellum-insula rsFC prior to ABM treatment 

within the salience network may be associated with weaker cognitive control, which is consistent 

with an anxiety theory that suggests that trait anxiety includes an impoverished recruitment of 

prefrontal attentional mechanisms to trigger the allocation of attentional resource (Bishop, 2009). 

This may result in problems with attention control and emotion regulation (Geng et al., 2016). 

Other studies (see Hakamata et al., 2018; Hilland et al., 2018) have found functional connectivity 

changes within the salience network following attention bias modification in both depressed and 

anxious individuals. These studies particularly found changes from insula within salience 

functional connectivity.  

Similarly, the current study predominantly saw decreased rsFC from the cerebellum to 

the insula within the salience network. These studies failed to report or investigate any functional 

changes within the cerebellum. However, given the ample connections the cerebellum has within 

the salience network, as well as the current studies observed rsFC decreases within the 

cerebellum following ABM training, we can speculate that the cerebellum may modulate 

attention-changes in these trait-anxious individuals. Taken together, these findings indicate that 

ABM treatment may enact general changes to attention-control via the salience network—

specifically modulated by connections from the cerebellum to the insula. 

Attention bias towards threatening stimuli has been linked to increased rsFC within the 

DMN (Xiong et al, 2020). Grimm and colleagues showed that anxiety disorders are characterized 

by impaired activation in the anterior DMN during attention-control tasks (Carlson et al., 2017; 

Grimm et al., 2009). The DMN known as set of brain areas that are more activated when an 
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individual is at rest, is well-established for its role in spontaneous cognitive events (i.e., the 

elicitation of spontaneous thoughts and reactions; Imperatori et al., 2019, Whitfield-Gabrieli & 

Ford, 2012). Among the subregions of the cerebellum, Crus I is thought to be linked to the 

DMN, with increased Crus I–DMN connectivity is observed in treatment-resistant depression 

and anxiety (Guo et al., 2015). Moreover, individuals with anxiety show disrupted functional 

connectivity between the posterior cerebellum and the cerebral cortex (Lee et al., 2020; Xiong et 

al., 2020); mainly including the DMN and the limbic system indicating that the cerebellum might 

be associated with the onset of anxiety. 

Typically, the DMN elicits decreased activation and functional connectivity during 

attention-demanding or stimulus dependent tasks (such as the training implemented in the current 

study). However, in the case of anxious individuals, activations and connectivity are increased 

during these tasks (Buckner et al., 2008; Imperatori et al., 2019). This can potentially be 

attributed to failure of a high trait-anxiety individual’s ability to synchronize brain areas within 

the DMN (i.e., the cerebellum) when they're in a resting state. This explanation is in-line with the 

attention control theory (Eysenck et al., 2007), which suggests that high trait-anxious individuals 

tend to over-control situations by allocating excessive attention resources to scan for potential 

threat. This results in a constant state of over-attenuation to their environment as well as attention 

bias to stimuli they perceive as threatening. Hyper-activation of the DMN may result in deficits 

of attention regulation, which in turn, results in attention bias. (Berggren and Derakshan, 2013). 

This notion aligns with the findings in the current study, as we saw decreased activation of 

cerebellar-seeded rsFC in the DMN, as well as a decrease in attention bias, in the ABM training 

group.  

Cerebellar-seeded rsFC to the Lateral Occipital Cortex 



  54 

Such as with the cerebellum, the lateral occipital cortex (LOC) has been implicated in 

ample literature concerned with anxiety and attention bias. Yet, there has been little discourse 

surrounding its role in the etiology of anxiety and its link to anxious symptomatology. The 

current study saw the most cerebellar-seeded rsFC changes to the LOC. Specifically, rsFC 

between the right cerebellum and the LOC was correlated with heightened levels of trait-anxiety, 

while decreases in rsFC from the left cerebellum, right cerebellum, and the vermis to the LOC 

were associated with decreases in attention bias in the ABM training group. The LOC is well 

known from previous studies in regards to its role in object perception (Malach et al., 1995; 

Lerner et al., 2008), as well as a visual area important for processing shape information (Grill-

Spector et al., 2000; Kourtzi & Kanwisher, 2001), as well as facial recognition and processing 

(Karten et al., 2013; Walz et al., 2014).  

Although the LOC in individuals with anxiety and depression has exhibited structural and 

functional abnormalities (Modi et al., 2015; Nagy et al., 2012; Schreiner et al., 2019; Walz et al., 

2014) how this brain region interacts with other regions and networks still needs some 

clarification.  In previous rsFC studies, the LOC of individuals with anxiety and depression had 

increased interaction with the DMN, as well as heightened rsFC to areas such as the amygdala, 

thalamus, and hypothalamus, as compared to non-anxious and depressed individuals (Nagy, 

Greenlee, & Kovács, 2012; Pannekoek et al., 2013; Walz et al., 2014). However, other studies 

have shown activation in LOC to the DMN where high trait-anxious individuals showed 

significant decreases in rsFC—compared to low trait-anxiety groups (Modi et al., 2015), as well 

as decreases in rsFC from the cerebellum to the LOC (Westlund et al., 2019).  

These theories provide a plausible explanation for the observed rsFC to the LOC from the 

cerebellum. However, they still do not explain contributions of the LOC, as well as cerebellum-
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LOC connectivity that may be contributing to anxiety symptomatology—including attention 

bias. ROI-based rsFC studies demonstrate widespread interconnections between the cerebellum, 

specifically lobule VII and VIII and occipital cortices, such as the LOC.  These functional 

connections might rely on cortico-pontine afferents and/or cerebello-thalamo-cortical afferents in 

agreement with anatomical tracing from human tractography studies (Habas, 2020; Habas & 

Manto, 2018). These pathways have long been implicated for their role in attention deficits 

(Olson et al., 2007). Treatments that aim to better control these deficits, such as ABM training, 

have been shown to decrease functional connectivity within these circuits (Fortenbaugh, 

DeGutis, & Esterman, 2017; Kim et al., 2016; Shao et al., 2016). As such, we also saw a 

decrease in connectivity between the cerebellum and LOC in the ABM training group.  

Attention allocation is a cognitive process that enables us to focus on certain aspects of 

the environment for the benefit of improved performance (Cameron et al., 2002; Guggenmos et 

al., 2015). However, for individuals with anxiety, this focus is misguided, resulting in biased 

attention to threatening stimuli, as well as decreases in attention resources to for the processing 

of goal-relevant information.  One way in which attention has been found to impact neural 

processing in anxious individuals is through an amplification of neural responses to attended 

spatial locations, objects, or features (Treue, 2003), which may explain why many studies 

concerned with attention bias have seen functional connectivity in the LOC.  

The role of the LOC may, in part, explain why there was ample connectivity from the 

cerebellum to this region, as the current study implemented the use of facial stimuli in our 

attention bias training, In ABM training, participants see threatening faces paired with a non-

threatening face—triggering biased attention towards the threatening faces as opposed to the 

non-threatening faces. However, participants are immediately thereafter required to engage in 



  56 

another visuospatial task (identifying the location of the probe), which may limit processing of 

these images. Perhaps the reduction in attention bias variability associated with ABM training 

(Abend et al., 2019; Badura-Brack et al., 2015) is evidence of a reduced tendency to fluctuate 

between over- and under-attending to threat in response to involuntary attention allocation 

processes. This normalization may include increased LOC activity and reduced posterior 

occipital responses in individuals with anxiety treated with ABM training, as observed in the 

current study. 

 Given that both the cerebellum and the LOC are not typically implicated in disorders 

such as anxiety, the realm of rsFC between these two brain regions needs further investigation to 

determine how it may impact the etiology and subsequent symptomatology of anxiety disorders. 

Nonetheless, the results of the current study, coupled with the results of previous studies, 

indicate that reduced stability of LOC connectivity, particularly rsFC changes seeded within the 

cerebellum, may be an important factor underlying neurocognitive dysfunctions and symptom 

severity, such as attention bias, in anxiety disorders.  

Overall, there were vast amounts of cerebellar-seeded rsFC decreases following ABM 

training. The cerebellar seeded decreases were to regions already established for their roles in the 

etiology and maintenance of anxiety.  The current study found decreases from across varying 

regions of the cerebellum to key brain regions such as the amygdala, ACC, thalamus, and 

hippocampus. Attention bias may result from failure of the ACC to regulate attentional control. 

The current study saw decreases from the cerebellum to the ACC following ABM training. 

Given the role of the ACC in attention control, the connectivity from the cerebellum may provide 

further understanding for the underlying neural circuitry modulating dysregulated attention. The 

results provide further evidence for the potential of the cingulate–pontine–cerebellar neural 
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circuit, seeded within the cerebellum and projecting to the ACC, in dysregulated attention 

control.  

The amygdala is one of the most nitrous structures in terms of the etiology of anxiety 

disorders—yet its role in the symptomatology of attention bias is largely unexplored. the 

decreased connectivity from the cerebellum to the amygdala in the ABM training group may, in 

part, provide support for the notion that anxious individuals exhibit attention bias towards threat, 

and that ABM underlies changes in attentional bias resulting from ABM. The amygdala is 

known for increased responses to threat-relevant stimuli, whereas the cerebellum is known to 

potentially modulate attention control. These results suggest that anxious individuals engage the 

cerebellum, alongside the amygdala to attenuate to threat-relevant stimuli.  

 This notion is also supported further by the observed rsFC decreases from the cerebellum 

to the thalamus and hippocampus: two other critical regions implicated in aberrant attention 

regulation and control. The thalamus has been shown to filter un-attenuated emotional stimuli, 

with increased rsFC linked to threat related attentional bias and attentional control. The 

hippocampus has been shown to aid in attention control. Cerebellar rsFC to these regions is 

thought to help modulate up regulation of attention; thus, we see a decrease in cerebellar-seeded 

rsFC to these areas after ABM training.  

 Decreased connectivity from the cerebellum to both the DMN and the salience network 

may help underlie the proposed neural changes. In the current study, the cerebellum-insula rsFC 

within the salience network in anxious individuals may be associated with weaker cognitive 

control. The rsFC from the cerebellum to the DMN may provide further evidence for the role of 

the cerebellum in modulating attention control. 



  58 

Overall, these results provide evidence for the role of the cerebellum in attention deficits: 

specifically, those related to anxiety disorders. The results provide further notion for further 

research to target the neural substrates of the cerebellum in disorders associated with 

dysregulated attention.  Lastly, the results provide further support in implementing the 

cerebellum as a potential target for ABM treatment. Given the results of the current study, future 

clinical efforts aimed at increasing one’s attention regulating may wish to further investigate the 

role of the cerebellum. 

Clinical Implications  

The current study provides further evidence for the neural substrates of ABM training. 

Thus, aiding in the understanding of how this treatment works and modulates functional brain 

changes.  In particular, the current study focused on the underlying biology of anxiety, and how 

this in turn may lead to symptom reduction. The cerebellum, although overlooked, may be a 

critical target for future therapeutic efforts concerned with symptom reduction in anxiety and 

attention disorders. The results from this study alone do not provide enough evidence to justify 

sole investigations into rsFC in the cerebellum as an outcome of ABM treatment. Although the 

current study did not see a decrease in trait-anxiety following ABM treatment (although other 

studies did, see Britton et al., 2014; Hakamata et al., 2018; Mogg, Watters, & Bradley, 2017), it 

did see a stark decrease in attention bias following the completion of training. Changes in 

attention bias in anxious individuals may provide some further treatment courses concerned with 

altering biased attention.  

The observed functional connectivity abnormalities may help psychologists, therapists, 

and other professionals recognize the functional importance of specific cues, both explicit and 

implicit, for their clients with anxiety or other varying clinical disorders. Looking away from, or 
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diverting attention away from, or preferring certain stimuli (attention bias) is likely to reduce 

threat for a social-phobic patient because it makes it more difficult for other people to engage the 

patient in a conversation and thus provides a psychological escape (or relief) for the patient (see 

Chen et al., 2002; Mobini & Grant, 2007).  It is important to note that such deliberate therapeutic 

intervention can be counterproductive without proper execution, as it can engage the participant 

in both safety-seeking and avoidance behaviors—rendering such treatment as ineffective (see 

Thwaites & Freeston, 2005).  

Nonetheless, targeting attention allocation deficits in clinical populations may also grant 

clinicians with information they can utilize to elicit negative automatic thought and responses 

associated with both implicit and explicit anxiety-inducing stimuli in real-life situations. Once 

these cures provoke observable defects and symptoms that can be identified by the clinician, 

more targeted therapeutic interventions to counter these deficits and symptoms can be utilized 

and tailored to the clients. It is important to identify specific attentional preferences of the clients 

to formulate a more effective treatment plan.  

The observed attention bias deficits and resolution following ABM treatment can allow 

clinicians to better understand attention bias, but also, what may be modulating symptomology in 

their own clients. This further aids clinicians in developing treatment plans for their clients—

aiding in more beneficial outcomes. It is important to note that the observed attention bias 

changes are not limited to just anxiety disorders. Many other psychological and neurological 

disorders (i.e., attention deficit hyperactivity disorder (ADHD), schizophrenia, bipolar disorder 

(BPD), major depressive disorder (MDD), and autism spectrum disorders) exhibit some sort of 

attention bias, as well as trouble with attention allocation (Amianto et al., 2013; Lee et al., 2020; 
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Shakiba, 2014;). The findings in the current study, coupled with previous literature, may denote 

ABM a therapeutic target for clinical outcomes of disorders other than anxiety.  

Providing support for the results in the current study, there is growing evidence 

implicating the cerebellum in not only its emblematic motor, balance, and involuntary 

movements (Buckner et al., 2011; Parvizi et al., 2001); but also, its role in cognitive and 

affective processes, as well as attention modulation (Lee et al., 2020; De Smet et al., 2013; 

Moreno-Rius, 2018; Schmahmann, 2019). The functional involvement of the cerebellum in both 

psychological and neurological disorders is supported by the current study, as well as other 

functional neuroimaging studies (Clausi et al., 2017; Shakiba, 2014; Villanueva. 2012) As 

previously discussed, the cerebellum was found to be associated with not only anxiety, but also 

psychological and neurological disorders (Amianto et al., 2013; Baumann & Mattingley, 2010; 

Phillips et al., 2015; Shakiba, 2014).  

Advances in the understating of the functional role of the cerebellum provides further 

clinical implications for the etiology and symptomatology in such disorders, and may aid in 

future advances in therapeutic and pharmaceutical interventions. Future research utilizing 

varying motor and cognitive tasks in different types and subtypes of psychological and 

neurological disorders is still needed to further investigate the exact role the cerebellum has in 

the etiology and symptomatology of these disorders. 

General Limitations                                                                                                                        

The current study was not without limitations. To begin, this study lacks statistical power. 

The initial number of participants was estimated to be around 120. However, due to the COVID-

19 pandemic, as well as attrition from the study, and insufficient data for some of our 

participants, the current study had 41 participants. The COVID-19 pandemic imposed executive 
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orders to close the schools, laboratories, and imaging centers in which data was collected. Due to 

these circumstances, many post-treatment fMRIs were not collected, rendering the data for these 

participants unusable for this study. Attrition is a common limitation of multisession ABM 

studies (see Enock et al., 2014) the unfortunate reality is that at-home based ABM training has an 

even higher attrition rate, as it is administered remotely and done at-will by the participants (see 

Beard et al, 2012; Enock et al., 2014; MacLeod & Clarke, 2015).  

In line with other multi-session, at-home ABM studies, this study saw a large impact on 

data collection due to attrition, resulting in a smaller sample size. It is also important to note that 

the sample of participants used for this study was not a clinical sample; rather, participants were 

recruited if they exhibited high levels of both state and trait anxiety (although the current study 

only assessed trait anxiety). If a clinical population with clinically diagnosed anxiety was used, 

the results could be further implemented and generalized to such populations. Furthermore, there 

were restrictions as to the assessment of anxiety symptomatology due to the implementation of 

the STAI-T and STAI-S surveys. The STAI surveys are self-reported, and have been shown to be 

less effective at measuring anxiety alone; rather, it measures generalized symptomology of both 

anxiety and depression (Beck et al., 1998; Knowles & Olatunji, 2020). Other surveys, such as the 

Worry Domains Questionnaire (WDQ), should be implemented in further studies to accurately 

assess anxiety symptomatology and any subsequent changes observed. The first hypothesis may 

have been limited by only using high anxious individuals, which further limits the range of 

anxiety values assessed. Lastly, the results of the current study were limited due to the small 

significance of the observed changes. No results were significant at the pFWE < .05 level, with 

small voxel changes still noted after riding the analyses of this correction. The small observed 

changes may, in part, be due to the methodological limitations already discussed previously.  
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Future Directions  

Future studies concerned with assessing the role of the cerebellum in anxiety disorders, or 

the role of the cerebellum in attention bias, should implement more strict measures to assess 

changes. Other than implementing different methodology to assess anxiety (as mentioned 

previously), future studies would also benefit from a non-anxious control group. That is, a 

control group that does not have any reported levels of anxiety, as opposed to the anxious control 

group used in the current study. This will allow researchers to narrow in on whether observed 

effects are changes to anxiety themselves, and what changes are simply regression to the mean. 

The current study intended to implement a third rsfMRI to assess long-term modulated changes 

in the cerebellum following ABM treatment, but was unable to incorporate this due to attrition 

and the COVID-19 pandemic. Future studies should also assess any long-term rsFC changes in 

order to assess if any observed changes are short-term or long-term. Other studies implementing 

ABM treatment have reported that although participants seem eager to begin training, this 

optimism can subside, leading to high rates of attrition (Beard et al., 2012; Kuckertz et al., 2019). 

This, in part, can be attributed to the repetitive nature of a dot-probe paradigm, such as the one 

implemented in the current study. Future efforts should focus on ways to further engage 

participants in their training—hopefully resulting in less attrition.  

Furthermore, most studies concerned with the role of the cerebellum in anxiety disorders 

indicate increased functional connectivity to and from the cerebellum may have a role in the 

etiology and symptomatology; however, this hyperactivity is also observed in a wide-array of 

other psychological and neurological disorders. This may, in part, be due to the observed 

attention impairments across these disorders. However, it would be beneficial to further 

investigate which, if any, areas are contributing to specific, contrasting deficits particular to 
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anxiety. For example, comparing functional connectivity in the cerebellum during acute episodes 

of anxiety with episodes of MDD may help research efforts concerned with the role the 

cerebellum plays in each respective disorder. Further investigation into psychotherapeutic 

interventions on cerebellar function as a target of anxiety therapies is still warranted and 

necessary. In addition, future studies would benefit from investigating cerebellar functional 

connectivity across varying anxiety disorders as well as symptom clusters in each particular 

anxiety disorder. This would aid in specific therapeutic targets for each disorder, rather than a 

generalized target aimed for all anxiety disorders.  

Conclusion 

The current study found that trait anxiety is correlated with increased cerebellar-seeded 

rsFC to several key brain regions (i.e., the ACC and the thalamus). These results provide further 

evidence for the notion that the cerebellum may represent a neural correlate of the etiology and 

maintenance of anxiety. The cerebellum has vast projections across the cerebral cortex, making 

its role outside its emblematic functioning plausible. Connections to threat and affect processing 

regions from the cerebellum were linked to heightened levels of trait anxiety—supporting the 

results from previous literature. Providing evidence for the role of the cerebellum in anxiety may 

warrant further clinical efforts to target neural changes within the cerebellum. Since there is still 

little research surrounding the role of the cerebellum in anxiety disorders, future research efforts 

should target functional connectivity changes within the cerebellum in anxious and non-anxious 

populations in order to implement further understanding of its role.  

The current study also uncovered vast decreases in rsFC from the cerebellum to key brain 

regions and networks (i.e., ACC, thalamus, amygdala, hippocampus, salience network, and 

DMN). There is more research that supports the cerebellum’s role in attention deficits than in 
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anxiety, so it is plausible why the current study saw the most changes in this regard. Areas such 

as the ACC and thalamus have ample support for their role in dysregulated attention. Given the 

decreased rsFC from the cerebellum to these areas, we can speculate that the cerebellum has a 

role in modulating attention deficits. Coupled with the results of previous research, this study 

provides further evidence for the role of the cerebellum in anxiety disorders, and may extend its 

findings as evidence for the role of the cerebellum in attention-related disorders. To the 

knowledge of the author, this was the first study that investigated cerebellar-seeded rsFC as an 

outcome of ABM training in highly anxious individuals.  

The results may contribute to the wide array of new, up-and-coming literature that is 

concerned with the role of the cerebellum in neuropsychological disorders. This study 

investigated rsFC in the cerebellum prior to and following ABM training in highly anxious 

individuals. These individuals were recruited for both their preexisting attentional biases to 

threat, as well as high levels of trait anxiety in order to thoroughly investigate the effectiveness 

of ABM training. Although the observed cerebellar-seeded rsFC was not apparent utilizing the 

strict FWE correction, the vast array of cerebellar connectivity observed, specifically to threat 

and affective processing regions, may suggest underlying modulations of the cerebellum in 

support of the hypotheses.  

The results provide further notion that ABM might have the potential to reshape the 

abnormal patterns of spontaneous cerebellar-seeded brain activity in relevant neural circuits, 

which are thought to be associated with a predisposition for anxiety. The rsFC between the 

cerebellum and other brain networks and regions were regarded as mainly constituting as having 

a pivotal role in attentional control, and salience monitoring and detection, as well as anxiety 

symptomatology. Dysregulation between these brain regions and networks in anxiety disorders 
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may explain the negative bias and abnormal cognitive control and attention allocation deficit—

all of which are common in attentional bias towards threat and anxiety. Despite the limitations of 

the current study, there is enough evidence to support the role of the cerebellum as a plausible 

underlying neural substrate of anxiety disorders. Since this is not a clinical sample, rather a 

general sample of anxious individuals, further investigation into the role of the cerebellum in 

anxiety disorders should utilize clinically diagnosed individuals to generalize the effects noted 

into such populations.  
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APPENDIX A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 1. Pial surface representation of the cerebellum from superior (top left), 

anterior (bottom left), inferior (top middle), and posterior (bottom middle) views. 

Cerebellar lobules are organized into an anterior lobe (lobule I–V), a posterior lobe 

(lobule VI–IX), and a flocculonodular lobe (lobule X). Colors denote lobular 

boundaries. Flat map representation of the cerebellum is shown on the right with 

corresponding lobular labels (Brissenden & Sommers, 2019). 
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Figure 2. An example of what participants see in the ABM training application. The 

participants accuracy is displayed in the top left, whereas their progress is displayed in the top 

right.  
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Figure 3. An example of a congruent (top) trial and an incongruent (bottom trial). In 

congruent trials, the dot was on the same side as the emotional face. In incongruent trials, 

the dot is on the same side as the neutral face.  
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Figure 4. Overall attention bias (AB) score changes across groups pre and 

post training. There was a strong decrease in AB in both the control group 

and the ABM following six weeks of at-home app training. Error bars 

represent the standard deviation 
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Figure 5. Overall trait anxiety scores (assessed via the STAI) across 

groups pre and post training. There was no significant decrease in trait 

anxiety for both the control group and the ABM group following their 

six weeks of at-home app training. Error bars represent the standard 

deviation.  
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Figure 6. Cerebellar-seeded rsFC correlated with rsFC increases, which were associated with 

increased trait-anxiety. rsFC in the cerebellum (ROI seed regions: Cereb3, Cereb10, Ver45, 

Ver45, Ver45, Cereb8) correlated with trait anxiety was linked to rsFC in several areas (i.e., 

the ACC, the LOC, and the thalamus). Results displayed are an uncorrected at p < .005, 20 

voxel threshold 
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Figure 7.  Decreases in cerebellar-seeded rsFC correlated with widespread brain rsFC decreases, 

along with attention bias decreases, in the ABM training group. Decreases in rsFC in the 

cerebellum (ROI seed regions: Cereb1, Cereb2, Cereb3, Cereb45, Cereb7, Cereb 8, Cereb10, 

Ver45, Ver6, Ver8, Ver9, Ver10) correlated with a decrease in attention bias in the ABM training 

group was linked to decreases in rsFC in several areas (i.e., the ACC, the LOC, the amygdala, the 

hippocampus, and the thalamus). Results displayed at an uncorrected p < .005, 20 voxel threshold.  
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Table 1. The results from hypothesis one. Heightened trait anxiety was associated with rsFC from the 

cerebellum to several threat and emotion processing regions and networks. Most notably, there was 

cerebellar seeded rsFC associated with heightened trait-anxiety from the vermis to the ACC and the 

insular cortex.  
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Table 2. The results from hypothesis two. Decreases in attention bias in the ABM training was 

associated with vast decreased connectivity from the cerebellum to several threat and emotion 

processing regions and networks. Most notably, decreased AB in the ABM training group was 

noted from Crus I, II, and the vermis to the ACC, LOC, thalamus, amygdala, hippocampus, and 

throughout resting-state network. 
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APPENDIX B 
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APPENDIX C 
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APPENDIX D 
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APPENDIX E 

 

 

Inclusion/ Exclusion Check List: 

 

           1) Are you between 18 & 42 years of age? 

 

 a. Participant responds ‘No’: Exclusion 

 

 b. Participant responds ‘Yes’: Inclusion 

 

           2) Do you have normal or corrected (i.e., contacts or glasses) to normal vision? 

 

 a. Participant responds ‘No’: Exclusion 

 

 b. Participant responds ‘Yes’: Inclusion 

 

           3) Are you currently seeking psychological treatment? 

 

  a. Participant responds ‘No’: Inclusion 

 

 b. Participant responds ‘Yes’: Exclusion 

 

            4) Do you have any metal in your body that cannot be removed (e.g., shrapnel, 

pacemaker, permanent  

                  retainer)? 

 

 a. Participant responds ‘No’: Inclusion 

 

  b. Participant responds ‘Yes’: Exclusion 

 

             5) Do you currently have a neurological disorder? 

 

 a. Participant responds ‘No’: Inclusion 

 

 b. Participant responds ‘Yes’: Exclusion 

 

             6) Have you ever had a head injury or lost consciousness due to injury? 

 

 a. Participant responds ‘No’: Inclusion 

 

 b. Participant responds ‘Yes’: Exclusion 

 

              7) Are you currently on any medications? If yes, which medications? 

 

 a. Participant responds ‘No’: Inclusion 
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 b. Participant responds ‘Yes’: The medications will be reviewed; 

any psychoactive medications will result in exclusion, other 

medications (e.g., birth control) will result in inclusion 

 

             8) Do you get anxious when in enclosed/tight spaces (i.e., are you claustrophobic)? 

 

 a. Participant responds ‘No’: Inclusion 

 

 b. Participant responds ‘Yes’: Exclusion 

 

             9) If female, are you currently pregnant? 

 

 a. Participant responds ‘No’: Inclusion 

 

 b. Participant responds ‘Yes’: Exclusion 
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APPENDIX F 
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APPENDIX G 

 

Protocols 

 

Screening Protocol All screening will occur in person in the lab. 

 

Greet & Welcome the Participant – Get their information onto the sheet of paper 

 

1. Seat and give the participant the consent form and allow them time to read it over. 

 

a. While they read it over, enter their data into the computer program and start up the testing 

computer. 

 

b. Once they are finished with the consent form, ask them if they have any questions and if they 

would like a copy of the consent form. 

 

c. Sign their consent form and keep the signed copy. File it away. 

 

d. Remind the participant that they are volunteering to participate in the study and they can leave 

any time without penalty. 

 

2. Measure the participant’s head circumference and note this in the spreadsheet on the google 

team drive. 

 

3. Seat the participant 59 cm from the screen. ASK them to TURN OFF or SILENCE their 

CELL PHONES. 

 

a. Ask if it is comfortable, and give them the following instructions: 

 

Dot-Probe Task: Each trial of the experiment will start with a small ‘+’ (plus sign) in the center 

of the screen. At all times keep your eyes fixated on the plus sign. After an initial period of 

fixation two stimuli will be briefly presented: one on each side of the screen. After these, stimuli 

disappear. A small dot will appear either on the left or on the right side of the screen. Your task 

is to locate this dot: left or right. To do this, use your right hand. Use your right index finger on 

the Red button on the keyboard to indicate left-sided target dots. Use your right middle finger on 

the Green button on the keyboard to indicate right-sided target dots. AS SOON AS YOU 

LOCATE THE DOT MAKE A RESPONSE. IT IS IMPORTANT THAT YOU RESPOND AS 

QUICKLY AND ACCURATELY AS POSSIBLE. All responses are recorded anonymously. 

During the testing session we will not be actively monitoring your responses. DO YOU HAVE 

ANY QUESTIONS? 

 

TO QUALIFY FOR INCLUSION IN THE REMAINDER OF THE STUDY THE 

PARTICIPANT MUST HAVE AN INCONGRUENT – CONGRUENT DIFFERENCE SCORE 

≥ 7ms [red scores: included; white scores: excluded]. To end this experiment after you record the 

difference score press “q” on the keyboard 
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4. After the experiment, administer the computerized STAI-T Questionnaire, and ask again if 

they have any questions? 

 

TO QUALIFY FOR INCLUSION IN THE REMAINDER OF THE STUDY THE 

PARTICIPANT MUST HAVE A TRAIT ANXIETY SCORE ≥ 40 [if the color of the scores are 

red]. 

 

5. After the STAI, administer the DASS: “please read the instruction very carefully”. When they 

complete the DASS, ask participant to fill-in the CERQ. 

 

 6. Check to see if the app works on their phone. Enter Participant # -1 (note the negative sign) 

and Pin # 1941. This will allow you to access the app as an administrator. 

 

a. Perform these checks to the participant’s phone to make sure the app is compatible with the 

participant’s phone: 

 

i.Does the phone have the ability to provide a website link to the homescreen of the phone? 

(NOTE: Enter Participant # -1 and PIN from the website before adding the app to the homepage) 

 

1. Use safari for iPhones, Chrome/Firefox for Android 

 

ii.Once the APP is on the homepage: 

 

1. Are you able to enter values? 

 

2. Does it have the sensitivity to select different answers on the PANAS? (This is in the very 

beginning pertaining to the words that relate to how they are feeling.) 

 

3. Are you able to provide reaction time responses that fall within the “good” range? 

 

a. If functionality is slow, the phone might be not up to date with its current operating system. 

Ask the participant to update their phone. 

 

4. Does the phone automatically rotate to landscape mode as well as take up the entirety of the 

screen? 

 

b. After checking the compatibility of the participant’s phone, enter cabinlab.net/#/clear into the 

browser. This will reset the participant number and remove administrator access. Remove icon 

from the participant’s home screen at this time. 

 

7. Statements regarding further participation and additional steps. Read the correct statement to 

the participant based on their screening results. 

 

When they meet the inclusion criteria... 
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(1)read the following statement “(their name) you've met the inclusion criteria! We would like to 

schedule your EEG and MRI sessions at this time. We also need to take a measurement of your 

head size to determine the appropriate EEG cap for the EEG session.” 

 

(2)Record their head size (Do not schedule more than 3 EEG sessions of the same cap size on the 

same day). Work to schedule their next session(s). Note, that it will be important to also 

tentatively schedule their post-training session(s). This will allow us to determine if they will be 

in town and if necessary, they can make arrangements to their schedule. Note that the post 

training session will include the STAI, dot-probe, & EEG measures in one session (probably 

about 1.5-2hr as well as a separate MRI session). If the participant cannot schedule their 

session(s) at this time ask them: 

 

“Please get back to us with your availability within 24 hours (24hrs for the pre-training sessions, 

post-training as soon as they can)” 

 

Also, remind the participant: 

 

“When we schedule your EEG session please arrive with washed hair and no makeup. This 

includes all types of hair gel or product and all face makeup. Thank you!” 

 

(May need to also reiterate when we send a reminder of when they are completing EEG). 

 

(3)Personal Data Needs to be collected and linked to the participant ID. This should be kept in a 

password protected spreadsheet in the CABIN lab (Mac:). Personally identifiable information 

will be collected in order to create de-identified global unique identifiers (GUIDs) on the NIMH 

Data Archive (NDA), which allows for the linkage of data across multiple NDA datasets. Data to 

be collected includes: 

 

a.Full legal name at birth (as it appears on their birth certificate) 

 

ii.e., first, middle, & last name are all needed 

 

ii.no initials or nicknames/abbreviated names 

 

b. date of birth 

 

c. City/municipality of birth 

 

d. Sex (at birth) 

 

When they do NOT met the inclusion criteria.. 

 

Based on our screening criteria, you do not match with some of the features we are looking for 

and therefore you will not be involved in further experiments. Please notice that this does not 

mean you had a bad performance during the screening. We thank you for your interest and 

participation in the study. If you have any questions or concerns please contact either Dr. Fang 
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(lfang@nmu.edu) or Dr. Carlson (joshcarl@nmu.edu). If you feel that you have the need for 

counseling please contact the NMU counseling center at 906-227-2980, they have free services 

for students. 
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APPENDIX H 

 

 

Consent Form 

 

NORTHERN MICHIGAN UNIVERSITY 

INFORMED CONSENT STATEMENT 

 

Title of Project: Characteristics of Attention Bias Modification 

 

Investigators: Dr. Joshua M. Carlson (Assistant Professor, Department of Psychology, NMU) 

 

You are invited to participate in our research study. The purpose of this study is to better 

understand the neural characteristics of attentional behavior. A research assistant at Northern 

Michigan University will be conducting the study under the advisory of Dr. Joshua M. Carlson. 

 

INFORMATION 

 

120 people will participate in the full study, which will consist of 2 experimental sessions at 

NMU lasting no longer than 2 hours each. We will also collect MRI scans of your brain during 

two separate sessions: 1 before and 1 after training. These sessions will occur at UP Health 

System – Marquette and will last 2030min in length. You will also complete at home training 

sessions on your Phone over the course of 6 weeks. You will receive online survey at 3 and 6 

months after the last lab session as follow-up feedback of the study. 

 

Participants will be males or females between the ages of 18 and 42 with normal or corrected to 

normal vision (i.e., by wearing contacts or glasses). After reading this document and agreeing to 

participate in this study, we will begin the experiment. 

 

Screening First, you will complete an MRI screening form to determine eligibility for MRI 

testing. You will then complete an attentional probe task on a computer. Each trial will start with 

a white fixation cue (+) centered on a black background. You should always maintain fixation in 

this cue. Then two stimuli will be briefly presented simultaneously on the left and right side of 

the screen. Afterward, a target stimulus will be presented either on the left or the right side of the 

screen. Your goal is to identify the location of the target stimulus as quickly as possible speed is 

very important in this experiment. After completing the attention task, you will fill out several 

brief questionnaires assessing your personality type. 

 

We will go over the task instructions in detail prior to testing and answer any questions you 

might have about these instructions. 

 

Full participation in the laboratory, MRI, and training sessions (described below) will be based 

on your responses to the measures obtained during the screening session. If you do not qualify 

for full participation, you will receive partial compensation for the screening portion (see 

compensation section below). 
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Lab Session  

During the laboratory sessions, brain activity will be recorded with sensors placed on your head. 

The sensors to be used to record your brain activity will be applied in the following manner. 

First, the circumference of your head will be measured in order to determine your cap 

size/placement. The sensor cap may be soaked in a salt solution, allowed to briefly dry, and then 

will be placed on your head. A computer connected to the cap will be recording your brain 

activity while performing an attention task. During the task, a Research Assistant will oversee 

the study procedures from a control room and will be able to observe you while you perform the 

task. If for any reason you need assistance, you can signal to the Research Assistant for 

assistance. 

 

MRI Session  

You will also receive an MRI of your brain during two separate sessions: 1 before and 1 after 

training. These sessions will occur at UP Health System – Marquette and will last 20-30min in 

length. 

 

UP Health System – Marquette will be providing a contractual service to researchers from 

Northern Michigan University, which allows the purchase of time on the MRI scanner solely for 

the purposes of this study. UP Health System – Marquette is in no way involved with reviewing 

or examining the MRI data collected in this study for research or medical purposes. Only the 

researchers from Northern Michigan University lead by Dr. Carlson will have access to and 

analyze the MRIs obtained in this study. The researchers from Northern Michigan University are 

in no way qualified to make medical assessments about the MRIs collected in the study. The 

MRIs collected in this study will be anonymously correlated with the measures obtained in this 

study for research purposes. Thus, UP Health System – Marquette is not involved with the 

research or the MRIs collected in this study, and the procedures performed in this experiment are 

not medically diagnostic in nature. Nevertheless, the collection of MRI scans has the potential to 

detect incidental findings. That is, abnormalities identified during the analysis of the MRIs that 

could indicate potential health concerns for the participant that are beyond the aims of the study. 

For example, MRI scans could uncover possible evidence of prior stroke, tumors, or aneurysm. 

Most incidental findings are minor abnormalities that are common, pose no clinical risk, and 

require no medical referral. For example, a largescale 2009 study in the British Medical Journal 

found the overall rate of incidental findings in brain MRIs to be around 3%. However, serious 

incidental findings that require medical referral are much rarer (< 1%). If such an incidental 

finding is detected, the principal investigator will contact you to discuss what the finding 

possibly means. You will then be referred to your medical doctor for follow-up. You will not 

have access to your individual MRI results, but at the conclusion of the study, if interested, you 

can obtain the group-level results of the study, which will be published in an academic journal. 

 

Training  

You will complete this same attention task described above during at home training sessions over 

the course of 6 weeks. After the at home portion of the experiment you will return to the lab on 

NMU and complete a final laboratory session. 

 

Follow-up 
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You will receive online survey assessing your personality and emotion regulation at 3 and 6 

months after the last lab session. You can answer all the items online within no more than 15 

minutes. 

 

RISKS 

 

Risks associated with participation in this study are considered minimal. If you experience any 

discomfort with the neuroimaging cap, please notify the experimenter so that adjustments can be 

made to improve your 

 

78 comfort. There is a slight risk of skin irritation due to the salt solution the cap is soaked in. If 

this occurs, the cap will be removed immediately, and facilities are available for the skin to be 

rinsed. Although it is unlikely, some of the survey questions could elicit unexpected thoughts or 

feelings. If you ever feel uncomfortably anxious or depressed, the NMU Counseling Center 

(906-227-2980) has free services for NMU students. 

 

The following risks are related to MRI: 

 

The MRI scanner attracts certain metals; therefore, if you have any metal in your body (such as 

pacemakers, infusion pumps, aneurysm clips, metal prostheses, joints, rods, or plates) you will 

be excluded from the study. 

You may feel anxious about the tight space within the MRI machine. You can stop the study at 

any 

 

The MRI produces a loud noise throughout the MRI session that some people find 

uncomfortable. We will minimize your perception of this noise by using earphones to attenuate 

outside noise. 

 

You cannot be pregnant or breastfeeding to participate in this study. MRI may not be safe during 

pregnancy. Therefore, if you are pregnant, you will be excluded from the study. 

 

BENEFITS 

 

There are no direct benefits to the participants other than research experience and monetary 

compensation. The results of this experiment will significantly contribute to our understanding of 

human attentional behavior. 

 

CONFIDENTIALITY 

 

The data collected from participants will be stored on a computer in a secure lab using an 

unidentifiable subject number. This consent form with your name will be the only record of your 

participating in this research. There will be no link between your name and your performance 

data. The content form will be stored in a locked filing cabinet in a secure lab location. 

 

COMPENSATION 

 



  114 

You will receive $65 for fully completing this research study. If you choose not to participate in 

this study, there is no penalty. Participants not meeting screening criteria for full participation 

will receive $10 for partial participation. Participants who withdraw from the study before 

completion will also receive $10 for partial participation. 

 

CONTACT 

 

79 If you have questions at any time about the study or the procedures, or if you experience 

adverse effects as a result of participating in this study, you may contact the principal 

investigator, Dr. Joshua M. Carlson (joshcarl@nmu.edu and 906-227-2798) in the Department of 

Psychology, Northern Michigan University. This project has been reviewed and approved by the 

University Research Ethics Board at Northern Michigan University. If you feel you have not 

been treated according to the descriptions in this form, or your rights as a participant in research 

have been violated during the course of this project, you may contact the IRB chair Derek 

Anderson (dereande@nmu.edu) and NMU’s IRB administrator Rob Winn (rwinn@nmu.edu). 

 

PARTICIPATION 

 

Your participation in this study is voluntary; you may decline to participate without penalty. If 

you decide to participate, you may withdraw from the study at any time without penalty and 

without loss of benefits to which you are otherwise entitled. If you withdraw from the study 

before data collection is completed your data (if part of data is collected) will be returned to you 

or destroyed by either Dr. Carlson or the experimenter. You have the right to omit any 

question(s)/procedure(s) you choose. 

 

DATA SHARING AND PUBLICATION 

 

De-identifiable data obtained from this study will be broadly shared on the National Institute of 

Mental Health (NIMH) Data Archive. Shared data will not contain your name or any other 

personally identifiable information. The goal of the NIMH Data Archive is to promote rapid 

scientific progress by making the study data available to other researchers in the field. The 

results of the research may be published in journal articles, and other scientific conferences and 

university colloquia. If you wish, the results of this study will be e-mailed to you. 

 

CONSENT 

 

I have read and understand the above information. I have received a copy of this form. I agree to 

participate in this study. 

 

Participant's signature_____________________ email _____________________ Date 

_________________ 

 

Age_________________ Gender_____________________ 

Investigator's signature____________________________________  Date ________________ 
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APPENDIX I 

 

At the beginning of the ABM: Instructions provided to participants  

Attentional biases in anxiety: People with stress and anxiety tend to focus their attention on 

negative information and interpret situations negatively. This tendency is understandable given 

the life circumstances that may have caused this stress in the first place. However, this tendency 

to focus on the negative can also cause problems because it seems to be an automatic habit. It is 

very difficult to change this habit consciously by trying to focus your attention on neutral or 

positive information. The app training task is designed to combat this habit. The task itself is 

very repetitive and easy, but it may help you change the habit of focusing on negative 

information precisely because of the repeated presentations (Beard, Weisberg, & Primack, 2012). 

 

At-home training app: The task is similar to the one you completed in the lab. Each trial of the 

session will start with a small ‘+’ (plus sign) in the center of the screen. At all times, keep your 

eyes fixated on the plus sign. After an initial period of fixation, two stimuli will be briefly 

presented: one on each side of the screen. After these stimuli disappear: a small dot will appear 

either on the left or on the right side of the screen. Your task is to locate this dot as quickly as 

possible. Each test should take between 5-10 minutes. 

 

Concentration is very important when you are building a new habit. Therefore, please take the 

training task in a quiet distraction free environment. So, while doing the task, please do not listen 

to music, watch videos, and please silence all notifications in other apps. In other words please 

put your phone on do not disturb. To acquire a habit in a correct form, please respond as quickly 

and accurately as possible. Over the six-week period, your goal is to decrease your response time 

to the location of the dot. You may not see a decrease in reaction time from each session to the 

next, but the overall trend from start to finish should be a decrease in reaction time. Remember 

that the study requires you to complete 6 sessions per week (no more than 3 trials in a single day) 

for a total of 6 weeks. You are also encouraged to discover any clues of the task or use any 

strategies that could help you perform better. 
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