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Abstract

It is well known that an irreducible algebraic curve is rational (i.e. parametric)
if and only if its genus is zero. In this paper, given a tolerance ¢ > 0 and an
e-irreducible algebraic affine plane curve C of proper degree d, we introduce the
notion of e-rationality, and we provide an algorithm to parametrize approximately
affine e-rational plane curves by means of linear systems of (d — 2)-degree curves.
The algorithm outputs a rational parametrization of a rational curve C of degree
d which has the same points at infinity as C. Moreover, although we do not
provide a theoretical analysis, our empirical analysis shows that C and C are
close in practice.

*Authors supported by the Spanish “Ministerio de Ciencia e Innovacién” under the Project
MTM2008-04699-C03-01.



Introduction

Let O* be an algebraic or geometric object that satisfies a property 8 that implies
the existence of certain associated objects OF; for instance, ©* might be a polynomial,
B the fact of being reducible and O} the irreducible factors. Computer algebra tech-
niques provide, for a wide class of situations, algorithms to check 3, and to compute
exactly the associated objects Of. However, in many practical applications, we receive
a perturbation O of O* where B does not hold anymore neither the associated objects
OF exist. The problem, then, consists in computing a new object O, close to £ and
satisfying 93, as well as the associated objects O; to ©. We call approximate to an
algorithm solving a problem of the above type. Here, the notion of “closeness” depends
in general on the particular problem that one is solving.

One can find in the literature approximate algorithms for computing geds (see [5],
[9], [17]), factoring polynomials (see [6], [12], [16], [23]), etc. For algebraic varieties
there also exist approximate solutions: see [7], [8] for the implicitization problem, in
[10] the numerical condition of implicitly given algebraic curves and surfaces has been
analyzed, and see [3], [11], [13], [18], [19] where the parametrization questions are
treated.

In this paper we consider the approximate parametrization problem for affine plane
algebraic curves. That is, with the above terminology, 9* is an affine plane curve, B is
the fact of being rational, and O is a rational parametrization of ©*. So, the problem
is stated as follows: we are given an affine curve (say that it is a perturbation of a
rational curve) and we want to compute a rational parametrization of a rational affine
curve near it.

In [18] and [19] the approximate parametrization problem is solved for the special
case of affine plane curves and affine surfaces being a perturbation of a monomial curve
and

surface, respectively. In both papers, the basic tool is the use of e-points (see also
[20]). More precisely, given a tolerance € > 0, in [18], the parametrization problem is
solved for the case of affine plane curves having an e-singularity of maximum multi-
plicity, and in [19] the problem is solved for affine surfaces having also an e-singularity
of maximum multiplicity. The basic idea was to use a pencil of lines through the
e-singularity and, hence, it was solved working as in the exact case for monomial vari-
eties.

In this paper, we generalize the ideas in [18] to the case of d—degree affine plane
curves with d different points at infinity. For this purpose, the first obstacle is to
associate suitably the different e-singularities. This leads to the notion of cluster.
Then, we introduce the notion of (affine) e-rationality, and we provide an algorithm to
parametrize approximately e-rational. The idea of the algorithm is to work with linear
systems of curves of degree d — 2. This system plays the role of the linear system of



adjoint curves in the exact parametrization algorithm. In addition, we prove that the
degree of the output rational curve is the degree of the input one, and that both curves
have the same points at infinity, and hence with the same real asymptotes.

This type of approximated problems is applicable by itself since it faces symbolic
computation to real world problems. In addition, providing parametric representations
of algebraic geometric objects helps with achieving computations and further manip-
ulations of the object. This is of special interest in the field of CAGD. For instance
when considering surface-surface intersection or, in particular, when performing planar
sections. In Example 5.3, for a given surface, we show how our algorithm detects pla-
nar intersections that, although are not rational, are e-rational. Therefore we provide
rational parametrizations to deal with these (non-rational) planar curve intersections.

Associated to this type of problems appears, as a natural question, the closeness
analysis between the input and output curves of the algorithm. In our case, this
closeness notion is given by the Hausdorff distance (see Section 6). That is, we say
that the input and output curves are close if their Hausdorf distance (as real curves)
is small related to the tolerance. As we have stated above, both curves have the same
points at infinity. This property, jointly with the hypothesis that the input curve
has d different points at infinity, ensures that the Hausdorff distance between them
is finite (see Lemma 6.1). In addition to the distance measure between input and
output curves, one can go an step further and consider an additional question, namely
whether the algorithm returns the best (in the sense of the closest to the input) solution.
For instance, in our case, we can identify every projective plane curve, by means of
its coefficients, with a point on a projective space. Then, for d sufficiently big, the
rational curves form a sub-variety VW of this projective space. Therefore, one can
consider the computation of an element in W minimizing the (Hausdorff) distance to
the input curve. Unfortunately we have not been able to complete a theoretical analysis
of the distance, nor on the minimization of the solution. We believe that, although
interesting, both problems are very hard and we leave them as future research. Instead,
we analyze two particular examples (a bounded and a non-bounded curve), where we
describe a theoretical method to deal with the problem and where we estimate the
distance. Every example we have tried shows that the curves are close, and it allows
us to think about a theoretical treatment of this fact as a future project.

The paper is structured as follows. In Section 1 we recall the main notions and
properties on e-singularities. Section 2 is devoted to recall the main ideas of the exact
parametrization algorithm for curves. In Section 3 we develop the idea of cluster
and we introduce the notion of e-rationality. In Section 4 we derive the approximate
algorithm, as well as the main properties of the output curve. In Section 5 we illustrate
the algorithm through several examples, and in Section 6 we empirically analyze the
error.

Throughout this paper, we use the following terminology. || - | and | - |2 denote



the polynomial co-norm and the usual unitary norm in C?, respectively. |- | denotes
the module in C. The partial derivatives of a polynomial ¢ € C[z,y| are denoted

by ¢ = ;;gjgy where v = (i,j) € N? we assume that ¢g° = g. Moreover, for

v = (i,7) €N% |V | =i+j. Also, &5 = (1,0), and e; = (0,1).

In addition, we use the following general assumptions. A tolerance ¢ is fixed
such that 0 < ¢ < 1. C is an affine real plane algebraic curve over C of proper
degree d > 0 (see Def. 1.1), with d different points at infinity, not passing through
(1:0:0),(0:1:0), and defined by an e-irreducible polynomial f(z,y) € R[z,y| ; that
is f can not be expressed as f(x,y) = g(x,y)h(z,y) + E(x,y) where h,g,E € Clx,y]
and ||E(x,y)|| < €||f(z,y)| (see [6], [14]). We denote by C" the projective closure of
C. Let us mention that the condition (1 : 0 : 0),(0:1:0) & C" can be avoided by
performing a suitable affine orthogonal linear change of coordinates.

1 Preliminaries on e-points

Our fundamental technique to deal with the approximate parametrization problem is
the use of e-points. The notion of e—point of an algebraic variety was introduced by
the authors (see [18], [19], [20]) as a generalization of the notion of approximate root of
a univariate polynomial. In this section, we briefly summarize some previous notions
introduced in [18] and [19], and geometric properties obtained in [20]. We start with
the notion of proper degree.

Definition 1.1. We say that a polynomial g € C[x,y| has proper degree ¢ if the total
degree of g is £, and 3 ¥ € N2, with | 7’| = ¢, such that |g” | > €/|g]|-

We say that an algebraic plane curve has proper degree ¢ if its defining polynomial
has proper degree /. O

The notion of e—point is as follows.
Definition 1.2. P € C? is an e—(affine) point of C if |f(P)| < €||f]|. O

In this situation, we introduce the notion of e-singularity, pure e-singularity, and
e-ramification point.

Definition 1.3. Let P € €2 be an e point of C.

(i) The e-multiplicity of P on C (we denote it by mult.(P,C)) is the smallest natural
number r € N satisfying that

(1) V¥ e N2, such that 0 < | 7’| < r — 1, it holds that |7 (P)| < €||f]|,
(2) 37 € N2, with | 7’| = r, such that [f7 (P)| > €| f]|.

(ii) P is an e—(affine) simple point of C if mult.(P,C) = 1; otherwise, P is an e—(affine)
singularity of C.



(iii) P is a k-pure e=singularity of C, with k£ € {1,2}, if mult,(P,C) > 1 and
| frutteBOE(P)| > €| .

(iv) P is an e—(affine) ramification point of C if mult.(P,C) = 1, and either |f% (P)| <
ellf Il or [f2(P)| < el f1]- =

Note that, since C has proper degree, 0 < mult(P,C) < mult (P,C) < deg(C),
where mult(P,C) denotes the “exact” multiplicity of P on C. For instance, the origin
has exact multiplicity 1, and e-multiplicity 2, on the curve defined by sz + 3 + g2
In the exact case, if C is irreducible, mult(P,C) < deg(C). Thus one may expect that
in the approximate case, if C is e-irreducible, then mult.(P,C) < deg(C). Although
this is the case in all the examples we have tried, we have not been able to prove
it. So in this paper, when computing e-multiplicities, we also consider the possibility

mult.(P,C) = deg(C).
Definition 1.4. Let P be an e-point of C and r = mult.(P,C). If P is k—pure, with
k € {1,2}, we define the k-weight of P as

oL S

Welghtk(P) = max { W

i=0,...,r—1

We define the weight of P, denoted by weight(P), as max{weight,(P), weight,((P)}, if
P is pure in both directions, and as the corresponding k-weight otherwise. O

The following rational function, introduced in [24], will be used in this development:

1 z(1-9z) 322
Rout(r) = 2 7 2(143z)  (1+3z)3°

2 Preliminaries on Symbolic Parametrization

In this section, we briefly recall the symbolic parametrization algorithm for rational
plane algebraic curves of degree d > 2 (note that lines and conics can be trivially
parametrized by lines) based on (d — 2) adjoint curves; for further details see [26]. For
this purpose, throughout this section we assume that C is rational (i.e. its genus is
zero). In addition, taking into account our requirements in Section 4 and for simplicity
sake, we assume in this section that all singularities are affine and ordinary. Again, for
a complete description see [26].

The idea is to use a linear system of curves such that for almost every curve in this
system, all its intersections with C”, except one, are predetermined; recall that C" is the
projective closure of C. Moreover, the set of all these intersection points is the same one
for every curve in the system, and the points in this set are called the “base points”.
Thus, if one computes the intersection points of C"* with a generic representative of the
system, the expression of the unknown intersection point gives the parametrization of
the curve in terms of the parameter defining the linear system.



More precisely, let Hy_o be the linear system of adjoint curves to C* of degree d — 2.
That is, Hq_o is the linear system of curves of degree d — 2 having each r—fold of C" as a
base point of multiplicity 7 —1; i.e. as a point of multiplicity at least r—1. In particular
it implies that the multiplicity of intersection of a curve in Hy_o and C" at a base point
of multiplicity r — 1 is at least r(r — 1). Thus, using that the genus of C is zero, and
taking into account Bézout’s Theorem, one deduces that d — 2 intersections of C* and a
generic element in Hy_o are not predetermined. In this situation, one may take (d — 3)
simple points on C", and determine the 1-dimensional linear subsystem H , of Hg o
obtained when these simple points are required to be base points of multiplicity 1.
In this way, the number of predetermined intersections (counted with multiplicity) is
(d—1)(d—2)+ (d — 3), i.e. only one intersection point is missing. Thus, computing
this free intersection one finds a rational parametrization of C". Summarizing these
ideas one has the following process:

(1) Compute the singularities of C" as well as their multiplicities (recall that we have
assumed that all singularities are affine and ordinary).

(2) Determine the linear system Hy_o of adjoint curves of degree (d — 2) to C".
(3) Compute d — 3 different simple points on C".

(4) Determine the linear subsystem H} , of Hy_o by requiring that every simple
points in Step 3 is a base point of multiplicity one.

(5) Compute the free intersection point of H* , and C".

Let us make a comment on how to computationally perform the steps in the above
process. Step (1) can be performed, for instance, using resultants. In Step (2), one
considers a homogeneous polynomial H(x,y, z) of degree (d — 2) with undetermined
coefficients. Now, for each singular point P of multiplicity r one requires that H and
all its partial derivatives till order (r—1) vanish at P. This generates a linear system of
equations in the undetermined coefficients of H. Solving it, and substituting in H, we
get the defining polynomial of Hy_o; let us call it again H. Step (3) may be performed
by intersecting C" with lines (see [26] for advanced approaches); although it is not
necessary, looking for the parallelism with the reasoning in Section 4, we take affine
simple points. Step (4) can be approached as Step (2), i.e. requiring that H vanishes
at each simple point, solving the provided linear system and substituting the solution
in H; let H*(t, z,y, z) be the defining polynomial of H},_, (note that dim(H} ,) =1) .
Finally, let us deal with Step (5). For this purpose, let {Q; := (¢;1: gi2 : 1) }i=1,s be
the singularities and r; the multiplicity of Q;. Also, let {P; := (p;1 : pi2: 1)}, a—3 be
the simple points determined in Step (3). Then, the free intersection point is obtained
by computing the primitive part, w.r.t. ¢, of the resultants of H*(¢,z,y,1) and f(x,y)
with respect to x and y, respectively. Indeed, it holds that (see [22])

Sl('r?t) = Resy(H*(t7$a Y, 1)7 f(xay)) = Hf:l(x - qi,1>ri(ri_1) ng_g(x _pi,1>M1(x7t>7
S2<y7 t) = Resw(H*(t7 z, y> 1)7 f(xv y)) = Hf:l(y - qi,2>”(ri_1) sz_l (y - pi,Q)MQ(yv t)?
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where deg, (M;) = deg,(Ms) = 1. Therefore, the parametrization is the solution in
{.CIZ', y} of {Ml(xvt) = OJ M2<y7t) = O}

3 e-Rational Curves

The main goal of this section is to provide an alternative definition of rational curve
for the approximate frame; namely, the concept of e-rationality. This notion is related
to the e-singularities and their e-multiplicity. As explained in the introduction, we
assume that we are given a perturbation of a rational curve. For a given singularity
of this rational curve the effect of the perturbation would be the “explosion” generat-
ing a set of e-singularities, with different e-multiplicities, of the curve we work with.
Therefore, differently from the exact case, we will have in general more e-singularities
than expected, and their nature indicates that they need to be associated; we will solve
this difficulty introducing a suitable concept of cluster. For this purpose, we faced two
main difficulties. On one hand, deciding how to associate e-singularities to give an
appropriate definition of cluster and on the other computing the e-multiplicity of a
cluster.

To determine the e—singula_r)ities, we compute numerically the set Sz of solutions of
the algebraic system 7 = {f° (z,y) = 0, fe_f(a:,y) =0, fe_f(a:,y) = 0}. Note that f is
irreducible, and Llence 7T has finitely many solutions. Now, for each P € S7, we check
whether max{|f? (P)|, |f&(P)|,|fZ(P)|} < €| f||. Let S; be the subset of Sy satisfying
this inequality. Given P € &y, the computation of mult.(P,C). can be obviously done
by substituting P at the corresponding partial derivatives and checking the conditions
in Def. 1.3 (1). However, for each e-point P there exists an open disk centered at P
consisting of e-points of e-multiplicity at least mult.(P,C) (see Lemma 3 in [18]). So,
an small perturbation of P may produce a different answer for the e-multiplicity. We
are indeed interested in assigning the maximum possible e-multiplicity to the e-points
we associate in a cluster (as will be defined later). The proof of Lemma 3 in [1§]
shows how to detect the radius of one of these open disks, so one may try to estimate
the maximum e-multiplicity at the disk. Nevertheless, in practice, this is unfeasible.
Instead, we propose a different strategy that for practical purposes increases the chances
of assigning the appropriate e-multiplicity to a defined cluster. Unfortunately it does
not ensure the achievement of the maximum e-multiplicity on the set of e-singularities
obtained.

More precisely, for each k € {2,...,d — 1}, we take uy,...,u; € N}, with 2 < s <
k +1 (in practice s = 2) such that for all i, |u| = k and ged(f™,..., f%) = 1, and
we solve numerically {f“_1> =0,... ,fﬁs> = 0}. Let Ay be the set of solutions. Then, for
ke {2,...,d— 1} we consider the set (note that S; is defined above)

Sy ={P € A,/ |f"(P)| <€ f|| V& € N* with |&| < k}.



If for a given k and for all s it holds that gcd(f’Tf, cee f“-S)) # 1, we take S = (). Finally
we consider the set
S=Js

k=1

We explain next how to identify the e-singularities in S, the cluster construction that
will lead us to the concept of e-rationality. In the identification process, having e-
singularities in Sy, for higher values of k, will increase the chances of detecting the
e-multiplicity of the cluster.

Definition 3.1. The set S, introduced above, is called the e-(affine)-singular locus of
C. We denote it by Sing (C). i

Example 3.2. Let ¢ = 0.001 and let C be defined by f(z,y) = 2%y + y*x + 2 + §2* +
€y + 5. Then Sing (C) = Sy U Sy U Ss where

S = {P1 (0.02131893405 + 0.009609927603:, 0.02442855631 + 0.11710045841),
= (0.004713033954 + 0.023553236177, —0.07491796596 — 0.09032199938:),
P3 = (—0.01424770212 + 0.018188845177,0.1084633939 + 0.053152468717),
P4 = (—0.02443272919, —0.1159479025),
= (—0.01424770212 — 0.018188845177,0.1084633939 — 0.053152468711),
= (0.004713033954 — 0.023553236174, —0.07491796596 + 0.09032199938:),
= (0.02131893405 — 0.0096099276037, 0.02442855631 — 0.11710045844)},
Sy = {Pg (—0.0001666666667,0)}.
S; = 0.
Moreover, mult.(P;) = -+ - = mult.(P7;) = 2 but mult.(Fs) = 3. Note that considering
only &7 we would have not found a point with e-multiplicity 3. |

As we could check in the previous example, the difficulty appears when two (in
general more than two) e-singularities P and ) are very “close”, because somehow we
need to identify them. To approach this, first we assign a radius to each e-singularity
(see Def. 3.3); i.e. the e-singularity is seen as a closed Euclidean disk. Secondly we
associate the disks, by means of an equivalence relation (see Def. 3.5), yielding the
singularity clusters (see Def. 3.6). Finally we choose, among the finitely many points in
the cluster, a representative that maximizes the e-multiplicity and minimizes in module
the evaluation of f at the point (see Def. 3.6).

We start with the notion of radius, which is motivated by its good performance in
practice.

Definition 3.3. Let P be an e-point of C. We define its radius, and we denote it by
radius(P), as Rout(weight(P)) if P is pure and zero otherwise. O

Definition 3.4. Let A be a finite set of e—points of C. We define on A the following
binary relation: for P, () € A, we say that

PR*Q < ||P — Q|2+ | radius(P) — radius(Q) |< Rout(€).
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O

R* is reflexive and symmetric but it is not in general transitive. In order to have
an equivalence relation, we consider its transitive closure.

Definition 3.5. Let A be a finite set of e—points of C. We define on A the following
equivalence relation: for P,Q € A, we say that

PR*Q
PRQ < { or there exist P;,..., P, € A such that PR*P;,..., P, R*Q.

i
Definition 3.6. Let A be a finite set of e—points of C. For P € A we define the cluster
of P w.r.t. A as its equivalence class under R.

We say that R is a (canonical) representative of a cluster € if: R € €, for all R € €
it holds that mult.(R,C) > mult.(R’,C), and for all R’ € € such that mult.(R,C) =
mult.(R',C) it holds that |f(R)| < |f(R')]|.

We define the e-multiplicity of the cluster as the e-multiplicity of any of its canonical
representatives.

We denote a cluster by Cluster, (R, .A), where r is the e-multiplicity and R a canon-
ical representative, and by €luster,(R) when A = Sing,(C). o

The notion of cluster is based on the equivalence relation R, that is constructed from
R*. In order to motivate R*, take into account that two e-singularities are associated
if their disks are a small vibration of each other. This might be because the centers,
or the radios, or both, are a small perturbation of each other. These phenomena are
controlled in the definition of R*; the first summand in Def. 3.4 measures the vibration
of the centers and the second does it for the radios.

Finally, when we introduce the notion of canonical representative the first require-
ment is about the multiplicity, while the second is about the value of the implicit
equation at the point. With this strategy we try to increase the possibilities of achiev-
ing e-genus zero (see Def. 3.7). Of course, one might consider the contrary criterion
(i.e. first the module and second the multiplicity). Nevertheless, we do not provide
a theoretical analysis of validation for our particular criterion election, but in all our
examples the results were satisfactory.

Now, we are ready to introduce the notion of e-rationality.

Definition 3.7. If {€luster,,(P;)}i=1.. s is the cluster decomposition of Sing (C), we
say that C is e-(affine) rational if (d — 1)(d —2) — > ;_, ri(r; —1) = 0. O

Remark 3.8. Note that in the previous theoretical development we have not consid-
ered singularities (neither e-singularities) at infinity. We leave this extension of the
concept of e-rationality for further research. ]

If we apply the previous ideas to Example 3.2, with ¢ = 0.001, we get that the
8 points of Sing, (C) belong to the same cluster. So, the cluster decomposition is

9



{Clusters(Ps) = {Py,...,Ps}}. Therefore, C is e-rational; indeed, it is e-monomial,
and thus parametrizable with the techniques in [18]. We finish the section with a more
general example.

Example 3.9. Let us consider ¢ = 0.005 and the curve C of proper degree 5 defined
by the polynomial (see Fig.1):

106029 10593 .4, 43461 .3 2 17919 LB 9ULT9 4 @ 99 _
{5(4€3y) 1500 35 45200 ¢ z y , 48200 r y + G640 0900 48200 3/23? :Uy 4";6 6180 x? y
%@"%,83 xgy + 54100 y* + mx + 100 2y + 168 100 Yy’ - 48200 x® + 18200 :cy ~ 24100 2?y® +

15300 T°Y — 18300 TV — 38300 ¥ T T00-
The e-singular locus is Sing, (C) = S; U Sy U S3, where

S; = { P = (—0.9956027274 + 0.00040672238174,0.001447687187 + 0.99827775431),
P, = (1.011706789 — 0.13208741944, —1.008532436 + 0.068329493721),
P3 = (1.007458642, —1.044045331), P, = (0.9909273695, —0.9540334161),
= (1.011706789 + 0.1320874194, —1.008532436 — 0. 068329493722)
= (—0.9956027274 — 0.0004067223817i,0.001447687187 — 0.99827775431),
= (0,0)},
Sy = {Pg (1.000000001, —1.)},
S;=10.

Moreover, mult.(P;) = mult.(P) = mult(P;) = 2, and mult (P;) = mult (P,) =
mult.(Ps) = mult (F) = mult.(Fs) = 3. Furthermore, the cluster decomposition is
(see Fig. 1):

Clustery(Py) = { P},
Clustery(Py) = { P},
Clustery(Pyr) = {Pr},
Q:ZUStGTg(PS) {Pg,P4,P5,P6,P8}.

Thus, C is e-rational.

2
02-
s 2 92 O o5 08 1 12 14 X
T -4 2 2 4 6
\1/
-2
06
08

Figure 1: Left: Clusters. Right: Curve C
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4 Approximate Parametrization Algorithm

In this section, we present our approximate parametrization algorithm. For this pur-
pose, we assume that C is e-rational of proper degree d > 2 (note that for d = 1 the
problem is trivial, and for d = 2 one can apply the algorithm in [18]), and that

{Cluster,,(Q;)}iz1,.. s, where Q; := (i1 : ¢i2 ¢ 1),

is the cluster decomposition of Sing,(C). Furthermore, if possible, i.e. when there exists
a real canonical representative of the cluster, we take @); real.

In this situation, the strategy is to adapt the algorithm in Section 2 as follows. Let
C" be the projective closure of C. We consider the linear system of curves Hy_o of
degree (d — 2) given by the divisor 7 r;Q;. That is, (); is a base point of (exact)
multiplicity 7; — 1 of the linear system. Afterwards, one computes (d — 3) e sunple
affine points on C" (see below for details), and determines the linear subsystem Hd 9
of H4_o obtained by intersecting Hy_5 with the linear system of (d — 2)-degree curves
generated by the divisor Zf:_f’Pi; say that P := (p;1 @ pig : 1). If P, Q; would be
exact points and singularities, respectively, of C", then dim(ﬂ;_g) =1 (see Chap. 4 in
[26]). However, in our case, since we are working with e-points we can only ensure that
dim(H,, ,) > 1 (see Theorem 2.56 in [26]). If this dimension is strictly bigger than 1, we
can either take more e-simple points till dimension 1 is reached, or we can take an small
perturbation of the e-points such that the effective divisor "7 | r,Q; + Zf;f’ P; is in
general position (see page 49 in [26]), and hence the dimension is 1. So, we can assume
w.lo.g. that dlm(Hd ,) = 1. Let, then, H*(t,x,y, z) be the defining homogeneous
polynomial of Hd,Q.

At this point, if P, @); would be exact points and singularities, respectively, of
C, the symbolic algorithm presented in Section 2 would output the parametrization
P(t) = (pl(t) 102(15))7 where

q1(t)” g2(t)

Res, (H*(t,x,y,1), f(z,y))
[Ty = g)n D TIE (2 = pin)

o Res (e ), o)
¢@(t)y — p2(t) T, (y — i o) (i) H7;:1 (y — pi,2>‘

However, in our case, P;, (); are not exact points, but e-points. So these rational
functions are not, in general, polynomials. Nevertheless, considering if necessary a
small perturbation of H*, the quotient of the division of each numerator by its de-
nominator is linear as polynomial in either x or y. Then, the idea is to determine
the parametrization from these linear quotients. For this purpose, one may need to
perform two perturbations, both affecting H*. The first one ensures that the degree in
the resultants is the expected one, namely d(d — 2), and hence it controls the degree of

q(t)r —pi(t) =

11



the output curve. The second guarantees that the output is indeed a parametrization;
i.e. that not both components are constants. Note that, in the exact case, these two
facts are provided by the theory. In this paper, we deal with the first perturbation
leaving as degenerated cases those curves requiring the second perturbation. In [21],
one can see a complete analysis of the second degeneration.

More precisely, let H*(t,x,y,z) = Hy(z,y,z) + t Hy(x,y,2), and let D; be the
projective curve defined by H;, i = 1,2. We recall that (1 :0:0),(0:1:0) ¢ Ch.
Now, we need to ensure that either C*, D; or C", D, do not have common points at
infinity. If this is not the case, let {Ry,..., R} be the points of C at infinity and
K(p1,p2,7,9y,2) = pra®=2 + poy?=2, where p; are parameters. Then, we consider in C?
the union L of the affine lines defined by Hy(R;) + K(p1,p2, R;) =0, fori=1,... m.
Note that, since R; are points at infinity, the polynomials Hy(R;) + K(p1,p2, Ri) €
C[p1, p2] are not constant, and hence define lines. So, taking values for pi, ps (say,
small real numbers) we consider an small perturbation that ensures that the above
requirement is satisfied. Thus, in what follows we assume that D, and C* do not have
common points at infinity. Therefore, if F' is the homogenization of f, by Lemma 3.1
in [1], one has that

deg, (Res,(H*, F)) = deg,(Res,(H", F)) = d(d — 2).
Moreover, since H* and C* do not have common points at infinity, it holds that
deg, (Res,(H"(t,x,y,1), f)) = deg, (Res,(H"(t, 2, y,1), f)) = d(d — 2).

Now, we consider the polynomials

s d—3 s d—3
Ai(x) = H($ - ql',l)”(”*l) H(iU —pin), Aa(y) = H(y - %,2)“”71) H(y — pi2)-
i=1 i=1 i=1 =1

Since C is e-rational, it holds that
deg,(Ai(z)) = deg,(Az(y)) = d(d — 2) — 1.

Let By(x,t) := q,(t)x — P;(t) be the quotient of Si(x,t) := Res,(H*(¢,z,y,1), f(x,y))
and Aj(z). Similarly let By(y,t) := Gy(t)x — Do(t) be the quotient of Sy(y,t) =
Res,(H*(t,z,y,1), f(x,y)) and As(y). Then, we output

Plt) — (ﬁl(t) 152(t)>

0.t g2(t)

as approximate parametrization of C.

Before outlining the algorithm, we briefly describe how to proceed with the selection
and computation of the (affine simple) e-points P;. We first observe that, in general,

12



an e-point can be computed by solving {f(z,y) = 0,ax + By = p}, where «a, 3,p € C.
However, we are intersected in working with either real e-points or pairs of conjugate
complex points. We can always compute all points, but at most one, in pairs of
conjugate complex points. For choosing real points one can always analyze the roots of
the discriminant of f (see Theorem 7.7 in [26]). On the other hand we have observed, in
our examples, that taking (when possible) the simple e-points as (affine) e-ramification
points (see Def. 1.3) the error distance between the original curve and the output curve
decreases. So we tend to use first such points. Finally, one has to take care of the fact
that a chosen e-point can be too close (i.e. in the same cluster) to an e-singularity or to
a previously computed e-point, and hence identifiable with it. To avoid this, whenever
a new simple e-point is computed we check whether it belongs to the cluster of the
others points.

The above process provides the following approximate parametrization algorithm
for deciding whether a real e-irreducible (with proper degree) plane algebraic curve C
is e-rational, and in the affirmative case, compute an approximate parametrization.
Recall that we assume that C has d different points at infinity, and that (0:1:0), (1 :
0:0) ¢ Ch If this last condition fails, one may consider an affine orthogonal change
of coordinates to achieve the requirement.

Approximate Parametrization Algorithm

e Given a tolerance ¢ > 0 and an e-irreducible polynomial f(z,y) € Q[z,y], of
proper degree d > 2 (for d = 1 it is trivial, if d = 2 apply [18]), with d different
points at infinity, not passing through (0 : 1:0),(1: 0 : 0), and defining a real
plane algebraic curve C; let F'(x,y, z) be the homogenization of f.

e Decide whether C is e-rational and in the affirmative case

e Compute a rational parametrization P(t) of a curve C.

(1) Compute the cluster decomposition {€luster,,(Q;)}i=1. s of Sing.(C); say @Q; =
(¢i1 : qip 1)

(2) > ri(ri—1) # (d—1)(d—2), RETURN “C is not (affine) e-rational”. If s = 1
one may apply the algorithm in [18].

(3) Determine the linear system H,_» of degree (d—2) given by the divisor Y ;_, 7:Q;.

(4) Compute (d — 3) e-ramification points {P;}i<;j<q4—3 of C; if there are not enough
e-ramification points, complete with simple e-point. Take the points over R, or
as conjugate complex points. After each point computation check that it is not
in the cluster of the others (including the clusters of @;); if this fails take a new

one. Say Py = (pi1:pi2: 1).
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(5) Determine the linear subsystem H, , of Hy_5 given by the divisor Ef;f’ P;. Let
H*(t,x,y,z) = Hi(x,y, z) + tHs(x,y, 2) be its defining polynomial.

(6) If [ged(F (2, y,0), Hi(z,y,0)) # 1] and [ged(F (2, y,0), Ha(x,y,0)) # 1] replace
Hy by Hy + p12972 + poy?=2, where p1, py are real and strictly smaller than e. Say
that ged(F(z,y,0), Ho(z,y,0)) = 1; similarly in the other case.

Si(x,t) = Resy(H*(z,y,1), f) and S2(y,t) = Res,(H*(z,y,1), ).

(7)
s i (1 — d—3 s ri(r;— d—3
(8) Ar=[Iimi(z—qin) stri=l) [Tic (@ —pin), A2 = [[im1 (Y —gi2) i{ri=l) [Tim: (y—piz2)-
(9) For ¢ = 1,2 compute the quotient B; of S; by A; w.r.t. either x or y.

)

If the content of B; w.r.t x or the content of By w.r.t. y does depend on ft,
RETURN "“degenerate case” (see [21]).

(11) Determine the root p,(t) of By, as a polynomial in x, and the root py(t) of By, as
a polynomial in y.

(12) RETURN P(t) = (p (1), Pa(t))-

Remark 4.1. General Remarks on the Algorithm

1. It should be noted that the algorithm works symbolically with the exceptions
of Steps 1 and 4, where the e-singularities and e-simple points are determined.
These points are computed numerically. Nevertheless, in order to be used in
Steps 3 and 5, they are converted to rational arithmetic.

2. Since the algorithm follows the steps of the exact approach, by Theorem 3.10 in
[15], one deduces that the worst case complexity is polynomial in the degree of
the input curve.

3. In Step 9 of the algorithm, we only consider the quotients of the divisions, and
we ignore the remainders. This remainders might be used to control the distance
between the input and the output as shown in Corollary 6.4; note that, because
of the construction, the polynomial f evaluated at the parametrization is in fact
the remainder. We leave such an study for future research.

4. Note that not every set of (d—1)(d—2)/2 points, counted with multiplicity, is the
singular locus of a rational curve of degree d. Nevertheless in our case, because of
Lemma 3 in [18], the singular divisor used in Step 3 of the algorithm can always
be slightly perturbed so that it corresponds to a rational curve. O

In the last part of this section, we state the main properties of the curve output by
the algorithm. But first, we need some lemmas.
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Lemma 4.2. The leading coefficient of By(x,t) and Bs(y,t) w.r.t. x andy, respectively
(see Step 9 of the algorithm), are the same up to multiplication by non-zero constants
in C. Furthermore, the roots are {—Hi(a,b,0)/Hs(a,b,0)},popccr (sce Step 5 of the
algorithm)

Proof. Let Bi(x,t) = q1(t)x — p1(t), and By(y,t) = ¢2(t)y — p2(t). By hypothesis
F(1,0,0) # 0,F(0,1,0) # 0. So, the leading coefficient of F w.r.t. y is a non-zero
constant; similarly w.r.t. z. Thus, by well known properties on resultants (see, e.g.
Lemma 4.3.1. in [27]), it holds that up to multiplication by a non-zero element in C:

Res, (H*(t,z,y,0), F(z,y,0)) = S{(2,0,t), Res,(H*(t,2,9,0), F(z,y,0)) = S3' (y,0,1),
where H* is as in Step 5 of the algorithm, and S/ denotes the homogenization of
Si(x,t) = Res,(H*(t,x,y,1), f), Sa(y,t) = Res,(H*(t,z,y,1), f),

Now, observe that S (x,0,t) = q(t)z%? 2 and S¥(y,0,t) = q(t)y“?~?). Moreover,
let F'(z,y,0) factor as F(z,y,0) = H?Zl(ﬁix — a;y). Since F(0,1,0) # 0 then «; # 0
for all <. Hence, up to multiplication by non-zero constants

d
ReSy(H*(t,$7y,O), F(.flf,y,O)) = HResy(H*(t,x,y, 0)76237 - Oézy) =

i=1

d
= (=)D T H* (8, 04, 5;, 0).
i=1

Analogously, Res, (H*(t,z,y,0), F(z,y,0)) = (—1)4d=2)ydd-2) H?Zl H*(t, a4, 5;,0). So,
up to multiplication by non-zero constants q;(t) = q2(t) = H?zl H*(t, o, 3;,0) =
szl(Hl(aiaﬁho) +tH2(aza/62aO>) O

Lemma 4.3. deg,(Bi(x,t)) = d and deg,(Bs(y,t)) = d.

Proof. First note that deg,(B;) < d and deg,(By) < d. The equality follows from the
last equality in the proof of Lemma 4.2, and using that Hy(c, 5;,0) # 0 for alli. O

Lemma 4.4. Let L be the algebraic closure of C(t), and Ci,Co two plane projective
curves over L with defining polynomials G1(x,y, z), Ga(z,y,z) € C[t][x,y, 2], respec-
tively. If there exist K, W, L € C[t][x,y, z| such that KG1 + WGy = zL, and

(1) G1($7y70)G2($7y70) 7é 0,
(2) ng<G1(x7y>O)7G2($7yu 0)) = 17
then either z divides K and W or there exist Uy, Usy, Us € Clt][x,y, 2| such that

L =U,Gy(x,y,0) + UyGo(z,y,0) + 2Us.
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Proof. If z divides K, then z divides W G5, and by (2) z divides W. So let us assume
that 2z does not divides K, and let us denote by GY the polynomial G;(x,y,0); similarly
with K% W0, Then, K°GY + W°GY = 0. Since G? # 0 and ged(GY, GY) = 1, then GY
divides W? and GY divides K. Let K° = A1GS, W° = AyGY. So (A1 + A)GYGY = 0,
and since GY # 0, one gets A + Ay = 0. Now, we write

K=K+ 2K,W=W"+ W, G; =GY+ 2G,,

where K, W, G; € C[t][z,y, 2. Then, KW, +WGy = 2(GYK +GW +2(K G1+W Gy)).
O

Theorem 4.5. The rational curve C, output by the algorithm, and C have the same

points at infinity, and deg(C) = deg(C).

Proof. From Lemmas 4.3 and 4.4, one gets that deg(C) < deg(C). For the rest of
the pI‘OOf, let H*(ta Y, Z)v F(I, Y, Z)v Sl(x7 t)a S2<y7 t)7 Al(x)7 A2<y)7 Bl(Ia t) = ql(t)x_
p1(t), Ba(y,t) := q2(t)y — po(t) as in the algorithm, and let R; be the remainder of the
division of S; by A;. By Lemma 4.2, ¢;(t) = Ago(t), with A € C*. By Lemma 4.3,
deg,(B;) = deg,(By) = deg(F') = d and, by Step 10 of the algorithm, we can assume
w.l.o.g. that ged(q1,p1) = ged(ge, p2) = 1. So,

—H _

Pr(t) == (A pa(t)  pa(t) : @2(1))
parametrizes the projective closure of C. Furthermore, since deg(p;) < deg(gs), then
all points of C at infinity are reachable by ﬁH(t) (see [25]). In addition, we note that

deg{x,w}(H*) =d—2,deg(4;) =d(d—-2) -1, deg{x’y}(Rj) <d(d-2)-2.

Moreover, if m (z,y, z,w) denotes the homogenization of m(z,y, w) as a polynomial
in Clw][x,y|, we have that

gi{(x, z,t) = Res, (H*(t,x,y, 2), F(z,y,2)) = B{ (v, 2,t) Al (z, 2) + Ri (x, z, )™,

§§(y, z,t) = Res, (H*(t,x,y, 2), F(z,y,2)) = Bf(y, z, t)Af(y, z) + Rf(y, z,t)2",
where n; + deg(RY) = d(d —2), j = 1,2. So n; > 2. Also, we denote by Cs and Cx

the set of points at infinity C and C respectively. By resultant properties, there exist
polynomials M, Ny, My, Ny € Clt, z,y, z] such that

MH*+ NNF =51 i=1,2.

So,
yATSE Ao AHSH = 2 AT AT (\wpy — yp1) + 2™ Ry,

where n3 > 2 and Rj a polynomial; namely 2™ Rz = yAy2™ RIT — Az A2 RE. On the
other hand, if K = yA¥ M, — Az A My and, W = yA¥ N, — Az A¥ N,, then

yAYSE — \e AFSH = K(2,y, 2,t)(H, + tHy) + W (z,y, 2z, t)F.

16



Therefore, z divides the right hand side of the above equation. We now check that H; +
tHy and F satisfy the hypothesis of Lemma 4.4. Since F' is irreducible and non-linear,
F(z,y,0) # 0. Moreover, if Hy(z,y,0) + tHy(x,y,0) = 0 then Hy(z,y,0) = 0 and this
implies that D, contains all the points at infinity of C*, which is a contradiction. Finally,
if ged(H, (z,y,0)+tHy(z,y,0), F(x,y,0)) # 1, then ged(Hz(x,y,0), F(z,y,0)) # 1, and
this implies that Dy and C" share points at infinity. Therefore, applying Lemma 4.4,
one deduces that either there exist polynomials Ms, N3 € C[t][z,y, z] such that

MsH* + N3 F = A" A (Awps — yp1) + 2™ R,
where ny4 > 1, or there exist polynomials Uy, Us, Us € C[t][x, y, z] such that

UrH*(t,2,y,0) + UyF(z,y,0) + 2Us = AT AT (Axpy — yp1) + 2™ Rs.

In this situation, using Co, C 5H((C), we first observe that Card(Cy,) is less or equal
to the number of different roots of ¢o(t) and, by Lemma 4.2, this number is less or
equal to Card(Cs). So, Card(Cs) < Card(Cs). Now, we prove that Coy C Cop, from
where one concludes the proof. Let P = (zq : 4o : 0) € Cs, and let ¢y be the root of
¢» generated by P (see Lemma 4.2). So, H *(to, xo, %0,0) = F (0, y0,0) = 0. Applying
the corresponding equality above, and using that ny > 1, we get

Al (20,0)AY (yo, 0) (Azop2(to) — yop1(to)) = 0.

Moreover, since (1 :0),(0 : 1 : 0) ¢ C" then xgyy # 0, and hence

Al (24, 0) AL (yo, ) O. So Azopa(to) = yopi(to). In addition, py(to)p2(to) # 0 be-
cause gcd(qg, p1) = cd(qg, p2). Therefore,

H

P (to) = (N pi(to) : pate) : 0) =

= (yoA " 'p1(to) : yop2(to)  0) = (zopa(to) : yop2(to) 1 0) = (w9 : yo : 0) = P.
Once we have proved that both curves have the same points at infinity, we come

back to the statement on the degree. By hypothesis C has d = deg(C) different points
at infinity, and deg(C) < deg(C), therefore one concludes that deg(C) = deg(C). i

Corollary 4.6. The asymptotes of C and C are parallel.
Proof. It follows from Theorem 3, page 42, in [4]. O

5 Displaying Examples.

In this section we present several examples to illustrate the algorithm. We note that
the algorithm did no require perturbing H* in any of the examples.

These examples have been computed in Maple. Let us give some details on how the
computations have been done. As mentioned in Remark 4.1 (1), we work symbolically
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with the exceptions of Steps 1 and 4. So the input polynomial f(x,y), and the tolerance
¢, are converted (if necessary) into a rational representation, and we only pass to
floating point arithmetic when computing the e-singularities and the e-simple points.
For the e-singularities computation we proceed as follows (similarly for the e-simple
points): f is converted into a floating-point coefficient polynomial; then, for each
ke {2,...,deg(C)} we choose two partial derivatives of f of order k — 1 and we apply
Maple commands to solve the bivariate system defined by them; more precisely we
consider the sequence of Maple commands evalf(allvalues(solve(pol, (z, y), poly(z,v)));
once this set of solutions has been computed, we find the subset of solutions satisfying
that the modulo of all partial derivatives, of order less or equal to k — 1, evaluated
at the solution, is smaller or equal to €| f]|; we consider next the union of all the
resulting sets and we perform the cluster distribution; finally we transform the cluster
representatives to rational representation.

We write here, and in the next section, f and P(t) with 10-digits floating point
coefficients, but the executions have been performed with the exact version; the precise
data can be seen at www2.uah.es/sperez/sec5sec6.pdf.

Example 5.1. Let ¢ = 100 and C the curve of proper degree 5 defined by (see Fig.3):
17465 3 1741 . 12539 4167 4 24571

2 o _ 2
Fay) = =27y + oo PV ereen ¥ T Toasi YV T gzooni Y T 3som3 Y T
38146, , 15409 , 5933 . 4465 , 61558 , 6938 , 4167 , ,

917805~ ¥ 28541 " 300846 *Y T 126254 Y 170857 % 20505 Y 630011’ VT
ner” , 46t 3021, o 4t67 ' T1I559 0182

639011 © T 630011~ YV 3303047 Y Te30011” 72969 Y T 2763067
First we compute the e-singularities of C. Sing, (C) = &) U Sy U S3 where:

{Q1 (—3.999854219, 2.000094837), Q2 = (0.,0.),
— (09998153818, —2.999388343),
= (—2.001190360 + 0.054142443054, 3.001898191 — 0.080394163541),
= (—1.980207988, 3.002780607), Qs = (—2.019931003,2.997118979),
= (—2.001190360 — 0.05414244305i, 3.001898191 + 0.080394163544) },
= { = (—2.000000001, 3.000000001)},
=0.

Moreover, the cluster decomposition of the singular locus is (see Fig. 2, Left):

Clustera(Q1) = {Q1}, Clustery(Q2) = {Q2}, Clusters(Qs3) = {Q3s} and

Clusters(Qs) = {Qu, @5, Qs, Q7, Qs}-
We observe that C is erational. Following Step 4 in the algorithm we ob-
tain two e-ramification points, namely P, = (3.437938023,4.260660564), P, =
(7.712891931, 1.573609575). We note that these points are not in the cluster of each

other and they are not in the clusters of the cluster decomposition of the singular locus
(see Fig. 2, Right).
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Figure 2: Left: Cluster Decomposition of the Singular Locus. Right: Cluster Decomposition
of the Singular Locus with two e-ramification points.

il

Finally, the algorithm outputs the parametrization P(t) = (ﬁl((tt)), g((tt))) where (see Fig.

3 to compare the input and the output curves):

Py (t) = 0.1928498375 10%°! 2 + 0.1974296234 10°4% t* — 0.3199304792 10547 £5 +
0.404844755710%°° ¢ 4+ 0.1193911126 10°°! 3 — 0.8374467974 1054

Py (t) = 0.2075974869 10°°° + 0.8229900424 10°48 ¢+ — 0.1401409004 1051 ¢
— 0.4936881030 105°° 3 — 0.1914613475 10°% 2 + 0.5662842458 10747 5,

q(t) = —0.1205298833 10°5° — 0.1863676648 105°° ¢ — 0.1381087143 10°5° ¢2
— 0.5167655604 10°4° t* — 0.1020066715 10%%° #3 4 0.5236942518 10°46 5. ]

N
‘\\ “‘\‘
-10 E 5 =4 2 4 8 0.1 -0.05 RN e 005 01
) S
X N X
N, -,
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B\
\' ..
S
) 3
3
s

"

Figure 3: Left: Input (in dots) and output curve in Example 5.1. Right: A zoom at
the origin
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Example 5.2. Let € = ﬁ and C the curve of proper degree 6 defined by (see Fig.5):

3013 11 31, 01 ., 1 oA, o, 1T,
{(”“"’m - %735””9 %o“y 715‘” + 1850‘7j y 1+25"‘j yl 75 x()g + 15052 vt
A - 5, 2,4 - 2, - .3, _~ 6, - ,6__ - 2 ¥ .4
290” +4%50x y : 100" Y T30 Y157 +1150x +%5oy %oox 3éJlox *
.4 3 = b = 2,3 -7 2 R S 5 = 3, T .2
215y 10({“’ 507 Tt Y st T 0t Y50t T T Y T 0Y
) -
55 Y T 37350°
We get the e-singular locus Sing, (C) = &1 U So U S5 where
S = { Q) = (—1.994232333, 1.005043048),

Q2 = (—2.000005299 + 0.0056452807974, —1.000026945 — 0.00028226775877),

Qs = (—2.000014217 + 0.0046192694274, 1.000004775 — 0.0035594943327),

Q1 = (—2.003547061, —1.006293429), Q5 = (—2.005740475, 0.9948974977),

Qs = (—1.996418580, —0.9936748962),

Q- = (—2.000014217 — 0046192694277, 1.000004775 + 0.0035594943327),

Qs = (—2.000005299 — 0.0056452807974, —1.000026945 + 0.0028226775877),

Qs = (1.000036272 + 0.0085969010714, 2.000017052 — 0.003059926359),

Q10 = (5.999999669, —2.999998564),

Q11 = (1.000036272 — 0.008596901071i, 2.000017052 — 0.003059926359i),

Q12 = (09978910941, 1.994329680), Q13 = (1.002094534, 2.005650021)},
Sy = { Qs = (=2.000000001, 1.), Q15 = (—2., =1.000000005), Q16 = (1.,2.)},
83 - @

The singular cluster decomposition is (see Fig. 4, Left):

Clusters(Q10) = {Q10}, Custerz(Qa) = {Q1, @3, Q5, Q7, Q14},

Clusters(Q15) = {Q2, @1, Qs, @3, Q15}, and Clusters(Qis) = {Qo, Q11, Q12, Q13, Q16}-
We observe that C is e-rational. In Step 4 we obtain three e-ramification points:
P, = (—1.330235522, 0.9268173641), P, = (—1.979908167, 0.02661222172), and P; =
(—2.700785807, —0.07757312293). We note that these points are not in the cluster of
each other and they are not in the clusters of the e-singularities (see Fig. 4, Right).

The algorithm outputs the parametrization P(t) = (2% 20y where (sce Fig. 5 to
compare the input and the output curves):

P (t) = —0.4665969363 10910 ¢5 + 0.1734681470 1012 ¢> + 0.8664051685 10914 ¢ —
0.4159434177 109 #3 — 0.4505650348 10915 + 0.2152577377 10915 ¢2 +
0.7566892493 10912 ¢4

Po(t) = 0.2378210112 10914 3 4 0.2759395174 107 ¢ 4 0.2196326945 10912 +° +
0.4655361031 10914 2 — 0.4970648521 1013 ¢4 — 0.1850888359 10915 —
0.2330404339 10910 ¢6

20
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Figure 4: Left: Cluster Decomposition of the Singular Locus. Right: Cluster Decomposition
of the Singular Locus with two e-ramification points.

'
&

IS

Figure 5: Left: Input (in dots) and output curve in Example 5.2. Right: A zoom at
<_27 _1)

q(t) = —0.2692822852 10914 t3 + 0.3583267610 10913 ¢* — 0.1530968486 1012 > +
0.2330431163 109 £5 4 0.6095885650 10915 + 0.5717788848 1091° ¢ —

0.2358118980 10914 ¢2, O
Example 5.3. Let us consider a surface with implicit equation
1 171201 1 17119999
F(z,y,z) = —=x y+432x22y—216xy22+—z—m,22

1 n 1920001 . 4320001 , 7999999 1439999 n 856000001 2o
——— 2z 2z - z— TY+——
10000 14%%§g%0f 10000 7~ 1000000 ¥ 10000 Y™ 71000000
— 22248642 — 1922341296 20 — 1728 2° — 1284 2% — 2576 x 2y +

10000 1000000
14423 vy —96 22 vy — 3888 240 + 3936 22 22 — 72 23 22 — 72 23 2 + 2592 2% y + 48 22 2 —

12000001 59999999
12 2 4 3_216 3 e 2, T 2_4 3 6 2 2_4 3
96 2“y+864x 2 x° 2+ 1000000 x°y 1000000 xy r?y+6zTy Ty’ +
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36000001
1000000 7 y-

We consider the planar sectioning problem. The intersection of the surface with planes
z=1/2"i=1,...,10 generates a family of 10 curves of proper degree 4 that are not
rational. However, our algorithm shows that 9 of them are e-rational. In what follows,
we present details of the application of the approximate parametrization algorithm to
one of the curves of this family. Namely the curve defined by the polynomial (see
Fig.6):

395959799 36160201 862000201 , 14379999 2806000201

o N sy OO0 0 g
1392 23 2. 2 _ g3 2.2 _ Agep 3
39227+ —oooo0 ¢ YT TTooooon ©Y ATy T Oty —deyt+ Tannao0 VT
Sy 17209799

y 40000

Let € = 45. Sing (C) = 8 U S, U Sy where

S = {Q1 = (0.9433279517, —6.369071364)},
Sy = {Qy = (—0.6522149822 — 0.91220438034, —14.99598555 4 3.7582267461)},
Ss = {Q3 = (—0.6522149822 + 0.9122043803i, —14.99598555 — 3.7582267461)}.

Moreover, the cluster decomposition of the singular locus is:

Clusters(Qq1) = {Q1}, Clustery(Q2) = {Q2}, Clustery(Q3) = {Qs}.

We observe that C is e-rational. Following Step 4 in the algorithm we obtain the e-
ramification point, namely P; = (420.8571421, —157.1835301). We note that this point
is not in the clusters of the e-singularities .

Finally, the algorithm outputs the parametrization P(t) = (

Fig. 6):

Py (t) = 0.3678784753 10346 ¢* 4 0.1244267377 10°°° 12 4 0.1165894081 10%52 —
0.3494866166 103*% 13 — 0.1967543000 103! ¢,

Po(t) = 0.6170290181 10349 #2 — 0.1699115220 10348 ¢3 + 0.6038177598 103! +
0.1755842639 10346 4 — 0.9964982725 103 ¢,

g(t) = 0.7090236056 10346 4 + 0.2453189759 10%°2 + 0.2502344903 1030 ¢2 —
0.6878413782 10348 +3 — 0.4045978049 10371 ¢. O

pi(®) Pa(t)
q(t) 7 q(®)

) where (see

6 Empirical Analysis of the Error

We start describing briefly the theoretical setting. For that purpose, we will follow [2];
in particular its Section 3.14. Let (X, d) be a metric space. For ) # B C X and a € X
we define

d(a, B) = infycp{d(a,b)}.
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Figure 6: Input (in dots) and output curve in Example 5.3.

Moreover, for A, B C X \ {0} we define
Hd<A7 B) = maX{SupaeA{d<a’7 B)}7 SupbeB{d<b7 A)}}

By convection Hy(,0) = 0 and, for § # A C X, Hy(A, () = co. The function H, is
called the Hausdorff distance induced by d. The Hausdorff distance defines a metric on
the close subsets of X (see Lemma 3.57 in [2]).

Now, we consider the metric spaces (R?,d,) C (C?,d,) where d, and d,, are the usual
Euclidean and unitary metrics, respectively. Since d,|g2 = d, in the sequel we denote
by d both distances and by H the Hausdorff distance associated to d. Moreover, for
A C C? we denote by A® the set ANR?. Then, for A, B C C? we consider H(A®, B®);
one might also consider H(A, B), H(A®, B), H(A, B®).

In this situation, let C and C be the input and output curves of our algorithm. In
addition, let f(z,y) and f(x,y) be the defining polynomials of C and C, respectively, and
let P(t) = (pi(t), P2(t)) € R(t)? be the parametrization of C output by our algorithm.
In general the Hausdorff distance can be infinity, but in our case we can ensure that it
is finite.

Lemma 6.1. H(CR,C") < 0.

Proof. By Theorem 4.5 and Corollary 4.6, C¥, C" are either bounded or all their points
at infinity define asymptotes that are parallel. If the first case, the lemma follows
from Lemma 3.58 in [2]. Otherwise, let £y, ..., L, be the real asymptotes of C and let
Ly,..., L, be the real asymptotes of C, with £; || £;. Let p > 0, then there exists a

compact ball B, such that for every P € C® N (R?\ B), d(P, ER) < p. Then,
H(C®,C") < max{H(CENB,C NB),2p+ H(L1,L1), ..., 20+ H(Ly, Ln)},

that is finite because of Lemma 3.58 in [2]. m
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In order to study H (C%, ER), we consider the normal line to C at the generic point

7_3(75):

ﬁl(t, S) = ( ) \/pl _pQ_iEI)?Q/ p_(t) \/pl a :‘)p2 ) ) 7

as well as the normal line to C at the generic point (a,b) € C*:

B ni <a7 b) n2(a’ b)
L(a,b,5) = (a+s N(a,b)’bJrS N(a,b)) 7

where (ni(a,b),n2(a,b)) = Vf(a,b) and N(a,b) = ++/n1(a,b)? + na(a,b)?. Moreover,
we introduce the polynomials

Dl(ta 8) = f<£1<t7 S)) < M[S]v D2<a7 b, 5) = ?(£2(a7 b, S)) < C(E)[S]v

where R(¢) denotes the algebraic closure of R(t) and C(C) the field of rational functions
over C. For every tg € R, such that D;(tg, s) is well defined and has real roots,

d(P(to),C*) < pi(to), where pf(to) = min{|so| / Di(to, s0) = 0 and so € R},
and for every (ag, by) € C¥, such that Dy(ag, by, s) is well defined and has real roots,

d((ao, bo),aR) < p(ag, bo), where py(ag,bo) = min{|so| / Da(ao, bo, s9) = 0 and s € R}.

Thus, the supremum of pf(¢), p5(a,b) provides an upper bound of the Hausdorff dis-
tance; at least for those subsets of both curves where the considered minimums are
well defined. Because of computational difficulties, in the examples below, instead of
computing pf(t), p5(a,b), we will minimize the module of all roots (not only real) of
D (to, s) and Do(ag, by, s). That is, for ty € R and for (ag, by) € C* such that D (ty, s)
and Dy (ag, by, s) are well defined, we will study

pl(t[)) = min{\sgf /Dl(to, 50) = O}, and pg(ao, bo) = min{]so\ /DQ(CLQ, bo, So) = O},
which are upper bounds of d(P(ty),C) and d((ag,bo),C) respectively, instead of

d(P(ty),C®) and d((ao,bo),ER). For those subsets of both curves, where the corre-
sponding polynomials are well defined, we consider

A(CF,C") 1= max{sup peea {d(P,0)}, sup, = {d(Q,C)}}.
Note that this means that every real point on each of the curves is at distance, at most

A(CR,(_?R), of a complex point on the other curve. Unfortunately, although it gives an

idea of the closeness between of the curves, A(CR,ER) <H (CR,ER). Nevertheless, in
the examples below we will look for empirical evidences indicating that the computed

bound of A(CR,ER) also bounds H (CR,ER); for that we test empirically that, in our
computations, py(t) = pR(to), palao, bo) = p (o, b).

In order to bound A(CE, ER), we first prove the following lemma.
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Lemma 6.2. Let p(z) = a,2" + -+ + ag € C[z], with a,, # 0, and let 2, ..., z, be its
T001S.

7

1
min {|z]} < min {(?) 201" where a; #0 and 1 <1< n} .
a;

1<i<n

Proof. The result is obvious if ay = 0. So, let ay # 0, let m = min;<;<,{|z]},
and let a; # 0 with 1 <4 < n. We prove that m < (}) |3 7. We express p(z) as

p(2) = (2" — 012"V + 092" 2 + - + (—1)"0,,), where 0y, ..., 0, are the elementary
symmetric functions of zy,...,z,. If ¢ <n then
ap| _ owl _ 21+ 2] 21+ 2] B
a; ‘O-nfl’ |21“’Zn—i+“'+Zi+1"'2n’_|21"'2n—i‘+""|‘|Zz’+1"‘2’n
1 1
>

|Zn—i+1"'2n‘ + + \21-~-zi| (’L )ml

If i = n then |ag/a,| = |21+ z,| > m". i

In the sequel, we denote the coefficients of D; and D; as (note that deg (D) =

deg,(Dy) = deg(C) = deg(C))
Dl(t7 S) = An(t)sn +oot AO(t)> DQ(a7 b7 3) = Bn(a’a b)sn +eeet BO(a7 b)
Then, Lemma 6.2 implies the following corollaries.

Corollary 6.3. Let to € R, and (a,b) € C® be such that D;(to, s) and Ds(ayg, by, s) are
well defined. Then,

L
Ag(to) |

1. d(P(ty),C) < min {(?) A:(to)

where A;(tg) #0 and 1 < i < n} .

Bo(ao,bo)
B;(ao,bo)

2. d((ag, by),C) < min {(?)

l.
" where B;(ag,by) #0 and 1 <i < n} ) O

In addition, using the expression of the coefficients given by the Taylor expansion,
the next corollary also holds.

Corollary 6.4. Let ty € R, and (ag,by) € C® such that D (tg, s) and Dy(ag, by, s) are
well defined. Then,

1. if V(f)(P(to)) and (=pz'(to), D1’ (to)) are not orthogonal, then

d(P(ty),C) <n F(P(to)

1(=P2"(t0), 1" (t0)) |2,
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2. if V(f)(ao, bo) and V(f)(ag,by) are not orthogonal, then

f(ao, bo)

d((ao, bo),C) <n Y (F)(ao, bo) - V(f)(ao, bo)

IV(f)(@o, bo)ll2-

In the next examples we apply these results.

Example 6.5. (A compact curve example) We consider ¢ = -~ and the compact real

100
curve C

_ 27399 .2 | 20000001 , 3 , 21 .4 , 27399 .. 3335608 .. 2 3, 27399 .2, 935993 .2
flz,y) = 21397 Y +20000900 Y+ 100 Yt 27307 TY — 309053 LY T XY+ 37397 7+ 390907 LY
4,20 TO99%999 5T L5, Lo AT 1

25 Y~ 20000000 50t YT g 125 125 Y

The output curve C and its parametrization are

F(z,y) = 2y3+0.01055547819 2-+0.005727140309 y+1.001749792 2+0.9870028562 33+
021y* + 0.991238450322 — 0.998283362923 + 0.252% + 1.053103489zy —
8.391588270 zy? + 2.341024446 22y + 2.96 22y2 — 1.42 2%y + 0.00002796854235

) B
Pl = (a(t) ’ a(t))

3|

where

pi(t) = 1.730167858 - 10?93t + 4.334613757 - 10292 ¢3 + 5.424023201 - 1021 ¢4
+8.641660646 - 10292 + 1.299004236 - 10293 ¢2,

P2(t) = —1.039366064 - 102922 — 4.319011339 - 1020 t* — 6.947686841 - 1021
—3.459888148 - 10791 ¢3 — 1.387682118 - 1022 ¢

g(t) = 1.125103592 - 10293 ¢2 + 3.749748302 - 10?22 ¢3 + 7.503078839 - 10292+
4.686439171 - 10! t* + 1.500376938 - 10793 ¢.

We first observe that the polynomial Dj(to, s) is well defined for every ¢, € R. In
this situation, in order to bound p;(¢) we maximize the function R;(t) = 4|£28] (see
Corollary 6.3). R;(t) is continuous in R\ {ajy,as}, where «; are real zeros of the
denominator that are isolated in the intervals I; = (—2.020041475, —2.014041475),

I, = (—1.998980609, —1.998920609). Then,

max{Ry(t) |t € R\ (I, UL)} = 0.2511290220

In order to bound d(P(ty),C), when to € I, U I, we consider Ry(t) = (3) 328“ (see

Corollary 6.3). Rs(t) is continuous in the adherence of I} U I5, and its maximum is
1.843001438. Therefore, we conclude that

p1(t) < 1.843001438.
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Now, we perform some empirical tests to show evidences that p;(t) = p(t). First, let
Dy (s) = limy 10D (¢, s). Then,

min{|so| / D1(sy) = 0 and so € R} = min{|so| / D1(so) = 0} = 0.004018853976.

Since the roots of a polynomial depend continuously on its coefficients, for every ¢ > 0
there exists K > 0 such that for all |tg| > K there is a root sy of Di(to,s) with
10.004018853976—s¢]|2 < 0. It might happen that these roots are all complex. However,
in our example, we see that

0.004018853976 < p1((—10)%) = p}((—10)%) < 0.004023539023

for i = 1,...,20; reaching the lower bound from ¢ = 12. Next, for each real pole of
R (t) as well as for each real critical value of R(t), we consider a sequence of isolating
intervals J; of length 1/10°"%, we take the middle point ¢;, and we analyze p;(t;), p}(¢;).
For each of the two poles we get

p1(t:) = pi(t;) < 0.07620545140

fori =1,...,20; reaching the equality from ¢ = 11. For each of the eight critical values
we get

pr(t) = pR(t;) < 0.05039734676

for i = 1,...,20; reaching the equality from ¢ = 11.

Dsy(a, b, s) is well defined for all (a,b) € C¥. In order to bound ps(a,b) one may
B ab;| (see Corollary 6.3) under the constrain f(a,b) = 0, for
instance using Lagrange multipliers. Here, we simply show evidences for ps(a, b) being
small and for py(a,b) = p5(a,b). First we observe that C® C [-9/512,8041/1024] x
[—20057/1024,2117/1024]. Now, for i = 2,...,100 we consider the partition A; :=
{a;; = a1+L(as—an) o)< of the open interval (aq, az) = (—9/512,8041/1024). Next,
for each i we compute the set €; of intersections of C* with the line x = a; ;. We obtain
mi = max{p5(a,b)| (a,b) € } and m; := max{ps(a,b)|(a,b) € ;}, and we check
whether m} = m;. Finally, we compute m := max{m;|i = 2,...,100}. We get that
mB = m; for all i with the exception of i = 63 and i = 88 where m; = 0.06012962586 <
0.06012962587 = mg3, M = 0.04097517998 > 0.04097517997 = mgs. Moreover,
m = 0.06109662080.

As a conclusion, in this example, the computed bound for the distance between the

maximize the function 4|2

curves is 1.843001438. O
Example 6.6. (A non compact curve example) We consider € = Wlo and the non-
compact real curve C

30771 3571429 , 3 30771 ... 20535699 22919 409991
{6(5 %/)2 3%2%6% + 5571428 Y +3/9 + 30769 30760, ry 1785713 zy? +ay’ + 3015437 + T © 2y +
00T Y T Tasgsat T xy—i—loox +mx+1ooy
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The output curve C and its parametrization are

f(z,y) = 1.037665836 y2 + 0.9541760347 y* + y* + 0.7557889914 22 — 0.7606067226 x> +
0.19 2* + 23> +0.01080256798 2+0.009723389264 y+1.033610692 zy — 11.58684298 zy*+
5.792835786 2%y + 3.69 x2y? — 3.120000001 23y + 0.00004058975565

Pit) — (p—l(t) p—2<t>)

q(t) " q(t)

where

pi(t) = 5.634074231 - 10345 + 8.492460682 - 1034° 12 + 3.555839494 - 10344 ¢4+
2.837737358 - 1034 3 + 1.129568064 - 10346 ¢,

p2(t) = —6.907472833 - 10339 ¢* — 1.112114026 - 103" — 5.534739853 - 10340 ¢3
—2.220814182 - 10341 ¢ — 1.663027642 - 10341 ¢2,

q(t) = 1.423745556 - 10341 ¢* 4 1.138797024 - 10%*2 3 + 4.553560207 - 103% ¢
+3.415784668 - 10%42 2 + 2.276365040 - 1034

We first observe that the polynomial D;(ty, s) is well defined for every ¢, € R with
the exception of the two real poles (3, 3, of P(t), that are isolated in the intervals
(—1.997680664, —1.997619629), (—2.008911133, —2.008850098). In this situation, in or-
der to bound p;(t) when t € R\ {1, 32}, we maximize the function R(t) = 4|ﬁ?g§|
(see Corollary 6.3). R;(t) is continuous in R \ {ay, as}, where a; are real zeros of the
denominator that are isolated in the intervals I; = (—1.996163599, —1.996123599), I, =

(—2.034359611, —2.020359611). Then,

max{Ry(t) |t € R\ (I; UI)} = 0.301275147

In order to bound d(P(ty),C), when t, € I, U Iy, we consider Ry(t) = (3) £28| (see

Corollary 6.3). Ry(t) is continuous in the adherence of I; U I3, and its maximum is
1.987657564. Therefore, we conclude that

Vt € R\ {8y, B}, pi(t) < 1.987657564.

Now, we perform some empirical tests to show evidences that py(t) = py'(t). First we
analyze the behavior through the real asymptotes. The real asymptotes of C and C
are, respectively:

Ly =z — 15.11127611y — 2.469501937, Ly := x — 1.659899985y + 0.6395629633,
Ly =12 — 15.11127611y — 2.483911806, L, := x — 1.659899985y + 0.6343579098.

Moreover,

H(L1, L) = 0.0009515027113, H(L,, L3) = 0.002685992105.
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Next, for each of the two real poles (i, 32 of P(t) we consider a sequence of isolat-
ing intervals J;(53;) of length 1/10%, we take the middle point ¢; 3,, and we analyze
pi(tig,), P (tip, ). We get, for i =1,...,40

p1(tis) = pR(tis) = 0.000951502783 > 0.0009515027113 = H(Ly, L;)

pi(tis) = PP(tis,) = 0.00268599101 < 0.002685992105 = H(Ls, Ls).
Now, let D;(s) = limy40,D1 (¢, s). Then,

min{|so| / D1(s0) = 0 and sy € R} = min{|so| / D1(s¢) = 0} = 0.001918863706.
Furthermore, in our example, we see that
0.001918863706 < p((—10)") = p¥((—=10)") < 0.001922644324

for i = 1,...,20; reaching the lower bound from ¢ = 8. Next, for each real pole of
Ry (t) as well as for each real critical value of Ry (t), we consider a sequence of isolating
intervals J; of length 1/10°", we take the middle point ¢;, and we analyze p;(;), p} (¢;).
For each of the two poles we get

p(ts) = p(t;) < 0.05760637790

fori =1,...,20; reaching the equality from ¢ = 11. For each of the eight critical values
we get
p1(t;) = P () < 0.07103885930

for i = 1,...,20; reaching the equality from ¢ = 17.

Ds(a,b,s) is well defined for all (a,b) € C®. In order to bound py(a,b) one may
ETEZZ;| (see Corollary 6.3) under the constrain f(a,b) = 0, for
instance using Lagrange multipliers. Here, we simply show evidences for ps(a, b) being
small and for py(a,b) = pX(a,b). For each natural number i we consider the two inter-
section points of C* and x = i, say (4, b,), (i, by). For each of these points we compute
the corresponding p5(i,b;). We repeat this process till |p5 (i, b1) — 0.000951502783] <
1078, | 5 (7, ba) — 0.00268599101| < 107% (see above for the meaning of 0.000951502783
and 0.00268599101). We perform this experiment also for x = —i, for y = ¢, and for
y = —i. The result is [—3430, 3431] for the z and [—2067, 2068] for y. In this situation,
we empirically consider that out of the compact B = [—3430,3431] x [—2067,2068],
the curves behave as the asymptotes, and we analyze the distance in B. For
this purpose, as in Example 6.5, for ¢ = 7000, ...,7010 we consider the partition
A; = {a;; == a1 + L(as — a1)}ocj<i of the open interval (aj,as) = (—3430,3431).
Next, for each i we compute the set ; of intersections of C* with the line z = a; ;. We
obtain m} := max{p5(a,b) | (a,b) € Q;} and m; := max{ps(a,b)| (a,b) € Q;}, and we
check whether m}* = m;. Finally, we compute m := max{m; |i = 7000, ...,7010}. We
get that m¥ = m; and m = 0.03416457806.

As a conclusion, in this example, the computed bound for the distance between the

curves is 1.987657564. m|

maximize the function 4|
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As a final summary, let us mention that, in both examples, ¢ = 0.01 and the
computed bounds for the distance were 1.843001438 and 1.987657564, respectively.
These two final bounds were derived applying Corollary 6.3, although all the other
partial bounds empirically computed were much smaller.
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