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We show that for certain systems of Okubo-type, we can find a solution vector, all components of which are expressed in terms of
the first one. *is first component can be expressed in two ways. It solves a Volterra integral equation with the kernel expressed in
terms of the solutions of a reduced Okubo-type system of smaller dimension. It is also expressed as a power series about the origin
with coefficients satisfying certain recurrence relation. *is extends the results in (W. Balser, C. Röscheisen, J. Differential
Equations, 2009).

1. Introduction

Linear systems play an important role in the theory of
modern mathematics and especially in the theory of special
functions. In this paper, we are concerned with a special type
of linear systems, so-called Okubo-type systems.

Linear systems of Okubo-type,

A0 − t( y′ � A1y, A0, A1 ∈ C
n×n

, (1)

have been studied extensively in the literature [1–12]. In [1],
the authors study system [13] under the assumption that A0
has all distinct eigenvalues and introduce one scalar function
that allows representing all solutions of the system. *is
function is believed to be a new higher transcendental
function and it satisfies a Volterra integral equation. *e
coefficients of its power series about the origin can be ex-
plicitly given in terms of a matrix version of the Poch-
hammer symbol.

In this paper, we study more general systems than [13]
and show that under certain assumptions, a similar function
can be introduced. However, in this case, the coefficients of
its power series about the origin are determined by a certain
recurrence relation. In particular, we study systems of dif-
ferential equations which can be transformed to a system of
the form,

A0 − t( y′ � A1(t)y, A0 ∈ C
n×n

, A1(t) ∈ C1[t]( 
n×n

,

(2)

where A0 � diag(0, λ1, λ2, . . . , λm) is a diagonal matrix;
moreover, we assume that λj ≠ 0 for every 1≤ j≤m. Here,
n � m + 1. In other words, λ � 0 is an eigenvalue of A0 of
multiplicity one, and λ1, λ2, . . . , λm are distinct eigenvalues
of A0. Let A1(t) � (aij(t))n

i,j�1 and let us assume that
a11(t) ≡ 0. For the sake of simplicity, we write the matrices
involved in [1] in the form,

A0 �
0 0T

0 Λ
⎛⎝ ⎞⎠,

A1(t) �
0 a(t)

T

b(t) A(t)

⎛⎝ ⎞⎠,

(3)

where 0 � (0, . . . , 0) ∈ Cm×1; a(t), b(t) ∈ C1[t]m×1 are vec-
tors of polynomials of degree at most one; A(t) ∈ C1[t]m×m

and Λ � diag(λ1, . . . , λm). We denote a(t) � a0 + a1t and
b(t) � b0 + b1t, where a0, a1,

b0,
b1 ∈ Cm×1.

It is shown in [13] that every linear (scalar) differential
equation with a finite number of distinct regular singularities
and one irregular singularity can be reduced to system of the
form [1] with λi ≠ λj. For instance, let us consider system [1]
with
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A0 �

0 0

0 1
⎛⎝ ⎞⎠,

A1(t) �

c − 1 a12

q +(c − 1)δ +(1 − c)ε
a12

+ t
(c − 1)ε − α

a12
δ − ε + εt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(4)

with arbitrary a12 ≠ 0 and parameters q, α, c, δ, ε. *is system
is equivalent to a confluent Heun equation for the first
component of the vector y,

y1″ +
c

z
+

δ
z − 1

+ ε y1′ +
αz − q

z(z − 1)
y1 � 0. (5)

Here, z � 0, 1 are both regular singularities, whilst z �

∞ is an irregular singularity. In case c � 1, we get the re-
quired form of the matrix A1(t). See also [14–17] for other
examples of different Okubo-type systems.

In this paper, we search for a solution
y � y(t) � (y1(t), . . . , yn(t))T of [1] which is holomorphic at
the origin and we are interested in y1(t). We first study the
reduced Okubo-type system and find its fundamental solution
(see *eorem 1). *en, we define a function of two variables
which will be the kernel of the Volterra integral equation. Next,
it will be shown that y1(t) solves this integral equation.We also
define other components of y in terms of the fundamental
solution of the reduced system and y1(t). We give a recursion
formula for the coefficients of the Taylor expansion of y at t � 0
(see *eorem 2). *e next section is devoted to some gener-
alizations of the problem under study. Namely, we deal with the
case when the matrix A0 in [1] is not diagonalizable which is
motivated by examples that appear in concrete applications (see,
for instance, [17]). Finally, we give some further discussions on
the problem and its applications.

2. Main Results

Let us first consider the reduced system,

(Λ − t)Y′(t) � A(t)Y(t), Y(0) � I. (6)

We write A(t) � B + Ct, where B, C ∈ Cm×m.
We search for the power series expansion of the form,

Y(t) � 
∞

k�0

t
k

k!
hk, (7)

where (hk)k≥ 0 satisfies a recurrence relation. Indeed, taking
into account [15], we get that h0 � Im, h1 � Λ− 1Bh0 � Λ− 1B,
and

hk+1 � Λ− 1
(B + k)hk + Λ− 1

Ckhk− 1, (8)

for every k≥ 2.

Theorem 1. 4e power series Y(t) determined by h0 � In,
h1 � Λ− 1B, and [4] for k≥ 2 is convergent in some neigh-
borhoods of the origin.

Proof. Let ‖ · ‖ be the matrix norm ‖(aij)‖ � supij|aij|. We
fix numbers C � ‖h0‖ � 1 and A> 0, satisfying

A‖B‖≥ Λ− 1
B

����
����, A≥ 1, A≥ 2 Λ− 1����

����max 1, ‖C‖{ },

A(‖B‖)
1/2
2 ≥ 2 Λ− 1����

����‖C‖ 
1/2

.
(9)

Let us show that,

hk

����
����≤ CA

k
(‖B‖)k, (10)

by induction on k≥ 0. Here, (x)k stands for the Poch-
hammer symbol applied to x> 0: (x)k :� (k − 1 + x), . . . , x

for k≥ 1, and (x)0 � 1.
We have ‖h0‖≤ CA

0
(‖B‖)0 � C, and ‖h1‖≤ CA

1
(‖B‖)1.

Concerning k � 2, we apply the hypothesis in [5] to arrive at
‖h2‖≤ CA

2
(‖B‖)2. We assume that [17] holds up to some

index k≥ 2. From [4] and the fact that

(‖B‖)k‖B + k‖ + k(‖B‖)k− 1 ≤ (‖B‖)k(‖B‖ + k)

+(‖B‖ + k)(‖B‖)k− 1

≤ 2(‖B‖)k+1, k≥ 2,

(11)

we get

hk+1
����

����≤ CA
k
(‖B‖)k Λ

− 1����
����‖B + k‖

+ CA
k− 1

(‖B‖)k− 1 Λ
− 1����

����‖C‖k

≤ 2CA
k Λ− 1����

����max 1, ‖C‖{ }(‖B‖)k+1

≤ CA
k+1

(‖B‖)k+1.

(12)

In view of [17], we derive that the series [16] has a
positive radius of convergence A|t|< 1 by applying the ratio
test for the majorant series. □

Remark 1. A different approach to the previous result is to
take into account that Y(t) solves the reduced system [15],
and t � 0 is not its singularity for the system since λj ≠ 0 for
all 1≤ j≤m. *e Cauchy theorem guarantees that the series
[16] is convergent in the neighborhood of t � 0 up to the
nearest singularity of the system, namely, min1≤j≤m|λj|.

Now, let us consider the system of first order linear
differential equations [1], with A0 and A1 as in [2], and
whereΛ � diag(λ1, . . . , λm), with distinct λj and λj ≠ 0 for all
1≤ j≤m. We write y(t) � (f(t), g(t))T, where f is a scalar
function, and g � (g1, . . . , gm)T is a vector function. Such y

is a solution of [1] if and only if

− tf′(t) � a(t)
T
g(t), (13)

(Λ − t)g′(t) � A(t)g(t) + f(t)b(t). (14)

In view of [9], one has that g is a solution of the
nonhomogeneous system of differential equations

g′(t) � (Λ − t)
− 1

A(t)g(t) +(Λ − t)
− 1

b(t)f(t). (15)

Let Y � Y(t) be a fundamental solution of the homo-
geneous system,
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(Λ − t)Y′(t) � A(t)Y(t), Y(0) � I, (16)

defined by the series [16]. By using the method of variation
of constants, a particular solution of [10], with g(0) � 0, is
given by

g(t) � Y(t) 
t

0
Y

− 1
(u)(Λ − u)

− 1
b(u)f(u)du. (17)

By plugging the previous expression into [8], one arrives
at

− tf′(t) � a(t)
T
Y(t) 

t

0
Y

− 1
(u)(Λ − u)

− 1
b(u)f(u)du.

(18)

*e solution of such equation under initial data f(0) � 1
is determined by

f(t) � 1 + 
t

0
a(v)

T
Y(v) 

v

0
Y

− 1
(u)(u − Λ)− 1

b(u)f(u)du 
dv

v
.

(19)

Now, we define

k(t, u) � 
t

u
a(v)

T
Y(v)

dv

v
 Y

− 1
(u)(u − Λ)− 1

b(u),

(20)

for (t, u) ∈ G∖ (0, 0){ }, with G being some neighborhood of
the origin in Cn.

An analogous result as Lemma 2 [1] can be stated in
order to prove that k(t, u) is, in general, a multivalued
function, which is singular when u or t tends to 0. It is
straightforward to check that if |arg(t/u)|< π and t, u are
close to 0, then


t

u
a(v)

T
Y(v)

dv

v
� a

T
0 log

t

u
 h0 + 

∞

k�1

t
k

− u
k

k!k
a

T
0 hk + ka

T
1 hk− 1 ,

(21)

holds, when the integration is performed along a straight line
segment. *is follows from termwise integration which can
be performed since Y(v) is analytic on the path of
integration.

Theorem 2. 4ere exists a unique function f which is
holomorphic in G and satisfies

f(t) � 1 + 
t

0
k(t, u)f(u)du. (22)

Moreover, the power series expansions at 0 of f and g,
defined by [12], are given by

f(t) � 
∞

k�0

t
k

(k!)
2fk,

g(t) � 
∞

k�1

t
k

k!(k − 1)!
gk,

(23)

with f0 � 1, f1 � − aT
0Λ

− 1b0, g1 � Λ− 1b0, and

fk+1 � − a
T
0 gk+1 − (k + 1)ka

T
1 gk, k≥ 1,

gk+1 � Λ− 1
k(k + B)gk + k

2
(k − 1)Cgk− 1

+ b0fk + b1k
2
fk− 1, k≥ 2.

(24)

Proof. *e proof of existence and analyticity of f is similar
to that of *eorem 4 in [1]. In order to prove that f is a
solution to (22), we substitute the expression of k(t, u) into
(22) and arrive at

f(t) � 1 + 
t

0


t

u
a(v)

T
Y(v)

dv

v
 Y

− 1
(u)(u − Λ)− 1

b(u)f(u)du

� 1 + 
t

0


v

0
a(v)

T
Y(v)

1
v
Y

− 1
(u)(u − Λ)− 1

b(u)f(u)du dv

� 1 + 
t

0
a(v)

T
Y(v) 

v

0
Y

− 1
(u)(u − Λ)− 1

b(u)f(u)du 
dv

v
,

(25)

where we have made use of the Fubini theorem.
*e recurrence on the coefficients appears when plug-

ging series (23) into [8, 9]. □

Remark 2. Similarly to [1], we can show that there exist
functions rkj(t) and vectors ak(t) such that

ak(t)
T
g(t) � 

k

j�0
rkj(t)f

(j)
, k≥ 0, (26)

which easily follows from differentiating [8] and using [9].

3. Generalizations

In this section, we enlarge the family of systems under
consideration for which the previous results can be
straightforwardly generalised (the expansions of solutions,
recurrencies for the coefficients, and initial data may change)
and give some details on the elements of derivation involved.
It is clear from the previous section that similar reasoning
can be done in the case when the eigenvalues of A0 are not
necessarily distinct. Now, let us assume that the linear
system of Okubo-type [1] is such that

A0 �
0 0T

0 Λ
⎛⎝ ⎞⎠,

A1(t) �
0 a(t)

T

b(t) A(t)

⎛⎝ ⎞⎠,

(27)

where the elements of A1(t) are of the same nature as above,
but the submatrix Λ is a block matrix given by

Λ �

B11 B12 · · · B1r

B21 B22 · · · B2r

⋮ ⋮ ⋱ ⋮

Br1 Br2 · · · Brr

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (28)
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with Bij ∈ Cmi×mj with
r
i�1 mi � m, and Bij is the null matrix

if i≠ j. For all 1≤ i≤ r, we assume Bii is a Jordanmatrix of the
form,

Bii �

λi 1 0 · · · 0

0 λi 1 · · · 0

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 λi 1

0 0 0 0 λi

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (29)

for some λi ≠ 0.
*e main results of the paper described in Section 2

hold under minor modifications, namely, the idea of the
proof for the convergence of the formal solution of [1] at
t � 0, and the existence of a recurrence formula for the
coefficients of the Taylor expansion of the solution of
such system at the origin.

Given an index 1≤ i≤ r, the reduced system can be
decomposed into blocks of the form,

Bii − t( yi
′ � Aii(t)yi + H(t)yi, (30)

where yi(t) stands for a vector of mi undetermined func-
tions. More precisely, one may write
y(t) � (y0(t), . . . , yr(t)), where yj is the vector of lengthmj

which corresponds to the components in y with indices
related to the Jordan block Bjj. Observe that y0 � y1 is a
scalar indeterminate function. *e matrix
Aii(t) ∈ (C1[t])mi×mi stands for the elements of A(t) with
the same indices that those corresponding to Bii in Λ. *e
matrix H(t) ∈ (C1[t])mi×(n− mi) is multiplied by
yi(t) � (y0(t), . . . , yi, . . . , yr(t)), which consists of the n −

mi dimensional vector obtained by eliminating the com-
ponents of yi in y(t). Clearly, with this notation, the first
component of the solution vector is given by

− ty0′(t) � a(t)
T y0(t), (31)

where y0(t) � y1(t) is the vector of m components which is
obtained by eliminating the first component in y(t).

*e main difference with respect to the diagonalizable
framework is that the recurrence for the coefficients in the
Taylor expansion of yi is obtained backwards with respect to
the indices involved in the block. More precisely, let 1≤ i≤ r,
and assume that yi � (yi1

, . . . , yimi
). *e element yimi

is
given in terms of known elements in the recursion formula
(coming from known coefficients of the Taylor expansion);
the element yimi − 1 depends also on yimi

, and so on.
*e coefficients of the Taylor series expansion of Y(t),

which is the solution of the reduced system, also have more
complicated recurrence relation. For example, let us assume
that

Λ �
λ1 1

0 λ1
 . (32)

Observe that Λ and Λ − t are invertible matrices. Similar
to Section 2, let us write Y(t) in the form,

Y(t) � 
∞

k�0

t
k

k!

h
1
k

h
2
k

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠, (33)

and the matrix A(t) ∈ (C1[t])2×2 will be denoted by
A(t) � (a0

ij + a1
ijt).

Given h
1
0,

h
2
0, the terms h

1
1,

h
2
1,

h
2
2 are provided by com-

paring the first terms in the recursion formula. *e recur-
rence relation for the rest of the coefficients h

1
k and h

2
k is as

follows:

h
1
k+1

h
2
k+1

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠ �

1
λ21

λ1 − 1

0 λ1
⎛⎝ ⎞⎠

a
0
11 + k a

0
12

a
0
21 a

0
22 + k

⎛⎜⎜⎝ ⎞⎟⎟⎠

h
1
k

h
2
k

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+ k
a
1
11 a

1
12

a
1
21 a

1
22

⎛⎜⎜⎝ ⎞⎟⎟⎠

h
1
k− 1

h
2
k− 1

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(34)

for every k≥ 1.
*e power series (33) is convergent in a neighborhood of

the origin. *is follows from an analogous reasoning as in
*eorem 1.

4. Discussion and Conclusions

Linear systems play an important role in the theory of special
functions. In some problems, the study of the scalar equation
might give more information than the study of the system
itself. In this paper, we exploit the second approach with
linear systems and we discuss how one can obtain the so-
lution vector. We show that the whole vector solution can be
expressed in terms of only the first component.

We also show some connections of the problem to in-
tegral equations.

*e method presented in this paper possibly can be
extended to some classes of more general systems with
polynomial (resp. rational) entries in A(t) (see, for instance,
formula (3.2) in [1], where A(t) is rational). It is also an open
problem to consider the case in which 0 is an eigenvalue of
multiplicity larger than one, and the matrix A0 is not
necessarily diagonalizable. It may also happen that 0 is the
only eigenvalue of the matrix A0. *is problem is motivated
by examples appearing in [17] and the following observation
that if, for instance,

A0 �
0 1

0 0
⎛⎝ ⎞⎠,

A1 �

α + ε(q + cε)
α − (δ − 2)ε

− ε

c +
ε2(q + cε) − α2 + α(δ − 1)ε

ε(ε(δ − 2) − α)
t δ − 2 −

α
ε

+ εt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(35)
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then system [1] is equivalent to the double confluent Heun
equation for the first component of the vector y,

y1″ +
c

z
2 +

δ
z

+ ε y1′ +
αz − q

z
2 y1 � 0. (36)
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[10] R. Schäfke, Über das globale analytische Verhalten der
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