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ABSTRACT The multipath challenge is a research line in continuous development because of its multiple
benefits, however, these benefits are overshadowed by scalability, which goes down considerably when
the paths are multiple and disjoint. The disjointness aggregates an extra value to the multiple paths, but it
also implies more complex mathematical operations that increase the computational cost. In fact, diverse
proposals exist that try to increase scalability by limiting the number of paths obtained to the minimum
possible (two-disjoint paths), which is enough for backup applications but not for other purposes. This paper
presents an algorithm that solves these drawbacks by discovering multiple disjoint paths among multiple
nodes in an efficient way, while keeping bounded the computational cost and ensuring scalability. The
proposed algorithm has been validated thoroughly by performing a theoretical analysis, bolstered afterwards
by an exhaustive experimental evaluation. The collected results are promising, our algorithm reduces the
time spent to obtain the disjoint paths regarding its competitors between one and three orders of magnitude,
at the cost of a slight decrease in the number of paths discovered.

INDEX TERMS Algorithms, Disjoint, Multipath, Graph theory, Dijkstra’s algorithm, Routing

I. INTRODUCTION

The shortest path search is a well-known topic in graph
theory, being Dijkstra’s algorithm [1] the most renowned
solution. It has been extensively used as the basis for routing
protocols in data networks over the last 60 years. Not only it
is still in use in current telecommunications systems to route
data flows through the network [2]–[4], but is also used in
newer applications such as digital Google Maps services [5],
robot planning routes [6], or even in medical problems [7].

The shortest path problem evolved into an even more intri-
cated challenge: to obtain the shortest path plus one (or more)
additional disjoint paths to the previous one, being Suurballe
and Tarjan [8] the first ones to achieve it, based, precisely, on
Dijkstra’s algorithm. In fact, just in the last five years several
authors have worked on the basis of Dijkstra’s algorithm
to obtain multiple disjoint paths, either by modifying it or
by the application of heuristics, hence adapting the original
algorithm to the new era [9]–[16]. The design objectives of

these research works are diverse. Numerous proposals restrict
the disjoint path search to only a pair of nodes, while others
also limit the search to two-disjoint paths exclusively, which
is not enough for the latest application requirements. Besides,
scalability remains a pending issue despite the performance
improvements introduced by the newest advances in multi-
path computing methods, such as new heuristics algorithms
or the Integral Linear Programming (ILP) method. Thereby,
the multiple disjoint paths problem still constitutes an intrigu-
ing area of research for society due to its numerous benefits
(such as enhanced robustness against failures, enhanced com-
putation in machine learning applications, improved resource
allocation or increased security), whose main application
field is usually computer network routing, both in traditional
networks and Software-Defined Networking (SDN).

Our proposal, Multiple Disjoint Path algorithm (MDPAlg),
is able to obtain multiple disjoint paths among a given node
and the remaining nodes in a graph. It works as a two-phase
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process. The first phase performs a cost analysis following
the same principle as Dijkstra’s shortest path algorithm.
However, unlike Dijkstra’s algorithm, which focuses on col-
lecting information about the minimum-cost tree, MDPAlg
gathers cost information about the entire graph (including
cross-links) with a similar computational effort. Thereafter,
the second phase leverages this extra information to build
multiple disjoint paths, thus avoiding iterative executions
when more than one path is required as in Dijkstra and
other alike algorithms. Moreover, this methodology keeps the
number of mathematical operations bounded, guaranteeing
the scalability of the algorithm in large graphs.

In summary, the main contributions of this paper are as
follows:
• We describe MDPAlg, a novel algorithm to create mul-

tiple disjoint paths among a given node and the remain-
ing nodes in a graph with a single full graph search.

• We analyze, implement and comprehensively evaluate
MDPAlg against its direct competitor: Dijkstra’s algo-
rithm (as well as some of its enhanced versions), obtain-
ing a drastic reduction (up to three orders of magnitude)
of the computational complexity, independently of the
graph type. To the best of our knowledge, no other state-
of-the-art algorithm yields similar performance results.

• Thanks to a comprehensive evaluation, we prove that
MDPAlg can be applied to a multitude of classic en-
gineering problems (including computing, networking,
transport, etc.).

The paper is structured as follows: Section II establishes
the background of the paper and its justification, while
Section III formally defines the proposal and describes its
behavior with an example. Afterward, Section IV studies the
computational complexity of the algorithm and confronts it to
widely-known solutions, followed by Section V, which com-
prehensively evaluates the algorithm in different scenarios.
Finally, Section VI provides the main conclusions.

II. BACKGROUND
A graph is composed by a set of objects called nodes (or ver-
tices) connected by a set of links (or edges) that characterizes
relations between such elements, whose study dates back to
the century XVIII (Könisgberg problem). According to the
directionality of the links, graphs can be classified as directed
graphs (each link has associated one or more directions to
be traversed), and non-directed graphs (the direction of the
links are not defined and they can be used in both directions).
Moreover, depending on the cost of traversing those links,
the graphs can be classified as weighted graphs (each link
has its own weight cost) or unweighted graphs (links have no
weight).

There are two main search algorithms for non-directed and
unweighted graphs, Depth First Search (DFS) and Breadth
First Search (BFS) [17], which obtain as a result a tree rooted
at a given node that spans all the nodes in the graph. DFS
performs a graph search from top to bottom, exploring a
branch of the tree as far as possible until the node processed

is the node searched for or it has no children, backtracking
then to explore other branches; while BFS performs a breadth
search, visiting all the nodes at the same hop distance before
advancing to the next depth level. Based on BFS, Dijkstra’s
algorithm [1] introduces, as a novelty, a search process on
non-directed weighted graphs that replaces the breadth search
of hop-levels by a cost-level breadth search, resulting in a
minimum-cost predecessor matrix for the root node. More-
over, from this information, it is straightforward to derive the
minimum-cost path from the root node towards the remaining
nodes. However, this solution only provides one minimum-
cost path for each pair of nodes. Thus, to obtain multiple
paths between the same pair of nodes, the process should be
repeated after deleting the previous discovered path (set of
links) from the graph.

Regarding the number of paths discovered, algorithms can
be classified as single-path (they only provide a path between
two nodes), and multiple-path (they provide more than one
path between two nodes). Multiple paths not only can be used
for routing purposes (as alternative routes to send data), but
also for back-up (just in case of failure of the main path),
security and so on. Within the multiple-path group, path
disjointness is an interesting feature that clearly improves
the benefits of multiple-path approaches. According to this
property, multiple-path algorithms can be classified as link-
disjoint (the paths obtained cannot share any link) and node-
disjoint (the paths cannot share any node, and hence any
link, except for the end nodes). Additionally, we can group
multiple-path algorithms depending on whether they provide
two or more than two paths. For example, the following
proposals only provide two disjoint paths: [8] (for directed
weighted graphs), [18], [19] (for non-directed weighted
graphs), [20]–[22] (for non-directed unweighted graphs).

Whereas having two disjoint paths may be enough to en-
sure reliability or for back-up purposes in some applications,
it might remain insufficient in other scenarios, such as to
increase the robustness of the connections against Man-In-
the-Middle attacks through data diversification across disjoint
routes [23], or to improve the bandwidth speed by using
disjoint paths with Quality of Service (QoS) policies [15].
However, the calculation of multiple disjoint paths is usually
a greedy process and its computational complexity –defined
as the amount of resources required to run the algorithm–
grows exponentially with the graph size (number of nodes
and links), which limits its scalability. Aiming to reduce
this high computational cost, some approaches rely on dis-
tributing the computation among all the nodes in a graph
by exchanging local information between neighbors nodes to
build the disjoint paths, namely: [24]–[26] (for non-directed
and unweighted graphs), and [27]–[29] (for non-directed and
weighted graphs).

Also based on this distributed approach, the One-Shot
Multiple Disjoint Paths (1S-MDP) [30] network protocol
obtains multiple link- or node-disjoint paths among a given
node and any other nodes in the network, boosting the path
search process efficiency and guaranteeing its scalability
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in large networks. However, due to its distributed nature,
1S-MDP cannot be applied in many fields such as vehicular
traffic routing, emergency evacuation systems and others,
where its impact could be significant. Thus, we propose
the transformation of 1S-MDP into MDPAlg, a centralized
version of the former, designed to adapt it to new challenges
and encompassing it for as many application fields as pos-
sible. MDPAlg works in non-directed weighted graphs and
provides multiple link and node-disjoint paths between a
target node and other nodes in the graph.

III. ONE-SHOT MULTIPLE DISJOINT PATH ALGORITHM
This section describes in detail the procedure followed by
MDPAlg to obtain multiple link- or node-disjoint paths
among multiples nodes. First, it provides a high-level
overview of the algorithm and the reasons for its devel-
opment, focusing later on the in-depth description of its
multipath discovery procedure.

A. ALGORITHM DESCRIPTION
MDPAlg is conceived as a centralized and enhanced version
of 1S-MDP [30], which already showed good results in
terms of number of disjoint paths discovered, and low con-
vergence time to obtain them, in distributed environments.
The rationale behind this decision is that 1S-MDP is po-
tentially applicable to many scenarios of diverse nature, but
its distributed essence hinders its practical implementation
on some of them. In particular, MDPAlg is designed as a
centralized algorithm that, instead of exchanging topological
information in a distributed manner, operates over a graph
that symbolically represents the underlying topology. Like
1S-MDP, MDPAlg is able to obtain multiple disjoint paths
among a given node and the remaining nodes in a graph,
following a two-phase process, with just a single full graph
search.

During the first phase, MDPAlg carries out a cost analysis
on the graph starting from the given source node (s), much
like Dijkstra’s algorithm search strategy but storing some
extra information. For each target node, it stores the aggre-
gated cost from s computed through all its neighbours (not
only the minimum cost as in Dijkstra) within a cost matrix
(see Section III-B). The second phase derives multiple link-
or node-disjoint paths among s and any other node in the
graph from the information stored in the cost matrix (see
Section III-C). Additionally, the set of target nodes can be
configured by the user, including the possibility to mark as
target one single node or up to all nodes of the graph except
s.

B. FIRST PHASE: ANALYSIS OF COSTS
During this phase, the algorithm performs an analysis to
obtain the aggregated cost incurred to go from s to any
other node in the graph. This analysis is a modified version
of Dijkstra’s algorithm in which a graph node not only
collects information from the minimum-cost tree, but from
all its neighbors (including cross-links). By using this extra

information, MDPAlg is able to build multiple disjoint paths,
hence avoiding iterative executions when more than one path
is required, as in Dijkstra’s algorithm.

Algorithms 1 and 2, shown in parallel, present the
pseudo-code of Dijkstra and MDPAlg, respectively. They are
based on the high-level description of Dijkstra’s algorithm
from [17] so that it is easier to spot the main differences
between them. Dijkstra’s algorithm relies on two vectors, C
and P, to store the minimum cost from s to any other node,
and the parent node through which the minimum cost was
computed, respectively. From this information, obtaining the
paths included in the minimum-cost spanning tree for a given
node is straightforward, but still requires a second phase to
build them, and only provides a single path for each s-X pair
in the graph. On the other hand, MDPAlg relies on a more
complex data structure, named the Cost Matrix (CM) for
node s, to store the aggregated cost from s to any other node,
computed through all its neighbors (not only the minimum
cost as in Dijkstra). CM is a non-complete NxN cell matrix
(being N the number of nodes in the graph); an empty cell
meaning that those particular two nodes are not neighbors.
For example, for every node X, neighbor of node Y, row X
column Y shows the accumulated cost to go from s to Y
through the minimum cost path from s to X plus the cost from
X to Y; hence, row X column X shows the cost associated to
go from s to node X (plus the cost from X to X, which is zero),
through the minimum cost path. From this information, the
algorithm builds multiple disjoint paths between s and any
other graph node in the second phase.

It is important to note that MDPAlg obtains multiple
disjoint paths between s and any other/s selected node/s
with a single full graph search, while Dijkstra’s algorithm
only obtains one. A new execution of Dijkstra’s algorithm
is required to obtain one additional disjoint path between s
and another node (after removing the previous path from the
graph). For example, in a graph of N nodes, if the objective is
to compute p disjoint paths between s and every other node,
we have to execute Dijkstra´s algorithm p · (N − 1) times,
while MDPAlg just needs to be executed once. Hence, several
iterative executions of Dijkstra’s algorithm are required to
yield similar results than MDPAlg.

Comparing Dijkstra’s algorithm and the analysis of costs
phase of MDPAlg, both functions receive a graph (G) and
a given source node (s) as input parameters, which provide
a representation of the underlying topology (composed by
nodes, links and the cost of traversing each link), and the
point where the algorithm procedure starts, respectively.
First, both functions initialize their variables, S, Q, P and
C vectors in Dijkstra’s algorithm function; CM and Q in
MDPAlg. The vectors S and Q contain the nodes analyzed
by the algorithm and the remaining nodes to be analyzed,
respectively, while P stores the parent of each node in the
minimum-cost tree. Moreover, both algorithms initialize the
vector C and the matrix CM with an infinite value in all of
their entries, except for the one associated with s, set up
with zero cost, which ensures that the algorithms start the
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Algorithm 1 Dijkstra’s algorithm

1: function DIJKSTRA’SALGORITHM(G, s)
2: Initialize(S, P )
3: C = Initialize_single_source(G, s)
4: Q = Get nodes from G
5: while Q 6= ∅ do
6: u = extract_min(Q)
7: Insert u in S
8: for each vertex v neighbour of u do

9: R


if S ∩ v = ∅ then
w = Lc from u to v
if C(u) + w < C(v) then

C(v) = C(u) + w
P (v) = u

10: return C,P

Algorithm 2 Analysis of costs of MDPAlg

1: function ANALISISOFCOSTS(G, s)
2:
3: CM = Initialize_single_source(G, s)
4: Q = Get nodes from G
5: while Q 6= ∅ do
6: u = extract_min(Q)
7:
8: for each vertex v neighbour of u do

9: R


ifv 6= s then
w = Lc from u to v
if CM [u][u] + w < CM [v][v] then

CM [v][v] = CM [u][u] + w
CM [u][v] = CM [u][u] + w

10: return CM

a) Dijkstra’s algorithm result
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b) MDPAlg result

FIGURE 1: Comparision of the search process in Dijkstra’s algorithm and MDPAlg

analysis procedure at this node. Later, both proposals analyze
each node of the graph once, following a selection criteria by
cost, that extracts, in each iteration, the node with the lowest
cost from Q. Subsequently, Dijkstra´s algorithm applies the
RELAX function, as originally described in [17], to compute
the cumulative cost incurred to go from s to the target node
through all of its neighbors and selects the neighbor that
provides the lowest cost.

MDPAlg modifies the RELAX function to obtain extra
information about the cross-links that Dijkstra’s algorithm
does not consider relevant. With this modification and the
CM structure, MDPAlg obtains a complete characterization
of the graph according to the accumulated cost incurred from
s, also including the minimum-cost path in the solution. The
changes in the RELAX function consist of computing the
accumulated cost from the given node to the rest of the nodes
through all the links, so that it stores the cost incurred to get

to the target node through all its neighbors, not only through
the best one. Therefore, although applying a similar analysis
procedure, MDPAlg stores more information than Dikjstra´s
algorithm about the graph.

Figure 1 provides a graphical example illustrating the
operation of Dijkstra’s algorithm and MDPAlg in a simple
graph comprised of 7 nodes. It is vertically divided into two
parts, the top half shows the graph composed of nodes, links,
and the associated cost to each link, together with additional
data related to both algorithms; while the bottom half shows
the data structures returned by each algorithm. In particular,
Figure 1a displays the result of applying Dijkstra’s algorithm.
As previously anticipated, the top half shows, for each node,
its name, the minimum cost from s and the neighbour (parent)
used to compute this minimum cost. From this information
we can compute the minimum-cost tree spanning from s,
which is also highlighted in the figure in bold black color
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lines. The bottom half depicts the Cost vector (C) and the
Parent vector (P) returned by the algorithm.

Similarly, Figure 1b shows the result of executing MDPAlg
in the example graph, representing the returned Cost Matrix
(CM) returned in the bottom half. The information high-
lighted in gray in the matrix represents information not
strictly relevant or necessary for MDPAlg, as the first col-
umn symbolizes the cost to travel from s to itself, and the
diagonal values contain the information about the minimum-
cost tree, just as vector C in Dijkstra’s algorithm; as it can be
observed, these diagonal values are duplicated and equivalent
to the lower-cost cell of each column. As a proof of this, in
Figure 1b, the diagonal of CM is equal to vector C shown in
Figure 1a. For further elucidation, row E column E contains
the same cost value than B column E, which directly means
that the minimum-cost path from s to E is reached through B.
This can be extrapolated to the rest of the columns of CM.

C. SECOND PHASE: DISJOINT PATH CONSTRUCTION
As already indicated in the previous section, unlike Dijkstra’s
algorithm, MDPAlg obtains many disjoint paths with a single
execution. All of these paths are computed from the informa-
tion stored in CM. This translation of the CM into specific
paths is called the construction phase, which generates the
final set of disjoint paths based on a configurable group of
target nodes (from one to all nodes in the graph).

This section explains the path construction process among
the given node and the set of predefined target nodes fol-
lowing the same structure as in Section III-B. In particular,
Algorithm 3 provides the pseudo-code for the path construc-
tion phase. The path construction process function has, as
input parameters, the graph G, s, and CM obtained in the first
phase. This function starts by initializing the main variables
used during the disjoint path construction processes, previ-
ous, next_hop, new_path and Paths. The first two are used to
build each disjoint path in a sequential way, while the last
two save the path under construction and the set of paths

generated, respectively. Moreover, variable D obtains the
target nodes from the graph. For each target node stored in D,
the procedure starts a new path construction process towards
s through each one of its neighbors, selecting them in in-
creasing cost order with the function GetMinCostNeighbour.
Moreover, due to the centralized nature of the algorithm,
this procedure is sequential, so a path construction process
is not started until the previous one has finalized. The path
construction process between a target node and s requires
some intermediate steps in which, the procedure, through the
function GetMinCostNeighbour and the variables previous
and next_hop, consecutively selects the next available neigh-
bour node with the lowest cost from CM, until s is reached.
Additionally, the function ApplyDisjointnessRestrictions per-
forms the operations to ensure disjointness among paths
belonging to the same s-target node tuple. More specifi-
cally, after selecting a neighbor node to continue the path
construction towards s, the two entries representing the link
between them in CM are disabled (since the paths obtained
are bidirectional). Alternatively, if the operation mode is
node-disjoint, all the entries in CM associated to the selected
node are disabled to guaranty this node can not be selected
for other paths. Once s is reached, the path obtained is saved
in the variable Paths, and a new disjoint path construction
process for another neighbor or target node is started. Finally,
in the case that function GetMinCostNeighbour does not
return a node, meaning there is no way to continue the path
construction towards s, a back track mechanism is invoked
by calling GoBackFunction. Finally, when all the available
neighbors of the target node have been assessed, a new target
node is chosen to continue the construction phase.

To better understand the whole procedure and the concepts
described above, Figures 2 and 3 illustrate a specific example
of the path construction process in link- and node-disjoint
modes, respectively, between three pair of nodes: S-E (Fig-
ures 2a and 3a), S-D (Figures 2b and 3b), and S-F (Figures 2c
and 3c). Both figures present the corresponding graph (top

Algorithm 3 Disjoint path construction process

1: function DISJOINTPATHCONSTRUCTION(G, s, CM )
2: Initialize_variables(previous, next_hop, new_path, Paths)
3: D = GetTargetNodes(G)
4: while D 6= ∅ do
5: dst = ExtractNode(D)
6: for each neighbour of dst do
7: next_hop = GetMinCostNeighbour(CM, dst)
8: while next_hop 6= s do
9: Advance : previous = next_hop; next_hop = GetMinCostNeighbour(CM, previous)

10: Insert(next_hop, new_path)
11: ApplyDisjointnessRestrictions(CM, previous, next_hop)
12: if next_hop == s then
13: Insert(new_path, Paths)

14: if next_hop == ∅ then
15: GoBack(CM, previous, next_hop)

return Paths
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a) Construction path process between S and E. b) Construction path process between S and D. c) Construction path process between S and F.
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FIGURE 2: Link-disjoint path construction process in MDPAlg

a) Construction path process between S and E. b) Construction path process between S and D. c) Construction path process between S and F.
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FIGURE 3: Node-disjoint path construction process in MDPAlg

half), together with a different view of the information in
CM (bottom half). This view shows the order in which the
different neighbors of a node are selected by the GetMin-
CostNeighbour function during the path construction phase,
so that, for each column, the different rows are ordered by
increasing cost to s, and the corresponding neighbor node
names are listed instead of the costs.

Figure 2 exemplifies the path construction process in link-
disjoint mode. In the example, node S acts as source node
s, while the set of target nodes is comprised by three nodes,
namely E, D and F. Let us first focus on Figure 2a, which
depicts the process between nodes S and E, which is the first
target node in the list. The link-disjoint path construction pro-
cess is started at node E by selecting, as next hop, its lowest-
cost neighbor, which is B. Following the same method, B
will then select its lowest-cost neighbor too, node S, hence
concluding the first link-disjoint path construction process.
This path is marked in blue both in the graph and in the

CM, where the path is represented in column E, row B, with
an arrow that goes directly from column E to column B,
where s is found. During this process, node E in column B
is also disabled to satisfy the link-disjoint policies because it
represents the reverse path from E to B. This is represented
with a gray color and one asterisk after E.

When the construction process of the first path ends, the
second one repeats the same procedure, selecting in each step
the lowest-cost free neighbor and disabling the reverse link in
CM. More specifically, the second path construction process
results in a link-disjoint path composed by nodes E, D (which
is the second lowest cost at E, just after B), A (which is
the first option at D) and S; this second disjoint paths is
depicted with green arrows. Similarly, the procedure also
disables from CM the entries that describe the reverse links,
marked in the figure with gray and two asterisks. Finally,
the process is repeated a third time, hence yielding the third
link-disjoint path, which is shown with orange arrows in the
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figure. When the third path construction ends, as there are no
more options to build new disjoint paths between E and S, the
algorithm initiates another path building process for the next
target node, i.e., node D, whose path construction process is
illustrated in Figure 2b. Finally, the process is repeated for
the last target node, F, which is shown in Figure 2c.

In node-disjoint mode, the procedure is similar, each node
selects the lowest-cost available neighbor until s is reached.
However, the policy to ensure node-disjoint paths differs
from the link-disjoint mode. In this mode, each node selected
for a disjoint path is disabled from the entire CM. Figure 3a
depicts how node B is disabled in all columns after being
selected in the first node-disjoint path.

Up to this point, the paths were easily built, by simply
selecting the next available neighbor. However, as already
anticipated in the algorithm description, this search might
find dead ends, hence having the need to go back to look for
alternative routes. This additional mechanism implemented
by MDPAlg can be observed both in Figure 2c and Figure 3b,
which illustrate a successful and unsuccessful attempt to
avoid a dead end, respectively. In the case of Figure 2c,
belonging to the link-disjoint mode, it progresses from F
to E and B, where the GetMinCostNeighbour function re-
turns C as first option, as it is the next available lower-
cost neighbor. However, C has no valid neighbors because
they were disabled by previous steps of the link-disjoint path
construction process. Thus, the procedure goes back to node
B, which executes again the GetMinCostNeighbour function
hence obtaining A as the next valid lowest-cost neighbor.
This alternative route completes the third link-disjoint path
construction process. On the other hand, the third attempt
to build a disjoint path between D and S fails as shown in
Figure 3b. When the construction phase reaches B, all its
entries are disabled (because B was already selected for the
second path), hence it activates the hop back mechanism
and backtracks to D. Unfortunately, D does not have any
other available neighbor and, besides, cannot hop back again
because it is the target node, thus, finishing the construction
phase with only two disjoint paths built for this pair.

IV. THEORETICAL STUDY OF COMPUTATIONAL
COMPLEXITY
Computational complexity is a term that, in computer sci-
ence, usually relates to the efficiency of algorithms to solve a
problem in relation to the amount of physical or temporal
resources required, which constitutes a good estimator to
quantify the quality of algorithms. In this section, we study
the computational complexity of MDPAlg by comparing it to
that of a well known and proven competitor solution, namely
the primitive (naive) implementation of Dijkstra’s algorithm,
in a worst-case scenario (a full mesh graph where each
node is connected to each other). We quantify the number
of calculations needed by both proposals to obtain a certain
number of disjoint paths. Dijkstra’s algorithm was selected
for comparison because it is a good benchmark to position
MDPAlg in the disjoint path ecosystem. First, the section
formally defines the mathematical problem and, afterwards,
it analyzes the computational complexity of Dijkstra’s algo-
rithm versus MDPAlg in depth. Finally, the study is extended
to take into account several enhanced implementations of
Dijkstra’s algorithm, as well as other related algorithms. In
this regard, Table 1 illustrates the differences and the com-
putational complexity values, without delving into details to
avoid extending the article excessively.

A. MATHEMATICAL FORMULATION
The mathematical formulation of the disjoint path problem
can be defined as follows. Given a graph G = (N ,L)
(consisting of a set N of N nodes and a set L of L links) and
two nodes {s, t} ∈ N . For k > 0, find k paths P1, P2, ..., Pk

from s to t that do not share any links or nodes. The problem
is NP-complete in both cases, that is, link- and node-disjoint
modes [34]. Regarding the worst-case scenario, in which
each node is connected to every other node in the graph,
the WorstCaseGraph can be defined as WCG = (N ,L),
composed by a set N of N nodes and a set L of L links,
in which each ni ∈ N is connected with all nj ∈ N , ∀
ni 6= nj . Additionally, the worst case scenario also implies
that all the disjoint paths between all possible pair of nodes

TABLE 1: Computational complexity analysis

Protocol/Algorithm
Worst case scenario (full mesh graph)

One/two path(s) per pair All paths per pair All paths between All paths between
{s, t} ∈ N ∀ s 6= t {s, t} ∈ N ∀ s 6= t s and all tj ∈ N ∀ s 6= tj si and all tj ∈ N ∀ si 6= tj

MDPAlg protocol (node disjoint
mode) - O(N2) O(N2) O(N3)

MDPAlg protocol (link disjoint
mode) - O(N2) O(N3) O(N4)

Naive Dijkstra (node and link
disjoint) O(N2) [17] O(N3) O(N4) O(N5)

Naive Dijkstra min-heap (node
and link disjoint) O(N2

2 · log(N)) [17] O(N3) O(N4) O(N5)

Naive Dijkstra Fibonnaci-heap
(node and link disjoint) O(N · log(N) + N2

2 ) [17] O(N3) O(N4) O(N5)

Robertson’s algorithm (node
disjoint) - O(N3) [31] O(N4) O(N5)

Kawarabayashi’s algorithm (node
disjoint) - O(N2) [32] O(N3) O(N4)

Eppstein’s algorithm (without
disjointness) - - O(N2

2 + N · log(N) + N2

2 ·N) [33] O(N4)

Karaata’s algorithm
(node-disjoint) O(N2) [22] O(N3) O(N4) O(N5)
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should be discovered, so the mathematical description is as
follows: Given the WCG = (N ,L), a set of given nodes
S ∈ N / sj ∈ S, 0 < j 6 N , a set of target nodes T ∈ N ,
for each sj / ti ∈ T , sj 6= ti, 0 < i 6 N , find k paths
(P1(sj ,ti), P2(sj ,ti), ...Pk(sj ,ti), 0 < k 6 N −1) for each pair
of nodes {sj , ti} that do not share any common link or node.

B. DIJKSTRA’S ALGORITHM
Dijkstra’s algorithm determines the minimum-cost tree from
a given node towards the remaining nodes in a graph. There-
fore, to obtain multiple disjoint paths between a pair of nodes,
Dijkstra’s algorithm must be executed several times after
removing from the graph the path discovered in the previous
iteration. In this way, each newly found minimum-cost path
guarantees the disjointness condition with the previous ones.
After several runs, all the disjoint paths for a given pair of
nodes will be discovered in an increasing cost order, since
the lowest-cost paths were erased previously from the graph.
Finally, to discover all the disjoint paths between every pair
of nodes in the graph, this process must be repeated as many
times as pairs of nodes in the network.

Theorem 1. To obtain the minimum-cost path between a pair
of nodes, the computational complexity of Dijkstra’s algo-
rithm is O(N2) [17]. Thus, in WCG, in which all the nodes
are connected between them, Dijkstra’s algorithm requires
O(N3) time to find all the disjoint paths between a pair of
nodes {s, t} ∈ N , s 6= t.

Proof. To discover all the disjoint paths between a pair of
nodes, Dijkstra’s algorithm must be executed as many times
as disjoint paths exist between that pair of nodes. In a WCG

all nodes are interconnected among them, hence each node
has N − 1 neighbours through which is possible to obtain
N − 1 disjoint paths with each target node. Therefore, to ob-
tain all the disjoint paths between a pair of nodes {s, t}, s ∈
S, t ∈ T , s 6= t, Dijkstra’s algorithm must be executed
as many times as possible disjoint paths exist between that
pair of nodes {s, t}, i.e., N − 1 times. Accordingly, as the
computational complexity of each Dijkstra’s run is O(N2),
the complexity to discover all the disjoint paths between a
pair of nodes is O(N2) · (N − 1) ' O(N3).

Theorem 2. To obtain all the disjoint paths between a given
node s ∈ S and all the target nodes ti ∈ T , ∀ ti 6= s, 0 <
i 6 N in WCG, the computational complexity of Dijkstra’s
algorithm is O(N4).

Proof. Theorem 1 defines that the computational complexity
to discover all the disjoint paths between a pair of nodes is
O(N3). To obtain all the disjoint paths between a given node
s ∈ S and all the target nodes ti ∈ T , ∀ ti 6= s, 0 < i 6 N ,
the process described in Theorem 1 must be repeated N − 1
times, once per each ti ∈ T , ti 6= sj . Hence, this complexity
is O(N3) · (N − 1) ' O(N4).

Theorem 3. In WCG, using Dijkstra’s algorithm, the result-
ing computational complexity to obtain all the disjoint paths

between all sj ∈ S, 0 < j 6 N and all ti ∈ T, 0 < i 6 N ,
is O(N5).

Proof. On the basis of Theorem 2, the computational com-
plexity of Dijkstra’s algorithm is O(N4) to discover the
disjoint paths between a given node s ∈ S and all ti ∈
T , ∀ ti 6= s, 0 < i 6 N . Therefore, to discover the paths
between all sj ∈ S, 0 < j 6 N and all ti ∈ T , 0 < i 6 N ,
the Theorem 2 must be applied as many times as the number
of sj nodes are (N times). Accordingly, the resulting is
O(N4) ·N = O(N5)

As a conclusion, to obtain all the disjoint paths in the
worst-case scenario (a hyper-connected mesh graph), Dijk-
stra’s algorithm computational complexity is related to the
number of nodes in the graph in a fifth-order exponential
function.

C. MDPALG
MDPAlg looks for disjoint paths between a given node and
a set of target nodes in an efficient way, aiming to lessen
the computational complexity. As described in Section III,
MDPAlg provides link-disjoint or node-disjoint paths by
performing a search process in two steps: an initial analysis
of cost phase, followed by a multi-node path selection phase.
Therefore, to calculate MDPAlg’s computational complexity,
these two phases must be analyzed. The total computa-
tional complexity is the result of adding the computational
complexity of each phase. Since the exploration phase is
common in both modes (link- and node-disjoint) it will be
analyzed first. The study is subsequently performed for the
link-disjoint confirmation phase and for the node-disjoint
confirmation phase, respectively.

Theorem 4. In WCG, to perform an analysis of the accumu-
lated cost incurred from a given node s ∈ S with MDPAlg,
the computational complexity cost is O(N2). If the analysis
is extended to obtain the accumulated cost from each node
sj ∈ S, 0 < j 6 N , the resulting computational complexity
is O(N3).

Proof. The analysis of costs of MDPAlg uses the same search
structure as Dijkstra’s algorithm to characterize the graph
according to the accumulated cost incurred from a given
node. In particular, MDPAlg does not add new operations
implying the evaluation of new nodes or links, hence the
resulting computational complexity is the same as the one
obtained by executing Dijkstra’s algorithm (O(N2)). Addi-
tionally, considering that a single analysis of costs allows for
the computation of all disjoint paths between a given node
s ∈ S and all the target nodes ti ∈ T , ∀ ti 6= s, 0 < i 6 N ,
this process must be repeated as many times as nodes exist in
WCG to obtain all the disjoint paths between {sj , ti}, sj ∈
S, ti ∈ T , ∀ ti 6= sj , 0 < {i, j} 6 N . Therefore, as S
contains all the nodes of WCG, the cost analysis phase must
be repeated N times, yielding a computational complexity of
O(N2) ·N = O(N3).
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Theorem 5. In WCG, to discover all link-disjoint paths be-
tween all sj ∈ S, 0 < j 6 N and all ti ∈ T , 0 < i 6 N , the
computational complexity of MDPAlg’s construction phase is
O(N4).

Proof. In link-disjoint mode, the worst-case scenario in
terms of computational complexity occurs when the disjoint
paths obtained between a pair of nodes {s, t} ∈ N use
all the links li ∈ L available in WCG, since it involves
processing all links in the graph. In WCG, as all nodes
are interconnected, each node is connected with the rest
of the nodes in the graph (N − 1 nodes), which provides
N · (N − 1) = N2 − N links in total. However, as links
are bidirectional, in practice, WCG has half of the links,
N2−N

2 , because of the previous calculation assumed both
directions of each link. Therefore, to obtain all the disjoint
paths between a pair of nodes {s, t}, s ∈ S, t ∈ T , s 6= t,
the computational complexity is proportional to the number
of links, which involves a computational complexity O(N2).
To obtain all the disjoint paths between a given node s ∈ S
and all the target nodes ti ∈ T , ∀ ti 6= s, 0 < i 6 N , the
previous process must be repeated as many times as target
nodes ti are in T (N − 1), whose resulting computational
complexity is O(N2) · (N − 1) = O(N3). Finally, to
discover the paths between all sj ∈ S, 0 < j 6 N and
all ti ∈ T , 0 < j 6 N , the previous steps must be
executed as many times as sj are in S (N nodes), giving a
final computational complexity of O(N3) ·N = O(N4).

Theorem 6. In WCG, to discover all the node-disjoint paths
between all sj ∈ S, 0 < j 6 N and all ti ∈ T , 0 < i 6
N , the computational complexity of MDPAlg’s construction
phase is O(N3).

Proof. In node-disjoint mode, the worst-case scenario in
terms of computational complexity occurs when the disjoint
paths obtained between a pair of nodes {s, t} ∈ N use all the
nodes ni ∈ N available in WCG, since it involves processing
all nodes of the graph. The number of nodes in a WCG

graph is N , therefore, to obtain k node-disjoint paths between
{s, t}, s ∈ S, t ∈ T , s 6= t, the computational complexity is
O(N). To obtain all the disjoint paths between a given node
s ∈ S and all the target nodes ti ∈ T , ∀ ti 6= s, 0 < i 6 N ,
the previous process must be repeated as many times as target
nodes ti are in T (N − 1), whose resulting computational
complexity is O(N) · (N −1) = O(N2). Finally, to discover
the paths between all sj ∈ S, 0 < j 6 N and all
ti ∈ T , 0 < j 6 N , the previous steps must be executed
as many times as sj are in S (N nodes), giving a final
computational complexity of O(N2) ·N = O(N3).

The resulting computational complexity of MDPAlg is
given by the sum of the computational complexity of its
phases (analysis of cost and paths construction). In link-
disjoint mode the final result is O(N3) +O(N4) ' O(N4),
while in node-disjoint mode is O(N3) + O(N3) ' O(N3),
which decreases up to two orders of magnitude the computa-
tional complexity regarding Dijkstra’s algorithm.

D. COMPARATIVE RESULTS
In this section, we provide a quick overview about how the
theoretical study performed in the previous section has been
extended to analyze other algorithm approaches, under the
same restrictions (i.e., to obtain all the disjoint paths between
all sj ∈ S, 0 < j 6 N and all ti ∈ T , 0 < j 6 N in a
WCG). This extended analysis firstly includes the implemen-
tation improvements of Dijkstra’s algorithm (min-priority
queue with min-heap and Fibbonaci-heap), and afterwards
it focuses on other relevant works found in the literature.
All the results are collected in Table 1, omitting the in-detail
analytical study because of its length.

In view of the results of Table 1, none of the improvements
of Dijkstra’s algorithm outperforms MDPAlg. The same
occurs with Robertson’s, Kawarabayasi’s and Karaata’s, al-
gorithms, whose computational complexity is at least one
order of magnitude higher than MDPAlg for the same op-
eration mode (node-disjoint). Eppstein’s algorithm could be
considered the closest competitor to MDPAlg, as it is the
only one providing a similar computational complexity than
MDPAlg’s link-disjoint (O(N4)) but it does not guarantee
path disjointness.

V. EVALUATION
This section aims to evaluate the implementation of MDPAlg
in terms of: (1) computational complexity, with a particular
focus on its scalability considering the network size, (2) the
number of disjoint paths discovered, and (3) the time needed
to obtain all disjoint paths (convergence time), in direct com-
parison to Dijkstra’s algorithm. First, this section presents
the selected testbed and the implementation, it then explains
the experimental setup and, finally, it collects, represents, and
analyzes the obtained results.

A. TESTBED AND IMPLEMENTATION
To perform the evaluation of MDPAlg, we selected the MAT-
LAB software tool [35] because of its versatility, its coding
speed and debugging properties, its friendly interface, and its
powerful toolboxes for graphical representation.

For the comparison, we chose Dijkstra’s algorithm be-
cause it is a well-proven solution, if not the most popular.
Furthermore, as its computational complexity was studied
theoretically in Section IV, this evaluation will serve to
validate it. More specifically, we leveraged Xiaodong Wang’s
library [36], available for MATLAB, because it implements
Dijkstra’s algorithm based on a matrix of costs, which sim-
plifies the coding process of MDPAlg. This is particularly
relevant since the first phase of MDPAlg is inspired by
Dijkstra’s algorithm search process, and besides, it computes
the cumulative cost from the given node in a cost matrix.
However, as Dijkstra’s algorithm does not provide disjoint
paths by definition, we must execute Dijkstra’s algorithm
iteratively to obtain the disjoint paths between a given pair
of nodes. After each run, we remove from the graph the
minimum-cost path obtained, launching Dijkstra’s algorithm
with the modified graph again to calculate a new disjoint
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path. The process ends when no more paths are discovered
between the pair of nodes. In this way, the disjointness among
paths is guaranteed. To obtain all the disjoint paths available
in a graph this process is repeated as many times as pairs of
nodes are in the graph.

MDPAlg was implemented in MATLAB platform modi-
fying Xiaodong Wang’s library to develop the first phase of
the algorithm. Moreover, the second phase of MDPAlg was
implemented from scratch trying to optimize the generated
code.

Finally, regarding the hardware platform, all the experi-
ments were executed in a Intel(R) Core(TM) i7-8700K CPU
computer with 32 GB RAM.

B. EXPERIMENTAL SETUP
To fully characterize MDPAlg, the experimental setup in-
cludes different scenarios in which it was comprehensively
evaluated. Our intention was to validate that the performance
of MDPAlg remained excellent compared to Dijkstra’s, from
the most complex to the simplest scenario.

To this purpose, we first evaluated both protocols
(MDPAlg and Dijkstra’s algorithm) in the WorstCaseGraph
to validate the theoretical analysis performed in Section IV.
Afterward, the tests were repeated in 2-dimension (2D)
square mesh graphs ranging from 4 to 36 nodes (2x2 to
6x6), and in random graphs ranging from 20 to 100 nodes to
complete the analysis. On the one hand, square mesh graphs
provide a regular structure that maintains a medium-high
connectivity ratio among nodes, hence keeping the multipath
choice while simplifying the structure of the WorstCase-
Graph. On the other hand, random graphs aim to synthe-
size real scenarios consisting of heterogeneous connections
among nodes, such as Metropolitan Area Network (MAN)
with hyper-connected urban nodes or peripheral not-so-well-
connected nodes. Furthermore, to maintain the multipath
choice, the random graphs generated have an average of two,
four and six links per node. However, for the sake of simplic-
ity, the paper only shows the results of four links per node
for two reasons: (1) an average of four paths between a pair

of nodes is enough for multipath application requirements,
such as in networking [37] or evacuation route planning [38]
scenarios, and additionally (2) the results for two and six
neighbors per node are very similar and do not provide
further insights. In summary, this set of three types of graphs
was selected to illustrate the evolution of both algorithms
when executed both in regular (hyper-connected) and irregu-
lar (non so well-connected) graphs, including an intermediate
transition scenario (represented by the 2D square meshes).

The random graph generator tool chosen was Boston
university Representative Topology gEnerator (BRITE) [39]
as it has also been used in the evaluation phase of the
original 1S-MDP [30]. This tool provides two random con-
nection models, Waxman model [40] and Barabási–Albert
model [41], which covers a wide range of heterogeneous
graphs; Waxman connects nodes randomly based on Eu-
clidean distance, while Barabási–Albert follows a power-law
model.

Each test was repeated 30 times to compute 95% confi-
dence intervals, ensuring that the deviation of the confidence
intervals regarding the average values did not exceed the
10%. The cost per link was set randomly except for the
WorstCaseGraph, in which the cost of all links were the same
and the test was repeated just once, in order to check the
hypotheses raised in Section IV.

C. RESULTS
This section presents the results and analyzes them classified
according to the parameters previously defined: (1) compu-
tational complexity, (2) number of disjoint paths discovered,
and (3) convergence time. All values obtained for MDPAlg
are compared to Dijkstra’s algorithm. Moreover, this section
also serves to experimentally validate the theoretical study
performed in Section IV.

1) Computational complexity
This first stage of the evaluation aimed to validate the hy-
potheses raised in Section IV, while quantifying and com-
paring the computation complexity of both algorithms, Di-
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jkstra’s and MDPAlg. The computational complexity is an
estimator related to the amount of physical or temporal
resources consumed by the algorithms to obtain the solution.
Given that the amount of memory required is negligible in
both cases, we decided to measure the time invested by
both algorithms to obtain the disjoint paths, as a function of
the number of nodes in the graph. Then, we computed the
regression function that fits best those results and compared
it to the results of the theoretical study of Section IV.

Figure 4 depicts the evolution of the computational com-
plexity for Dijkstra’s algorithm and MDPAlg, as the number
of nodes increases in the WorstCaseGraph. Please note that,
for the sake of simplicity, the y-axis is different for Dijkstra’s
and MDPAlg. So even if the graphs look similar, the values
differ in several orders of magnitude, indeed. As there are
two modes to generate the disjoint paths, Figure 4a shows
the results for link-disjoint mode, while Figure 4b displays
those for node-disjoint mode. Moreover, solid lines represent
the experimental data measurements, while dotted lines de-
pict the regression function associated to those experimen-
tal results, whose mathematical function (the computational
complexity), is located at the top of each figure.

As depicted in Figure 4, the results validate the compu-
tational complexity study of Dijkstra’s algorithm elaborated
in Section IV, since the computational complexity function
evolves in both cases (theoretically and experimentally) as a
power of 5 function of the graph size.

A similar conclusion can be reached for MDPAlg, as it fol-
lows a cubic function in both modes (node- and link-disjoint),
which validates the theoretical study for node-disjoint mode.
However, it slightly differ for link-disjoint mode, since the
measured values further reduce by one the exponent of the
computational complexity function (from O(N4) to O(N3)).
This is due to the combination of the high-connectivity of
WorstCaseGraph together with the MDPAlg’s path construc-
tion phase algorithm, which chooses the lowest-cost available
option for each new disjoint path. The combination of these
two features causes the path construction process to obtain
disjoint paths with only one or two hops, since the high con-
nectivity provides alternative paths with a very short length.
Therefore, only a small subgroup of links of the graph are
eventually used, which drastically reduces the computation
complexity compared to the worst case of the link-disjoint
problem, in which all the links of the graph are used. As
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a matter of fact, the solution obtained is closer to a typical
node-disjoint solution, as the procedure is finding paths that
rarely share any node.

Before checking the rest of graph scenarios, we would like
to provide an additional remark about Figure 4 related to the
regression function. As it can be observed, the values are
slightly higher than the ones from the theoretical analysis
(e.g. 5.07 instead of a 5, 3.10 instead of 3, etc.). This is
mainly caused by concurrent processes running in the oper-
ating system in the computer, which slows down the overall
procedure. Nevertheless, the values are still consistent and
close to the theoretical ones, which validates the behavior of
both algorithms.

Once the WorstCaseGraph has been analyzed, Figure 5
displays the computational complexity for the rest of the
evaluated graphs (square mesh and random models). We can
observe a similar behaviour in all cases: MDPAlg decreases
approximately by a half the computational complexity com-
pared to Dijkstra’s algorithm. This effect occurs because
MDPAlg optimizes the analysis of cost phase by gathering
more information in a single execution, which, as a result,
reduces the computational load and improves the scalability
of the algorithm.

2) Number of paths and convergence time
In this second stage of the evaluation, we examined both the
number of disjoint paths obtained by each proposal and the
time invested to obtain them in the set of graphs under study.
Figures 6 and 7 depict the number of paths discovered for
WorstCaseGraph and the rest of the evaluated graphs, respec-
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tively, while Figures 8 and 9 focus on the convergence time.
All figures present at the top half the results for link-disjoint
mode, and at the bottom half the results for node-disjoint
mode. Moreover, Figures 7 and 9 displays from left to right
the results obtained in square mesh, and the two random
graphs, respectively. As seen in Figure 6, WorstCaseGraph,
the number of paths discovered by both algorithms is the
same due to the high-connectivity degree of the graph, which
causes that, independently of the number of cost analyses
performed, both solutions always found the very same paths.

However, the number of paths discovered by MDPAlg,
compared to Dijkstra’s algorithm, slightly decreases in the
rest of the evaluated graphs, as seen in Figure 7.

This effect is caused by the simplified cost analysis imple-
mented by MDPAlg, which only collects information once
and uses it to obtain the whole set of paths for a given source
node, while Dijkstra’s algorithm does it several times, once
per computed path. This gap ranges from 0% up to 10-12%,
depending on the type and size of the graph. Nevertheless,
this slight decrease of performance is overcompensated by
the gain obtained in the convergence time, which is reduced
by two to three orders of magnitude compared to Dijkstra’s
algorithm. Indeed, MDPAlg drastically reduces the number
of mathematical calculations needed to obtain the disjoint
paths.

The great reduction in convergence time yielded by
MDPAlg in all graphs is particularly higher in large graphs,
independently of their type. Again, this is due to the single
cost analysis phase of MDPAlg, which successfully deals
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with the increment in the number of links with the graph size.
However, it produces an exponential growth of mathematical
operations in the case of Dijkstra´s algorithm, which is re-
sponsible for the exponential growth in convergence time.

Therefore, the small reduction in the number of paths ob-
tained by MDPAlg is overcompensated by the drastic conver-
gence time reduction, which exhibits exceptional scalability
in this regard.

VI. CONCLUSION
In this paper we have studied MDPAlg, an algorithm that
searches multiple (link- or node-) disjoint paths among a
given source node and a set of target nodes, in two phases.
The first phase analyzes the graph according to the accumu-
lated cost incurred from the source node, while the second
phase leverages the information of the previous phase to build
the disjoint paths in an increasing cost order. Moreover, we
have studied the computational complexity of MDPAlg and
compared the results to other solutions, and concluded that
MDPAlg drastically decreases the computational complexity
compared to its opponents.

MDPAlg has been tested in graphs of different nature
(from structured meshes up to random models) to experi-
mentally validate the theoretical study of the computational
complexity carried out in the paper, and to study its behaviour
in different scenarios. The results obtained are promising, as
MDPAlg reduces the computational complexity up to three
orders of magnitude while keeping the number of paths
discovered close to its rivals, independently of the graph type.

As future work, we want to study the quality of the disjoint
paths obtained in terms of load balancing or failure resilience,
as well as other scenarios in which MDPAlg could fit, such
as vehicular networks, path planning problems, biomedical
applications, or evacuation tasks.
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