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Highlights 
 

 A novel mesoporous silica modified with a β-cyclodextrin derivative was 

synthesized. 

 The CSP material was packed into capillaries and used in nano-LC and CEC. 
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 Flavanones and flavanone glycosides optical isomers were studied and 

separated. 

 

 

 

ABSTRACT 

 

In this paper a chiral stationary phase (CSP) was prepared by the immobilization of a β-

CD derivative (3,5-dimethylphenylcarbamoylated β-CD) onto the surface of amino-

functionalized spherical ordered mesoporous silica (denoted as SM) via a urea linkage 

using the Staudinger reaction. The CSP was packed into fused silica capillaries 100 m 

I.D. and evaluated by means of nano-liquid chromatography (nano-LC) and capillary 

electrochromatography (CEC) using model compounds for the enantio- and the 

diastereomeric separation. The compounds flavanone, 2′-hydroxyflavanone, 4′-

hydroxyflavanone, 6-hydroxyflavanone, 4′-methoxyflavanone, 7-methoxyflavanone, 

hesperetin, hesperidin, naringenin, and naringin were studied using reversed and polar 

organic elution modes. Baseline stereoisomer resolution and good results in terms of 

peak efficiency and short analysis time of all studied flavonoids and flavanones 

glycosides were achieved in reversed phase mode, using as mobile phase a mixture of 

MeOH/H2O, 10 mM ammonium acetate pH 4.5 at different ratios. For the polar organic 

mode using 100% of MeOH as mobile phase, the CSP showed better performances and 

the baseline chiral separation of several studied compounds occurred in an analysis time 

of less than 10 min. Good results were also achieved by CEC employing two different 

mobile phases. The use of MeOH/H2O, 5 mM ammonium acetate buffer pH 6.0 (90/10, 

v/v) was very effective for the chiral resolution of flavanone and its methoxy and 

hydroxy derivatives. 
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1. Introduction 

 The separation and analysis of chiral compounds is an important research 

topic in different fields also including analytical chemistry, and the separation of chiral 

compounds is increasingly in demand in various application fields such as, 

pharmaceutical, agrochemical, biomedical, environmental and nutraceutical areas [1]. 

Therefore, to meet the requirements related to the resolution and quantification of 

enantiomers, several stereoselective separation methods have been developed [2 - 7].  

 Different analytical techniques have been used for separation of enantiomers 

[2, 5 - 11]. In high-performance liquid chromatography (HPLC), the direct resolution 

method employing chiral stationary phases (CSPs) is very popular, and numerous chiral 

selectors (CSs) have been used for this purpose [2, 5 – 8, 12 - 14]. In that respect, in the 

last years, thanks to recent achievements in the field of materials science, 

chromatographic methods for separation of enantiomers utilizing other CSPs have been 

developed [15]. In addition, the recent progress of miniaturized analytical techniques 

such as nano-/capillary liquid chromatography (nano-LC/CLC) or capillary 

electrochromatography (CEC) has opened new horizons in the field of separation 

science. These techniques can be considered complementary or alternative to HPLC or 

CE and offer good separation efficiency and resolution, shorter analysis time and rapid 

optimization of experimental conditions [3, 4, 16, 17]. Developments in the preparation 

of nanoparticles and monoliths as stationary phases for miniaturised liquid phase 

separation techniques have been reviewed recently [18]. 

The discovery of ordered mesoporous silicas (OMSs) in the early nineties 

marked the beginning of research in the development of high surface area materials with 

controlled porosity [19]. The dramatically higher surface area of OMSs in comparison 

to commercially available chromatographic grade silica enhances resolution of 
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molecules by increasing retention factors to allow effective separations of analytes. Up 

to date, a variety of OMSs have been proposed as stationary phases or supports to 

prepare stationary phases for solid phase extraction [20, 21] and chromatography [22]. 

Among the CSs used to develop CSPs, β-cyclodextrin (β-CD) and its derivatives 

have been extensively used for chiral separations employing different chromatographic 

modes [11, 23 - 31]. Although many CSPs based on CDs are commercially available 

nowadays, there is a need to develop new packing materials offering high 

enantioselectivity in short analysis time. In some studies, the use of OMSs as supports 

for CSPs preparation have improved enantioselectivity and resolution with respect to 

conventional silica. Some of these articles have been discussed recently in a review 

paper [15] but, to the best of our knowledge, papers dealing with the use of CSPs based 

on OMSs for capillary/nano-LC have not been reported yet. In CEC only one paper has 

demonstrated the application of submicron OMS modified with phenylcarbamoylated-

β-CD as CSP [32]. 

The first high coverage stable bonded phase CD-based CSP was developed by 

Armstrong and DeMond in 1984 [33]. β-Cyclodextrin was bonded to silica gel via an 

ether linkage and the resulting CSP could separate many compounds in reverse phase 

mode [33]. Thereafter, the application of CSPs based on chemically anchored CDs and 

the understandings of their properties have been broaden tremendously. Thus, numerous 

publications about synthethic routes and/or immobilization strategies have emerged 

during the last years, in order to develop well-defined CD-based CSPs. These strategies 

have been reviewed recently by Xiao et al. [34] and after this review other interesting 

strategies have also been published [35, 36].  

In our paper, a spherical mesoporous silica (denoted SM) with 3-D wormhole-

like porous framework was used for the first time as support to prepare a CD-CSP. For 
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this purpose, mono(6-azido-6-deoxy)perfunctionalized β-CD was first synthesized and 

purified, and then this derivative was immobilized onto the surface of amino-

functionalized SM (SM-NH2). The Staudinger reaction, which was applied for the first 

time by Zhang et al. [37] for inmobilization of CD onto aminised silica gel, was used. 

Under optimized conditions, the chemical anchoring of the β-CD derivative onto the 

SM support was effective via the hydrolytically stable urethane linkage (Fig. 1) and the 

current procedure afforded a structurally well-defined β-CD based CSP. In this regard, 

the objective of this work was to investigate the enantioselectivity of the prepared CD-

CSP, by using nano-LC and CEC, for the enantiomeric and diastereoisomeric separation 

of some selected flavanones as model analytes.  

 

2. Experimental 

 

2.1 Chemicals and samples 

All chemicals were of analytical reagent grade and used as received. 

Tetraethylorthosilicate 98% (M = 208.33 g/mol, d = 0.934 Kg/m3), poly(ethylene 

glycol)-block-poly(propylene glycol)-blockpolyethylene glycol, Pluronic 123 (Mav = 

5800 g/mol, d = 1.019 Kg/m3), cetyltrimethylammonium bromide (CTAB) 98%, (M = 

364.46 g/mol), β-CD, ethyl acetate, pyridine, 3,5-dimethylphenyl isocyanate 99%, 

sodium azide and 3-aminopropyltriethoxysilane were purchased from Sigma-Aldrich 

(St. Louis, MO, USA).  Hydrochloric acid 37%, acetone, ethyl ether, ethanol and 

anhydrous sodium sulphate were purchased from Scharlau (Barcelona, Spain). 

Acetonitrile (AcN), methanol (MeOH), ethanol (EtOH), isopropanol (i-PrOH), acetone 

and n-hexane (n-Hex) were purchased from Carlo Erba (Milan, Italy). A Milli-Q system 

(Millipore Waters, Milford, MA, USA) was employed to purify water. Ammonium 
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acetate (500 mM), utilized for the chromatographic runs, was obtained by titrating the 

appropriate volume of acetic acid with concentrated ammonia solution to pH 4.5. 

Mobile phases employed for the nano-LC experiments were daily prepared by mixing 

suitable volumes of buffer solution, water and organic solvents (AcN or MeOH). 

LiChrospher 100 RP-C18, 5 m particle diameter, was from Merck (Darmstadt, 

Germany).  Fused silica capillaries, 100 m I.D. x 360 m O.D. were purchased from 

Polymicro Technologies (Phoenix, AZ, USA). The selected flavonoids (flavanone, 2′-

hydroxyflavanone, 4′-hydroxyflavanone, 6-hydroxyflavanone, 4′-methoxyflavanone, 7-

methoxyflavanone, hesperetin, hesperidin, naringenin, and naringin) were from Sigma–

Aldrich. Stock standard solutions of each flavonoid (1 mg/mL) were prepared in MeOH, 

and stored at 4ºC. Further dilutions were daily done with water and AcN (60/40, v/v) to 

obtain the final concentration of 100 g/mL. Fig 1S. shows the chemical structure of the 

studied compounds (supplementary material).  

 

2.2 Instrumentation  

A BASIC 20 pH meter (Crison, Barcelona, Spain) was employed for accurate 

pH measurements in aqueous buffer solution. A Series 10 LC HPLC pump (Perkin 

Elmer, Palo Alto, CA, USA) a Decon model FS 100b (Hove, UK) ultrasonic bath and a 

Stereozoom 4 optical microscope (Cambridge Instruments, Vienna, Austria) were 

employed for the capillary packing process. 

The nano-LC experiments were carried out with a laboratory-assembled 

instrumentation utilizing a LC10 HPLC pump (Perkin Elmer, Palo Alto, CA, USA), a 

modified injection valve (Enantiosep GmbH, Münster, Germany), and an UV–vis on-

column detector (Spectra Focus PC1000, Thermo Separation Products, San Jose, CA, 

USA), set at 200 nm. The HPLC pump, delivering continuously MeOH isocratically, 
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and the injector were connected so as to obtain a passive split-flow system needed to 

reduce the flow rate at nL/min levels. The capillary column was directly inserted into 

the modified injector equipped with 50 μL loop. Both pump and injection valve were 

joined to a stainless steel T piece (Vici, Valco, Houston, TX, USA) by means of 500 μm 

I.D. stainless steel tubes with lengths of 70 and 5 cm, respectively. The third entrance of 

the T was connected to the MeOH reservoir of the pump, through a fused silica 

capillary (50 μm I.D. × 50 cm) achieving a continuous recycling of the organic solvent.  

Sample and mobile phase were introduced into the nano- LC system through the 

injection valve. Injections were done by filling the loop with the sample solutions, 

switching the valve for appropriate time and then flushing the loop with the mobile 

phase. The flow rate was estimated by connecting a 10 μL syringe (Hamilton, Reno, NV, 

USA) to the capillary column outlet through a Teflon tube (TF-350; LC-Packing, CA, 

USA) and by measuring the volume of mobile phase accumulated over 5 min. Data 

were collected using Clarity™ Advanced Chromatography Software (DataApex Ltd., 

Prague, Czech Republic). 

CEC experiments were performed on a HP3D CE apparatus (Agilent 

Technologies, Waldbronn, Germany) with on-column UV-diode array detector 

operating at 214 nm. The same capillary column employed in nano-LC containing the 

packed CSP with different length of 23 cm (total length, 33.5 cm) was used for the 

separation of enantiomers. During runs the two electrode compartments were 

pressurized at 10 bar to avoid bubble formation. A voltage of -15 kV was applied during 

CEC experiments. Samples were injected by hydrodynamic method (8 bar x 0.5 min). 

Data were recorded with Chemstation software (Rev. A.09.01, Agilent Technologies). 
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2.3 Preparation of stationary phases 

 

2.3.1 Preparation of 3,5-dimethylphenylcarbamoylated β-CD  

Firstly, monotosyl-β-CD (compound 1) and azido-β-CD (compound 2) were 

prepared according to previously reported methods (see Fig. 1 and suplementary 

material for details). Then, 1 mmol of dried compound 2 was dissolved in 20 mL of 

anhydrous pyridine and 25 mmol of 3, 5-dimethylphenyl isocyanate was added and 

allowed to stir overnight at room temperature. The pyridine was removed by vacuumed 

distillation. The solid was dissolved in 100 mL of ethyl acetate and filtered to eliminate 

rest of unsolved solid. The mixture was washed three times with 100 mL of brine (10% , 

w/v) and the solid was dried in anhydrous sodium sulphate. The ethyl acetate solution 

was concentrated to about 25 mL and 100 mL of hexane was added to the concentrate, 

the suspension was filtrated to eliminate rest of solid. Finally the ethyl acetate was 

evaporated and the obtained solid (3,5-dimethylphenyl carbamoylated β-CD, compound 

3) was dried for 8 h at 65°C (Fig. 1). Characterization data for compound 3: FT-IR (cm-

1, ATR): 3393-3309 (amide N-H str), 3015 (arom C-H str), 2919 (C-H str), 2108.7 (N3 

str), 1714 (esther C=O), 1613, 1538, 1437 (arom C=C), 1212, 1042 (C-O-C ). 1H NMR 

(CDCl3, TMS) δ (ppm) 6.92-6.42 (m, C6H3); 5.96-5.55, 5.16-4.67, 4.12-3.94 (m, β-CD); 

2.04-1.26 (m, CH3). 

 

2.3.2 Functionalization of SM-NH2 with 3,5-dimethylphenylcarbamoylated β-CD  

Derivatization of SM-NH2 (for details of SM-NH2 preparation see supplementary 

material) with compound 3 was carried out according as follows: 2.3 g of SM-NH2 were 

stirred in 25 mL of anhydrous THF under a CO2 atmosphere (flow 2 bar). After 10 min, 

a solution of compound 3 in 20 mL of anhydrous THF was added and stirring with CO2 
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bubbled for 5 min. Then was added 1 g of triphenylphosphine dissolved in 20 mL of 

THF. The mixture was stirred with constant bubbling of CO2 for 21 h. After this time 

the solid was filtered and washed with 100 mL of THF. Finally, in order to purify the 

solid, Soxhlet extraction with acetone was used for 48 h to remove the 

triphenylphosphine oxide and any unreacted CD by-products. The solid obtained 

(denoted as SM-β-CD) was dried for 72 h at 60 °C (Fig. 1). Mesoporous silicas were 

characterized using conventional characterization techniques (see supplementary 

materials for details) 

 

2.4 Preparation of capillary columns 

The capillary columns (100 m I.D. x 375 m O.D. x 50 cm) were packed 

following a previous reported procedure [2, 38]. Briefly, one end of the capillary was 

connected to a mechanical temporary frit, Valco (Houston, TX, USA) to retain the 

packing material and the other end to a stainless steel HPLC pre-column (50 mm × 4.1 

mm I.D.), which was used as reservoir of the slurry. A series LC10 pump, PerkinElmer 

(Palo Alto, CA, USA) was used for the packing procedure.  

The capillary was firstly packed to 10 cm with LiChrospher 100 RP-C18 

stationary phase suspended in MeOH (3-5 mg in 1 mL) for the preparation of the first 

frit. Then the slurry was removed from the reservoir and the capillary flushed with 

water (about 15 min) in order to completely eliminate the organic solvent. In order to 

prepare the frit, the RP-C18 was sinthered for 8 s at about 700 ºC with a heating wire 

(laboratory made apparatus), flushing continuously with water. Then the temporary frit 

was removed and, the capillary was flushed with MeOH followed by i-PrOH to 

eliminate the excess of packing material. Afterwards the column was packed with the 

CSP suspended in i-PrOH to 20 cm. Finally, the other extreme of the column was 
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packed again with the RP-C18 particles to prepare the second frit following the same 

procedure applied for the first one. The detection window was prepared at 2 cm to the 

outlet frit by removing the outside polyimide layer with a razor. 

 

3. Results and discussion 

3.1 Synthesis and characterization of the mesoporous silicas 

The XRD patterns of the obtained SM material (Fig. 2A) exhibited a single 

(100) diffraction peak at low angle region (0.93º). In this material the d100 spacing, 

assigned to the pore-to-pore centre correlation distance, was 94.9 Å. This pattern is 

typical of materials with uniform pores in the mesoporous range and non-symmetrical 

3-D wormhole-like porous framework, with a pore structure lacking long-range order. 

XRD pattern of the modified SM-β-CD (Fig. 2B) indicates that the basic pore structure 

of the material remains unchanged after functionalization, and the decrease in XRD 

signal intensity can be attributed to the presence of the β-CD groups inside the pore 

channels of the material [39]. In addition, the increase in the wall thickness, from 15.04 

Å in SM to 57 Å in SM-β-CD, confirmed that the functionalization occurred also inside 

the mesopore channels.  

Fig. 2C shows N2 adsorption-desorption isotherms for SM, SM-NH2 and SM-β-

CD materials. All the isotherms are type IV according to the IUPAC classification with 

hysteresis loops type H1, which are representative of mesoporous materials. At low 

relative pressures P/P0, between 0 and 0.3 the nitrogen adsorption is produced in 

monolayer. At pressure upper 0.3 capillarity condensation and pores filling occur. The 

isotherms of the modified materials (SM-NH2 and SM-β-CD) were of the same type as 

than the non-modified material (SM), with a reduction in the adsorbed volume and in 

the hysteresis loop due to the decrease in the pore size that takes place when the ligand 
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is attached into the pores. These results showed an important decrease in the surface 

area (from 660.66 to 389.36 m2/g), pore diameter (from 74.5 to 45.6 Å) and pore 

volume (1.2 to 0.54 cm3/g) after the functionalization with the β-CD derivative (see 

Table 1S in supplementary information). Thus, it can be inferred that the β-CD groups 

were grafted not only to the external surface area of the mesoporous silica particles, but 

also inside the mesostructured pore channels. This fact agrees with the results  obtained 

by other authors who indicated that only with pore diameters > 60 Å the β-CD moieties 

can react with the anchoring sites (-NH2) inside the pore channels [39]. Fig. 2D shows 

the pore size distribution of the materials after and before the functionalization 

procedure.  

NMR spectroscopy is one of the most powerful techniques for verifying the 

incorporation of functional groups by enabling the simultaneous identification of 

multiple functionalities, as well as, the different types of silanol groups and the 

effectiveness of the covalent bonding of the ligand to the silica framework. The 29Si 

MAS NMR and 13C MAS NMR spectra of these new materials corroborated the 

presence of the β-CD derivative groups. 29Si MAS NMR spectra of SM and SM-β-CD 

are shown in Fig. 3A and 3B. In these spectra, resonances around -110 ppm, -105 ppm 

and -92 ppm can be assigned as Q4 [(SiO)4Si], Q3 [(SiO)3Si-(OH)] and Q2 [(SiO)2Si-

(OH)2] sites, respectively. Clearly, Q4 is the dominant peak because it is the most 

abundant site. In addition, the two other peaks that appeared at -55 and -65 ppm in the 

SM-β-CD spectrum (Fig. 3B) were assigned to T2 ((SiO)2SiOH-R) and T3 ((SiO)3Si-R) 

sites, respectively, and corroborated the covalent attachment of the organic ligand in 

this material.  The 13C CP-MAS NMR spectrum of SM-β-CD (see Fig. 2S in 

supplementary material) shows peaks in the central spectral region (ca. δ = 98.8 - 58.3 

ppm) typical of cyclodextrin units. The peaks for the triehoxysilane unit 
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(CH2CH2CH2Si) are observed at ca. δ = 10 – 42 ppm and the urethane linkage 

(OCONH) was observed at ca. δ = 160 ppm. Finally, signals observed at ca. δ = 110 -

140 ppm are assigned to the carbon atoms of phenylcarbamoyl groups. Results of NMR 

spectroscopy are in agreement with other works [34, 40, 41] and confirmed the presence 

of β-CD derivative into the SM structure and, therefore, the right functionalization of 

the material.  

The morphology, shape and size of the particles of the prepared materials were 

studied by SEM. SEM micrographs showed that the particles had a spherical 

morphology (Fig. 4A), with a very good particle circularity factor centered at 0.87 (Fig. 

4B). In addition, a reasonable distribution of particle size (dispersity) to have good 

column packing quality was achieved, with the vast majority of the particles in the 

range of 4 – 6 μm. This particle size distribution is in agreement with previous synthesis 

of mesoporous materials type SM [36]. SEM images for the SM-β-CD material show 

that the morphology and size of the particle remains similar after the funtionalization 

process. Fig. 4B shows a SEM image of cutting section of 100 µm I.D. capillary 

column, where the column bed formed by the spherical SM-β-CD particles can be 

observed. On the other hand, TEM images of these silicas show irregularly aligned 

mesopores throughout the materials with relatively uniform pore sizes (wormhole-like 

pore arrangement). These results are in good agreement with the related XRD patterns 

and N2 adsorption–desorption isotherms.  

 The amount of aminopropyl groups and β-CD derivative attached onto the silica 

surface was calculated by the % N and % C obtained by elemental analysis in both SM-

NH2 and SM-β-CD materials. Results obtained indicated that the SM-NH2 material had 

a functionalization degree of 1.38 mmol/g. After the immobilization of the β-CD 

derivative (compound 3) onto its surface, via the Staudinger reaction, the residual 
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aminopropyl groups were estimated in 1.27 mmol/g. These results confirmed that due to 

steric hindrance it was not possible to functionalize all the amino groups of the material. 

On the other hand, functionalization degree of the SM-β-CD was 32 µmol/g with a CD 

surface coverage of 8.22 x 10-8 mol/m2. TGA curves of the prepared silicas (see Fig. 3S 

in supplementary material) showed that exothermic degradation processes occur in the 

range of 200 – 600ºC, with weight loss of 7 and 20% in SM-NH2 and SM-β-CD, 

respectively, that demonstrated good thermal stability of these modified materials. 

These characterization results confirmed that the SM-β-CD material was successfully 

prepared, in order to evaluated as CSP for the enantiomeric and diastereoisomeric 

separation of some selected flavanones as model analytes. 

 

3.2 Evaluation of the CSP using reversed-phase conditions on nano-LC 

The prepared CSPs was packed into fused silica capillaries and the 

enantioresolution capability was firstly evaluated by means of nano-LC for chiral 

separation of several flavanones (Fig. 1S in supplementary material). As CSP studied 

contained a modified β-CD, the enantioresolution mechanism expected was an 

inclusion-complexation one, but also other additional mechanisms based on adsorption 

have also to be considered. Therefore, the composition of mobile phase must be 

carefully controlled to achieve optimum separation of enantiomers.  For this purpose, 

the enantioselectivity was firstly evaluated under reversed elution mode.  

 

3.2.1 Influence of acetonitrile content in the mobile phase  

Based on our experience and on data reported in literature, racemic model 

mixtures of compounds of nutraceutical interest have been chosen (see Fig 1S in 

suplementary material). Their enantiomeric separation was studied by nano-LC using 
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the SM-β-CD as CSP. Mixtures of AcN/H2O, 10 mM ammonium acetate pH 4.5 at 

different ratio (40 - 90% of AcN, v/v) were used as mobile phase. Flow rates in the 

range 225-281 nL/min were applied. 

The plot of ln k vs AcN concentration of the first eluted enantiomer (when 

resolved) showed a linear behaviour for all studied compounds. Therefore, from these 

experiments, it can be deduced that the chromatographic mechanism is of reversed-

phase type. Fig. 5 gives an idea about the linear relationship observed for the 

representative compounds 7-methoxyflavanone and flavanone. As it can be seen, the 

increase of the organic solvent concentration in the mobile phase caused a reduction of 

retention factor (k). This was mainly due to the competition enantiomers/AcN with the 

hydrophobic CD cavity. The organic solvent had higher affinity to the analyte, having 

been observed similar trend for the other compounds [42].  

Retention times (tr) and enantioresolution factors (Rs) also decreased by 

increasing the AcN concentration for all analyzed compounds. For example, eluting 

with AcN/H2O, 10 mM ammonium acetate pH 4.5 (40/60, v/v), tr and Rs of 7-

methoxyflavanone (first eluted enantiomer) were 33.0 min and 2.0, respectively. The 

two parameters decreased to 4.4 min and 0 increasing the content of organic solvent to 

90%. Baseline enantioresolution of flavanone in its enantiomers was achieved using 

AcN/H2O, 10 mM ammonium acetate pH 4.5 (40/60, v/v) (Rs = 1.80, tr = 38.4 min), 

whereas employing 90% of AcN the enantioresolution was completely lost (tr = 4.3 

min).  

Table 1 reports the chromatographic parameters, tr, k, selectivity () and Rs for 

all compounds under optimal experimental conditions. As it can be observed, good 

resolution was achieved for flavanone and 7-methoxyflavanone, for the other 

compounds poor enantioresolution was obtained with Rs values in the range 0.00 - 0.8. 
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These values are pobably due to the position of the substituent groups in the structure of 

the other flavanones that is not favourable and the interaction with the CSP is not 

enough to show good Rs. In addition, AcN could hidden the formation of stereoselective 

interaction between the stereogenic centre and the functional groups of the CSP. The 

chromatograms of some flavanones enantiomers resolved under reversed-phase 

conditions by using a mixture of AcN/H2O, 10 mM ammonium acetate pH 4.5 (40/60, 

v/v) as mobile phase are showed in suplementary material (Fig. 4S). 

 

3.2.2 Influence of methanol content in the mobile phase  

Further experiments were carried out using the same capillary column and a 

mobile phase containing MeOH at concentration range of 70 - 95% (v/v). The organic 

solvent was mixed with 10 mM ammonium acetate buffer at pH 4.5. Lower 

concentrations of MeOH were not studied because by working in this range the 

separation of all compounds was obtained. In addition, at lower MeOH concentration, 

the tr began to be higher without increasing chiral resolution. 

The increase of MeOH in the mobile phase caused a decrease of k. The plot of ln 

k vs organic solvent concentration was linear for all studied compounds, confirming, 

also with this solvent, a typical reversed phase mechanism at least at the concentrations 

studied. The use of MeOH instead of AcN gave better results for analysis times and 

enantioresolution. For example, at 95 % MeOH concentration all analyzed compounds 

were resolved in their enantiomers or diastereoisomers with the exception of naringin.  

  Table 2 summarizes the chromatographic data, tr, k, , N/m and Rs of all 

flavanones tested under the optimized separation conditions. As can be seen, the highest 

Rs values were achieved for flavanone and for all methoxyflavanones. Lower Rs values 

were achieved for 2´-hydroxyflavanone, naringin, naringenin and hesperidin. Hesperetin 
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showed a higher Rs value relative to its correspondent glycosidic compound hesperidin. 

These results could be explained by the fact that hesperetin exhibited a higher degree of 

interaction due to the higher hydrophobicity and smaller size of the aglycone molecule, 

allowing a greater affinity for the CD cavity [3]. Similar effect was observed for 

naringenin and naringin. Fig. 6 shows the nano-LC separation of the studied 

enantiomers or diastereoisomers achieved under the optimal experimental conditions. 

As it can be observed, the peaks obtained show very good symmetry. This fact can be 

due to the high surface area and ordered pore structure of the mesoporous silica, which 

offers quick mass transfer kinetics during separation.  

The better results with MeOH than AcN were due to the weaker displacing 

effect of MeOH that allowed a greater inclusion complex formation between the analyte 

and the CD cavity [43]. In addition, MeOH has an amphiprotic nature and the polar 

interactions give a contribution to the chiral recognition [44]. Experiments performed 

using EtOH or i-PrOH instead of MeOH revealed not satisfactory results concerning 

enantioresolution.  

Comparing the results here obtained with those reported in the work published in 

reference [3] in reversed chromatografic mode, using MeOH as organic modifier, it can 

be observed that in this study, the chiral separations were obtained with shorter analysis 

times and resolution values similar or in some cases higher. By using AcN instead of 

MeOH in the mobile phase, Si-Ahmed et al.  achieved the complete enantioresolution 

for all the compounds with long analysis times (more than 45 min for the chiral 

separation of flavanone). 
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3.2.3 Influence of the buffer added to the mobile phase  

Ammonium acetate buffer in the range 0 - 20 mM was investigated, keeping 

constant the organic modifier content. When buffer concentration was increased, no 

significant effect on enantioresolution was observed. The addition of a buffer system to 

the mobile phase did not affect the enantioresolution of flavanones significantly. 

 

3.3 Evaluation of the CSP using organic polar-phase conditions on nano-LC  

The SM-β-CD CSP was finally studied in polar organic mode by using 100% 

AcN or MeOH as mobile phase, without any additives. With 100% AcN as mobile 

phase, no enantioseparation was achieved for all the studied compounds. Since the C-H 

bonds of AcN have a very high pKa value, the solvent will be aprotic [45], but with 

MeOH 100%, all analysed compounds were resolved in their enantiomers or 

diastereoisomers with the exception of naringin, naringenine and hesperidine (Table 3 

and Fig. 5S in suplementary material). 

 

3.4. Evaluation of the CSP on capillary electrochromatography 

The novel capillary CSP column was also studied analyzing the same model 

standard racemic mixtures used in nano-LC with CEC. As reported in literature, the 

driving force of analytes and mobile phase into the column is the electroosmotic flow 

(EOF) generated by the application of a relatively high electric field. The EOF can 

move in the direction of either cathode or anode depending on some experimental 

conditions such as, the charge of the stationary phase, the composition of the mobile 

phase, the applied electric field, etc. Therefore, these parameters must be carefully 

selected and controlled. First of all, we selected a reversed polarity mode (EOF to 

anodic direction) just considering the chemical structure of the CSP (see Fig. 1) where 
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positively charged amino groups close to the CDs are present. Just to compare CEC data 

with the ones achieved by nano-LC, the same mobile phase was tested. MeOH and/or 

AcN with water also containing ammonium acetate were selected. The presence of the 

buffer was necessary in order to have sufficient electric conductivity during the runs. 

Table 4 shows the CEC data achieved analyzing flavanone and its derivative 

enantiomers employing two different mobile phases. The use of MeOH/H2O, 5 mM 

ammonium acetate buffer pH 6.0 (90/10, v/v) was very effective for the chiral 

resolution of flavanone and its methoxy and hydroxy derivatives. Rs values in the range 

1.34 - 6.24 were obtained, while relatively long retention times were achieved (16.9 - 

25.5 min, second eluted enantiomer).  

The composition of the mobile phase was modified keeping constant the content 

of MeOH and the ionic strength, decreasing water concentration to 5% and adding 5% 

of AcN. As can be observed in Table 4 retention times decreased due to both increase of 

EOF and decrease of interactions with the CSP. This is documented by the decrease of 

retention factors. In addition, resolution factors decreased with poor enantioresolution 

of 2'-hydroxyflavanone. No peaks were detected for hesperetin, hesperedin, naringin 

and naringenin. As an example of the good performace of CEC, Fig. 7 shows some 

representative electrochromatograms achieved using the two mobile phases with and 

without AcN in the mixtures. As we have indicated previously, ordered mesoporous 

silicas possess larger surface/volume ratio than conventional silica gel, which is 

important in chromatography for achieving favourable mass transfer. In that respect, 

considering the high surface area and special pore structure of ordered mesoporous 

silicas, symmetric peaks with little peak broadening could be achieved with the new 

CSP developed. 
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In Tables 2 and 4, efficiency of both analytical methods, in terms of theoretical 

plates number per meter (N/m) was also evaluated. The N/m values obtained with the 

CEC and nano-LC methods, obtained in the same experimental conditions,   were in the 

range between 39580 - 27010 and 19175 - 10789, respectively. As exprected higher 

values were obtained with CEC than with nano-LC, due to the well known presence of 

EOF. 

 

4. Conclusions 

A chiral stationary phase (CSP) has been successfully prepared and 

characterized, using spherical ordered mesoporous silica (SM) as support. Amino-

functionalized SM was modified with 3,5-dimethylphenylcarbamoylated β-CD (SM-β-

CD) and its potential of application as CSP, in nano-liquid chromatography (nano-LC) 

and capillary electrochromatography (CEC), was evaluated for the first time. 

Flavanones and flavanone glycosides were used as model compounds for the 

enantioseparation and the diastereomeric separation. The analyses were carried out in 

capillary columns of 100 m I.D. packed with the SM-β-CD. In nano-LC, the chiral 

separation of all studied compounds was obtained in reversed phase mode using as 

mobile phase a mixture of MeOH/H2O, 10 mM ammonium acetate pH 4.5, at different 

ratios. Although good results were achieved, polar organic phases (100% AcN or 

MeOH) were not as effective as the reverse phase conditions for the separation of these 

compounds. On the other hand, in CEC, the use of MeOH/H2O, 5 mM ammonium 

acetate buffer pH 6.0 (90/10, v/v) was very effective for the chiral resolution of 

flavanone and its methoxy and hydroxy derivatives. 

The use of the SM-β-CD CSP in the nano-LC system allowed to achieve the 

separation of enantiomers and diastereoisomers of flavanones with good results. 
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Comparing the data about chiral resolution of these compounds with CSPs based on 

commercial silica gel derivatized with different β-CD derivatives in HPLC [43, 45] and 

nano-LC [3], it can be concluded that, in general, higher enantioresolution and shorter 

analysis time can be obtained with the CSP prepared and evaluated in this paper. 

Moreover, due to the high surface area and ordered pore structure of the OMSs, 

symmetric peaks with little peak broadening could be achieved with the CSP developed. 

In summary, these studies demonstrated that OMSs possess a promising potential as 

supports to develop CSPs for nano-LC and CEC applications.  
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Legend 

Figure 1 - Preparation of SM-β-CD. (i) Tosyl chloride/pyridine/18h room Tª; (ii) 

NaN3/water/18h 86ºC; (iii) 3,5-dimethyl phenyl isocyanate/pyridine/8h room Tª; (iv) 

amino functionalized SM/PPh3/THF/CO2. 

 

Figure 2 A, B, C and D - (A) XRD pattern of SM. (B) XRD pattern of SM-β-CD. (C) 

N2 adsorption-desorption isotherms of a) SM, b) SM-NH2, c) SM-β-CD. (D) Pore size 

distribution of the mesoporous silicas. 
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Figure 3 - 29Si MAS NMR of (A) SM and (B) SM-β-CD. 

 

Figure 4 A and B - (A) SEM images of SM. (B) Particle circularity factor of SM. (C) 

SEM image of cutting section of 100 µm I.D. capillary column packed with SM-β-CD. 

 

Figure 5 - Linear relation recorded plotting AcN concentration vs ln k for 7-

methoxyflavanone and flavanone. Analyzed by nano-LC employing a capillary column 

packed with SM-β-CD under reversed phase conditions (mobile phase AcN/H2O,10 

mM ammonium acetate pH 4.5). 
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Figure 6 - Enantioseparation of selected flavanones analyzed by nano-LC employing a 

capillary column packed with SM-β-CD under reversed phase conditions (mobile phase 

MeOH/H2O, 10 mM ammonium acetate pH 4.5 (90/10, v/v)). For other experimental 

conditions see Table 1. 

 

 

Figure 7 - Enantioseparation of selected flavanones analyzed by CEC employing a 

capillary column packed with SM-β-CD (A) MeOH/H2O, 5 mM ammonium acetate pH 
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6.0 (90/10, v/v).  (B) MeOH/AcN/H2O, 5 mM ammonium acetate pH 6.0 (90/5/5, v/v/v). 

For other experimental conditions see Table 4. 
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Table  1 

Nano-LC enantiomeric separations of flavanones under reversed-phase condition using 

a mobile phase based on buffer and acetonitrile. 

Compounds tr1 k1 tr2 k2 Rs  

Flavanone 38.40 3.41 42.30 3.86 1.80 1.10 

4´- Methoxyflavanone 22.72 1.83 23.58 1.94 0.60 1.04 

7- Methoxyflavanone 33.00 2.93 37.20 3.43 2.00 1.13 

2´-Hydroxyflavanone 21.02 1.60 21.89 1.71 0.60 1.04 

4´- Hydroxyflavanone 18.00 1.31 19.50 1.50 0.80 1.08 

6- Hydroxyflavanone 16.00 0.98 - - 0  

Hesperetin 13.24 1.11 13.78 1.19 0.50 1.04 

Naringenin 15.70 1.57 - - 0  

Nano-LC experimental conditions:  

Capillary column packed with SM-β-CD, 100 m I.D. x 20 cm packed length; Mobile phase: AcN/H2O, 

10 mM ammonium acetate pH 4.5 (40/60, v/v); flow rate, 281 nL/min; samples concentration, 100 g/mL.  
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Table  2 

Nano-LC chiral enantiomeric and diastereoisomeric resolutions of flavanones under 

reversed-phase mode using a mobile phase based on buffer and methanol*. 

Compounds tr1 k1 N1/m tr2 k2 N2/m Rs  

 

Flavanone a 

 

7.95 

 

0.50 

 

19025 

 

10.04 

 

0.89 

 

16895 

 

3.50 

 

1.26 

4´- Methoxyflavanone a 8.5 0.63 19175 9.94 0.91 16825 2.30 1.17 

7- Methoxyflavanone a 8.64 0.61 17900 10.72 1.00 16195 3.1 1.24 

2´-Hydroxyflavanone b 10.8 0.58 18030 11.64 0.7 16300 1.1 1.08 

4´- Hydroxyflavanone a 7.52 0.47 16300 9.16 0.80 13835 2.7 1.22 

6- Hydroxyflavanone a 7.52 0.37 13550 8.60 0.56 14190 1.6 1.14 

Hesperetin a 10.4 0.96 12480 12.44 1.35 11900 2.2 1.20 

Naringenin c 38.8 1.98 16970 43.50 2.35 18290 1.6 1.12 

Hesperidin c 17.6 0.89 11380 20.00 1.15 10789 1.3 1.14 

Naringin c 17.73 0.91 12579 19.47 1.10 11470 1.00 1.10 

* Other experimental conditions as Table 1.  

a Mobile phase: MeOH/H2O, 10 mM amonium acetate pH 4.5 (90/10, v/v). 

b Mobile phase: MeOH/ H2O, 10 mM amonium acetate pH 4.5 (80/20, v/v). 

c Mobile phase: MeOH/ H2O, 10 mM amonium acetate pH 4.5 (70/30, v/v). 
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Table  3 

Nano-LC chiral enantiomeric and diastereoisomeric resolutions of flavanones under 

polar-phase mode using a mobile phase based on methanol*. 

Compounds tr1 k1 tr2 k2 Rs  

Flavanone 5.43 0.33 6.43 0.57 1.50 1.18 

4´- Methoxyflavanone 6.31 0.37 7.05 0.53 1.70 1.12 

7- Methoxyflavanone 5.74 0.37 6.73 0.60 1.20 1.17 

2´-Hydroxyflavanone 4.92 0.23 5.04 0.26 0.45 1.02 

4´- Hydroxyflavanone 5.98 0.33 7.07 0.57 2.00 1.18 

6- Hydroxyflavanone 5.72 0.27 6.44 0.43 1.50 1.13 

Hesperetin 16.59 2.77 18.23 3.14 1.00 1.10 

Naringenin 16.21 2.77   0  

Hesperidin 7.63 0.62   0  

Naringin 6.70 0.52   0  

* Other experimental conditions as Table 1. 
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 Table 4 Chiral separations by CEC 

 

Compounds 

 

MP: MeOH/H2O, 5 mM ammonium acetate pH 6 (90/10, v/v) 

 

MP: MeOH/ACN/H2O, 5 mM ammonium acetate pH 6 (90/5/5, v/v/v) 

tr1 k1 N1/m tr2 k2 N2/m Rs  tr1 k1 N1/m tr2 k2 N2/m Rs  

Flavanone 17.24 0.66 39580 23.08 1.22 35990 6.24 1.34 13.40 0.41 37540 16.39 0.72 33550 4.29 1.22 

4-Methoxyflavanone 19.29 0.86 37930 23.48 1.27 34360 4.14 1.22 15.75 0.71 34500 17.89 0.88 32010 2.63 1.14 

7-Methoxyflavanone 19.31 0.86 36795 25.52 1.46 32080 5.67 1.32 15.13 0.60 33395 18.22 0.94 31955 3.75 1.20 

2´-Hydroxyflavanone 15.91 0.53 38069 16.90 0.63 37850 1.34 1.06 12.08 0.28 24080 12.57 0.33 22785 0.67 1.04 

4-Hydroxyflavanone 17.48 0.69 30158 22.48 1.17 27010 4.80 1.29 12.61 0.34 27550 14.98 0.59 25535 3.12 1.19 

6-Hydroxyflavanone 17.40 0.67 38460 19.94 0.92 37320 3.00 1.15 12.60 0.34 26590 14.05 0.50 25495 1.96 1.12 

 

CEC experimental conditions: 

Capillary column, 100 µm I.D. packed for 23.0 cm with SM-β-CD, effective and total lengths 23.5 and 33.5 cm, respectively (the packing procedure is the same 

used for the nano-LC columns) ; MP: mobile phases (see the Table 4), negative polarity, applied voltage, -15 kV; capillary temperature, 25 °C, pressurized column 

at both ends with 10 bar; injection by pressure: 8 bar x 0.5 min. Samples were diluted in MP at a final concentration of 50 µg/mL. 

Hesperetin, naringenin, naringin and hesperidin were also analysed in those conditions without detecting any signal. 

A mobile phase of MeOH/H2O, 5 mM ammonium acetate pH 6 (70/30, v/v) was also tested for the four mentioned compounds but no peaks were detected.  
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