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One-Shot Multiple Disjoint Path Discovery Protocol
(1S-MDP)

Diego Lopez-Pajares, Joaquin Alvarez-Horcajo, Elisa Rojas, Juan A. Carral and Isaias Martinez-Yelmo

Abstract—Maultipath routing over disjoint paths is a classic
solution to allow better resource allocation, resilience, and se-
curity. Current proposals rely on centralised computation or
iterative distributed algorithms and exhibit large convergence
times. We propose 1S-MDP, a distributed mechanism based on
a single network exploration with concurrent path selection to
discover multiple available paths among the target node and the
remaining nodes in the network. The paper evaluates 1S-MDP in
two different scenarios against previous solutions. We show how
it reduces the convergence time by several orders of magnitude
with a small decrease in the number of disjoint paths discovered.

Index Terms—Multiple disjoint paths, Distributed environ-
ments, Ethernet networks, Network exploration, Concurrence.

I. INTRODUCTION

HE calculation of multiple paths is a classic problem

from computer science. The challenge is even tougher if
we require these paths to be both the shortest and disjoint,
features that hold many benefits, such as allowing better
resource distribution or boosting resiliency to failures in the
specific case of computer networks.

Current algorithms and protocols to obtain multiple paths in
wired networks are mainly based on centralized computation
techniques over a previously acquired network topology graph.
They exhibit a high computational cost both in terms of time
and computing resources and depend on other protocols or
applications to discover the topological information to build
the network graph. To decrease the global computational cost
and minimize the convergence time, they can be distributed
among the network devices, so that, each network node only
computes local information collected by an active packet
exchange with its neighbors. Moreover, a distributed approach
may increase resilience by deleting single failure points while
enhancing security by decentralizing data storage. However,
we must be very careful not to impose strong processing
requirements on networks nodes that, in a worst case scenario,
may further aggravate the convergence time.

Our motivation is to propose an alternative solution that
leverages the benefits of distributed processing, while avoiding
the above mentioned drawbacks. 1S-MDP is a fully dis-
tributed protocol designed to discover multiple disjoint paths
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by applying an exploration technique to discover the network
topology followed by a concurrent path selection phase to set
up the paths. The exploration phase guarantees an updated
knowledge of the network topology while the concurrent
phase path selection drastically reduces the convergence time.
Furthermore, the protocol can work in two different modes to
provide node-disjoint or link-disjoint paths as desired.

The paper is structured as follows: In Section II, we review
the current state of the art regarding the multipath and the
disjoint path problems. In Section III we define the 1S-MDP
protocol and its features. Finally, we evaluate the protocol in
Section IV and provide the main conclusions in Section V.

II. RELATED WORK

Solutions to finding multiple paths in wired networks can
be grouped in two big categories depending on whether they
rely on the network topology knowledge (usually depicted as
a graph of nodes and links) to operate.

Within the first category (those depending on a graph to
later compute the paths), Suurballe and Tarjan [1] were the
first to study the disjoint multipath problem. Both developed
an algorithm based on the Dijkstra’s algorithm [2] that finds
two link-disjoint paths in a directed graph, keeping the com-
putation time at the same bounds than Dijkstra’s algorithm,
while adding the disjointness. Their work was later enhanced
with new features such as reducing the algorithm complexity,
disjointness or convergence time [3]-[5].

The second category (those independent of topology knowl-
edge) groups solutions that work in a distributed manner to
obtain the paths, usually via packet exchanges that convey
the topological information needed to discover the available
paths. Itai and Rodeh [6] proposed a method to transform
centralized algorithms into distributed ones. They also pro-
vided an algorithm that finds k-rooted spanning trees with
disjoint paths from every node in the tree towards the root.
The proposal is optimal for k=2 but does not provide shortest
paths, which are key to network efficiency. There are other
distributed proposals based on shortest-path algorithms to
build the disjoint paths, or that directly provide the shortest
path in the solution, such as [7], [8], [9]. The first one
only provides two minimum-cost disjoint paths, while the
second provides multiple minimum-cost node-disjoint paths
(but not link-disjoint) and improves previous results. Finally,
the third obtains two node-disjoint paths using the Breadth
First Search (BFS) algorithm. Tanaka [10] takes advantage of
a previously known shortest path (obtained by another protocol
or application) to discover a second, minimum-latency disjoint



IEEE COMMUNICATIONS LETTERS

path (for backup) by using network exploration. Moreover, its
performance is only limited by the network latency itself. A
similar exploration principle is followed by Iterative Multipath
Proposal (IMP) [11] to discover multiple disjoint low-latency
paths between a source-destination node pair. The procedure
performs several exploration rounds by iteration and discovers
a new disjoint path in each step.

Finally, there are other proposals that simply obtain multiple
paths without the requisite of disjointness, e.g. [12], [13] (in
the group of protocols requiring the topology knowledge),
or [14], [15] (in the group of topology independent protocols).
An extensive study of the related work can be found in [16].

The main novelty of 1S-MDP is the distributed discovery
of multiple low-latency (link- or node-) disjoint paths among
any source node and the rest of the network, which does not
require any previous topology knowledge. Additionally, and
differently from other distributed solutions, this discovery is
performed in a single iteration of the protocol, independently
of the number of paths and number of destinations required in
the calculation, which drastically reduces convergence time
in comparison to any other solution. To the best of our
knowledge, no previous work merges all these features.

III. ONE-SHOT MULTIPLE DISJIOINT PATH PROTOCOL
A. Protocol description

IS-MDP is a distributed protocol designed to discover
multiple disjoint paths among a given node and the remaining
nodes in the network. 1S-MDP is based on network explo-
ration techniques, but instead of starting a new exploration for
each path, it requires a single exploration for all. The protocol
works in two phases: a network exploration phase, issued from
the source node, that conveys the topological information to
all the network nodes (see section III-B), followed by a path
selection phase (see section III-C), started from the destination
nodes, that is able to select multiple link- or node-disjoint
paths for a set of destination nodes concurrently. Since finding
multiple paths for any network node might not be necessary,
only the nodes previously marked as “edge” would participate
of the path selection phase as destination nodes (note that all
nodes could be marked as edge if needed).

B. First phase: Network exploration

This phase is triggered by an external or internal sig-
nal/event (control message, timer, ...) at any edge node. At

@—> First packet Late copies
Port priority. Allocated according to the relative arrival time of

@ i '®the exploration packet at each port (first copies have higher
priorities) 1**arrived copy(f) 2 arrived copy

‘ O Source node

Fig. 1. Exploration process in 1S-MDP

this stage, the node becomes a source node that searches
for multiple disjoint paths towards the remaining edge nodes
by flooding an exploration packet to all its neighbors. This
exploration packet travels across the whole network and con-
veys topological information to all traversed nodes. Figure 1
summarizes the whole exploration process, in a wired network
composed of 7 nodes, where only 3 of them are considered
edge nodes: S, DI and D2; for simplicity, the remaining nodes
are core nodes. This figure could represent a traditional full-
duplex wired layer-two network, e.g. nodes would be Ethernet
switches. In those scenarios, finding multiple disjoint paths is
particularly relevant for nodes located at the network edge, e.g.
nodes serving end systems, interconnecting nodes, or nodes
selected by the network administrator. The aim of 1S-MDP is
to search multiple disjoint paths between the source node §
and the other (destination) edge nodes, that is, multiple disjoint
paths between S-DI and S-D2. The network exploration phase
continues as follows: First, § initiates the process by flooding
an exploration packet towards its neighbors. The exploration
packet arrives at these neighbors, which associate the input
port where the packet arrives with the source node Id (Srcld).
This information is stored and ordered according to the packet
arrival time, being the highest priority entries the first ones
arriving, as depicted in Fig. 1 (this priority will be required
in the second phase to select the paths). To continue the
exploration process and avoid loops, each node receiving an
exploration packet only floods the first packet copy towards
all its neighbors, while late copies are discarded to prevent
packet storms. By the end of the process each node should
have received a copy of the exploration packet at each port.

C. Second phase: Concurrent path selection

This phase provides a concurrent path selection mechanism
from several edge nodes based on the information collected
during the exploration phase that reduces the multiple disjoint
path search time by avoiding waiting times and iterative
processes. To simplify the description, this section explains
the process from one destination edge node, nevertheless, the
process happens concurrently at every destination edge node.

When an edge node receives an exploration packet from
a source node, it becomes a destination node and initiates
the path selection process to select the multiple disjoint paths
towards the source node. First of all, this destination node
generates a path selection packet with source and destination
node IDs (Srcld and Dstld) together with a disjoint path
identification (pathld). This pathld is unique for each disjoint
path between a pair of source-destination nodes. Afterward,
the destination node sends this packet back to the source node
through the port associated to the arrival of the exploration
packet. This process is repeated for each copy of the explo-
ration packet received at the destination node to guarantee that
the procedure discovers all possible disjoint paths between the
source and the destination. Upon reception of a path selection
packet, intermediate nodes select the higher priority available
port for that path. Then, they mark the port as unavailable for
the Srcld-Dstld pair, to guarantee that new disjoint paths for
that pair are unique and do not overlap. And finally, the path
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a) Between S and D1 nodes

Fig. 2. Path selection process in 1S-MDP (link mode)

a) Between S and D1 nodes

Fig. 3. Path selection process in 1S-MDP (node mode)

selection packet is forwarded via the selected port to continue
the path selection phase. If an intermediate node finds a dead-
end (there is no available output port to forward the packet),
the path selection packet hops back to the previous node in the
path to seek an alternative. The path is completed when the
path selection packet reaches the source node. Disjoint paths
discovered for a given pair of nodes are ordered by latency
due to the port prioritisation set by the exploration phase.
1S-MDP is capable of creating link-disjoint or node-disjoint
paths. An example of path selection using link-disjoint mode
is shown in Fig. 2, which is split into Figs. 2a and 2b, although
the path selection phase from D/ and D2 happens simultane-
ously. In Fig. 2a the edge node DI starts the path selection
phase towards node S when it receives the exploration packets
from such node. The first exploration packet arrives at the port
labeled as 1, and the path selection packet response is sent
through this port, traversing A and setting up the first disjoint
path. The same procedure happens with the second and the
third path, whose selection phase starts from ports labeled as
2 and 3, respectively. As previously mentioned, intermediate
nodes choose the highest priority output port adopting the link-
disjoint path restrictions; e.g. B selects port 1 for the second
path, and port 2 for the third path because port 1 is used by the
second path. Figure 2b shows similar steps for node D2. The
node-disjoint mode follows a similar —but simpler— philosophy
because, to satisfy the node-disjoint restriction, each node must
only have one active path. Thus, in the disjoint-node mode,
each intermediate node only selects the first available port, and
later requests are discarded. Figure 3 shows the node-disjoint
mode under the same constraints as the link-disjoint mode.

IV. EVALUATION

This section aims to evaluate and verify the behavior of
1S-MDP in terms of the number of disjoint paths discovered
and the time needed to obtain them (convergence time). We
leverage the ns-3 network simulator [17] with the Ofswitchl3
library to deploy 1S-MDP because it provides a real software
switch model. For comparison, we choose from the related
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work a multiple disjoint path centralized solution and a
distributed one, and launch the same set of experiments in
all platforms. Within the centralized approach, we select the
primitive (naive) implementation of the Dijkstra algorithm as
a well-proven solution, whereas IMP [11] was selected as
the distributed solution because it is the only one that finds
multiple (link- and node-) disjoint paths. To obtain the disjoint
paths between a pair of nodes in a centralized way, we run the
Dijkstra algorithm [2] on a weighted graph. After the run, we
remove the obtained path to ensure the disjointness and repeat
until no more paths are discovered. The process is repeated for
each pair of nodes in the topology. Moreover, we launch six
concurrent instances in an Intel(R) Core(TM) i17-8700K CPU
with 32 GB RAM to reduce Dijkstra’s convergence time.

The simulation scenario uses two well-connected types of
topologies to stress the number of existing disjoint paths: an
extended version (3 stages, 10 nodes) of the topology shown
in Section III, and several 2-dimension (2D) square mesh
networks ranging from 4 to 36 nodes (2x2 to 6x6). Each test
is repeated 10 times to compute 95% confidence intervals.
Furthermore, we randomly set the propagation time per link
in each run with an upper bound of 1.5 ms (the queuing time of
125 packets of 1500 bytes), to emulate different network load
conditions. Besides, to perform a fair comparison between the
different approaches, these propagation times are used as the
link cost for the Dijkstra algorithm. Finally, the link speed is
set at 1Gbps and all the nodes are marked as edge nodes to
obtain the disjoint paths between all pairs of nodes.

TABLE 1
EXTENDED EXAMPLE TOPOLOGY RESULTS
Dijkstra IMP 1S-MDP

Convergence Mean 0.2299 13.97 0.0058
Node- time (s) 95% c.i | 0.0875 1.27 0.0009
disjoint Number of Mean 232.60 | 232.60 230.20

paths discovered | 95% c.i 9.69 9.69 7.51
Convergence Mean 0.1087 18.52 0.0105
Link- time (s) 95% c.i 0.040 0.0022 0.0018
disjoint Number of Mean 281.8 281.8 266.40

paths discovered | 95% c.i 1.32 1.32 7.52
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Fig. 4. Convergence time and number of paths discovered: link-disjoint mode
(top), node-disjoint mode (bottom)

A. Results

This section shows the comparison of 1S-MDP, against the
Dijkstra algorithm and IMP in terms of convergence time and
number of disjoint paths discovered. Firstly, the proposals are
evaluated in the example extended topology. The results are
summarized in Table I and show the average values of 10
runs and the corresponding 95% confidence interval (c.i). It
can be seen that 1S-MDP is, by far, the fastest protocol (lower
convergence time), whereas Dijkstra and IMP are the proposals
that discover more paths. Nevertheles, 1S-MDP discovers 99.0
% of the number of paths discovered by Dijkstra and IMP
in node-disjoint mode and 94.5 % in link-disjoint mode.
This decrease is a side effect of the single exploration per
node in 1S-MDP (both Dijkstra and IMP perform a new
computation/exploration for each path), but it is negligible in
link-disjoint mode. While it is clear that Dijkstra and IMP
obtain more disjoint paths, the advantage of 1S-MDP is that
it reduces the convergence time of the Dijkstra algorithm by
one or two magnitude orders (and more for IMP), which over-
compensates the disjoint paths not discovered. Furthermore,
in the centralized solution results, we have omitted the time
spent to discover and build the underlying topology, which
would further increase the advantage of 1S-MDP in terms of
convergence time. Fig. 4 shows the results obtained in square
mesh topologies of increasing sizes (from 4 to 36 nodes). The
left side displays the convergence time, and the right side the
number of disjoint paths discovered in each topology. As in the
example topology, the number of discovered paths by 1S-MDP
is slightly lower and decreases with the size of the topology but
is still above 88% for 36 nodes in link-disjoint mode and above
93% in node-disjoint mode. However, it drastically reduces the
convergence time by two to three magnitude orders.

V. CONCLUSION AND FUTURE WORK

In this paper we have presented 1S-MDP, a distributed
protocol that looks for multiple disjoint paths among multiple
nodes with a single network exploration and concurrent path

selection. The exploration applied guarantees low-latency dis-
joint paths ordered by increasing latency, while the concurrent
path selection drastically reduces the convergence time.
1S-MDP has been tested in a simulation environment using
a real software switch model to bring it over real scenarios, and
has been compared with existing centralized and distributed
solutions. The results obtained by 1S-MDP are promising, as
it decreases by two to three magnitude orders the convergence
time while it keeps the number of disjoint paths discovered
close to its competitors (whether centralized and distributed
approaches), independently of the underlying topology.

As future work, we will evaluate the algorithmic complex-
ity of 1S-MDP to delve into its behavior and performance.
Furthermore, we will study the quality of its disjoint paths in
terms of load balancing or failure resilience.
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