

BIBLIOTECA

This work is licensed under a

Creative Commons Attribution-NonCommercial-NoDerivatives

4.0 International License.

Document downloaded from the institutional repository of the University of
Alcala: http://ebuah.uah.es/dspace/

This is a postprint version of the following published document:

Álvarez Horcajo, J., Rojas, E., Martínez Yelmo, I., Savi, M. & López Pajares, D.

2020, "HDDP: Hybrid Domain Discovery Protocol for heterogeneous devices

in SDN", IEEE Communications Letters, vol. 24, no. 8, pp. 1655-1659.

Available at http://dx.doi.org/10.1109/LCOMM.2020.2991347

 © 2020 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other users, including reprinting/republishing
this material for advertising or promotional purposes, creating new
collective works for resale or redistribution to servers or lists, or reuse of
any copyrighted components of this work in other works.

(Article begins on next page)

http://ebuah.uah.es/dspace/
http://dx.doi.org/10.1109/LCOMM.2020.2991347

IEEE COMMUNICATIONS LETTERS 1

HDDP: Hybrid Domain Discovery Protocol for
heterogeneous devices in SDN

Joaquin Alvarez-Horcajo, Elisa Rojas, Isaias Martinez-Yelmo, Marco Savi and Diego Lopez-Pajares

Abstract—Computer networks are adopting the new Software-
Defined Networking (SDN) architecture, however not all de-
vices can support it, mainly due to power and computational
constraints. This paper proposes the Hybrid Domain Discovery
Protocol (HDDP), a new discovery protocol that enhances the
existing OpenFlow Discovery Protocol (OFDP). HDDP allows the
discovery of hybrid network topologies composed of both SDN
and non-SDN devices, which no other state-of-the-art protocol
can achieve. HDDP has been implemented in a software switch
and emulated in diverse networks, where it discovers hybrid
topologies by using a number of messages similar to competitors,
as they only discover SDN devices.

Index Terms—Hybrid, SDN, OpenFlow, Topology Discovery,
LLDP, OFDP

I. INTRODUCTION

THE next generation of mobile networks (5G) predicts the
proliferation of end devices. Managing these resources

is often complex because of their heterogeneity and partic-
ularly due to scalability concerns, e.g., sensors usually have
battery and memory constraints, and, as such, typical control
approaches based on SDN are not always feasible. Indeed,
topology discovery is one of the key points in SDN solu-
tions [1] because of the possibilities offered by the centralized
control plane. Most SDN platforms are able to discover the
topology of a whole network as long as they support OpenFlow
or other Southbound Interface (SBI) protocols, while non-SDN
resources are only partially discovered as end devices (with
no specific topology) or directly omitted. However, in some
cases, such as in fog computing environments (responsible
for managing Internet-of-Things (IoT) sensors), guaranteeing
exact connectivity and resource discovery is vital [2]. A service
capable of discovering non-SDN devices hybridized in SDN
environments would bring many benefits, including improved
traffic engineering or debugging of the anomalous behavior.

In this article, we present HDDP, which provides an en-
hanced topology discovery service capable of obtaining the
entire topology in hybrid SDN deployments with low control
message overhead. To this purpose, we first examine the
related work in Section II. Secondly, we describe, implement,
and evaluate HDDP in Sections III, IV, and V, respectively.
Finally, we conclude the analysis in Section VI.

Joaquin Alvarez-Horcajo, Elisa Rojas, Isaias Martinez-Yelmo and Diego
Lopez-Pajares are with Departamento de Automatica, University ofAlcala,
28805, Alcala de Henares. Marco Savi is with University of Milano-Bicocca,
Milano, Italy. The study was done while he was with Fondazione Bruno
Kessler, Trento, Italy. Corresponding author’s e-mail: elisa.rojas@uah.es

This work was funded by grants from Comunidad de Madrid through
Project TAPIR-CM (S2018/TCS-4496) and from University of Alcalá through
”Programa de Formación del Profesorado Universitario (FPU)” and the project
CCG2018 EXP-076.

II. RELATED WORK

Nowadays, there is no standalone topology discovery so-
lution that can obtain the full topology of a hybrid SDN
domain with SDN and non-SDN devices. The most commonly
deployed service for topology discovery in SDN is OFDP [3],
based on Link Layer Discovery Protocol (LLDP). However,
OFDP requires that all devices support OpenFlow [3]. Diverse
protocols including OFDPv2 [4], Tree Exploration Discovery
Protocol (TEDP) [5] or enhanced Topology Discovery Proto-
col (eTDP) [6] outperform OFDP in terms of scalability and
efficiency, however, none of them is capable of discovering
non-SDN devices. The first work to tackle the discovery of
resources in hybrid networks was [7], which combined LLDP
with Broadcast Domain Discovery Protocol (BDDP) to unveil
legacy switches located between SDN switches. However, they
lacked mechanisms to avoid broadcast storms without the
use of Spanning Tree Protocol (STP). Such lack prevented
a full discovery of the underlying hybrid topology since some
links were removed to avoid loops. Hence, this proposal
could not discover complex combinations of SDN, non-SDN
devices, and even end nodes. Also, aiming at hybrid SDN
discovery, the work in [8] presented a programmable SDN
device, based on Forwarding and Control Element Separation
(ForCES) [9], capable of detecting non-SDN neighbor nodes
based on indirectly snooping traffic from traditional protocols
(such as LLDP). The main advantage is that it does not require
modifications of legacy devices. Nevertheless, it does not
guarantee the full discovery of non-SDN topologies because
either the indirect discovery might become too complex in
large and/or heterogeneous networks, or could even prove
impossible in some topologies (e.g., with loops of devices).

Software-Defined Wireless Sensor Networks (SDWSNs)
are particularly challenging scenarios to apply SDN because
OFDP has scalability issues due to their size [10] and their fast
topology changes because of node mobility [11]. Thus, IoT
Hub [12] introduced an edge manager for resource discovery;
however, it is unable to discover topologies among the IoT
devices. Authors of [13] proposed a strategy for the detection
of heterogeneous network devices that relies on a direct
connection between the devices and the SDN controller, which
is not always feasible. Our proposal, HDDP, is especially
suitable for SDWSNs as the non-SDN devices are mostly
Linux-based systems on which it can be easily deployed.

A. Contributions of HDDP to the state of the art and SDWSNs

The main contribution of HDDP is that it can fully discover
the underlying topology in hybrid environments (i.e., both

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/LCOMM.2020.2991347

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE COMMUNICATIONS LETTERS 2

Ethernet
Header

0

Message
Option
Code

Num
Device

Type
Device (I)

ID
Device (I)

In
Port(I)

Out
Port(I)

14 16 18 24 32 36 40Bytes

Fig. 1. HDDP Control Message

SDN and non-SDN devices, as well as the existing wireless
connectivity among them), which, to our knowledge, no other
protocol in the current state of the art can achieve.In the
specific case of SDWSNs, HDDP makes it possible to know
whether a sensor acts as a forwarding relay for other sensors,
thus allowing the discovery of complex sub-topologies among
non-SDN sensors. This allows to disclose (and later mitigate)
any possible anomalous behavior in those portions of the
network.

Additionally, given its exploration nature, HDDP is able
to discover links between non-SDN devices that may not be
currently used in the communication. This is especially useful
to recognize if multiple gateways are in the coverage area of
a sensor to later deduce how many sensors could be paired to
each gateway. Such information can be very helpful for traffic
engineering and load balancing purposes (e.g., to relieve a
gateway from processing traffic if overloaded).

Finally, HDDP can be used to monitor the mobility of
sensors within the SDWSN. This information is important for
different network management and traffic engineering tasks,
especially when the SDWSN has edge/fog computing capabil-
ities [14] and can perform some computation on the data flows
[15]. When mobility occurs, the computation of SDWSN data
flows could be rearranged on the edge/fog infrastructure to be
optimized, according to the current location of the sensors.

III. DEFINITION OF HDDP

The main feature of HDDP is the ability to incorporate
non-SDN devices and their bidirectional links into a full
hybrid SDN network discovery. As Non-SDN devices cannot
have direct links to SDN controllers, they rely on the SDN
devices to report their information (non-SDN devices may
not have a direct connection to an SDN device, but an
indirect one through other non-SDN devices). HDDP is a
distributed protocol that relies on the exchange of HDDP
Request and Reply control messages to unveil the network
topology. Figure 1 shows the structure of an HDDP control
message (it has variable length depending on the value of the
Num Device field). This structure is based on the minimum
length of Ethernet networks as it is the infrastructure layer
chosen for the implementation of HDDP, although it could
be reduced in other infrastructures (e.g., wireless scenarios).
Figures 2 and 3 show how the controller orders its attached
SDN devices to broadcast an HDDP Request message to
explore the network, which is followed by the corresponding
HDDP Reply messages from all devices. The devices convey
the information required by the controller to obtain a full view
of the underlying topology by combining different data subsets
extracted from these messages. The key point is how HDDP
triggers these HDDP Reply messages, which depends on the
kind of nodes (wired or wireless).

4)

3) 3) 4)

7)

9)

1)

2)

2) 3)
2)

2)

2)4)

1)

1) 2)

S1

S3

S2

E1

S4

E3

S5

S6Controller
Pout

E2

5)

Non-SDN DeviceSDN Device Non-SDN End Device

HDDP Request
(First copy)

‘Locked’ Port

HDDP Reply (3 Devices)HDDP Reply (2 Devices)

HDDP Reply
(End Device)

a) Exploration process b) Confirmation process

HDDP Reply (1 Device)

8)

Pout
S1

S3

S2

E1

S4

E3

S5

S6Controller
Pin

E2

Pin

Packet InPin

Packet OutPout

6)

5)

4)

3)4)

5) 3)

HDDP Request
(Late copy)

Fig. 2. HDDP behavior example in a wired environment

A. HDDP in wired scenarios

This section describes the behavior of HDDP in wired
scenarios, which are the ones considered in this paper for
implementation and evaluation. As an example, we consider
the random wired topology shown in Fig. 2 to explain how
HDDP discovers the proposed hybrid topology. This hybrid
topology has three SDN switches1 (where the controller has
installed a rule to indicate that all HDDP control messages
must be sent to the controller), three non-SDN switches (e.g.,
gateways), and three non-SDN end devices (e.g., hosts). As
Fig. 2a illustrates, the exploration process is triggered by the
SDN controller, which broadcasts a PACKET OUT message
to all SDN devices within the network domain (see step 1) by
encapsulating an HDDP Request message. The SDN controller
builds the HDDP Request message by setting the values of
Option Code and Num Device fields to 1, ID Device field to
the Datapath ID (DpId) of each SDN node, and finally, the In-
Port and Out-Port fields to 0. When these packets are received
by any SDN node, it decapsulates and broadcasts the HDDP
Request message through all its ports (see steps marked as 2).

On the one hand, the non-SDN nodes receiving the HDDP
Request message lock the first entry port to avoid loops,
according to the All-Path locking mechanism [16]. Then, they
increment the Num Device field of the HDDP Request message
by one (see Fig. 1) and forward it again via all their ports
except the ingress one (steps 3 and 4). As illustrated by Fig. 2b,
late copies of the HDDP Request message, arriving at other
ports different from the initially locked one, are used to trigger
the sending of HDDP Reply messages backward through the
late HDDP Request copy incoming port (steps 4 and 5 in
dashed arrows). An HDDP Reply message is built by updating
a copy of the HDDP Request message, which is transformed
into an HDDP Reply message by changing the Option Code
value to 2 and the Num Device data to 1. Later on, the nodes
insert a new tuple composed of (Type Device, ID Device, In-
Port, and Out-Port) (highlighted in bold in Fig. 1). The Type
Device field encodes whether the node is a switch, gateway, or
host, including its functionality (e.g., gateway with computing
capabilities). The ID Device field is the DpId for the SDN
devices and the MAC address converted to an unsigned long
integer value for the non-SDN devices. The In-Port field is

1Note the communication with the controller might be out-of-band or in-
band, as HDDP does not depend on it.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/LCOMM.2020.2991347

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE COMMUNICATIONS LETTERS 3

4)

11)

12)
13)

SDN Device Non-SDN End Device

HDDP Request (First copy)

HDDP Reply (3 Devices)HDDP Reply (2 Devices)HDDP Reply (1 Device)

Packet InPinPacket OutPout

HDDP Request (Late copy)Hello Packet

S1

Controller

E3

E2

E1

8)

7)
5)

6)

6)

S1

Controller

E3

E2

E1

P
in

a) Hello process b) Exploration process c) Confirmation process

1)

4)

3)

3)

4)

4)2)

P
o
u
t

Controller

E3

E2

E1S1

Controller

E2

E1S1

d) Exploration process

Controller

E2

E1S1

Controller

E2

E1S1

e) Confirmation process f) Time out process

9)

10)

11)

12) 14)
15)

16)

17)

18)

19)

20)

E3 E3 E3

5)

Fig. 3. HDDP behavior example in a wireless environment

the input port of the HDDP Request message and the Out-
Port field is the output port of the HDDP Reply message
itself, which are required in the controller to build the hybrid
topology. The non-SDN nodes receiving the HDDP Reply
message increase the Num Device field by one and insert their
own tuple. The Type Device and ID device fields are set as
described previously. However, the In-Port field is set to the
incoming port of the HDDP Reply message and the Out-Port
field is set to the input port of the first received HDDP Request
message (steps 5, 6, and 7). These HDDP Reply messages are
sent through the port specified in the Out-Port field. When
the HDDP Reply messages turn back to any SDN node, they
forward such packets via PACKET IN messages to the SDN
controller, which collects all the gathered information across
the non-SDN devices. The non-SDN end-devices connected as
leaf nodes send an HDDP Reply message when they receive
an HDDP Request message via their only port (steps 3-5).

On the other hand, the SDN nodes receiving the HDDP
Request message forward it to the controller via a PACKET IN
message, similarly to OFDP. The controller checks if the Num
Device field is one: if so, it means that two SDN devices are
neighbors. However, if it is higher than one, it means that
the number of non-SDN devices between two SDN devices
is Num Device minus one. Thus, the controller replies with
an HDDP Reply message in a PACKET OUT message using
the same port as it happens for non-SDN end devices. Such
HDDP Reply message collects the information from non-SDN
devices, and guarantees all links between SDN and non-SDN
nodes are discovered (steps 8-9).

Finally, the controller gets the full hybrid topology from the
data embedded in the HDDP Reply messages.

B. HDDP in wireless scenarios

In the case of wireless (or mixed wired-wireless) networks,
such as SDWSNs, there are two main differences to consider:
(1) the locking mechanism cannot be applied to a port since
sensors usually have a single wireless interface, and (2) the
number of neighbors is unknown, especially if node mobility
is admitted. For the first difference, we just need to consider

HDDP
Message In

Is a Reply
message?

Update
message

Lock
MAC
Source

Look
for

out port

Forward
message

Receive
before?

Update
Num

Device

Flood
message

Same
entry port?

Create
Reply

message

No

No

No Yes

Yes

Yes

(a) Non-SDN Device

PACKET_IN

Is a reply
message?

Create
message

Insert
data

Forward
message

New
device?

Num
device
==1?

Save
data

Reverse
link?

New
interface?

Update
device

Create
device

Update
interface

Create
interface

Update
links

Remove
message

Create
link

No

No

No

Yes

No

Yes

Yes

No

Yes

Yes

(b) SDN Controller
Fig. 4. HDDP components

that the locking mechanism basically locks an identifier of
the neighbor that first sent an HDDP Request message. In
wired networks, the identifier is the input port (the port is
unique per neighbor), but in wireless networks the identifier
for the locking could be the MAC address of the previous
hop/neighbor since this information is transmitted in the frame
and can be easily collected. Regarding the second difference,
to distinguish when a node has only one neighbor (to send
an HDDP Reply) or more (to send an HDDP Request),
there are two possible mechanisms to apply: (1) wireless
nodes periodically send Hello messages to identify and ac-
knowledge their neighbors; (2) wireless nodes broadcast the
HDDP Request message by default and, afterwards, if they do
not receive the response of an HDDP Reply message, they
generate their own HDDP Reply message after a timeout.
Note that if the timer expires before the expected message
is received, the functionality of HDDP is not affected since
additionally generated HDDP Reply messages just provide
more topological information.

Figure 3 illustrates an example with one SDN node ((1) and
three non-SDN sensors (�1, �2, and �3) to clarify how HDDP
operates in wireless scenarios. As depicted in Fig. 3a, the non-
SDN wireless nodes generate periodic Hello messages that are
received by all the nodes in their range. Afterwards, Fig. 3b
and Fig. 3c represent the usual exchange of HDDP Request
and HDDP Reply messages, respectively, as explained in the
previous section (steps 1-8). In the hypothetical situation in
which, for example, node �3 moves, this is noticed by the
periodic exchange of Hello messages. If this is not detected
because the Hello message does not arrive in time, Fig. 3d,
Fig. 3e and Fig. 3f show what happens. Firstly, �3 only
receives one HDDP Request message (from �2) as shown in
step 12. In the meantime, �3 waits for more messages while
�2 sends the HDDP Reply message to �1 due to a timeout, as
depicted in step 14. Finally, in step 17 the timer of �3 expires
as well. Hence, �3 also sends an HDDP Reply message to
�2, which forwards it again to �1 to complete the missing
topological information (steps 18-19).

IV. HDDP IMPLEMENTATION

The implementation of HDDP requires two different soft-
ware components. The component of HDDP in non-SDN

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/LCOMM.2020.2991347

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE COMMUNICATIONS LETTERS 4

network devices (Fig. 4a) and the component for processing
the HDDP control messages in the SDN controller (Fig. 4b).

A. HDDP support in non-SDN devices

Figure 4a summarises the proof-of-concept implementation
based on the ofsofswitch software switch [17]. The first step is
to determine the type of HDDP control message by checking
the value of the option code (OpCode field), which confirms
whether it is an HDDP Request or an HDDP Reply message. If
the frame is an HDDP Request message, the device checks if
the source MAC address has been received before. If a match
exists and the input port is the same as the first input port,
the lock time of the source MAC address entry is updated and
the value of the Num Device field is increased by one unit;
finally, the packet can be broadcasted. Otherwise, an HDDP
Reply message is sent following the structure shown in Fig. 1
via the incoming port of the HDDP Request message. In case
that the source MAC address is not locked, the node must
lock the in-port, increase the Num Device field by one and
broadcast the frame. If the frame is an HDDP Reply message,
the field Num Device is increased by one unit and the new
structure shown in Fig. 1 is inserted at the end of the frame.
Finally, the node uses the locked port as output port to forward
the frame.

B. HDDP support in ONOS platform

Figure 4b summarises the proof-of-concept implementation
developed in Open Network Operating System (ONOS) to
handle HDDP messages and to build the topology from
them. Periodically, ONOS must send HDDP Request mes-
sages through PACKET OUT messages and later may receive
them as PACKET IN messages (depending on the underlying
topology). If an HDDP Request message is received, the value
of the Num Device is obtained. If it is equal to one, the
information is saved until the HDDP Request message in
the opposite direction is received to create the link between
both devices. Otherwise, if Num Device is more than one,
it is necessary to send an HDDP Reply message with the
carrying tuple (Device Type, ID Device, In-Port, Out-Port)
through a PACKET OUT message, as stated in the previous
section. Finally, if an HDDP Reply message is received, the
information about new devices and links is included in the
topological database, and the previously existing devices and
links are updated.

V. EVALUATION AND DISCUSSION

The evaluation of HDDP was performed with an infras-
tructure consisting of several hosts with Intel(R) Core(TM)
i7 CPUs and 24 GB of RAM, running ONOS as SDN con-
troller, and Mininet to emulate the GÉANT pan-European net-
work [18] and different random Barabási-Albert networks [19].
Each experiment was repeated 10 times, and the mean and
confidence interval for the results in each experiment were
computed. The evaluation parameter that we selected was the
number of control messages, which can be easily translated
into bandwidth usage in SDN-only networks as the HDDP
message size is fixed (only conveys data for one device).

TABLE I
RESULTS COMPARISON OF LLDP, TEDP AND HDDP

Packet#
Control Plane Data PlanePacket In Packet Out Flow Mod

Theory Real Theory Real Theory Real Theory Real

LLDP G 144 145 144 160.06 44 44 144 160.06
f - 14.24 - 19.78 - 0 - 19.78

TEDP G 144 170.63 1 1 88 227.44 144 170.63
f - 2.31 - 0 - 1.71 - 2.31

HDDP G 144 144.72 44 44 44 44 144 144.97
f - 1.31 - 0 - 0 - 1.22

(a) OFDP topology (b) HDDP topology
Fig. 5. The same topology discovered by OFDP and HDDP

A. SDN topology discovery

To compare HDDP with the state of the art, we first de-
ployed the GÉANT pan-European network topology composed
of 44 SDN nodes and a total of 144 ports (72 links). We
calculated the number of packets needed by LLDP, TEDP,
and HDDP, to discover the topology, and compared them
in an SDN-only scenario. The results are summarised in the
Theory columns of Table I. We can see how the number of
PACKET IN messages used by LLDP, TEDP and HDDP are
equal, and LLDP and HDDP produce the same amount of
FLOW MOD messages. Furthermore,HDDP reduces the num-
ber of PACKET OUT messages by 72.5% regarding LLDP,
as it only needs a PACKET OUT message per SDN node
while LLDP needs a PACKET OUT message per each port
in all SDN nodes in the domain. However, the number of
PACKET OUT messages is smaller for TEDP because it just
sends one packet to start the discovery exploration process,
while HDDP sends a PACKET OUT message per node in
the topology. Moreover, Table I also shows how the number
of packets exchanged in the data plane is the same in all
approaches (one per port). To confirm the analytical results,
we measured the protocol behavior of both protocols using
the GÉANT pan-European topology in Mininet. The results
in the Real columns of Table I demonstrate the accuracy of
the previous analytical results.

B. Hybrid topology discovery

The main advantage of HDDP is that it can discover the
full topology in hybrid networks where SDN and non-SDN
nodes coexist. The only requirement is the support of HDDP
in non-SDN devices, as well as in the controller. For this study,
we used random Barabási-Albert topologies to evaluate HDDP
on an extensive basis. These topologies were selected with a
different number of nodes, degrees and percentage of SDN
devices to check the behaviour of HDDP. As an example,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/LCOMM.2020.2991347

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE COMMUNICATIONS LETTERS 5

N
u
m

b
er

 o
f
P
a
ck

et
s

1 25 50 75 100
0

500

1000

1500

2000
Degree 6

(a) Topology with 80 Nodes
with different degree

1 25 50 75 100
0

500

1000

1500

2000
Degree 4

0

2000
Degree 2

N
u
m

b
er

 o
f
P
a
ck

et
s

% SDN Nodes

1 25 50 75 100
0

100

200

300

400

500

1 25 50 75 100
0

100

200

300

400

500

1 25 50 75 100
0

100

200

300

400

500

% SDN Nodes

(b) Topology with degree 2
and different number of Nodes

Packet In Packet Out Data Plane

Total Packets LLDP Packets

Fig. 6. Number of packets in Barabási-Albert topologies

Fig. 5a shows how OFDP can discover only SDN nodes (dark
blue elements in the figure) and a subset of the links, while
Fig. 5b illustrates how HDDP can obtain all nodes (non-SDN
nodes are in light blue) and links.

Specifically, the performance of HDDP is evaluated by mea-
suring the number of messages needed to discover different
Barabási-Albert topologies with different nodal degrees in an
80-node topology (Fig. 6a), and in diverse topologies with
an average node degree of two and an increasing number of
nodes (Fig. 6b). In both cases, the percentage of SDN devices
ranges from 0 to 100% in the topology. The results show
how the required number of packet increases, as the degree
rises (Fig. 6a). This increase is mainly caused by the HDDP
data plane traffic, which is required to discover the non-SDN
devices. Moreover, the behaviour of HDDP is closer to LLDP
as the number of SDN nodes increases, as expected. Figure 6b
also shows how the number of packets increases as the number
of nodes rises. Once again, as the percentage of SDN devices
increases, HDDP performance is comparable to the LLDP one.
Additionally, HDDP always obtains the whole hybrid topology
(all nodes and all links).

VI. CONCLUSION

This paper presented HDDP, an innovative protocol able to
accomplish a full topology discovery in hybrid SDN domains,
where SDN and non-SDN devices coexist. The protocol is
based on an exploration mechanism triggered by the control
plane, which reaches all devices via a controlled flooding

mechanism to collect all the necessary information from
hybrid networks. Our proposal outperforms OFDP since it is
capable of discovering a full hybrid topology from a network
domain composed of SDN and non-SDN devices with fewer
exchanged packets. In our future work, we would like to
optimize the use of control messages, considering how their
periodicity affects scenarios with high mobility, analyze the
implication of unidirectional links in wireless scenarios, and
evaluate the diverse security implications of this approach.

REFERENCES

[1] G. Tarnaras et al., “SDN and ForCES based Optimal Network Topology
Discovery,” in IEEE Conference on Network Softwarization, 2015.

[2] R. Mahmud et al., “Fog Computing: A Taxonomy, Survey and Future
Directions,” in Springer Internet of Everything: Algorithms, Methodolo-
gies, Technologies and Perspectives, pp. 103–130, 2018.

[3] D. Hasan and M. Othman, “Efficient Topology Discovery in Software
Defined Networks: Revisited,” Elsevier Procedia Computer Science, vol.
116, pp. 539–547, 2017.

[4] F. Pakzad et al., “Efficient Topology Discovery in OpenFlow-based Soft-
ware Defined Networks,” Elsevier Computer Communications, vol. 77,
no. C, pp. 52–61, 2016.

[5] E. Rojas et al., “TEDP: An Enhanced Topology Discovery Service for
Software-Defined Networking,” IEEE Communications Letters, vol. 22,
no. 8, pp. 1540–1543, 2018.

[6] L. Ochoa-Aday et al., “eTDP: Enhanced Topology Discovery Protocol
for Software-Defined Networks,” IEEE Access, vol. 7, pp. 23 471–
23 487, 2019.

[7] L. Ochoa-Aday et al., “Current Trends of Topology Discovery in
OpenFlow-based Software Defined Networks,” Tech. Rep., 2015.
[Online]. Available: https://upcommons.upc.edu/handle/2117/77672

[8] G. Tarnaras et al., “Efficient Topology Discovery Algorithm for
Software-Defined Networks,” IET Networks, vol. 6, pp. 157–161, 2017.

[9] J. Halpern and J. H. Salim, “Forwarding and Control Element
Separation (ForCES) Forwarding Element Model,” IETF, RFC 5812,
2010. [Online]. Available: http://tools.ietf.org/rfc/rfc5812.txt

[10] J. Kipongo et al., “Topology Discovery Protocol for Software Defined
Wireless Sensor Network: Solutions and Open Issues,” in IEEE Inter-
national Symposium on Industrial Electronics, 2018.

[11] S. Babu et al., “A Novel Framework for Resource Discovery and Self-
Configuration in Software Defined Wireless Mesh Networks,” IEEE
Transactions on Network and Service Management, vol. 17, no. 1, pp.
132–146, 2019.

[12] S. Cirani et al., “The IoT Hub: A Fog Node for Seamless Management
of Heterogeneous Connected Smart Objects,” in IEEE International
Conference on Sensing, Communication, and Networking - Workshops,
2015.

[13] S. K. Panda et al., “Topology Detection as a Base for Efficient Manage-
ment of Heterogeneous Industrial Network Systems Using Software-
Defined Networking,” in IEEE International Workshop on Factory
Communication Systems, 2019.

[14] A. Yousefpour et al., “All One Needs to Know About Fog Computing
and Related Edge Computing Paradigms: A Complete Survey,” Elsevier
Journal of Systems Architecture, vol. 98, pp. 289–330, 2019.

[15] T. Rahman et al., “Efficient Edge Nodes Reconfiguration and Selection
for the Internet of Things,” IEEE Sensors Journal, vol. 19, no. 12, pp.
4672–4679, 2019.

[16] E. Rojas et al., “All-Path Bridging: Path Exploration Protocols for Data
Center and Campus Networks,” Elsevier Computer Networks, vol. 79,
pp. 120 – 132, 2015.

[17] E. Leão Fernandes and C. Esteve Rothenberg, “OpenFlow 1.3 Software
Switch,” in Salão de Ferramentas XXXII Simpósio Brasileiro de Redes
de Computadores, 2014.

[18] “GÉANT Topology Map August 2017,” Tech. Rep., 2017.
[Online]. Available: https://www.geant.org/Resources/PublishingImages/
GEANT topology map august2017.pdf

[19] A. L. Barabási and R. Albert, “Emergence of Scaling in Random
Networks,” Science, vol. 286, no. 5439, pp. 509–512, 1999.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/LCOMM.2020.2991347

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

