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The Big Bang theory has recognized widely as the standard model describing the
evolution of the universe. However, the theory is inherent by the fundamental prob-
lems, e.g., the horizontal problem and the flatness problem. In 1980s, Alan Guth
and Katsuhiko Sato proposed the inflationary cosmology. Assuming the universe
had an exponentially expanding period at the very early universe, they showed that
these problems are naturally solved. According to the standard inflation theory, the
tensor fluctuation was generated due to the quantum fluctuation of the space-time
during the inflation period and it drifts in our universes as the primordial gravita-
tional wave. The cross mode and plus mode primordial gravitational waves imprint
the B-mode and E-mode polarizations in the CMB, respectively. Since the scalar
mode fluctuation generates only the E-mode polarization, the detection of the B-
mode CMB polarization provides smoking gun evidence of the inflation theory.

Many observation efforts have been done aiming for the first detection of the
primordial B-mode CMB polarization. The power spectrum of the CMB B-mode po-
larization has two bumps. One is called recombination bump appeared at around
small angular scale of 2 degree (l ∼ 100), and the other is called reionization bump
appeared at around large angular scale of 20 degree (l < 10). Many conventional
ground-based CMB experiments target to detect the recombination bump. How-
ever, the expected amplitude of the primordial B-mode CMB polarization is less
than the B-mode polarization caused by the disturbance on the E-mode CMB po-
larization due to the gravitational lensing effect of the large scale structure. On the
other hand, the detection of the reionization bump from the ground-based observa-
tion is limited by 1/f atmospheric fluctuation. The atmospheric fluctuation becomes
significant below 0.1 Hz. It is hard to detect reionization bump by conventional
ground-based observations since it is impossible to cover a few tenth degree of sky
within a few second. To access the reionization bump by the ground-based CMB
polarization experiments, invention for observational strategy to mitigate the atmo-
spheric fluctuation is required.

The sum of neutrino masses is one of the important parameters in describing
the evolution of the early universe. It is experimentally proposed that the neutrinos
have mass. Since the non-zero neutrino mass can not be explained by the standard
model of the particle physics, the neutrinos are the only particles beyond the stan-
dard model currently known. We can evaluate the sum of the neutrino masses from
the observation of the B-modes polarization due to the gravitational lensing effect
of the large scale structure. However, to limit the sum of neutrino masses from the
B-mode polarization due to the gravitational lensing effect of the large scale struc-
ture we need to know the precise optical depth at the reionization epoch τ, since the
influence of the gravitational lensing effect of the large scale structure and Thom-
son scattering by the free electrons in the reionization are strongly degenerate. To
evaluate the optical depth at the reionization epoch, the CMB E-mode polarization
below l ∼ 10 is useful since the scalar perturbation below l ∼ 10 entered inside
of the Hubble horizon after the reionization epoch. There is a systematic difference
in the estimated τ between WMAP and Planck satellites results. The independent
measurement of the optical depth at the reionization epoch by the CMB polarization
experiment which is able to perform the secure measurement of the large angular
scale signal is an important.

In order to observe the faint signal like the CMB polarization, various types of
large format detector arrays toward astronomical observations, including CMB po-
larization observations are proposed. Recently, majority of CMB polarization experi-
ments use a superconducting detector as a focal plane detector, because it is sensitive
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enough to reach the noise level of the photon noise of the atmosphere for the ground-
based observations. At present, many millimeter and submillimter telescope includ-
ing CMB observation use a large format Transition Edge Sensor (TES) array as a focal
plane detector. The TES is a superconducting detector. In next decade, over mega
pixel focal plane detector is going to be required in order to increase the precision
of the observations. However, the development of the mega pixel TES camera is
hard with the current readout multiplexer system. The Microwave Kinetic Induc-
tance Detector (MKID) is the cutting-edge superconducting detector which enable
to break the mega pixel wall. The advantage of the MKID is that it has a potential to
read over thousands pixels per single readout line. Moreover, the time response of
the MKID (< 100 µs) is significantly faster than the TES.

Although the MKID is the detector technology which is supposed to explore the
mega pixel era, it has several fundamental problems which have to be overcome.
The one is that there is significant systematic uncertainty involved in the calibration
of the detector performance since there is no novel method for the responsivity cali-
bration. The MKID for millimeter and submillimter astronomical observations is op-
erated at 250− 300 mK. Every day or a few day, the MKID is once warmed up above
the transition temperature and cooled down below the transition temperature again.
Since the performance of the MKID changes every cooling cycle, we have to perform
calibration of the performance of the MKID, especially its responsivity, every cool-
ing cycle. Conventionally, the calibration of the responsivity of the MKID has been
performed by measuring the change of the response when the temperature of the
detector mount plate is heated up by controlling the heater attached to the mount
plate. This method is inevitable from following systematic error. It always accom-
panies uncertainties whether the plate temperature measured by the thermometer
coincides with the detector temperature. This method is also time consuming. It
takes several hours for every calibration. Therefore, a few 10% of the observational
time is consumed by the responsivity calibration. The other problem is that the 1/f
type noise always appears and it limits the performance in low sampling frequency.
This noise is supposed to be attributed to the two level system (TLS) formed in the
interface of the supercoducting material and substrate. To realize the photon noise
limit high sensitivity MKID down to low sampling frequency, we have to mitigate
the TLS noise in someway. The third problem is that there is no method to measure
the superconducting transition temperature, Tc, of the hybrid type MKID which is
widely used for the recent astronomical observations. The superconducting transi-
tion temperature of the MKID is one of the crucially important parameters to fix the
design of MKID and evaluate performance.

The GroundBIRD is a ground-based CMB polarization experiment to probe the
inflationary cosmology. For enabling to attack the reionization bump of the primor-
dial B-mode CMB polarization and to observe the precise optical depth to reioniza-
tion from the ground by mitigating the 1/f atmospheric fluctuation, the Ground-
BIRD performs a rapid rotation scan around the zenith direction with inclining the
telescope 30 degree from zenith at rotation speed of 20 rotations per minute, which
corresponds to 3 seconds for one rotation. Because of the earth rotation 44% of the
full sky area is covered in a day. Since the time response of MKID is significantly
faster than TES and satisfies the requirements from the rapid rotation scan strategy,
MKID is installed on the focal plane of the GroundBIRD. We show in this thesis that
the performance of the prototype MKID is far from the GroundBIRD observation
requirements based on the results of our performance verification experiments as
shown in Chapter.3. The 1/f type TLS noise dominates over the generation and re-
combination noise below 100Hz. Further research and development is required to
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optimize performance of the MKID to the GroundBIRD observation. However, the
one cycle from the design to evaluation is about three months. We have to iterate
this cycle several times to feed back the results to new design. Dramatic reduction
of the consumption for this research and development cycle is desired.

We propose new method for the responsivity calibration in Chapter 4. The method
uses the change of the number of the excess quasiparticles while changing the mi-
crowave readout power. By changing microwave readout power from high power to
low power abruptly, the number of the excess quasiparticles transit to a new steady
state with time constant. This time constant is called quasiparticle lifetime and the
time has an relation between the number of quasiparticles in the MKID. We eval-
uate the number of quasiparticles from the quasiparticle lifetime using theoretical
formula. As a result, the responsivity is extracted. We apply this method for the
real measurement using the MKID maintained at 285 mK. We confirm the consis-
tency between the results obtained using this method and conventional calibration
methods. Since our method is free from the above mentioned systematic accom-
panying in the conventional method, the our method provides much more secure
results compared with the conventional method. Furthermore, the time duration
consumed for the calibration dramatically shortened, down to 10 minutes, by our
proposed method.

We propose a new method to measure the Tc of MKID by abrupt change of the
applied readout microwave power. The number of quasiparticles in the MKID de-
crease with the quasiparticle lifetime during abrupt change of the applied readout
microwave power. Therefore, we can measure the relation between the quasiparticle
lifetime and the detector phase response by abrupt change of the readout microwave
power. As a results, we can estimate the intrinsic quasiparticle lifetime. The intrin-
sic quasiparticle lifetime is theoretically modeled by Tc, the physical temperature
of the device, and other known parameters. We can extract Tc by comparing the
measured lifetime with theoretical model. Using an MKID made of aluminium, we
demonstrate this method at a 0.3 K operation. The results are consistent with those
obtained by Tc measured by monitoring the transmittance of the readout microwave
power for various device temperature. The proposed method opens a possibility to
measure Tc of the hybrid type MKID directly. Since there was no method to mea-
sure Tc, the speculated value of Tc has been adopted. The speculated values vary
largely from author to author in the range from 1.1 K to 1.5 K. This introduces ten-
fold difference in the estimated noise level of the MKID under dark condition. Our
method fixes this large uncertainty and dramatically improves precision of design-
ing the MKID. Since the photon noise of the atmosphere dominates over the intrinsic
noise of the MKID for the GroundBIRD application, the uncertainty of the noise level
introduced by the uncertainty of Tc in the range of 1.1 K to 1.5 K is about 20%.

We develop the forecaster which evaluate the performance of MKID quantita-
tively by setting environmental variables and design parameters as shown in Chap-
ter 6. By inputting the design parameters of the prototype MKID into the forecaster,
we confirmed that the TLS noise dominates over the BLIP noise below 100 Hz and
that the main problem of the prototype MKID is its design. We show that this bad
performance is attributed to the design. Since the total width of the coplanar waveg-
uide (CPW) line made from Nb of the prototype MKID is too narrow, the contri-
bution of the TLS noise became prominent. A new design of MKID with widening
the total width of CPW line made from Nb is proposed. We evaluate the expected
performance of the new design MKID using the forecaster in Chapter 7. We showed
that the TLS noise is significantly reduced from that of the prototype MKID and
is suppressed below the BLIP noise down to the GroundBIRD rotation frequency
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(0.3 Hz).
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Chapter 1

Introduction

In this Chapter, we briefly introduce the inflation theory to address why the CMB
B-mode polarization observation is important. We also describe the optical depth to
reionization that play an important role in the measurement of the sum of neutrino
masses. The current status of development of the superconducting detector for as-
tronomical observations are also briefly reviewed to address why the development
of new type of superconducting detectors are required. At the end of the introduc-
tion, motivations of the development of the MKID performed by this thesis based
on the requirements of GroundBIRD are described.

1.1 Observational confirmation of the inflation model

The Big Bang theory has recognized widely as the standard model describing the
evolution of the universe. The theory has provided convincing explanation for the
Hubble expansion law of the galaxies, the uniformity of the Helium 4 abundance
in the Galactic and extra galactic interstellar medium and the cosmic microwave
background radiation (CMB) with almost perfect blackbody spectrum at the tem-
perature of 2.725K. However, the theory is inherent by the fundamental problems,
e.g., the horizon problem and the flatness problem. The era of CMB photon was first
released from the cosmic plasma is at around 370 k years from the beginning of the
universe. The era is called the last scattering surface. The apparent angular size of
the particle horizon at the last scattering surface is ∼ 2 deg [1]. The structures of the
CMB temperature fluctuation beyond this scale have been found [2, 3, 4]. Why the
coherent structures beyond the horizon size of the early universe is called the hori-
zon problem. The curvature of the current universe is close to zero, in other word
the geometry of the current universe is close to flat [5, 6]. As described in Appendix
A, this insists that the curvature of the universe at the begging of the universe must
be tuned to a value close to zero with an accuracy of more than 62 orders. This fine
tuning problem is called the flatness problem.

In 1980s, Alan Guth and Katsuhiko Sato proposed the inflationary cosmology
[7, 8]. Assuming the universe had an exponentially expanding period at the very
early universe, they showed that these problems are naturally solved (see Appendix
A). The main reason why the inflationary theory has been supported as the model
which describes the evolution of the early universe is not the fact that the inflation
is able to solve the above mentioned rather academical problems but its prediction
power. Many of them have been observationally confirmed, such as the almost flat
geometry of the current universe, the existence of the almost scale invariant scalar
mode perturbation with almost Gaussian distribution etc. According to the standard
inflation theory (see Appendix A), the tensor fluctuation was generated due to the
quantum fluctuation of the space-time during the inflation period and it drifts in our
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universe as the primordial gravitational wave background. Although the direct de-
tection of the primordial gravitational wave is yet hard, indirect confirmation of the
existence of the primordial gravitational wave and measurement of its amplitude are
possible by performing the polarization observation of the cosmic microwave back-
ground (CMB). The primordial gravitational wave imprints the polarization signals
in the CMB by the electron scattering at the last scattering surface and the reion-
ization epoch [9]. The cross and plus modes of the primordial gravitational wave
imprint the B-mode and E-mode polarization in the CMB, respectively. The brief
introduction of the physical mechanism of generation of B-mode polarization due
to the cross mode gravitational wave through the electron scattering is given in Ap-
pendix A. Since the scalar mode fluctuation generates only the E-mode polarization,
the detection of the B-mode CMB polarization provides smoking gun evidence of
the inflation theory. Hereafter, we refer the signal as the primordial B-mode CMB
polarization. The detection of the primordial B-mode CMB polarization tells us the
epoch of the inflation period since the amplitude of the power spectrum of the pri-
mordial gravitational wave is proportional to the fourth power of the temperature
of the universe at the beginning of the inflation epoch, and provides the first ob-
servational confirmation of the quantum gravity (see Appendix A). In convention,
the amplitude of the primordial tensor mode is expressed by the ratio of the power
spectrum of the tensor perturbation to the scalar perturbation, r, since the ampli-
tude of the scalar perturbation is well constrained from the observation of the CMB
temperature fluctuation. It is called tensor-to-scalar ratio.

Many observational efforts have been done aiming for the first detection of the
primordial B-mode CMB polarization. The power spectrum of the CMB B-mode po-
larization are shown in Figure. 1.1. The power spectrum of the primordial B-mode
CMB polarization has two bumps. One is called recombination bump appeared at
around small angular scale of 2 degree (l ∼ 100), and the other is called reionization
bump appeared at around large angular scale of 20 degree (l < 10). Many con-
ventional ground-based CMB experiments target to detect the recombination bump.
However, the expected amplitude of the primordial B-mode CMB polarization is less
than the B-mode polarization caused by the disturbance on the E-mode CMB polar-
ization due to the gravitational lensing effect of the large scale structure. Although
a lot of efforts have been done for extracting the primordial B-mode CMB polariza-
tion from the detected signals [10], the claim for the detection of the recombination
bump only is not convincing to accept the detection of the primordial B-mode CMB
polarization since it is not clean evidence. On the other hand, the detection of the
reionization bump from the ground-based observation is limited by 1/f atmospheric
fluctuation. The atmospheric fluctuation becomes significant below 0.1 Hz. It is hard
to detect reionization bump by conventional ground-based observations since it is
impossible to cover a few tenth degree of sky within a few second. To access the
reionization bump by the ground-based CMB polarization experiments, invention
for observational strategy to mitigate the atmospheric fluctuation is required.

1.2 Optical depth to reionization

The optical depth to reionization τ is the important parameter to characterize the
reionization. When the redshift z is below about 20, the first generation stars are
formed, and the neutral hydrogen is reionized by the strong UV light emitted by the
stars. The CMB photon is re-scattered by the decoupled electron in the reionization
epoch. The optical depth to reionization is a quantity which provides a measure of
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the line-of-site free-electron opacity to CMB radiation. The optical depth to reioniza-
tion is given by

τ = cσT

∫ t0

tr

dtn̄e (1.1)

where c is the speed of light, σT is the cross section of Thomson scattering, n̄e is the
average number density of the free electron, t0 is the current time, and tr is the time
when the reionization is assumed to occur instantaneously.

The sum of neutrino masses is one of the important parameters in describing the
evolution of the early universe. It is experimentally proved that the neutrinos have
mass [16]. Since the non-zero neutrino mass can not be explained by the standard
model of the particles physics, the neutrinos are the only particles beyond the stan-
dard model currently known. The CMB photons are affected by the gravitational
potential due to the large scale structure of the universe during their arrival to us
from the recombination epoch. The effect is called gravitational lensing. Since the
neutrino has a large velocity dispersion during the formation of the large scale struc-
ture, the evolutionary rate of the large scale structure by the baryon and dark matter
is delayed by the neutrino. In other words, the evolutionary rate of the formation of
the large scale structure depends on the sum of neutrino masses. Therefore, we can
evaluate the sum of the neutrino masses from the observation of the B-mode polar-
ization due to the gravitational lensing effect of the large scale structure. However,
to limit the sum of neutrino masses from the B-mode polarization due to the gravita-
tional lensing effect of the large scale structure we need to know the precise optical
depth to reionization, since the influence of the gravitational lensing effect of the
large scale structure and Thomson scattering by the free electrons in the reionization
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epoch are strongly degenerate [17]. Since the fluctuation at high multipole region en-
ter the Hubble horizon earlier than that at low multipole region, the power spectrum
at high multipole region show the past fluctuation of the universe. The information
of the fluctuation in the higher multipole region than the reionization bump is dis-
turbed by the decoupled electron in the reionization epoch. In order to recover the
information of the fluctuations entered the Hubble scale before reionization epoch, it
is necessary to make precise observations of the optical depth to reionization, which
is a quantity that indicates how much it is disturbed by the reionization epoch.

The E-mode polarization at l < 10 tells us the information of the reionization
epoch, since the scalar perturbation at l < 10 entered inside of the Hubble hori-
zon after the reionization epoch, therefore it avoids the re-scattered effects after the
reionization epoch. The E-mode polarization at l < 10 has a bump shown in Figure
1.1. The WMAP and Planck satellite observed the bump and obtained optical depth
to reionization. The WMAP proposed τ = 0.089± 0.014 [3] and the Planck proposed
τ = 0.054± 0.007 [4]. The results are different. Since the WMAP satellite does not
have high frequency detector, it may not be able to distinguish between CMB and
dust polarization. Since Planck satellite was not designed to measure large angular
scale and it takes about a year to observe the full sky, large systematic errors, e.g. de-
tector drift due to the comic ray muon hit, are contaminated in the data. Therefore,
the precise measurement of the optical depth at the reionization epoch by indepen-
dent CMB polarization experiment is an important topic.

1.3 Developing the large format detector arrays toward astro-
nomical observations

In order to observe the faint signal like the CMB polarization, various types of large
format detector arrays toward astronomical observations including CMB polariza-
tion experiments are proposed. Recently many CMB polarization experiments use
a superconducting detector as a focal plane detector, because it is sensitive enough
to reach the noise level of the photon noise of the atmosphere for the ground-based
observations and of the CMB for the observation from the space. The sensitivity of
such detectors are called photon noise limit.

1.3.1 Mega pixel era

The history of the application of the direct detector for millimeter and submillimeter
astronomical observation started from 1988 as shown in Figure 1.2. Caltech sub-
millimeter observatory (CSO) applied direct detector composed by semiconductor
thermister as a focal plane detector for radio astronomical observation at the first
time. Until 2010, the semiconductor detector played the central role for the many
astronomical observations as a focal plane detectors. Some observations used over
100 semiconductor detectors as a focal plane detector [18, 19, 20]. From 2000 to 2005,
some telescopes, e.g., CAPMAP [21] and QUITE [22] used HEMT (High Electron
Mobility Transistor) as a direct detector. From 2007, many telescopes start to use
Transition Edge Sensor (TES) [23] as a focal plane detector. The TES is a direct detec-
tor composed of superconductor which utilizes the sensitive change of the resistance
of the superconductor at around the superconducting transition temperature caused
by the absorption of the radiation energy as its detection principle. APEX-SZ [24] is
the project which is installed TES to APEX-12 m telescope, for the first time. By ap-
plying superconducting quantum interference device (SQUID) as for readout circuit,
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multiplexing of the multi pixel TES detectors has started. At present, many millime-
ter and submillimeter telescopes including CMB observation e.g BICEP2 [25], ACT
[26], SPT [27], and POLARBEAR [28] use a large format TES camera as a focal plane
detector, because we can deep survey as the number of detectors increases. The next
generation CMB experiments, e.g., Simons Observatory [29], and LiteBIRD [30] have
a plan to install TES as a focal plane detector. Especially, the Simons observatory is
planed to install 0.1 Mega pixel TES camera. Figure 1.2 shows the growth history
of the number of detector pixels installed on the millimeter and submillimeter as-
tronomical telescope. This figure tells followiing two things. Number of focal plane
detector pixels grows exponentially. Change of the fundamental detector technology
happened after 20 years from the first application of the semiconductor thermister to
the astronomical observation to accelerate the increase of the number of the detector
pixels. Although the figure suggests that the number of the detector pixel exceeds
mega pixel in the next decade, renovation of detector technology might be required
to realize the mega pixel era since it gets the 20th anniversary at 2025 after the first
application of TES to the astronomical observations. In reality, the number of the
detector pixel of TES camera is getting saturated. The bottle neck is that the number
of pixels which is read out by a single multiplexer arrives at the limit. To break this
wall, a new technology for the read out multiplexer of TES has been studied [31]. Mi-
crowave Kinetic Inductance Detector (MKID) is the cutting-edge superconducting
detector which may be able to break the mega pixel wall. The DemoCam [32] used
MKID as a focal plane detector for the first time. From 2007, many observations e.g.,
MUSIC[33], NIKA[34], NIKA2[35], DESHIMA[36], and BLAST-TNG[37] use MKID
as a focal plane detector. Many experiments e.g., DESHIMA2.0 and TolTEC [38]
have a plan to use MKID as a focal plane detector. In the next decade, the mega
pixel focal plane detector will be required in order to do more precise measurement
and observation. Since the MKID has an ability to read over kilo pixels per signal
readout line [39], the MKID contain great pontential to realize mega pixel focal plane
detector array.

Note that MKID is also used for near-infrared and visible light astronomical ob-
servations [40, 41] as well as millimeter and submillimeter observations.

The various types of the superconducting detectors and these detection mecha-
nism are summarized in Appendix B.

1.3.2 The advantage of the MKID

Various studies have shown that performance of the MKID reached the photon noise
limit [42, 39]. The following is the advantage of the MKID comparing the other
superconducting photon detectors.

• The MKID is easy to fabricate.

• The MKID has a fast time response (τ < 100 µs).

• The MKID has an ability to read over 1000 pixels per single readout line.

1.3.3 The fundamental problems of MKID to be overcome

Although the MKID is the detector technology which is supposed to explore the
mega pixel era, it has several fundamental problems which have to be overcome.
The one is that there is significant systematic uncertainty involved in the calibration
of the detector performance since there is no novel method for the calibration. The
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ideal operation temperature of the MKID must be at least 4 times less than the su-
perconducting transition temperature, Tc, otherwise it is hard to perform sensitive
measurement due to thermal noise. Since the transition temperature of the typi-
cal metals which have been applied to MKID is in the range from 1 to 10 K, the
focal plane must be cooled down to sub-Kelvin. To realize sub-Kelvin, special re-
frigerators are used. When the required temperature is 250− 300 mK, the Helium
3 sorption refrigerator is used. The duration to keep 250− 300 mK by the sorption
refrigerator is one day or a few days. Every day or a few day, the MKID is once
warmed up above the transition temperature and cooled down below the transition
temperature again. Since the performance of the MKID changes every cooling cycle
due to the tiny environment difference of the superconducting transition, we have to
perform calibration of the performance of the MKID, especially its responsivity, ev-
ery cooling cycle. Conventionally, the calibration of responsivity of MKID has been
performed by measuring the change of the response when the temperature of the
detector mount plate is heated up by controlling the heater attached to the mount
plate as shown in Chapter 4. This method is inevitable from following systematic
error. It always accompanies uncertainties whether the plate temperature measured
by the thermometer coincides with the detector temperature. This method is also
time consuming. It takes several hours for every calibration. Therefore, a few 10%
of the observational time is consumed by the responsivity calibration. The invention
of the novel calibration method of the MKID responsivity is highly demanded.

The other problem is that the 1/f type noise always appears [43] and it limits the
performance in the low sampling frequency. This noise is supposed to be attributed
to the two level system (TLS) [44, 45] formed in the interface of the superconducting
material and substrate. Hereafter, we refer this noise as the TLS noise. To realize the
photon noise limit high sensitivity MKID down to low sampling frequency, we have
to mitigate the TLS noise in someway.
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Aperture Diameter 300 mm
Optics system Cross Dragone
Field of View ±10 deg

Detector MKID
Frequency band 145 GHz, 220 GHz

Angular resolution 0.6 deg for 145 GHz, 0.4 deg for 220 GHz
Scan speed 120 deg/s

Sky coverage 44% of the full sky

TABLE 1.1: The concept of the GroundBIRD telescope[54]

The third problem is that there is not method to measure the superconducting
transition temperature of the hybrid type MKID [46, 42] which is used two super-
conducting material for the resonator. The superconducting transition temperature
of the MKID is one of the crucially important parameters to fix the design of MKID
and evaluate performance. The hybrid type MKID has been widely used for the as-
tronomical observation because of its merits as described in Chapter 2. Invention of
the novel method which is able to measure the transition temperature of the hybrid
type MKID is highly demanded.

1.4 GroundBIRD experiment

1.4.1 Concepts of the experiment

GroundBIRD [47, 48, 49, 50, 51, 52, 53] is a ground-based CMB polarization experi-
ment to probe the inflationary cosmology and to observe the precise optical depth to
reionization. A photo of the GroundBIRD installed in the Teide observatory, Tener-
ife, Spain is shown in Figure 1.3. Enable to attack the reionization bump of the
primordial B-mode CMB polarization from the ground by mitigating the 1/f atmo-
spheric fluctuation, the GroundBIRD performs the rapid rotation scan around the
zenith direction with inclining the telescope 30 degree from zenith at rotation speed
of 20 rotations per minute, which corresponds to 3 seconds for one rotation. Because
of the earth rotation 44% of the full sky area is covered in a day. This scanning strat-
egy makes the GroundBIRD unique ground-based CMB experiment. Since the time
response of MKID is significantly faster than TES and satisfies the requirements from
the rapid rotation scan strategy, MKID is installed on the focal plane of the Ground-
BIRD. It makes possible not only to address the reionization bump but also to resolve
the recombination bump by the GroundBIRD. The GroundBIRD starts test observa-
tion from September 2019 at Teide observatory in Institute de Astrofisca de Canaries
(IAC). Mainly, RIKEN, Kyoto University, Tohoku University, Korea University and
IAC join the project. The summary of concepts of the GroundBIRD experiment is
shown in Table 1.1.

The GrououndBIRD has three main features.

• Rapid rotation scan

• Cold optics

• Superconducting detector MKID

Some details of these features are explained in the followings.
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FIGURE 1.3: A photo of the GroundBIRD installed in the Teide ob-
servatory, Tenerife, Spain. The photo is taken by J. Suzuki (Kyoto

University)

Rapid rotation scan

The key feature of the GroundBIRD telescope is the rapid rotation scan around the
zenith direction with inclining the telescope 30 deg from zenith at 20 rotations per
minute, which corresponds to be 3 seconds for one rotation. By this observational
method, a scale of the sky larger than a few 10th degree is covered faster than the
1/f atmospheric fluctuation. Because of the earth rotation and rapid scanning, 44%
of the full sky area will be covered in a day. It makes possible to address the CMB
polarization signal down to the multipole of l ∼ 6.

Cold optics

To enable high sensitive observations, all optical components are installed in the
cryostat which is cooled down to 4 K with pulse tube cooler (PT415, Cryomech.
Co. LTD). To enable rapid rotation scan, the compact cryostat is adopted to the
GroundBIRD. The telescope of the GroundBIRD is Cross Dragone reflecting mirror
system [55]. The first and second mirrors are mounted inside of the 4 K shield in
order to reduce thermal radiation from the surface of the mirrors in Figure 1.4.

Superconducting detector MKID

The GroundBIRD experiment uses MKID [56, 57] as a focal plane detector. The
fast time response matches with the rapid rotation scan adopted by the Ground-
BIRD. Due to the fast time response (< 100 µs), the GroundBIRD can observe in
the diffraction limit. This also allows GroundBIRD to observe the recombination
bump (l ∼ 100). The detail detection mechanism of the MKID are summarized in



1.4. GroundBIRD experiment 9

300 K shield

40 K shield

4 K shieldfocal plane

FIGURE 1.4: The CAD image of the GroundBIRD cryostat designed
by H. Watanabe (RIKEN). The first and second mirrors are mounted
inside of the 4 K shield in order to reduce thermal radiation from the

surface of the mirrors.

Chapter 2. The GroundBIRD has two frequency band whose central frequencies are
145 GHz and 220 GHz, respectively, to enable high accuracy removal of the fore-
ground emission shown in Figure 1.5. The amplitude of the foreground emission is
higher than the expected amplitude of the primordial B-mode CMB polarization. In
the frequency bands adopted by the GroundBIRD, the dominant component of the
foreground emission is thermal emission from the interstellar dust. The focal plane
is cooled down to 250 mK with the Helium 3 sorption refrigerator.

1.4.2 Requirements for the GroundBIRD instruments

The noise equivalent temperature (NET) and noise equivalent power are the funda-
mental parameters which characterize the sensitivity of the direct detectors. Roughly
saying, the NET (NEP) is the source temperature (power) when the source is ob-
served for one second (hertz), a signal-to-noise ratio becomes 1. The NEP of MKID
[57, 58] is given by

NEP =

√
2hνPrad(1 + ηoptηemn̄) + 4∆Prad/ηpb

ηopt
, (1.2)

where the first two terms come from photon noise of atmosphere or source when
the blackbody source with temperature of Tamb, is observed, that is the occupation
number of n̄ is given by

n̄ =
1

exp
(

hν
kBTamb

)
− 1

, (1.3)
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the third term comes from the intrinsic noise of MKID device. The sum of the photon
noise and the intrinsic noise of MKID is called BLIP noise (Background LImited Per-
formance noise) noise. Prad is the radiation power of the source or the atmosphere,
ηem is the emissivity of the source or the atmosphere, ∆ is the gap energy of the
superconductor given by ∆ = 1.76kBTc where Tc is the superconducting transition
temperature [59] and kB is the Boltzmann constant, ηpb is the pair braking efficiency
[60, 61], ν is the optical frequency, and h is the Planck constant. The noise equivalent
temperature in Rayleigh–Jeans Law (RJ) limit is given by

NETRJ =

√
2NEP

kB
∫

F(ν)dν
, (1.4)

where F(ν) is the filter transmission. The noise equivalent temperature for CMB is
given by

NETCMB = NEP
(

∂B(ν, T)
∂T

)−1

T=TCMB

, (1.5)

where (
∂B(ν, T)

∂T

)
TCMB

= exp
(

hν

kBTCMB

) hν/kBTCMB

exp
(

hν
kBTCMB

)
− 1

2

, (1.6)

where TCMB = 2.725 K is the temperature of CMB.
The sensitivity of the GroundBIRD must be achieved the photon noise limit of the

atmosphere. The GroundBIRD telescope installs four optical filters that the first one
(low pass filter) is installed at the aperture of the 40 K shield, the second one (low
pass filter) is installed at the aperture of the 4 K shield, third one (low pass filter)
at the 350 mK stage, and the final one (low pass and high pass filters) is installed in
front of the detector at 250 mK stage. The transmittance of the vacuum window with
anti reflection coating mounted at 300 K shield aperture is ∼ 96% [62]. The Figure
1.6 shows the transmission of the each optical filter and the total transmission of the
GroundBIRD telescope as a function of frequency. The transmissions at 145 GHz
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respectively.

band and 220 GHz band are optimized to be ∼ 50% for the GroundBIRD optical
setup. The atmospheric emission is calculated using the precipitable water vapor
(PWV) at the Teide observatory and the atmospheric model called ATM model [63].
The PWV is the depth of water in a column of the atmosphere. The annual mean of
the PWV at the Teide observatory is 3.8 mm [64]. The atmospheric transmission is
overlaid on the total transmission of the GroundBIRD optical filters in Figure 1.7.

The radiation power of the blackbody source with temperature of T, Prad, is de-
fined by

Prad =
1
2

∫ ( c
ν

)2
F(ν)B(ν, T)dν, (1.7)

where c is the speed of light, ν is the frequency, and B(ν) is the source brightness.
The source brightness for the blackbody source is given by

B(ν, T) =
2hν3

c2
1

exp
(

hν
kBT

)
− 1

. (1.8)

The radiation power from atmospheric emission is given by

Prad,sky = ηemPrad(Tamb), (1.9)

where Tamb is the ambient temperature, and ηem is the emissibity of the atmosphere
(1− atmospheric transmission). In the Rayleigh–Jeans limit, the radiation tempera-
ture of the atmospheric emission is given by

Tsky =
Prad,sky

kB
∫

F(ν)dν
. (1.10)
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when PWV = 3.8 mm. We use ATM model for this calculation [63].

The radiation power of the atmosphere for PWV = 3.8 mm and Tamb = 273 K is
obtained as

Prad,145 GHz = 7.1 pW (for 145 GHz), (1.11)

and
Prad,220 GHz = 17.2 pW (for 220 GHz). (1.12)

The absorbed power of the atmosphere for PWV = 3.8 mm and Tamb = 273 K in
MKID is obtained as

Pabs,145 GHz = 7.1ηopt pW (for 145 GHz), (1.13)

and
Pabs,220 GHz = 17.2ηopt pW (for 220 GHz), (1.14)

where ηopt is the optical efficiency which is the ratio of the absorbed power by the
detector to the incoming radiation power to the detector. The brightness tempera-
tures of the atmosphere for PWV = 3.8 mm and Tamb = 273 K at two GroundBIRD
frequency bands are given by

Tsky,145 GHz = 27 K (for 145 GHz), (1.15)

and
Tsky,220 GHz = 51 K (for 220 GHz). (1.16)

For an aluminum MKID (Tc = 1.28 K [65] and ηpb = 0.57 [60, 61]). The noise equiv-
alent power of the GroundBIRD with the prototype MKID with ηopt = 0.39 [54, 66,
67] for 145 GHz is given by

NEPsky,145 GHz = 1.0× 10−16 W/
√

Hz (for 145 GHz), (1.17)

and with ηopt = 0.30 [54, 68, 67] for 220 GHz is given by

NEPsky,220 GHz = 1.9× 10−16 W/
√

Hz (for 220 GHz). (1.18)
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The noise equivalent temperature in Rayleigh–Jeans limit with ηopt = 0.39 for 145 GHz
is given by

NETsky−RJ,145 GHz = 530 µK
√

s (for 145 GHz), (1.19)

and with ηopt = 0.30 for 220 GHz is given by

NETsky−RJ,220 GHz = 813 µK
√

s (for 220 GHz). (1.20)

The noise equivalent temperature for CMB observation [67] with ηopt = 0.39 for
145 GHz is given by

NETsky−CMB,145 GHz = 860 µK
√

s (for 145 GHz), (1.21)

and with ηopt = 0.30 for 220 GHz is given by

NETsky−CMB,220 GHz = 2384 µK
√

s (for 220 GHz). (1.22)

Based on these results, the expected achievable sensitivity of the tensor-to-scalar
ratio r after three years observations of the GroundBIRD is estimated to be r =
0.29 [69]. Although this is about 4 times larger than the current upper limit on r
constrained from the observations of the recombination bump [12], the role of the
GroundBIRD is the pathfinder to show that the scan strategy adopted by Ground-
BIRD is able to mitigate the atmospheric fluctuation and able to achieve the designed
sensitivity against the reionization bump from the ground-based observation.

The requirements for the MKID to achieve above mentioned performance are
summarized as follows;

• The detector performance is limited by BLIP noise.

• The TLS noise becomes prominant only below the rotation frequency of the
GroundBIRD telescope (0.3 Hz).

• The time constant of MKID is less than sampling speed (1 ms).

As shown in Chapter 3, the performances of the prototype MKID mounted in the
GroundBIRD which is fabricated based on the current design, are far from these
requirements. Further improvement of the performance of MKID is mandatory.

1.5 Themes of this thesis

The themes of the thesis are developing novel methods to overcome fundamental
problems of MKID listed in subsection 1.3.3 and fixing new design of MKID installed
in the GroundBIRD which satisfies the requirements for MKID to extract the design
performance of the GroundBIRD experiment as mentioned in subsection 1.4.2. We
take two approaches. One is the development of the novel calibration methods in
order to improve precision of the observation. The other is the development of the
performance forecaster of MKID to shorten the research and development process
dramatically until high performance MKID is fabricated.

The responsivity calibration of the MKID per each cooling cycle is important
for the astronomical observation, because the performance of the MKID changes
every cooling cycle. To calibrate the responsivity, the measurement of the MKID re-
sponse during changing the device temperature is the standard method. However,
the method needs a lot of time and causes the uncertainty of the responsivity due to
the deference between the real device temperature and the temperature obtained by



14 Chapter 1. Introduction

the thermometer. We propose new method for the responsivity calibration in Chap-
ter 4. The method is based on excess quasiparticles generated by microwave readout
power signal. By changing microwave readout power signal from high power to
low power, the excess quasiparticle decreases with time constant. This time constant
is called quasiparticle lifetime and the time has an relation between the number of
quasiparticles in the MKID. We evaluate the number of quasiparticles by the quasi-
particle lifetime using theoretical formula. This measurement yields the responsiv-
ity. We apply this method for the real measurement using the MKID maintained at
285 mK. We also confirm the consistency between the results obtained using this
method and the conventional calibration method in terms of the accuracy. Since
our method is free from the above mentioned systematically accompanying in the
conventional method, the our method provides much more secure results compared
with the conventional method. Furthermore, the time duration consumed for the
calibration dramatically shorted, down to 10 minutes, by our proposed method.

The superconducting transition temperature (Tc) of the MKID is an important
parameter for both design and performance evaluation, because various parameters
depend on the temperature. However, the hybrid type MKID, which is adopted for
the GroundBIRD observation, is not able to be measured this temperature directly. In
Chapter 5, we propose a new method to measure the Tc of MKID by rapidly chang-
ing the applied readout microwave signal. A small fraction of the readout power
signal is deposited in the MKID, and the number of quasiparticles in the MKID in-
creases with this applied power. Furthermore, the quasiparticle lifetime decreases
with the number of quasiparticles. Therefore, we can measure the relation between
the quasiparticle lifetime and the detector phase response by rapidly changing the
readout power signal. From this relation, we estimate the intrinsic quasiparticle life-
time. This lifetime is theoretically modeled by Tc, the physical temperature of the
device, and other known parameters. We obtain Tc by comparing the measured
lifetime with theoretical model. Using an MKID fabricated with aluminium, we
demonstrate this method at a 0.3 K operation. The results are consistent with those
obtained by Tc measured by monitoring the transmittance of the readout microwave
signal with the variation in the device temperature. The method proposed in Chap-
ter 5 is applicable to the hybrid type MKID.

As mentioned in Chapter 3, the performance of the prototype MKID does not
meet the GroundBIRD requirements. Further research and development is required
to optimize performance of the MKID to the GroundBIRD observation. However,
the one cycle from the design to evaluation is about three months. We have to iterate
this cycle several times to feed back the results to new design. Dramatic reduction
of the consumption for this research and development cycle is desired. For this pur-
pose, we develop the forecaster which evaluate the performance of MKID quantita-
tively by setting environmental variables and design parameters. The development
of the forecaster and evaluation of the prototype MKID performance are shown in
Chapter 6. By inputting the design parameters of the prototype MKID into the fore-
caster, we confirmed that the TLS noise dominates over the BLIP noise below 100 Hz
and that the main problem of the prototype MKID is its design. Since the total width
of the coplanar waveguide (CPW) line made from Nb of the prototype MKID is too
narrow, the contribution of the TLS noise became dominant. We propose new de-
sign MKID for the GroundBIRD observation and evaluate the performance using
the forecaster in Chapter 7. We showed that the TLS noise is significantly reduced
from that of the prototype MKID and is suppressed below the BLIP noise down to
the GroundBIRD rotation speed (0.3 Hz).
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Chapter 2

Microwave Kinetic Inductance
Detector

In this chapter, we briefly introduce the detection mechanism and the noise of the
MKID.

2.1 The detection mechanism of MKID

Microwave Kinetic Inductance Detector (MKID) was proposed by Caltech group in
2003 [56]. It consists of an antenna, a quarterwave resonator, and a readout feed-
line shown in Figure 2.1. The detection principle of the resonator, a photon which
has hν > 2∆ (∆ is gap energy of the Cooper pairs) breaks Cooper pairs and gen-
erates quasiparticles shown in Figure 2.2. a. The Cooper pairs change inductance
and quasiparticles increase resistance in the resonator. The equivalent circuit of the
MKID consists of a capacitance C, a resistance R, and an inductance L coupled by
the readout feedline with a capacitance shown in Figure 2.2. b. Each resonator has a
resonance frequency (ω ∝ 1/

√
LC). It is equivalent to RLC circuit. When the photon

is absorbed by the resonator, the surface impedance of the resonator is changed. It
results the change of resonance frequency of the resonator, amplitude, and phase of
the complex transmission shown in Figure 2.2. c, and Figure 2.2. d. The resonance
frequency is adjusted by the length of the quarterwave resonator. Because of this
characteristics, using frequency multiplexing, it is enable to read 100-1,000 pixels in
a single readout line [39].

2.2 Quasiparticle dynamics

The microscopic description of the superconductivity was given by the BCS theory
[59]. Inside of the superconductor, pair of two electrons with opposite spin and mo-
mentum called Cooper pair exist. The binding energy of the pair called gap energy
depends on the temperature described by the BCS theory [59]. The gap energy at
T = 0 K (T is the temperature) is given by

2∆0 = 3.52kBTc, (2.1)

where kB is Boltzmann constant and Tc is the superconducting transition tempera-
ture. The gap energy depends on the superconducting transition temperature. For
an aluminum, the twice of the gap energy 2∆0 is ∼ 360 µeV. The twice of the gap
energy for an aluminum corresponds to the photon energy of 90 GHz.

A photon which has energy larger than the twice of the gap energy breaks the
Cooper pairs and generates quasiparticles. The energy breaking Cooper pairs is not
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FIGURE 2.1: The MKID consists of antenna, resonator, and feedline.
The superconducting thin film is on the substrate.
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FIGURE 2.2: An illustration of the detection mechanism.
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only photon energy (hν > 2∆) but also thermal energy [70] and the absorption of
readout power [71, 72, 73, 74, 57, 75, 65]. The relation between the temperature and
the number density of quasiparticles nqp under the low temperature (T � Tc) , the
dark and zero readout power condition [59] is given by

nqp = 2N0
√

2πkBT∆ exp
(
− ∆

kBT

)
, (2.2)

where ∆ is the gap energy and N0 is the single spin density of states at Fermi level
(N0 = 1.74× 1010 eV−1µm−3 for an aluminum [76, 77]). The number density of the
quasiparticles exponentially increase with increasing the temperature. The number
of quasiparticles in the MKID, Nqp, is given by Nqp = nqpV, where V is the volume
of the resonator.

The intensity of the source is measured by measuring the change of the number
of quasiparticles in the MKID. The relation between the number of quasiparticles
Nqp and the power absorbed in the MKID, Pabs, [78] is given by

ηpbPabs =
Nqp∆
τqp

, (2.3)

where ηpb is the pair braking efficiency (nominal value for an aluminum is ηpb = 0.57
[60, 61]), and τqp is the quasiparticle lifetime. The quasiparticle lifetime depends on
the number of quasiparticles. The relation between quasiparticle lifetime and device
temperature in the low temperature T � Tc [79] is given by

τqp =
τ0√

π

(
kBTc

2∆

)5/2√Tc

T
exp

(
∆

kBT

)
=

τ0

nqp

N0(kBTc)3

2∆2 , (2.4)

where τ0 is the electron phonon interaction time (τ0 = 458 ns for an aluminum [80]).
The quasiparticle lifetime increases with decreasing the number of quasiparticles.

2.3 Complex conductivity

The change of the number of quasiparticles causes the change of the MKID response.
The complex conductivity is the parameter which connect the number of quasipar-
ticles with MKID response.

In the MKID, since the mean free path of the motion of the Cooper pair l is limited
by the thickness of the MKID d, the size of the Cooper pair called coherence length
ξ0 is limited by the mean free path. This limit is called dirty limit (d = l � ξ0).
In the case of the dirty limit and kBT, h̄ω < 2∆ (ω is the angular frequency), the
complex conductivity of real part σ1 and imaginary part σ2 given by the Mattis-
Bardeen theory [81, 70] are simplified by

σ1

σN
=

4∆
h̄ω

exp
(
− ∆

kBT

)
sinh

(
h̄ω

2kBT

)
K0

(
h̄ω

2kBT

)
, (2.5)

and
σ2

σN
=

π∆
h̄ω

[
1− 2 exp

(
− ∆

kBT

)
exp

(
− h̄ω

2kBT

)
I0

(
h̄ω

2kBT

)]
, (2.6)

where σN is the normal state conductivity, and I0 and K0 are the modified Bessel
function of the first and second kind, respectively. The complex conductivity of the
real part and imaginary part as a function of temperature are shown in Figure 2.3.
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Since the number of quasiparticles decreases with decreasing the temperature, the
complex conductivity of real (imaginary) part decreases with decreasing (increasing)
the temperature. The rate of change of the complex conductivity for the number
density of quasiparticles [70] is given by

dσ1

dnqp
= σN

1
N0h̄ω

√
2∆0

πkBT
sinh

(
h̄ω

2kBT

)
K0

(
h̄ω

2kBT

)
, (2.7)

and
dσ2

dnqp
= σN

−π

2N0h̄ω

[
1 +

√
2∆0

πkBT
exp

(
− h̄ω

2kBT

)
I0

(
h̄ω

2kBT

)]
. (2.8)

The rate of change of the complex conductivity for the number density of quasipar-
ticles of the real part and imaginary part as a function of temperature and readout
frequency are shown in Figure 2.4. Based on Eq. 2.7 and Eq. 2.8, the complex con-
ductivity lineally change with the number density of quasiparticles. It is known that
the magnetic field penetrate into the surface of a superconductor. The characteristic
length scale is called penetration depth. The penetration depth for the dirty limit
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and low temperature (T � Tc) is given by [57]

λdirty ∼
√

1
µ0ωσ2

. (2.9)

The penetration depth depends on the complex conductivity of the imaginary part.

2.4 Microwave resonator circuit

When the power is absorbed in the resonator, the surface impedance is also changed
due to the change of the complex conductivity. The MKID response lineally depends
on the change of the impedance in the low temperature T � Tc. Therefore we
measure the intensity of the optical source as a MKID response.

2.4.1 Surface impedance

The surface impedance Zs depends on the complex conductivity. In the dirty limit,
the surface impedance [82, 83] is given by the following formula,

Zs =

√
iµ0ω

σ1 − iσ2
coth(

√
iωµ0σd) = Rs + iωLs, (2.10)

where σ = σ1− iσ2, Rs is the surface resistance of the resonator, and Ls is the surface
inductance of the resonator. Using Eq. (2.9), the surface impedance is rewritten by

Zs =

√
iµ0ω

σ1 − iσ2
coth

(
d

λdirty

√
1 + i

σ1

σ2

)
. (2.11)

In the low temperature T � Tc and σ1 � σ2 limit, using coth(x + iy) ≈ coth(x)−
iy

sinh2(x)
, the equation is approximated by

Zs = iωµ0λdirty coth
(

d
λdirty

)
+ µ0ωλdirty

σ1

2σ2
βλ coth

(
d

λdirty

)
, (2.12)

where βλ = 1 +
2d/λdirty

sinh(2d/λdirty)
. Therefore the surface resistance and inductance is

given by

Rs = µ0ωλdirty
σ1

2σ2
βλ coth

(
d

λdirty

)
, (2.13)

and

Ls = µ0λdirty coth
(

d
λdirty

)
. (2.14)

As a results, the change of the impedance is due to the change of the complex con-
ductivity.

2.4.2 Resonance frequency

The MKID are transmission line resonators based on the coplanar waveguide (CPW).
In the CPW resonator, the resonance frequency is determined by its phase velocity
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vph and its length l. The phase velocity is given by

vph = 1/
√

Cl(Lg + Lk), (2.15)

where Lk is the kinetic inductance per unit length, and Lg and Cl are geometric
inductance and capacitance per unit length, respectively. For the quaterwave res-
onator (λres = 4l, where λres is the wave length of the readout microwave.), using
λres = 2πvph/ω0, the angular resonant frequency ω0 is given by

ω0 =
2π

4l
√
(Lg + Lk)Cl

. (2.16)

The geometrical inductance and capacitance of CPW line [84] are given by

Lg =
µ0

4
K(k′)
K(k)

, (2.17)

and

Cl = 4ε0εeff
K(k)
K(k′)

, (2.18)

where k = s/(s + 2w) (s: center strip width of CPW line, w: slot width between
the center strip and groundplane), k′2 = 1− k2, K is the complete elliptic integral
of the first kind, ε0 is the vacuum permittivity, and εeff is the effective dielectric
constant of the CPW line given by εeff = (1 + εsub)/2 (εsub: relative permittivity of
substrate). The kinetic inductance is originated from the inertia of the Cooper pairs
in the superconductor. The relation between the kinetic inductance and the surface
inductance [84] is given by

Lk = (gc + gg)Ls, (2.19)

where gc and gg are the geometry factors of the central strip and the groundplane
[84] describing the current density distribution in the CPW line given by

gc =
1

4s(1− k2)K2(k)

[
π + ln

(
4πs

d

)
− k ln

(
1 + k
1− k

)]
, (2.20)

and

gg =
k

4s(1− k2)K2(k)

[
π + ln

(
4π(s + 2w)

d

)
− 1

k
ln
(

1 + k
1− k

)]
, (2.21)

where d is the thickness of the resonator. These expression provide by the good
approximations for d < s/20 and k < 0.8 [84]. The kinetic inductance fraction αk is
the ratio of the kinetic inductance to the total inductance of the resonator per unit
length given by

αk =
Lk

Lk + Lg
. (2.22)

Using Eqs. (2.16), (2.17), (2.18), and (2.22), the resonance frequency fr is rewritten by

fr =
c
4l

√
1− αk

εeff
, (2.23)
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where c is the speed of light. The resonance frequency depends on the kinetic in-
ductance. Since the kinetic inductance is changed by the radiation absorption, the
resonance frequency is shifted. For high response of the resonance frequency due
to the change of the complex conductivity, it is advantage to have a high kinetic
inductance fraction.

2.4.3 Quality factor

The quality factor is a quantity that characterizes the loss in the resonator circuit.
The quality factor is defined as the ratio of the energy stored in the resonator Estored
divided by the energy loss per one cycle Ploss/ω,

Qr =
ωEstored

Ploss
. (2.24)

The quality factor is divided coupling quality factor Qc which depends on the cou-
pling strength between the resonator and feedline and internal quality factor Qi
which characterize the internal loss given by

1
Qr

=
1

Qi
+

1
Qc

. (2.25)

The internal quality factor include various losses. When the origin of the loss is
quasiparticles, the internal quality factor [85] is given by

Qi =
ωLtot

R
=

1
αk

ωLs

Rs
=

2
αkβλ

σ2

σ1
, (2.26)

where Ltot is the total inductance of the resonator per unit length given by Ltot =
Lg + Lk, and total resistance of the resonator per unit length R = (gc + gg)Rs. The
internal quality factor Qi decreases with increasing absorbed power.

2.4.4 Quarterwave resonator

The MKID shown in Figure 2.1, use a quarterwave resonators, which consists of a
transmission line with open end near the feedline and shorted end near the antenna.
The resonator is coupled to the feedline with a capacitance C. The characteristic
impedance of the feedline Z0 is given by

Z0 =

√
Lk + Lg

Cl
=

√
Ltot

Cl
. (2.27)

The impedance of the quarterwave resonator, Zres, [86] is given by

Zres = Z0 tanh(α + iβ)l

= Z0
tanh αl + i tan βl

1 + i tan βl tanh αl

= Z0
1− i tanh αl cot βl
tanh αl − i cot βl

,

(2.28)

where α + iβ is the complex propagation constant (α = R/2Z0 and β = ω
√

LC for
the low loss line). Using Eq. (2.26), Qi = β/2α. We assume that the characteristic
impedance of the resonator coincides with that of readout feedline. We redefine the
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resonance frequency ω1/4 (the resonance frequency of the resonator without capac-
itance) and the readout frequency close to the resonance frequency ω = ω1/4 + δω.
The product of the resonator length and complex propagation constant of the imag-
inary part is approximated by

βl =
π

2
+

πδω

2ω1/4
, (2.29)

and

cot βl = cot
(

π

2
+

πδω

2ω1/4

)
= − tan

πδω

2ω1/4
≈ −πδω

2ω1/4
. (2.30)

In the small loss, tanh(αl) ≈ αl and i tanh αl cot βl = −iαl πδω
2ω1/4

≈ 0. The impedance
of the resonator is approximated by

Zres = Z0
1 + iαlπδω/2ω1/4

αl + iπδω/2ω1/4
≈ Z0

αl + iπδω/2ω1/4
. (2.31)

Using Qi =
β

2α and αl = βl
2Qi

= 1
2Qi

π
2

(
1 + δω

ω1/4

)
, the impedance of the resonator is

approximated by

Zres ≈ Z0
4Qi/π

1 + 2iQi
δω

ω1/4

= Z0

4Qi
π −

8iQ2
i

π
δω

ω1/4

1 + 4Q2
i

(
δω

ω1/4

)2 . (2.32)

The quarterwave resonator is capacitively coupled to the feedline shown in Figure
2.1. Adding the capacitance C, the total impedance including the impedance of the
resonator line and that of the capacitance is given by

Z = Zres +
1

iωC
= Z0

4Qi
π −

8iQ2
i

π
δω

ω1/4
− i

ωCZ0

(
1 + 4Q2

i

(
δω

ω1/4

)2
)

1 + 4Q2
i

(
δω

ω1/4

)2 . (2.33)

The new resonance frequency of the resonator and the capacitance ω0 is shifted due
to adding the capacitance. Since the imaginary part of total impedance is zero at the
new resonance frequency, Im(Z) = 0, the new resonance frequency is given by

δω

ω1/4
=

ωCZ0

2Qi

(
−2Qi

π
±

√
4Q2

i
π2 −

1
ω2C2Z2

0

)
≈ −2ωCZ0

π
or 0, (2.34)

where 1
ω2C2Z2

0
� 4Q2

i /π is used. We adopt the first solution. The relation between
the resonance frequency of the resonator and the new resonance frequency including
the quarterwave resonator and the capacitance is given by

δω

ω1/4
=

δω

ω0
−

√
2

πQc
, (2.35)
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where Qc =
π

2ω2C2Z2
0

is used. Using the new resonance frequency, the total impedance
is given by

Z
Z0

=

√
2Qc

π

2Qi
δω
δω0
− i

1 + 2iQr
δω
ω0
− 2iQi

√
2

πQc

. (2.36)

The complex transmission S21 [86] as a function of readout frequency is given by

S21 =
2

2 + Z0
Z

=
Qr/Qi + 2iQi

δω
ω0

1 + 2iQr
δω
ω0

= 1− Qr/Qc

1 + 2iQr
f− fr

fr

, (2.37)

where we use Eq. (2.25) and δω
ω0

= f− fr
fr

.
By measuring the complex transmission S21 as a function of readout frequency

shown in Eq. 2.37 close to the resonance frequency, we can know the resonance
frequency and the quality factors.

Coupling quality factor

We derive coupling quality factor Qc following the procedure explored by P. J. de
Visser [71]. The stored energy of the resonator is 1

2 Cl lV2
res, where Vres is the voltage

over resonator. The voltage over the coupling and resonator V is given by Vres =
Z/ZresV. The current is given by I = V/Z = Vres/Zres. The lost power in feedline
(Pc

loss) is given by

Pc
loss = |I2|Z0

2
=

V2
res

|Zres|2
Z0

2
. (2.38)

At ω = ω0, the impedance of the resonator is given by |Zres| = 1
ωC . And using Eq.

(2.15) and Eq. (2.27), ωCl l = π
2Z0

. Therefore, Qc is given by

Qc =
ωEstored

Pc
loss

=
ω 1

2 ClV2
res

V2
res

|Zres|2
Z0
2

=
π

2ω2C2Z2
0

. (2.39)

2.5 Responsivity

In the measurement, we measure the phase and amplitude response of the each
resonator. The response of the resonance frequency and inverse of internal quality
factor have a linear relation with the phase and amplitude response in the small
change of source intensity.

Using Eq. (2.37), the real part and imaginary part of the complex transmission
S21 are given by

Re(S21) =
Qr/Qi + 4Q2

r

(
δω
ω0

)2

1 + 4Q2
r

(
δω
ω0

)2 ≈ Qr

Qi
, (2.40)

and

Im(S21) =
2Qr

δω
ω0
(1−Qr/Qi)

1 + 4Q2
r

(
δω
ω0

)2 ≈ 2Qr
δω

ω0
(1−Qr/Qi). (2.41)
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For small change, the real part of complex transmission S21 is given by

δRe(S21) = −
QcQi

(Qc + Qi)2
δQi

Qi
. (2.42)

To calculate the amplitude and the phase with respect to the resonance circle, the
center point of the resonance circle is given by

xc =
1 + Qr/Qi

2
. (2.43)

Using Eq. (2.43), the amplitude A and phase θ of the MKID are given by

A =

√
(Re(S21)− xc)2 + Im(S21)2)

1− xc
≈ |Re(S21)− xc|

1− xc
, (2.44)

and

tan(θ) =
Im(S21)

xc − Re(S21)
. (2.45)

Near the resonance frequency ω0, using δA = A− 1 and δθ ≈ tan(θ) the responses
of the MKID in amplitude and phase are given by

δA =
−δRe(S21)

1− xc
=

QcQi

(Qc + Qi)2
δQi

Qi

2Qc

Qr
=

2Qr

Qi

δQi

Qi
= 2Qrδ

(
1

Qi

)
, (2.46)

and

δθ =
Im(S21)

xc − Re(S21)
= −4Qr

δω

ω0
. (2.47)

Using Eq. (2.26), the responsivity of the inverse of the internal quality factor is given
by

δ

(
1

Qi

)
=

αkβλ

2

(
δσ1

σ2
− σ1δσ2

σ2
2

)
≈ αkβλ

2
δσ1

σ2
, (2.48)

and using Eq. (2.16), the responsvity of the resonance frequency is given by

δω0

ω0
=

αkβλ

4
δσ2

σ2
. (2.49)

Therefore, the small response of amplitude δA and phase δθ are given by

δA = −αkβλQr
δσ1

σ2
, (2.50)

and
δθ = −αkβλQr

δσ2

σ2
. (2.51)

The relation between the responses of MKID in amplitude and phase as a function
of the number of quasiparticles [78] are given by

δA
δNqp

= −αkβλQr

σ2V
δσ1

δnqp
, (2.52)

and
δθ

δNqp
= −αkβλQr

σ2V
δσ2

δnqp
, (2.53)
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where V is the volume of the resonator, 1
σ2

δσ1
δnqp

and 1
σ2

δσ2
δnqp

are given by Eq. (2.6), Eq.
(2.7), and Eq. (2.8). Using Eq. (2.3), the rate of the change of the amplitude and the
phase rensponses for absorbed power [78] is given by

δA
δPabs

=
ητqp

∆0

δA
δNqp

, (2.54)

and
δθ

δPabs
=

ητqp

∆0

δθ

δNqp
. (2.55)

The responsivity of the MKID is proportional to the inverse of the quasiparticle,
because the quasiparticle lifetime is proportional to the inverse of the number of
quasiparticle. The responsivity of the MKID also depends on the volume of the
resonator.

2.6 Power spectrum density

The spectral features of the noise are represented by the power spectrum density
(PSD). The contribution of the noise component to the sampling frequency can be
determined by PSD.

The power spectrum density is defined by the Fourier transform of the auto-
correlation. The auto-correlation is defined by R(t′) =< x(t)x∗(t− t′) >. The power
spectrum density Sx is given by

Sx ≡ 2F{< x(t)x∗(t− t′) >}, (2.56)

where F is Fourier transform.

2.6.1 Generation and recombination noise

The noise given by the fluctuation of the number of quasiparticles due to the thermal
loading or the optical loading or so on is called generation and recombination noise
[87, 80].

In general, the fluctuation of the number of the quasiparticles has a character-
istic time scale (τ). The auto-correlation function is defined by Rx(t′) =< xx∗ >
exp(−|t′|/τ) = σ2

x exp(−|t′|/τ). Using this equation, the PSD is given by

Sx = 2
∫ ∞

−∞
σ2

x exp(−|t′|/τ) exp(−iωt′)dt′

= 4σ2
x

∫ ∞

0
exp(−|t′|/τ) cos(ωt′)dt′

=
4σ2

x τ

1 + (ωτ)2 ,

(2.57)

where ω is the sampling angular frequency. In the MKID, the fluctuation of the
number of quasiparticles follows Poisson statistics. The σx is defined by the square
root of the number of the quasiparticles

√
Nqp. The time constant is defined by the

quasiparticle lifetime τqp. Therefore, the power spectrum density of the quasiparti-
cles system is given by

SNqp =
4Nqpτqp

1 + (ωτqp)2 . (2.58)
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Using the relation between the MKID response and the number of quasiparticles,
δA/δNqp and δθ/δNqp, the power spectrum densities in amplitude and phase are
given by

SA =
4Nqpτqp

[1 + (ωτqp)2][1 + (ωτres)2]

(
δA

δNqp

)2

, (2.59)

and

Sθ =
4Nqpτqp

[1 + (ωτqp)2][1 + (ωτres)2]

(
δθ

δNqp

)2

, (2.60)

where τres is the resonator ring time given by τres = Qr/π fr. Since the quasiparticle
lifetime is proportional to the inverse of the number of quasiparticles, the product of
the number of quasiparticles and the quasiparticle lifetime is constant.

2.6.2 Amplifier noise

The amplifier noise is not MKID specific noise. In general, the noise is limited by the
thermal noise of the amplifier. The PSD of the amplifier noise in both amplitude and
phase [85] is given by

Ssystem =
kBTN

Pread

(
2

1−Qr/Qi

)2

=
4kBTN

Pread

(
1 +

Qc

Qi

)2

, (2.61)

where TN is the noise temperature of the amplifier, and Pread is the readout power at
the feedline.

2.6.3 Two Level System noise

In the phase PSD, the 1/f type noise due to the two level system [44, 45] will appear.
It is known that the noise is came from the fluctuations by TLS with a dipole mo-
ment. The TLS noise changes the effective dielectric constant of the resonator εeff.
The noise spectrum depends on the sampling frequency Sθ = f α, where f is the
sampling frequency. Previous MKID studies propose α = −0.5 [88, 89, 90, 91, 92].
TLS noise model for the MKID is deeply studied by J. Gao Ph.D. thesis [43].

The following is the summary of the feature of PSD from the TLS noise.

• The TLS noise decreases with increasing the microwave readout power. The
noise level follows P−1/2

int , where Pint is the internal power in the resonator [88,
89, 91, 93].

• The TLS noise depends on the structure of the MKID [46]. To use wide CPW
line and wide slot of CPW line is effective to reduce the TLS noise [91, 89, 92]
(see Appendix D).

• The TLS exists at an oxide on the top of the metal and the metal substrate
interface. In order to reduce the effect, the nitride materials, e.g., NbTiN [91]
and TiN [94] are effective, because the oxidization of the substrate is protected.
The Hydrofluoric acid treatment to avoid the oxide at the substrate interface is
also advantage [91].

• The TLS noise level decreases with increasing the device temperature [90].
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2.7 Noise Equivalent power

The noise equivalent power is the parameter of the sensitivity for the photon detec-
tor. The definition of the noise equivalent power is the signal power that gives a
signal-to-noise ratio of one in one hertz output bandwidth given by

NEP =

√
< P2( f ) >

d f
, (2.62)

where d f is the output bandwidth and < P( f )2 > is the power fluctuation in the
Fourier space.

2.7.1 The noise equivalent power from the generation and recombination
noise

The noise of the MKID is limeted by the generation and recombination noise. The
noise equivalent power NEPG−R [95] is given by

NEPG−R =
2∆0

ηpb

√
Nqp

τqp
. (2.63)

The noise equivalent power due to generation and recombination has a temperature
and the resonator volume dependence, NEPG−R ∝

√
V exp(−∆/kBT). In order to

lower the NEP, the device temperature should lowered or the volume of the res-
onator should be reduced.

2.7.2 The BLIP noise equivalent power

In the optically bright condition, the noise equivalent power is limited by the quasi-
particle fluctuation caused by the optical loading and the fluctuation of the photon
number. The generation and recombination noise is limited by the quasiparticles
generated by the optical loading. Using Eq. (2.3) and Eq. (2.63), the generation and
recombination noise in the optically bright condition is given by

NEPGR =

√
4∆0Prad

ηoptηpb
, (2.64)

where Prad is the radiation power of the source and ηopt is the optical efficiency.
The NEP of the BLIP (Background LImited Performance) [57, 58] noise is given

by

NEPBLIP =

√
2hνPrad(1 + ηoptn̄) + 4∆0Prad/ηpb

ηopt
, (2.65)

where the fist two terms of right hand side is due to the fluctuation of the photon
noise, the third term of that is the generation and recombination noise, ν is the optical
frequency, and n̄ is the photon occupation number given by

n̄ =
1

exp
(

hν
kBT

)
− 1

, (2.66)
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where the thermal radiation with temperature of T is assumed as a source. The
amplitude of the BLIP noise depends on the optical efficiency. The NEP decreases
with increasing the optical efficiency.

Comparing the measured NEP and NEPBLIP, we can know the optical efficiency
if TLS noise and amplifier noise is lower than the BLIP noise, because the deference
of these NEP is came from the optical efficiency.

2.8 Hybrid type MKID

The above discussion shows that reduction of the generation and recombination
noise of MKID is realized by reducing the volume of the photon sensitive part of
the resonator. The hybrid type MKID [46, 42] shown in Figure. 2.5 has been pro-
posed to reduce the generation and recombination noise by reducing the volume of
the photon sensitive part of the resonator. The antenna side of the resonator which
must be sensitive to detection of photon, is made from the metal with low supercon-
ducting transition temperature such as aluminum. The rest of the resonator is made
from the metal with high superconducting transition temperature such as niobium.
It results in that only the antenna side is sensitive to the photon absorption and the
rest of resonator is not sensitive to the photon absorption since the gap energy is too
high to absorb millimeter wave photon. The volume of the resonator which is active
for photon detection, is reduced dramatically. As a result, the generation and recom-
bination noise of hybrid type MKID is able to be reduced significantly. Therefore, it
is expected that the performance of the hybrid type MKID is much better than that
of the MKID made from single superconducting metal. In addition, the hybrid type
MKID has advantage to mitigate the TLS noise. In the case of single metal MKID,
to reduce the volume of the resonator to improve the sensitivity, that is to reduce
the generation and recombination noise, total volume of the resonator must be re-
duced. To realize this, the center strip width of the resonator must be reduced. As a
result, contribution of the TLS noise becomes significant. On the other hand in the
case of the hybrid type MKID, we do not have to reduce the center strip width of
the resonator made from the metal with high superconducting transition tempera-
ture since it is not sensitive to photon detection. As a result, the effect of the TLS
noise is suppressed while keeping low generation and recombination noise. Details
of the physical processes related to these are introduced in Chapter. 6. In the hybrid
type MKID, the groundplane and feedline are also made from the metal with high
superconducting transition temperature.
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FIGURE 2.5: The geometry of the hybrid type MKID. The hybrid type
MKID separates the resonator into two superconducting materials.
The first part on the antenna side is used material with low super-
conducting transition temperature such as aluminum and the second
part on the feedline side is used material with high superconducting

transition temperature such as niobium.
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Chapter 3

A performance measurement of
prototype MKID for the
GroundBIRD observation

We evaluate and discuss the performance of a prototype MKID for the GroundBIRD
observation in the dark condition in this chapter.

3.1 An outline of the method to measure the noise equivalent
power in the dark condition

The noise equivalent power is the important parameter which characterize the sen-
sitivity of the photon detector. To obtain NEP of the MKID, we need to obtain the
resonance frequency ( fr), quality factors (Qr, Qc, and Qi), power spectrum density
(Sθ and SA), the responsivity (dθ/dP and dA/dP), and quasiparticle lifetime (τqp).
The outline to obtain the NEP is shown in the following.

1. Measuring the complex transmission as a function of readout frequency close
to the resonance frequency.

2. Fitting the complex transmission and obtaining the resonance frequency fr,
resonator quality factor Qr, a coupling quality factor Qc, and an internal qual-
ity factor Qi.

3. Measuring the time order data at the resonance frequency fr and obtaining the
power spectrum density (Sx, x = θ, A).

4. Measuring the quasiparticle lifetime (τqp) by the measurement of the cosmic
ray muon hit.

5. Measuring the rate of the change of the MKID response for the power (dx/dP).

(a) Measuring phase and amplitude response during the change of the device
temperature

(b) The temperature is converted to the number of quasiparticles (Nqp) with
theoretical formula.

(c) The rate of the change of the MKID response for the number of quasi-
particles (dx/dNqp) is converted to the rate of the change of the MKID re-
sponse for the power (dx/dP) using the quasiparticle lifetime, and known
material parameters.

6. The noise equivalent power is evaluated by PSD , τqp, and dx/dP.



32
Chapter 3. A performance measurement of prototype MKID for the GroundBIRD

observation

3.2 Measurement setup

3.2.1 Cryostat

The thermal shields of the cryostat are consist of 300 K, 40 K, and 4 K shield cooled
by the Pulse Tube Cooler (PT415, Cryomech. Co. LTD). The Multi Layer Insulation
which suppress thermal radiation are installed between 4 − 40 K shield and 40 −
300 K shield. The cooling stages are consist of 350 mK stage and 250 mK stage cooled
by the sorption refrigerator (Gas-Light type, Simon chase. CO. LTD.). The magnetic
shields (MS-FR, Hitach material) were set outside of the 40 K and 300 K shields; three
sheets were set the wall of 40 K shield and three sheets (four sheets) were set outside
the wall (bottom plate) of the 300 K shield to mitigate the geomagnetism effect. The
MKID device is set inside of the light tight aluminum box to suppress stray light
effect. The average temperature of the stages where an MKID devises is mounted is
285 mK.

3.2.2 The prototype MKID

The MKID device is fabricated in RIKEN [96, 97, 52]. This device consists of alu-
minum and niobium hybrid type MKID and has 10 resonators on a silicon wafer. The
resonators are quarterwave resonator. The volume of an aluminum part is 920 µm3

(the width, length, and thickness of the resonator are 4 µm, 2300 µm, and 100 nm,
respectively.). The one of resonator which we evaluate has no antenna.

3.2.3 Readout setup

The readout setup is shown in Figure 3.1. We installed a variable attenuator and a
warm amplifier (a variable attenuator and two warm amplifier) in the input (out-
put) readout line. We adjusted the readout power to the feedline using the input
variable attenuator. In the 4 K shield, we set HEMT amplifier, DC block and circu-
lator. The analog board is used our original system which is called RHEA (Rhea is a
High spEed Analog board) [98, 99, 100] and FPGA (field-programmable gate array,
Kintex-7 Ultrascale KCU105 evaluation kit). The digital signal is converted to the
analog signal using RHEA. The output signal from RHEA is mixed with local oscil-
lator (LO) signal (up-convert). The signal came back from the cryostat is mixed with
local oscillator (down-convert).

3.3 Complex transmission

At first, we measure the complex transmission S21 as a function of readout frequency
f close to the resonance frequency shown in Figure 3.2. We fit the data with theoret-
ical formula given by

t21 = a exp(−2πi f τ)

1 + c( f − fr)−
Qr/Qc exp(iφ0)

1 + 2iQr

(
f− fr

fr

)
 , (3.1)

where a is the gain and phase shift through the system, τ is a cable delay, c is a slope
of the baseline, Qr is a resonator quality factor, Qc is a coupling quality factor, fr is
a resonance frequency, and φ0 is a impedance mismatch of the readout feedline [43,
102, 103]. From the fitting results, the resonance frequency and the quality factors
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FIGURE 3.1: A diagram of the MKID readout system. The local os-
cillator (LO) is the NI Microwave Components FSL-0010, and the de-
tail of the mixer is described in [101]. We used a variable attenuator,
LDA-602E Vaunix. Co. LTD. We set attenuation value of input and
output variable attenuator −11.5 dB and −17.5 dB, respectively. Out-
put microwaves from the MKID is amplified by the low noise ampli-
fier, LNF-LNC4_8C. and warm amplifiers, ZVE-8G+ Mini-Circuits.
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FIGURE 3.2: The amplitude (left) and phase (right) of the complex
transmission S21 of the prototype MKID as a function of readout fre-
quency. The blue and red line show the measurement data and fitting

result, respectively.
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FIGURE 3.3: The PSD of the prototype MKID. The blue and red line
show the phase and the amplitude of PSD for the prototype MKID.

The PSD of phase is dominated by the 1/f type noise.

are obtained. An internal quality factor Qi is defined by

1
Qr

=
1

Qc
cos φ0 +

1
Qi

. (3.2)

The Qr and fr of one of the prototype MKID are 4.88× 104 and 6.07 GHz from the
fitting, respectively.

3.4 Power spectrum density (PSD)

We perform the measurement and on resonance frequency and off resonance fre-
quency simultaneously to subtract readout noise. The detail subtraction method of
the readout subtraction is shown in Ref. [97]. After the noise subtraction, we can
obtain PSD by analysing time ordered data using Welch method shown in Figure.
3.3. The PSD of phase has a high 1/f type noise which is supposed to be caused by
the two level system. The roll-off feature appeared in the phase PSD is originated
from the resonator ring time. The PSD of amplitude is limited by the amplifier noise.

3.5 Noise equivalent power (NEP)

To convert from the PSD to NEP, we evaluate the quasiparticle lifetime using cosmic
ray muon hit measurement and responsivity using change of the physical tempera-
ture of the device.
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FIGURE 3.4: The phase response with the cosmic ray muon hit. The
blue line and red line show the measurement data and the fitting re-

sult, respectively.

3.5.1 The quasiparticle lifetime measurement

We measured the quasiparticle lifetime by the cosmic ray muon hit. When the cosmic
ray muon penetrate and deposit the energy in the detector, the Cooper pairs are
broken and quasiparticles are generated. The phase response is changed with time
constant characterized by the quasiparticle lifetime shown in Fiugre. 3.4. The cosmic
ray muon hit widely change the phase response. Therefore we correct the deviation
of the phase response from linear response using the following formula [43, 104],

θ′ = 2 tan(θ/2). (3.3)

The fit function is given by

θ′ = δθ exp
(
− t− t0

τqp

)
+ θbase, (3.4)

where t is the time, δθ is the phase response of MKID, t0 is the time of the muon hit,
and θbase is the base line of phase. The quasiparticle lifetime of the prototype MKID
is 27.5± 0.4 µs with cosmic ray muon hit measurement using 100 samples.

3.5.2 Changing the physical temperature of the device

We measure the temperature dependence of the MKID response controlling the tem-
perature of the MKID. The relation between the number of quasiparticles and tem-
perature is given by the following formula [59],

Nqp = 2N0V
√

2πkBT∆ exp
(
− ∆

kBT

)
, (3.5)

where N0 is the single spin density of states at Fermi level (N0 = 1.74× 1010 eV−1µm−3

for an aluminum [76, 77]), kB is the Boltzmann constant, V is the aluminum vol-
ume of the prototype MKID, and ∆ is the superconducting gap energy given by
∆ = 1.76kBTc. We use Tc = 1.28 in our past measurement result [65] in the analysis.
The phase response of MKID is calculated by the change of the resonance frequency
(δ fr), the resonance frequency ( fr0), and resonance quality factor (Qr0) at original
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FIGURE 3.5: The responsivity of phase (left figure) and amplitude
(right figure) for the perototype MKID. The blue and red dots are

measurement data. The black line shows the linear fitting results.

position given by

δθ = −4Qr0

fr0
δ fr. (3.6)

The amplitude response of MKID is calculated by the change of the inverse of the
internal quality factor (δ(1/Qi)) and the resonance quality factor at original position
given by

δA = 2Qr0δ

(
1

Qi

)
. (3.7)

We adopt Qr0 and fr0 at lowest temperature (T = 285 mK) in the analysis. The
dθ/dNqp and dA/dNqp are (1.52 ± 0.04) × 10−6 rad and (2.82 ± 0.08) × 10−7, re-
spectively shown in Figure 3.5. The relation between the MKID response and power
[78] is given by

dx
dP

=
ηpbτqp

∆
dx

dNqp
(x = A, θ) (3.8)

where ηpb is the pair braking efficiency (0.57 for an aluminum).

3.5.3 Noise Equivalent Power (NEP)

In the dark condition, the NEP of MKID is given by

NEP =
√

Sx

(
dx
dP

)√
1 + (2π f τqp)2

√
1 + (2π f τres)2 (x = θ, A), (3.9)

where Sx is the power spectrum density, and τres is the resonator ring time given
by τres = Qr/π fr. The NEP of the prototype MKID in the dark condition is shown
in Figure 3.6. According to the results, the 1/f type noise due to the TLS noise in
the phase is significantly higher than the generation and recombination noise. The
noise level is limited by 1/f type noise due to the TLS noise. The NEP in amplitude
is limited by the amplifier noise.

3.6 Discussions

The performance of the prototype MKID is far from the GroundBIRD observation
requirements. The NEP of the MKID has a high 1/f type noise. It is higher than
the generation and recombination noise. For the photon noise limit observation, we
need to reduce this noise under the photon noise.
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Chapter 4

Novel calibration method for
responsivity of MKID by changing
power of readout microwaves

The responsivity calibration of the MKID per each cooling cycle is important for the
astronomical observation, because the responsvity of the MKID changes every cool-
ing cycle. To calibrate the responsivity, the measurement of the MKID response dur-
ing changing the device temperature is the standard method. However, the method
needs a lot of time and causes the uncertainty of the responsivity due to the def-
erence between the real device temperature and the temperature obtained by the
thermometer. We propose new method for the responsivity calibration. The method
is based on excess quasiparticles generated by microwave readout power signal.
By changing microwave readout power signal from high power to low power, the
excess quasiparticle decreases with time constant. This time constant is called quasi-
particle lifetime and the time has an relation between the number of quasiparticles
in the MKID. We evaluate the number of quasiparticles by the quasiparticle lifetime
using theoretical formula. This measurement yields the rate of the change of the
phase response for the number of quasiparticles. We apply this method for the real
measurement using the MKID maintained at 285 mK. We also compare the result
using the proposed method and the results using conventional methods.

4.1 Conventional calibration methods of responsvity of MKID

For the astronomical observation using MKID, we need to convert the phase re-
sponse of MKID to the power absorbed in the MKID. The rate of the change of the
phase response for the absorbed power, dθ/dP, [78] is given by

dθ

dP
=

ηpbτqp

∆
dθ

dNqp
(4.1)

where ηpb is a pair breaking efficiency (e.g. ηpb = 0.57 for an aluminium [60, 61]),
and dθ/dNqp is the rate of change of the phase response for the number of quasi-
particles called responsivity. It is important to know the responsivity for the precise
observations and development of an MKID design. There are two major calibration
methods: a calibration by changing the physical temperature of an MKID device and
a calibration by fitting the power spectral density (PSD). We propose third calibra-
tion method for the responsivity using readout microwave signal rapidly change.
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of readout microwaves

4.1.1 Changing physical temperature of an MKID

Changing the physical temperature of an MKID device is the most standard cali-
bration method [70]. For controlling the temperature of an MKID device, we set the
heater at an MKID device (or we control the cooling power of the refrigerator). When
the heater is warmed up, we measure the phase response of MKID. The temperature
of the device is measured by the thermometer. The number of quasiparticles in the
volume Nqp is calculated by the temperature with theoretical formula [59]:

Nqp = 2N0V
√

2πkBT∆ exp
(
− ∆

kBT

)
, (4.2)

where N0 is the single spin density of states at the Fermi level (e.g., N0 = 1.74×
1010 eV−1µm−3 for an aluminium [76, 77]), V is the volume of the device, kB is the
Boltzmann constant, T is the detector temperature, and ∆ is the gap energy. Based
on BCS theory [59], the gap energy (∆) in the low temperature condition (T � Tc, Tc
is the superconducting transition temperature) is given by

2∆ = 3.52kBTc. (4.3)

The superconducting transition temperature Tc and gap energy ∆ of an aluminium
is 1.2 K and 180 µeV. The phase response of MKID is calculated by the change of
the resonance frequency (δ fr), the resonance frequency and quality factor at original
position (typically selected in the lowest temperature) given by

δθ =
δθ

δ fr
δ fr = −

4Qr0

fr0
δ fr. (4.4)

The resonance frequency and quality factor is obtained by fitting the complex trans-
mission as a function of the readout frequency as mentioned in Chapter 3.3. dθ/dNqp
is obtained by linear fitting the relation between the number of quasiparticles calcu-
lated by Eq. (4.2) and phase response of MKID calculated by Eq. (4.4).

However, this method has four main issues. The change of T is too large com-
pared with the conditions in real operations which is typically 10 mK− 100 mK. The
difference of the temperature of the MKID device and that from the thermometer
causes systematic uncertainty of responsivity. The excess power due to stray lights,
readout microwave signal power causes excess quasiparticles as an offset to the Eq.
(4.2). It take a long time to change the temperature and stabilization of the system.

4.1.2 Responsivity measurement using power spectral density (PSD)

The phase power spectral density (PSD, Sθ) due to the generation and recombination
noise and system noise (Xsystem) [71] is given by

Sθ( f ) =
4Nqpτqp

(1 + (2π f τqp)2)(1 + (2π f τres)2)

(
dθ

dNqp

)2

+ Xsystem, (4.5)

where the first term of the right hand side is generation and recombination noise, f is
the sampling frequency of the detector, τres is the resonator ring time given by τres =
Qr/π fr, and Xsystem is the readout noise characterized by the low noise amplifier in
the cryostat. By fitting the PSD with this formula, we can get responsivity dθ/dNqp.

The biggest issue of this method is the effect of the Two Level System (TLS)
noise[88, 43, 89] described in Chapter 2 . The TLS noise arises a frequency dependent
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noise, i.e., 1/f type noise. This noise causes the uncertainty of fitting parameters. We
can not obtain responsivity when the TLS noise level is higher than the generation
and recombination noise level.

4.2 New responsivity calibration method by changing read-
out power rapidly

The number of quasiparticles Nqp depends on the readout microwave signal powers
as mentioned in Ref. [71, 72, 73, 74, 57, 75, 65]. Based on this knowledge, we propose
new responsivity calibration method. Figure 4.1 shows the diagram of our proposed
method. The response of Nqp and θ under rapidly changing readout microwave
signal power from high power to low power at t = t0. Nqp decreases with the time
constant. Likewise, the MKID phase response (θ) is also changed with time constant.
The phase response as a function of the time is given by

θ =

{
θH (t < t0)

(θH − θL) exp
(
− t−t0

τqp

)
(t ≥ t0),

(4.6)

where θH and θL are the phase response before and after the power change, respec-
tively. Using this method, the change of the phase response and the quasiparti-
cle lifetime (τqp) can be obtained simultaneously. In order to obtain the number of
quasiparticles, we change the τqp to the Nqp using the following formula [79, 80]:

Nqp =
τ0V
τqp

N0(kBTc)3

2∆2 , (4.7)

where τ0 is the electron phonon interaction time (458 ns for an aluminium [80]). Us-
ing the various set of initial readout power, we obtain the phase response as a func-
tion of the number of quasiparticles. Fitting this relation, we can obtain responsivity.

4.3 Setup

We apply this method for the real measurements. The setup of the readout system
inside and outside of the cryostat is shown in Figure 4.2. Our cryostat consists of
three thermal shields (4 K, 40 K, and 300 K from inside to outside) [52]. They are
cooled by the pulse tube refrigerator (PT415, Cryomech. Co. LTD). The magnetic
shields (MS-FR, Hitach material) were set outside of the 40 K and 300 K shields;
three sheets were set the wall of 40 K shield and three sheets (four sheets) were set
outside the wall (bottom plate) of the 300 K shield. The MKID device is set inside of
the light tight aluminum box to suppress stray light effect. The average temperature
of the stages where an MKID devises is mounted is 285 mK. The stage is cooled
by the helium sorption refrigerator (Gas-Light type, Simon chase Co. Ltd.). Our
MKID device is fabricated in RIKEN [96, 97, 52]. This device consists of Al and
Nb hybrid type quarterwave resonator and has 10 resonators on the wafer. The
volume for Al part is 920 µm3 (the length, width, and thickness is 2300 µm, 4 µm,
and 100 nm, respectively.). The resonator we measure has no antenna. For dark
condition, the resonant frequency and resonant quality factor are fr0 = 6.07 GHz and
Qr0 = 4.78× 104, respectively. Our readout system has an direct down conversion
logic with 200 MHz sampling speed [98, 99, 100].
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FIGURE 4.1: The illustration of the number of quasiparticles and
the phase response of MKID under rapidly power change from high
power (PH) to low power (PL) at t = t0. The number of quasiparticles
is decreased with quasiparticle lifetime as illustrated in middle fig-
ure. This change causes change of phase response with quasiparticle
lifetime as described in the bottom figure. We can measure the phase
response as a function of time as illustrated in the bottom figure [75].

The applied readout microwave signals power is adjusted by the variable at-
tenuator (LDA-602E, Vaunix Co. Ltd.). We use five initial attenuation set up to
stable attenuation value from high power to low power PH to PL: −11.0 dB →
−17.5 dB, −12.0 dB → −17.5 dB, −13.0 dB → −17.5 dB, −14.0 dB → −17.5 dB
and −15.0 dB → −17.5 dB. The applied power at the point of MKID feedline is
approximately −70 dBm in the case of PL.

4.4 Results

The measured phase response (θmeasured) has the MKID signal (θMKID) and phase
offset due to the system (θsystem) e.g., a cable delay,

θmeasured = θMKID + θsystem. (4.8)

θsystem is changed before and after readout microwave signal power change. We
measured this effect by the complex transmission S21 as a function of microwave
frequency at PH and PL, respectivily. We subtract them in the analysis. We estimate
the systematic uncertainty as 0.3 rad. After that, we correct non linear response due
to deviation from resonance frequency using the following formula [43, 104],

θ = 2 tan(θMKID/2). (4.9)

Figure 4.3 shows measured phase response as a function of time. We reset the
attenuation value at t = 100 µs with a precision of 1 µs. The phase response is
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FIGURE 4.2: A diagram of the MKID readout system. Our readout
system generate feed signal at a 200 MHz bandwidth, which is up-
converted in the microwave range. The local oscillator (LO) is the NI
Microwave Components FSL-0010, and the details of the mixer is de-
scribed in Ref. [101]. We uses a varialble attenuator as described in
the text to control the fedding microwave power into MKID. Output
microwaves from the MKID is amplified by the low noise amplifier
(LNF-LNC4_8C) and warm amplifiers (ZVE-8G+, Mini-Circuits). Af-
ter down-conversion of microwaves, we sampled them at 200 MHz

[75].
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FIGURE 4.3: Phase response as a function of time when the readout
microwave signal change at t = 100 µs. It takes several microseconds
to change the power. Therefore, we mask the region from t = 100 µs

to 110 µs. The dashed line represents fitting results [75].

TABLE 4.1: Measurement results for each readout power setup. Er-
rors are included statistical and systematic errors. In our measure-

ment, the statistical errors are smaller than systematic errors[75].

PH → PL θL − θH [rad] τqp [µs] Nqp/106

−11.0→ −17.5 4.17± 0.31 41.6± 1.0 2.94± 0.07
−12.0→ −17.5 3.37± 0.30 43.4± 1.0 2.82± 0.06
−13.0→ −17.5 2.60± 0.30 48.1± 1.0 2.54± 0.05
−14.0→ −17.5 2.00± 0.30 54.9± 1.0 2.22± 0.04
−15.0→ −17.5 1.26± 0.30 60.7± 1.0 2.02± 0.03

changed with time constant after rapidly readout power change. We fit the data
by Eq. (4.6) and obtain phase response of MKID and quasiparticle lifetime. We
mask the region, t = 100 µs− 110 µs, due to the uncontrolled state of attenuation
after the reset as mentioned above. We repeat this measurement 40 times for each
attenuation setup. The results are summarized in Table 4.1. Figure 4.4 shows the
relation between the measured phase response as a function of Nqp based on Table
4.1. We obtain dθ/dNqp = (2.8± 0.3)× 10−6 rad from fitting the linear relation. For
comparison, we also measure the responsivity of same device by the conventional
methods: the heater control method and PSD method as mentioned above. From
the heater control method, we change the stage temperature from 285 mK to 300 mK
and obtain resonance frequency. From this measurement, we can obtain dθ/dNqp =
(9.9± 0.3)× 10−7 rad, here we only take into account for the statistical error. Using
PSD method, we obtain dθ/dNqp = (2.4± 0.2)× 10−6 rad.

The results have a little difference. We estimate that the difference between these
three method is from the difference between the temperature measured by the ther-
mometer and the detector temperature. Another problem is that the parameters
by the PSD method are biased by the 1/f type noise due to TLS noise. Also, the
uncertainty of the superconducting transition temperature Tc causes the difference,
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the number of qussiparticles (Nqp) in Table 4.1. We obtain the respon-

sivity from the linear fit [75].

because our proposed method and PSD method is lineally scaled by Tc, on the other
hand the heater control method is exponentially scaled by Tc.

4.5 Conclusion and Discussion

We propose the method to measure the responsivity of an MKID device by chang-
ing the power of the readout microwave signal. We propose new calibration method
based on the excess quasiparticles depending on the readout microwave signal power.
The number of quasiparticles is obtained by the measured lifetimes, geometrical pa-
rameter, and physical properties parameters with theoretical formula. We apply this
method for the real system and demonstrate the advantage of this method. We com-
pare the result and the results using conventional methods: heater control method
and PSD method. The results have a little difference. We estimate that the differ-
ence between these three method is from the difference between the temperature
measured by the thermometer and the detector temperature. Another problem is
that the parameters by the PSD method are biased by the 1/f type noise due to TLS
noise. The uncertainty of the Tc also causes the difference. To solve the uncertainty of
Tc, we propose new Tc measurement method in the next Chapter. The conventional
responsivity calibration method is biased by the difference between the temperature
taken by the thermometer and device temperature. The proposed method does not
depend on the temperature.

We evaluate the advantage of using the proposed method for the GroundBIRD
observation. Since GroundBIRD can not observe during the cooling cycle or when
the sun is in its field of view, we estimate the time of the observation and respon-
sivity calibration per day is about twelve hours. The heater control method takes
about two hours. If we use the calibration method at the beginning and end of the
observation everyday, the observation time per day is limited to about eight hours.
If we use the proposed responsivity calibration, since the proposed method is almost
no limit to the observation time, the observation time per day is about twelve hours.
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Since the resonance frequency is easy to be changed by the condition of the sky ra-
diation, we calibrate the resonance frequency of each MKID every hour using the
fitting the complex transmission as a function of readout frequency. Our proposed
method also can be used after every resonance frequency calibration. The advantage
of the responsivity calibration after the resonance frequency calibration is to achieve
more precise observation ∗.

∗This chapter is based upon H. Kutsuma, M. Hattori, R. Koyano, S. Mima, S. Oguri, C. Otani, T.
Taino, and O. Tajima, Applied Physics Letters 115, 032603 (2019).
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Chapter 5

Novel method to measure
superconducting transition
temperature of MKID by changing
power of readout microwaves

The superconducting transition temperature (Tc) of the MKID is an important pa-
rameter for both design and performance evaluation, because various parameters
has dependent on the temperature. However, hybrid type MKID, which is adopted
for the GroundBIRD observation, is not able to measure this temperature directly,
because the material of the feedline and that of the absorb part are not same. In this
chapter we propose a new method to measure the Tc of MKID by rapidly chang-
ing the applied readout microwave signal. A small fraction of the readout power
signal is deposited in the MKID, and the number of quasiparticles in the MKID in-
creases with this applied power. Furthermore, the quasiparticle lifetime decreases
with the number of quasiparticles. Therefore, we can measure the realation between
the quasiparticle lifetime and the detector phase response by rapidly changing the
readout power signal. From this relation, we estimate the intrinsic quasiparticle life-
time. This lifetime is theoretically modeled by Tc, the physical temperature of the
device, and other known parameters. We obtain Tc by comparing the measured
lifetime with theoretical model. Using an MKID fabricated with aluminium, we
demonstrate this method at a 0.3 K operation. The results are consistent with those
obtained by Tc measured by monitoring the transmittance of the readout microwave
signal with the variation in the device temperature. The method proposed in this
chapter is applicable to other types, such as a hybrid type MKID.

5.1 Superconducting transition temperature (Tc)

The superconducting transition temperature (Tc) of the MKID is an important pa-
rameter. This is because various MKID parameters depend on Tc. Applying MKID
for astronomical observation, the 10% deference of the Tc dramatically change the
NEP. In this chapter, we propose new method to measure the Tc of the MKID by
changing the readout power signal rapidly [65].

According to the BCS theory [59], the relation between the gap energy (∆), and
Tc is given by the following formula:

∆ = 1.76kBTc, (5.1)
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where kB is the Boltzmann constant. A coefficient in the relation is confirmed 1%
accuracy for an aluminum [105]. Using ∆, the number of quasiparticles (Nqp) un-
der the low temperature condition (i.e. T � Tc) [59] is obtained by the following
formula:

Nqp = 2N0V
√

2πkBT∆ exp
(
− ∆

kBT

)
, (5.2)

where N0 is the single spin density of states at Fermi level (N0 = 1.74× 1010 eV−1µm−3

for an aluminium [76, 77]), and V is the volume of the resonator. The intrinsic quasi-
particle lifetime (τi

qp) is obtained by the following formula [79, 80]:

τi
qp =

τ0√
π

(
kBTc

2∆

)5/2√Tc

T
exp

(
∆

kBT

)
, (5.3)

where τ0 is the electron-phonon interaction time (τ0 = 458± 10 ns for an aluminium
MKID [80]). The noise equivalent power derived from the generation and recombi-
nation of the quasiparticles (NEPgr) is obtained by the following formula [95]:

NEPgr =
2∆
ηpb

√
Nqp

τi
qp

, (5.4)

where ηpb is the pair breaking efficiency (ηpb = 0.57 for an aluminium [61, 60]).
Figure 5.1 shows the parameters of an aluminum MKID as a function of Tc, where we
show the plots of the device temperature at approximately 0.3 K. They are sensitive
to Tc. Various previous studies have used different Tc, with the deviation being
approximately 10% [80, 106, 107]. The reason of the difference is pointed out by
a recent research topic, e.g. Fyhire et al. [106]. They pointed out the Tc is strongly
depend on the film thickness.

5.2 Superconducting transition temperature measurement for
MKID

Monitoring the transmittance of the readout microwave signal with the device tem-
perature variation is a conventional method to measure the Tc of an MKID [78, 108].
This method is called as the "S21 method" in this thesis. However, this method is not
applicable for a hybrid type MKID because the feedline material of the hybrid type
MKID [46, 42] is not same as the response part of the MKID.

Another method evaluates Tc using the power spectrum density (Sx), which is
modeled by the following formula [71]:

Sx =
4Nqpτqp

(1 + (2π f τqp)2)(1 + (2π f τres)2)

(
dx

dNqp

)2

+ Xsystem, (5.5)

where subscript x denotes the phase (θ) or amplitude (A) response, τqp is the quasi-
particle lifetime for the measurement condition, f is the sampling frequency, and
Xsystem is the noise of the readout system featured by the low noise amplifier inside
of the cryostat. τres is the resonator ring time given by τres = Qr/π fr (where Qr is the
quality factor of the resonance and fr is the resonant frequency). We extract τqp by
fitting the power spectrum density with the above formula. Under the assumption
of τi

qp = τqp, we obtain Tc using Eq. (5.3). This method requires that Xsystem is lower
than the contribution of the generation and recombination noise which is the first
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FIGURE 5.1: Parameters characterizing an MKID as a function of
the superconducting transition temperature, (a) the number of quasi-
particles, (b) intrinsic quasiparticle lifetime, and (c) noise equivalent
power. They are simulated in the case of an aluminum MKID with

volume 1000 µm3 [65].
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term in Eq. (5.5). Moreover, another contribution due to a TLS noise should be low
enough in the case of the phase response [88, 43, 89].

5.3 New method for obtaining Tc

We propose the third method to measure Tc, which uses a loss of the readout mi-
crowave signal in the MKID. The quasiparticle lifetime (τqp) decreases with the in-
crease of the number of additional quasiparticles (N′qp) produced by the readout
power signal loss [71, 72, 73, 74, 57, 75, 65]:

τqp =
τi

qp

1 +
N′qp
Nqp

. (5.6)

Since the phase response (θ) of the MKID is proportional to the number of additional
quasiparticles [70], the above formula is rewritten by:

τqp =
τi

qp

1 + αθ
, (5.7)

where αθ = N′qp/Nqp. This relation suggests that τi
qp can be estimated from the

relation between τqp and θ [57, 70]. This relation is easily measured using our previ-
ous method to measure the phase responsivity shown in previous chapter and Ref.
[75]. A small fraction of the readout power signal is deposited in the MKID, and the
response of the MKID increases with this power.

5.4 The measurement setup

We demonstrate the measurement of this relation for an aluminum MKID. Subse-
quently, we obtain Tc with Eq. (5.3) and estimate τi

qp. Figure 5.2 shows the dia-
gram of the MKID readout. Our cryostat (Niki Glass Co., LTD,) consists of 4 K, and
40 K thermal shields from inside to outside. They are insulated from the room tem-
perature (300 K) in a vacuum chamber and are cooled by a pulse tube refrigerator
(PT407RM, Cryomech Co., LTD.). The 4 K thermal shield also acts as a magnetic
shield (A4K, Amuneal Co., LTD.) for mitigating the effects of geomagnetism. The
MKID device is set in a light-tight copper box. The box is cooled a 3He-sorption
refrigerator, and it is maintained at T = 311 mK with an accuracy of 6 mK.

The MKID device is fabricated in RIKEN. This device consists of a quarterwave
resonator without any antenna. The width of the center strip and gap of the res-
onator (the feedline) are 4 µm (12 µm) and 1.5 µm (8 µm), respectively. All the
circuits patterns are formed using an aluminum film on a silicon wafer. The volume
of the resonator is 2, 600 µm3 (the width is 4 µm, the length is 6, 500 µm, and the
thickness is 100 nm). Its resonant frequency and quality factor are fr = 4.30 GHz
and Qr = 2.61× 104, respectively. Our readout system measures the response based
on a direct down-conversion logic with a 200 MHz sampling speed, and the data are
down-sampled to a 1 MHz step [98, 99, 100]. The power of the readout microwave
is controlled by a variable attenuator (LDA-602, Vaunix Co., LTD). It requires a few
microseconds to change the attenuation value.
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FIGURE 5.2: Diagram of the readout chain of the MKID. Our sys-
tem feeds the readout signal at 200 MHz bandwidth, which is up-
converted into the microwave range. We use an NI Microwave Com-
ponents FSL-0010 as a local oscillator (LO). The mixer is a Marki Mi-
crowave MLIQ-0218L. The input power into MKID is controlled by a
variable attenuator. The output microwave from the MKID are am-
plified by a low noise amplifier (C-LNA, LNF-LN4_8, LOWNOISE
FACTORY) and a warm amplifier (ZVE-8G+, Mini-Circuits). Subse-

quenmtly, the down-converted signal is sampled [65].
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TABLE 5.1: Measured results for each setup of the readout power
signal change. Only statistical errors are assigned here [65].

PH → PL θ [rad] τqp [µs]

−15.5→ −22.0 1.374± 0.007 25.5± 0.2
−16.0→ −22.0 0.972± 0.004 26.6± 0.1
−16.5→ −22.0 0.894± 0.002 26.7± 0.1
−17.0→ −22.0 0.805± 0.003 27.1± 0.1
−17.5→ −22.0 0.728± 0.004 27.6± 0.1
−18.0→ −22.0 0.538± 0.004 28.4± 0.1
−18.5→ −22.0 0.462± 0.005 28.9± 0.2
−19.0→ −22.0 0.391± 0.004 29.4± 0.2

5.5 Results

We use eight attenuation setups to change the readout power signal from high power
(PH) to low power (PL) summarised in Table 5.1. The readout power signal into the
feedline is approximately −65 dBm at PL. We use the same treatment for the effects
of a cable delay and linearity correction as described in the previous chapter and
Ref. [75]. Figure 5.3 shows the phase response as a function of time. We reset the
attenuation value at t = 100 µs. We fit the data to Eq. 4.4, and obtain the phase
response (θ) and the quasiparticle lifetime (τqp) for each setup using Eq. 5.7. We
mask the data in the short period, t = 95− 105 µs, because of the uncontrolled state
of attenuation soon after the reset. We measure 50 samples for each set of power
change. Table 5.1 summarizes the fitted results for each setup. Figure 5.4 shows
the relation between τqp and θ. We obtain τi

qp = 31.3 ± 0.2 µs from the fit with
Eq. 5.7. Subsequently, we obtain Tc = 1.278± 0.001 K using Eq. (5.3), where we
only estimate the statistical error. We include the systematic uncertainties for Tc;
device temperature (0.025 K), time for changing the attenuation value (0.014 K), and
electron-phonon interaction time (0.004 K). We finally obtain Tc = 1.28± 0.03 K ,
including the systematic error.

For comparison, we also measure Tc by the S21 method. Figure 5.5 presents the
S21 intensity results at 4.35 GHz as a function of the device temperature. We deter-
mine Tc as a temperature at the middle of the transition, Tc = 1.27± 0.04 K. Here,
the error includes the difference from the onset of the superconducting transition
and the uncertainty of the thermometer. We confirm the consistency in the results
from the two methods.

5.6 Summary

We propose the method to measure the Tc of an MKID device by changing the power
of the readout microwave signal. In this method, we obtain the intrinsic quasipar-
ticle lifetime using the device temperature and the material properties parameters.
Subsequently, we estimate Tc using them. We demonstrate our method using an alu-
minum MKID maintained at 311 mK. We obtain Tc = 1.28± 0.03 K. This result is
consistent with the conventional method: monitoring the microwave transmittance
by changing the device temperature, Tc = 1.27± 0.04 K. The method has an ability
to apply other types, such as a hybrid type MKID.
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FIGURE 5.5: Transmittance of the readout microwave signal as a func-
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We evaluate the systematic uncertainty of the Tc for various observations. The
typical Tc for an aluminum MKID is 1.1 ∼ 1.5 K [80, 107, 109, 110]. The uncertainty
of the superconducting transition temperature causes the systematic error of the ob-
servational predictions. The noise equivalent power of the MKID for the optical
bright condition is given by

NEP =

√
2hνPrad(1 + ηoptηemn̄) + 4∆Prad/ηpb

ηopt
, (5.8)

where Prad is the radiation power, ηopt is the optical efficiency, ηem is the emissiv-
ity of the source or the atmosphere, n̄ is the photon occupation number given by
n̄ = 1/ exp (hν/kBTamb − 1) (Tamb is the ambient temperature), and ηpb is the pair
braking efficiency (ηpb = 0.57 for an aluminium [61, 60]). We estimate the sys-
tematic effect of Tc for the NEP of atmospheric observation by the GroundBIRD
telescope as shown in Chapter 1. When Tc of an aluminum is 1.1 K (1.5 K), the
estimated NEP of 145 GHz and 220 GHz band sky observation by the Ground-
BIRD are 9.7 × 10−17 W/

√
Hz (1.0 × 10−16 W/

√
Hz) and 1.9 × 10−16 W/

√
Hz

(2.0 × 10−16 W/
√

Hz), respectively. As a results, the uncertainty of the typical
Tc value causes about 20% NEP deference for the atmospheric observations by the
GroundBIRD telescope. We can have an optical efficiency for comparing measured
NEP and theoretical NEP given by Eq. (5.8), because the difference is caused by the
optical efficiency. However if we do not know the exact value of Tc, the 20% uncer-
tainty of the calibration of the optical efficiency is caused due to the uncertainty of
Tc.

Assuming that MKID is used in the space CMB satellite mission, the background
loading is CMB itself. In this case, when the center frequency is 145 GHz and the
frequency band width is 20 GHz, the NEP at Tc = 1.1 K and at Tc = 1.5 K are 2.0×
10−17 W/

√
Hz and 2.2× 10−17 W/

√
Hz, respectively. As a results, the uncertainty

of the typical Tc value causes about 10% NEP deference. If MKID is used in a near
dark condition, e.g. the dark matter search experiment, the NEP of MKID is given
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by Eq. (5.4). In this case, when the detector temperature is 250 mK and the resonator
volume is 1000 µm3, the NEP at Tc = 1.1 K and at Tc = 1.5 K are 1.9× 10−17 W/

√
Hz

and 1.5× 10−18 W/
√

Hz, respectively. About tenfold NEP difference is caused. To
measure Tc of the MKID is the important to evaluate the performance of MKID∗.

∗This chapter is based upon H. Kutsuma, Y. Sueno, M. Hattori, S. Mima, S. Oguri, C. Otani, J.
Suzuki, and O. Tajima, AIP Advances 10, 095320 (2020).
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Chapter 6

Development of the performance
forecaster of MKID

As show in Chapter 3, the performance of the prototype MKID mounted on the
GroundBIRD telescope is too low to extract required performance of the Ground-
BIRD. The NEP has a high 1/f type noise. It is higher than the G-R noise. Further
optimization of fundamental design of MKID is required. The one cycle from de-
sign to the evaluation for the MKID needs a lot of time. We have to iterate this cycle
several times to feed back the results to new design. Dramatic reduction of the time
consumption for this research and development cycle is desired. For this purpose,
we develop the forecaster which evaluate the MKID performance quantitatively by
setting environmental variables and design parameters. Detail of the design param-
eters which control the performance of the MKIDs are introduced in the following
chapter.

6.1 Modeling for dark condition

The performance of MKID depends on the material specification (low temperature
resistivity, superconducting transition temperature, and reference of the two level
system noise), geometry, and measurement condition (readout power, device tem-
perature, amplifier thermal noise, and optically bright condition). In this section, we
modeled the performance of the hybrid type MKID in the dark condition. The hy-
brid type MKID [46, 42] which consists of two superconducting materials is widely
used for the recent astronomical observation. The sensitive part on the antenna side
shown in Figure 2.5 is consist of material with low superconducting transition tem-
perature, e.g., aluminum. The non-sensitive part on the feedline side shown in Fig-
ure 2.5 is consist of materiel with high superconducting transition temperature, e.g.,
niobium. In this thesis, the sensitive part and non-sensitive part are called "absorb
part" and "transmission part", respectively.

6.1.1 Modeling of the hybrid type MKID

We extend the MKID theory described in Chapter 2 to the hybrid type MKID and
calculate the parameters of the prototype MKID as shown in Chapter 3. The ge-
ometry and material specification of the prototype MKID are summarized in Table
6.1. The resonator is quarterwave resonator and the substrate is silicon. The relative
permittivity of the silicon is set to εsub = 11.49 [110] in the forecaster.

The performance of the MKID depends on the kinetic inductance fraction αk
which is the ratio of the kinetic inductance of the center strip of the absorb part
Lk,c to the total inductance Ltot. The total inductance Ltot is summation of the kinetic
inductance Lk and the geometrical inductance Lg. The kinetic inductance Lk is due
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Aluminum Niobium reference

Tc 1.28 K 9.2 K [65, 85]
ρN 1.5 µΩ · cm 5 µΩ · cm [110, 85]
l 2300 µm 2700 µm /
s 4 µm 3 µm /
w 1.5 µm 4 µm /
d 0.1 µm 0.2 µm /
dg / 0.2 µm /

TABLE 6.1: The geometry and material property of the prototype
MKID design. The absorb and transmission material are aluminum
and niobium, respectively. Tc is the superconducting transition tem-
perature. ρN is the low temperature resistivity (resistivity just before
the superconducting transition). l is the length of the absorb part. s
is the center strip width. w is the slot width between the center strip
and groundplane. d and dg are the thickness of the center strip and

groundplane, respectively.

to the motion of the Cooper pair. The geometrical inductance Lg is defined by the ge-
ometry. The kinetic inductance per unit length [84] of the absorb part Lk,abs is given
by

Lk,abs = gcLs,abs + ggLs,ground = Lk,c + Lk,ground, (6.1)

where Ls,abs is the surface inductance of the center strip of the absorb part and
Ls,ground is the surface inductance of the groundplane. In general, the material of
the center strip of the transmission part and that of the groundplane and the read-
out feedline are same. The kinetic inductance [84] per unit length of the transmission
part is given by

Lk,trans = (gc + gg)Ls,trans, (6.2)

where Ls,trans is the surface inductance of the transmission part and gc and gg are the
geometry factor for the center strip and the groundplane, respectively. The surface
inductance Ls [83] is given by

Ls = µ0λdirty coth(d/λdirty), (6.3)

where µ0 is the permeability of the free space and λdirty is the penetration depth for
the dirty limit at T = 0 K [57] given by

λdirty ∼ 105 nm×

√
ρN

[µΩ · cm]

[K]

Tc
, (6.4)

where ρN is the low temperature resistivity (resistivity just before the superconduct-
ing transition) and Tc is the superconducting transition temperature. The geometry
factor gc for the center strip and for the groundplane gg [84] are characterized the
current density distribution for the CPW line are given by

gc =
1

4s(1− k2)K2(k)

[
π + ln

(
4πs
dc

)
− k ln

(
1 + k
1− k

)]
, (6.5)

and

gg =
k

4s(1− k2)K2(k)

[
π + ln

(
4π(s + 2w)

dg

)
− 1

k
ln
(

1 + k
1− k

)]
, (6.6)
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Aluminum Nibium

λdirty [nm] 114 77
Ls [pH/sq] 0.2 0.1

gc [/m] 0.27 0.29
gg [/m] 0.12 0.07

Lk [µH/m] 0.06 0.04
Lg [µH/m] 0.37 0.53
Ltot [µH/m] 0.44 0.57

TABLE 6.2: The penetration depth, the inductance, and the geometry
factor of the prototype MKID. λdirty is the penetration depth, Ls is
the surface inductance, gc and gg is the geometry factor for the center
strip and the groundplane, respectively, Lk is the kinetic inductance,

Lg is the geometrical inductance, and Ltot is the total inductance.

where s is the center strip width, k = s/(s + w) (w is the slot width of the CPW line),
K is the complete elliptic integral of the first kind, dc is the thickness of the center
strip, and dg is the thickness of the groundplane. The geometrical inductance per
unit length Lg is described by the CPW geometry

Lg =
µ0

4
K(k′)
K(k)

, (6.7)

where k′ =
√

1− k2. The total inductance Ltot is given by

Ltot = Lk + Lg. (6.8)

Since the transmission part has high Tc, the response of the transmission part is
negligible. Therefore, the kinetic inductance fraction αk of the hybrid type MKID is
given by

αk =
Lk,clabs

Ltot,abslabs + Ltot,transltrans
, (6.9)

where labs and ltrans are the length of the absorb part and the transmission part, re-
spectively, Ltot,abs and Ltot,trans are the total inductance per unit length of the absorb
part and the transmission part, respectively. The kinetic inductance fraction depends
on the length of the absorb part. The penetration depth, the inductance, and the ge-
ometry factor of the prototype MKID design are summarized in Table 6.2.

By giving the kinetic inductance fraction and the geometry, we can calculate the
resonance frequency and quality factors. The resonance frequency at T = 0 K, fr0, is
described by the resonator length and total kinetic inductance fraction as follows

fr0 =
c
4l

√
1− αk,tot

εeff
, (6.10)

where c is the speed of light, l is the total length of the resonator, and εeff is the
effective dielectric constant given by εeff = (1+ εsub)/2. The total kinetic inductance
fraction αk,tot is given by

αk,tot =
Lk,abslabs + Lk,transltrans

Ltot,abslabs + Ltot,transltrans
. (6.11)
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FIGURE 6.1: The relation between the internal quality factor and the
device temperature of the prototype MKID design.

The frequency responsivity δ fr/ fr is described by the kinetic inductance fraction and
the complex conductivity given by

δ fr

fr0
=

αkβλ

4
δσ2

σ2
, (6.12)

where σ2 is the complex conductivity of the imaginary part given by Eq. (2.6), and
δσ2 is the responseivity of the complex conductivity of the imaginary part given by
Eq. (2.8), and βλ is the correction factor due to the faintness of the thickness and is
given by

βλ = 1 +
2d/λdirty

sinh(2d/λdirty)
. (6.13)

The resonance frequency including temperature dependence is given by

fr =

[
1 +

αkβλ

4
δσ2

σ2V
δσ2

δnqp
Nqp

]
fr0, (6.14)

where Nqp is the number of quasiparticles. The internal quality factor due to the
thermal loading Qi [85] is given by

Qi =
2

αkβλ

σ2

σ1
(6.15)

where σ1 is the complex conductivity of real part given by Eq. (2.5). The relation
between the internal quality factor and device temperature of the prototype MKID
is shown in Figure 6.1. The internal quality factor increases with decreasing the
device temperature.

The coupling quality factor Qc is determined by the geometry of the coupling
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FIGURE 6.2: The coupling geometry.

lc 140 µm
sc 3 µm
wc 4 µm
v 3 µm
st 10 µm
wt 6 µm

TABLE 6.3: The geometry of the coupling of the prototype MKID de-
sign. lc is the coupling length. sc is the coupling line width. wc is the
coupling slot width. v is the deference between the coupling and the
feedline. st is the feedline strip width. wt is the feedline slot width.

with the readout feedline as shown in Figure. 6.2. The Qc can be calculated ap-
plying Schwarz-Christoffel mapping [111]. We calculate Qc using the public code
"cpw_coupling" [111]. The coupling geometry of the prototype MKID design sum-
marized in Table 6.3. The inverse of the resonator quality factor 1/Qr is the sum-
mation of the inverse of the internal quality factor and coupling quality factor. The
relation between Qr, Qc and Qi is given by

1
Qr

=
1

Qc
+

1
Qi

. (6.16)

The complex transmission S21 as a function of readout frequency is given by

S21 = 1− Qr/Qc

1 + 2iQr
fread− fr

fr

, (6.17)

where fread is the readout frequency. The amplitude and the phase of the complex
transmission S21 as a function of readout frequency of the prototype MKID design in
various device temperature are shown in Figure 6.3. The resonance frequency and
the resonance depth of the absorption line like feature appeared at the resonance
frequency decrease with increasing temperature. Here after, we refer the depth of
this feature as resonance depth. The complex transmission S21 takes minimum value
at fread = fr. Therefore, the resonance depth is given by Qr/Qi. To extract the good
performance from MKID, the resonance depth must not be too small. To realize the
good performance MKID Qc ∼ Qi. When Qc � Qi, the resonance depth becomes
very small. In this case, it is hard to identify the resonance feature.
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FIGURE 6.3: The amplitude (left figure) and the phase (right figure)
of the complex transmission S21 as a function of readout frequency in

various device temperature of the prototype MKID design.

model measurement model/measurement

fr [GHz] 5.70 6.07 0.94
Qr [×104] 5.4 4.9± 0.1 1.10
Qc [×104] 10.5 10.6± 0.1 0.99
Qi [×104] 11.2 8.8± 0.2 1.27

dA/dNqp [×10−7] 4.72 2.82± 0.02 1.67
dθ/dNqp [×10−6rad] 1.71 1.52± 0.04 1.13

τres [µs] 3.02 2.56± 0.04 1.18

TABLE 6.4: The comparison of the model results and the measure-
ment results. The device temperature is 285 mK.

The responsivity of the MKID [78] for amplitude dA/dNqp and for phase dθ/dNqp
are given by

dA
dNqp

≈ −αkβλQr

σ2V
dσ1

dnqp
, (6.18)

and
dθ

dNqp
≈ −αkβλQr

σ2V
dσ2

dnqp
, (6.19)

respectrively, where V is the volume of the absorb part, and, dσ2/dnqp and dσ2/dnqp
are the relation between the number density of the quasiparticles and the complex
conductivity given by Eqs. (2.7) and (2.8). The responsivity is proportional to inverse
of the volume of the absorb part. Therefore, the responsivity can be optimized by
adjusting the volume of the absorb part.

The resonator ring time τres which is the time constant described by dumping
time scale of the equivalent LCR circuit to MKID, is given by

τres =
Qr

π fr
. (6.20)

In general, the resonator ring time is shorter than the quasiparticle lifetime for an
aluminum MKID.

The comparison of the model results and the measurement results as mentioned
in Chapter 3 is summarized in Table 6.4. The device temperature is 285 mK. The
difference of the model and the measurement is less than 70%. It confirms that our
forecaster provides reasonably good evaluation of the MKID performance.
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6.1.2 PSD model

We introduce the PSD model based on the previous study [43, 110]. The amplitude
PSD SA is the summation of the generation and recombination noise (G-R noise) and
the low noise amplifier noise (LNA noise) given by

SA = SA,G−R + SA,LNA. (6.21)

The phase PSD Sθ is the summation of the TLS noise (Two level system noise), the
G-R noise, and the LNA noise given by

Sθ = Sθ,TLS + Sθ,G−R + Sθ,LNA. (6.22)

Note that previous study shows the existence of the amplitude TLS noise. However
the effect is much lower than the LNA and the G-R noise [93]. We ignore the effect
in our calculation.

G-R noise model

For the dark condition, the noise is limited by the fluctuation of the quasiparticles
generation and recombination.

The PSD of the G-R noise Sx,G−R [87, 80] is given by

Sx,G−R =
4Nqpτqp

[1 + (2π f τqp)2][1 + (2π f τres)2]

(
dx

dNqp

)2

(x = A, θ), (6.23)

where f is the sampling frequency, Nqp is the number of quasiparticles, and τqp is
the quasiparticle lifetime. The number of quasiparticles depends on the tempera-
ture. In the low temperature condition Tc � T, the relation between the number of
quasiparticles Nqp and the device temperature [59] is given by

Nqp = 2N0V
√

2πkB∆0T exp
(
− ∆0

kBT

)
, (6.24)

where kB is the Boltzmann constant, N0 is the single spin density of state at the Fermi
level (1.74× 1010 µeV−1µm−3 [76, 77]), and ∆0 [59] is the gap energy given by

2∆0 = 3.52kBTc. (6.25)

The quasiparticle lifetime also depends on the temperature, because the pairing rate
depends on the number of quasiparticles in the detector. The relation between the
quasiparticle lifetime τqp and the device temperature [79] is given by

τqp =
τ0√

π

(
kBTc

2∆0

)5/2√Tc

T
exp

(
∆0

kBT

)
, (6.26)

where τ0 is experimentally measured as τ0 = 458 ns for an aluminium [80]. The
number of quasiparticles in the transmission part is negligible because the super-
conducting transition temperature of the transmission part is higher than that of the
absorb part. The number of quasiparticles and the quasiparticle lifetime due to the
thermal loading are shown in Figure 6.4. The number of quasiparticles (the quasi-
particle lifetime) increases with increasing (decreasing) the device temperature. The
product of the number of quasiparticles and the quasiparticle lifetime is constant
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FIGURE 6.4: The number of quasiparticles (left figure) and the quasi-
particle lifetime (right figure) as a function of temperature of the pro-

totype MKID design.

with respect to temperature. On the other hand, because the internal quality fac-
tor depends on the device temperature, the flat level of the G-R noise PSD slightly
depends on the device temperature.

TLS noise model

It is known that the Two Level System (TLS) noise causes the 1/f type noise in PSD
of the phase [88, 89]. The TLS noise depends on superconducting and substrate
material [91, 94], fabrication process [85], sampling frequency [88, 89, 90, 91, 92],
internal power [88, 89, 91, 93], geometry [46, 91, 89, 92], and temperature [90]. J. Gao
et al. 2007 [88] evaluated the level of the TLS noise of the MKID at T = 120 mK and
Pint = −40 dBm whose center strip width and slot width are 3 µm and 2 µm [43]
where Pint is the internal power given by

Pint =
2
π

Q2
r

Qc
Pread, (6.27)

where Pread is the readout power.
After the J. Gao et al. (2007) [88], the evaluations of the TLS noise level have been

performed with the same geometry and the same condition as the J. Gao et al. (2007)
[88] for comparison. The resuls of the previous studies are summarized in Ref. [110].
S. Verheul [110] showed that the experimental results of the TLS noise Sδ fr

f 2
r

reported
before 2019 is well fitted by the following functional form

Sδ fr

f 2
r

=
Sδ fr ,ref

f 2
r

(
f

fref

)k (Pint

Pref

)l ( Wt
Wtref

)m

= γ
Sδ fr ,ref

f 2
r

,
(6.28)

where Sδ fr ,ref

f 2
r

is the reference of the amplitude of the TLS noise, fref is the reference
of the sampling frequency, Pref is the reference of the internal power, Wt is the sum-
mation of the center strip width and the slot width (Wt = s + 2w), and Wtref is the
reference of the total CPW width. S. Kumar et al. (2008) [90] shows the TLS noise
Sδ fr
f 2
r

is proportional to Tn with n = −1.1 ∼ 2. By combining these two results, we
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propose following model as the TLS noise model given as

Sδ fr

f 2
r

=
Sδ fr ,ref

f 2
r

(
f

fref

)k (Pint

Pref

)l ( Wt
Wtref

)m ( T
Tref

)n

= γ
Sδ fr ,ref

f 2
r

,
(6.29)

where Tref is the reference of the device temperature. Following the TLS model crite-
ria proposed by J. Gao and S. Verheul, we adopt fref = 1 kHz, Pref = −40 dBm(10−7 W),
Wtref = 7 µm, Tref = 0.12 K, m = −1.6, and k = −0.5. It is shown that l = −0.5
in high readout power limit [93]. Therefore our TLS model in the calculation is de-
scribed as

Sδ fr

f 2
r

=
Sδ fr ,ref

f 2
r

(
f

1 [kHz]

)−0.5 ( Pint

10−7 [W]

)−0.5 ( Wt
7 [µm]

)−1.6 ( T
0.12 [K]

)−1.5

= γ
Sδ fr ,ref

f 2
r

,
(6.30)

where n = −1.5.
In the case of the hybrid type MKID, the TLS noise [110] is summation of the TLS

effect of the absorb part and the transmission part given by

Sδ fr

f 2
r

=
Sδ fr ,trans

f 2
r

+
Sδ fr ,abs

f 2
r

, (6.31)

where Sδ fr ,trans

f 2
r

and Sδ fr ,abs

f 2
r

are the reference of the TLS noise of the transmission part

and the absorb part. It is known that TLS noise is proportional to |E|3 in the case of
high readout power [89]. Since electric field distribution in resonator is proportional
to cos

(
π
2

l′
ltot

)
where l′ is variable specifying a position in the resonator. The TLS

noise model [110] can be described as

Sδ fr ,trans

f 2
r

= γtrans
Sδ fr ,ref,trans

f 2
r

∫ ltrans
0 cos3

(
π
2

l′
ltot

)
dl′

N
, (6.32)

and
Sδ fr ,abs

f 2
r

= γabs
Sδ fr ,ref,abs

f 2
r

∫ ltot
ltrans

cos3
(

π
2

l′
ltot

)
dl′

N
, (6.33)

where γabs and γtrans are the component dependence for the absorb part and the
transmission part, respectively, Sδ fr ,ref,abs

f 2
r

and Sδ fr ,ref,trans

f 2
r

are the TLS reference for the
absorb part and transmission part, respectively, ltrans and ltot is the length of the
transmission part and the total length of the resonator. The definition of ltot and
ltrans is given in Figure 6.5. N is the normalisation factor given by

N =
∫ ltot

0
cos3

(
π

2
l′

ltot

)
dl′. (6.34)

The amplitude of the TLS noise distribution as a function of length is shown in 6.6.
In the figure, the effect of TLS on the feedline side of the resonator is normalized to
1. This figure suggests that the transmission part is the dominant TLS noise source.
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FIGURE 6.5: The length definition of the resonator.
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FIGURE 6.6: The TLS noise distribution.

The relation between the frequency TLS noise to the phase TLS noise Sθ,TLS is
given by

Sθ,TLS = (4Qr)
2 Sδ fr

f 2
r

1
1 + (2π f τres)2 . (6.35)

The phase TLS noise has a resonator ring time cut-off [43]. In the formula, the TLS
noise depends on the resonator quality factor. However G-R noise PSD also have
a Qr dependence. As a result, Qr dependence of the TLS and the G-R noises are
compensated each other. Therefore, just managing Qr does not matter for improving
the noise level.

When MKID is operated for high readout power, the TLS noise level decreases.
However, high readout power results in distortion of the resonance shape and loss of
the linear response due to the excess quasiparticles generated by the readout power
[71, 72, 73, 74, 57, 75, 65]. The previous study found the evidence that the maximum
readout power has a relation of the cross-section area of the CPW line [112]. It is
physically reasonable, since current density decreases with increasing the area using
same readout power.

Previous study [88, 110] shows the TLS noise reference of aluminum and nio-
bium MKID are both of about −185 dBc/Hz. We adopt this value for the prototype
MKID in our calculation. We have to remind that the TLS noise reference depends
also on superconducting material, substrate material, and fabrication process.
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FIGURE 6.7: The PSD of the prototype MKID design, when Pread =
−80 dBm, T = 250 mK, and TN = 5 K. The blue and red solid line
show phase and amplitude PSD, respectively. The cyan and yellow
dashed line show G-R noise in phase and amplitude, respectively.
The magenta and green dashed line show the TLS noise and the LNA

noise, respectively.

LNA noise model

The PSD of the LNA (low noise amplifier) noise model Sx,LNA [85] is given by

Sx,LNA =
4kBTN

Pread

(
1 +

Qc

Qi

)2

(x = A, θ), (6.36)

where TN is the LNA thermal noise. The LNA noise level becomes large when Qc �
Qi. When we use common mode noise suppression which subtract readout noise
using off resonance fluctuation, the noise level becomes 3 dB higher than the value.
When there is the connector loss between the device to HEMT amplifier, we need to
add the effect in the LNA noise.

PSD model results

When Pread = −80 dBm, T = 250 mK, and TN = 5 K, the noise contribution of
PSD of the prototype MKID design is shown in Figure 6.7. The 1/f type noise from
TLS noise is much higher than the G-R noise. Our measurements show that the
1/f type noise dominates and does not observe the clear G-R noise in the PSD of
the phase, as mentioned in Chapter 3. This can be explained by this model. When
Pread = −80 dBm, and TN = 5 K, PSD of the prototype MKID design in various
device temperature and readout power is shown in Figure 6.8. As a results, the 1/f
type noise is dominant in any case.

6.1.3 NEP model

The noise equivalent power (NEP) is the sensitivity of a detector system. It is defined
as the signal power that is a signal-to-noise ratio of one in one hertz bandwidth. The
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FIGURE 6.8: The PSD of the prototype MKID design in various device
temperature (left figure) and readout power (right figure). The device
temperature is from 250 mK to 300 mK in 10 mK steps. The readout

power is from −100 dBm to −80 dBm in 5 dBm steps.
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FIGURE 6.9: The NEP of the prototype MKID design in various device
temperature. The device temperature is from 250 mK to 300 mK in

10 mK steps.

NEP for the dark condition is given by

NEP =
√

Sx

(
dx
dP

)−1√
1 + (2π f τqp)2

√
1 + (2π f τres)2 (x = A, θ), (6.37)

where dx/dP is the power responsivity [78] given by

dx
dP

=
ηpbτqp

∆0

dx
dNqp

(x = A, θ), (6.38)

where ηpb is the pair braking efficiency [60, 61] (0.57 for an aluminum). The power
responsvity of the amplitude and the phase at T = 250 mK are dA/dP = −7.6×
1012 /W and dθ/dP = 2.8× 1013 rad/W, respectively, where αk = 0.04, V = 920 µm,
βλ = 1.6, and Qr = 5.6× 104 same as the calculation of the prototype MKID design.
When Pread = −80 dBm and TN = 5 K, the NEP of the prototype MKID design in
various device temperature are shown in Figure 6.9. As a results, the NEP is also
limited by the TLS noise of the prototype MKID in any case.
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6.2 Modeling for optically bright condition

Under the optically bright condition, the main origin of the quasiparticles in the
MKID is due to the optical loading. Therefore the number of quasiparticles in ab-
sorb part increases and the internal quality factor and the resonance frequency de-
creases comparing for the dark condition. Since the spectrum of the optical source
is Planck’s law in both of the conventional measurement and the atmospheric ob-
servation as mentioned in next section, we consider the optical loading is as thermal
radiation in this section. The fluctuation of the photon number from the thermal
radiation is added to the PSD model and NEP model of the dark condition.

6.2.1 Number of quasiparticles

For the optically bright condition, we consider the number of quasiparticles gener-
ated by the optical loading and the thermal loading. The total quasiparticles, Nqp,tot,
is the summation of the number of quasiparticles generated by the optical loading
and the thermal loading given by

Nqp,tot = Nqp,th + Nqp,abs, (6.39)

where Nqp,th is the number of quasiparticles due to the thermal loading given by
Eq. (6.24) and Nqp,abs is the number of quasiparticles due to the optical loading.
Since the quasiparticle lifetime lineally decreases with increasing the number density
of quasiparticles, the relation between the quasiparticle lifetime and the number of
quasiparticles [79] is given by

τqp,tot =
τ0V

Nqp,tot

N0(kBTc)3

2∆2
0

=
X

Nqp,tot

(
X = τ0V

N0(kBTc)3

2∆2
0

)
. (6.40)

To calculate the quasiparticles due to the optical loading, the relation between the
number of quasiparticles due to the optical loading [78] is given by

Nqp,abs =
ηpbτqp,tot

∆0
Pabs, (6.41)

where Pabs is the absorbed power in the MKID due to the optical loading. Using Eqs.
(6.39), (6.40), and (6.41), the number of quasiparticles due to the optical loading is
obtained as

Nqp,abs =
−Nqp,th +

√
N2

qp,th + 4ηpbXPabs/∆0

2
. (6.42)

The relation between the absorbed power and the quasiparticle lifetime of the proto-
type MKID design is shown in Figure 6.10. The quasiparticle lifetime decreases with
increasing the absorbed power as expected.

6.2.2 The quality factors and the resonance frequency for the optically
bright condition

The inverse of the total quality factor Qi,tot is the summation of the inverse of internal
quality factors due to the optical loading and the thermal loading which is given by

1
Qi,tot

=
1

Qi,th
+

1
Qi,abs

, (6.43)
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FIGURE 6.10: The quasiparticle lifetime of the prototype MKID de-
sign in various absorbed power.

where Qi,th [85] is the internal quality factor due to the thermal loading given by Eq.
(6.15) and Qi,abs is the internal quality factor due to the optical loading given by

1
Qi,abs

=
δ(1/Qi)

δNqp
Nqp,abs, (6.44)

where δ(1/Qi)
δNqp

is the responsivity of the internal quality factor given by

δ(1/Qi)

δNqp
=

αkβλ

2σ2V
δσ1

δnqp
, (6.45)

where δσ1
δnqp

is the responsvity of the complex conductivity given by Eq. 2.7. The in-
ternal quality factor of the optically bright condition is lower than that of the dark
condition due to the optical loading. The relation between the internal quality fac-
tor and the absorbed power is shown in Figure 6.11. The internal quality factor
decreases with increasing the optical loading.

Since the coupling quality factor does not depend on the optical loading, the total
resonator quality factor Qr,tot is given by

1
Qr,tot

=
1

Qi,tot
+

1
Qc

. (6.46)

The resonance frequency decreases with increasing the optical loading. The re-
sponsivity of the resonance frequency is given by

δ fr/ fr0

δNqp
=

αkβλ

4σ2V
δσ2

δnqp
. (6.47)
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FIGURE 6.11: The internal quality factor of the prototype MKID de-
sign in various absorbed power.

Using Eq. (6.14), the resonance frequency for the optically bright condition is given
by

fr,tot =

(
1 +

αkβλ

4σ2V
δσ2

δnqp
Nqp,tmp +

αkβλ

4σ2V
δσ2

δnqp
Nqp,abs

)
fr0, (6.48)

where the second term of the right hand side is due to the thermal loading and the
third term of the right hand side is due to the optical loading.

The complex transmission S21 as a function of readout frequency of the prototype
MKID design in various absorbed power is shown in Figure 6.12. The resonance fre-
quency decreases with increasing the optical power. The resonance depth decreases
with increasing the absorbed power.
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The resonator ring time for the optically bright condition τres,tot is given by

τres,tot =
Qr,tot

π fr,tot
. (6.49)

It becomes shorter than the time of the dark condition due to decreasing the res-
onator quality factor.

6.2.3 PSD model

The components of the PSD for the optically bright condition are the LNA noise, the
TLS noise, the G-R noise, and the photon noise. The summation of the G-R noise
and the photon noise is called the BLIP (Background LImited Performance) noise.
Therefore, the noise level of the optically bright condition is higher than that of the
dark condition. The amplitude PSD for the optically bright condition is summation
of the LNA noise and the BLIP noise given by

SA = SA,BLIP + SA,LNA, (6.50)

and the phase PSD for the optically bright condition is summation of the LNA noise
and the TLS noise and the BLIP noise given by

Sθ = Sθ,TLS + Sθ,BLIP + Sθ,LNA. (6.51)

For the photon noise observation, the LNA noise and the TLS noise needs to be less
than the BLIP noise.

The BLIP noise is the summation of the G-R noise Sx,G−R and the photon noise
Sx,photon given by

Sx,BLIP = Sx,G−R + Sx,photon. (6.52)

The G-R noise due to the optical loading is given by

Sx,G−R =
4∆2

0Nqp,tot/η2
pbτqp,tot

[1 + (2π f τqp,tot)2][1 + (2π f τres,tot)2]

(
dx

dPabs

)2

(x = A, θ), (6.53)

where dx/dPabs is the responsivity for the optically bright condition[78] is given by

dx
dPabs

=
ηpbτqp,tot

∆0

dx
dNqp

(x = A, θ). (6.54)

The PSD of the photon noise Sx,photon is given by

Sx,photon =
2hνPabs(1 + ηoptηemn̄)

[1 + (2π f τqp,tot)2][1 + (2π f τres,tot)2]

(
dx

dPabs

)2

(x = A, θ), (6.55)

where h is the Planck constant, ν is the optical frequency, ηem is the emissivity of
the thermal radiation, ηopt is the optical efficiency which is the ratio of the absorbed
power to radiation power Prad, and n̄ is the photon occupation number given by

n̄ =
1

exp
(

hν
kBT

)
− 1

. (6.56)
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Therefore, the PSD of the BLIP noise is given by

Sx,BLIP =
2hνPabs(1 + ηoptηemn̄) + 4∆2

0Nqp,tot/η2
pbτqp,tot

[1 + (2π f τqp,tot)2][1 + (2π f τres,tot)2]

(
dx

dPabs

)2

(x = A, θ)

=
2hνPrad(1 + ηoptηemn̄) + 4∆2

0Nqp,tot/η2
pbτqp,tot

ηopt[1 + (2π f τqp,tot)2][1 + (2π f τres,tot)2]

(
dx

dPrad

)2

(x = A, θ),

(6.57)

where Pabs is the absorbed power given by Pabs = ηoptPrad.
The parameters included in the PSD of the TLS noise given by Eq. (6.35), and

LNA noise given by Eq. (6.36) are converted from Qi, Qr, fr, τqp, and τres to Qi,tot,
Qr,tot, fr,tot, τqp,tot , and τres,tot in the optically bright condition.

6.2.4 NEP model for optically bright condition

The optical efficiency is ratio of the absorbed power to the radiation power as men-
tioned in last subsection. When the NEP is dominated by the BLIP noise, we can
obtain the optical efficiency by comparing the theoretical NEP and the measured
NEP [110, 109], because the difference between these NEP comes from the optical
efficiency.

The theoretical NEP NEPtheory [57, 113] is given by

NEPtheory =

√
2hνPrad(1 + ηoptηemn̄) + 4∆0Prad/ηpb

ηopt
(6.58)

The measured NEP for the optically bright condition is given by

NEP =
√

Sx

(
dx

dPrad

)−1√
1 + (2π f τqp,tot)2

√
1 + (2π f τres,tot)2 (x = A, θ), (6.59)

where dx/dPrad is the rate of change of the phase and amplitude response for the
radiation power.

6.2.5 Summary of Reliability check

The comparison of the model results and the measurement results as mentioned in
Chapter 3 is summarized in Table 6.4. The difference of the model and the measure-
ment is less than 70%. We estimate the tiny deference of the measured results and
results by the forecaster is came from the production errors. It confirms that our
forecaster provides reasonably good evaluation of the MKID performance.

We check our PSD model comparing previous results by S. Verheul in Figure 6.2
left figure in Ref [110]. He modeled aluminum and niobium titanium nitraide hybrid
type MKID at T = 270 mK. We obtained the same results.

We extended to this model to the optically bright condition. Since unfortunately
the performance of the MKID installed in the GroundBIRD telescope is quite low,
we could not compare the measurement results and results by the forecaster in the
optically bright condition.
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6.3 Application of forecaster to evaluate performance of the
prototype MKID in optically bright condition

Since the 1/f type noise is higher than the BLIP noise in the previous GroundBIRD
measurement [114, 97] and the observation results in the optically bright condition
[53], the performance of the prototype MKID mounted on the GroundBIRD tele-
scope does not reached the BLIP noise limit. In this section, we pursue this reason
using our forecaster.

We forecast the performance of the prototype MKID in the conventional black-
body measurement and the atmospheric observation by the GroundBIRD.

The following shows the requirements of the MKID performance for these mea-
surement and observation.

• The detector noise is dominated by the BLIP noise in the conventional balck-
body measurement.

• The detector noise is dominated by the BLIP noise in the atmospheric observa-
tion.

• The 1/f type noise from TLS noise is less than GroundBIRD rotation scan speed
(< 0.3 Hz) for the atmospheric observation.

6.3.1 The measurement with blackbody source

Setting blackbody source for which temperature of the source is controllable by ma-
nipulating heater in front of the detector is the conventional method for the opti-
cal efficiency measurement [109], here after we refer it controllable balckbody. The
method is to measure the response of MKID while controlling the temperature of the
blackbody source in front of the detector. By comparing the measured NEP given
by Eq. (6.59) with the theoretical NEP given by Eq. (6.58), the optical efficiency
can be obtained when the detector NEP is dominated by the BLIP noise. Advanced
Technology Center, NAOJ has this system [114, 115] and we use this system for our
MKID evaluation.

We calculate the MKID response and noise of the prototype MKID design using
the controllable blackbody. We define the radiation power is product of the filter
transmission and the blackbody radiation given by

Prad =
1
2

∫ ( c
ν

)2
F(ν)B(ν, T)dν, (6.60)

where c is the speed of light, F(ν) is the filter transmission, and B(ν, T) is the source
brightness given by

B(ν, T) =
2hν3

c2
1

exp
(

hν
kBT

)
− 1

. (6.61)

We forecast the performance of the prototype MKID for the controllable balckbody
measurement with the same band pass filter which is used in front of the detector
in the GroundBIRD telescope. As mentioned in Chapter 1,the GrondBIRD telescope
has two bands whose center frequencies are 145 GHz and 220 GHz, respectively. The
filter transmissions as a function of frequency for 145 GHz band and 220 GHz band
are shown in Figure 6.13. The filter transmissions for 145 GHz band and 220 GHz
band are about 80% and 70%, respectively.
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FIGURE 6.13: The filter transmissions for 145 GHz band (left figure)
and 220 GHz band (right figure). The filter is used by high pass and
low pass filter at 250 mK stage of the GroundBIRD. The cyan dashed
line shows the transmission of the low pass filter. The green dashed
line shows the transmission of the high pass filter. The black line
shows the sum of the transmission of high pass and low pass filters.

Temperature dependence of the amplitude of various noise components at sam-
pling frequency of 1 Hz and 100 Hz are shown in Figure 6.14 for 145 GHz and Figure
6.15 for 220 GHz. As a results, even at 100 Hz, the TLS noise dominates over other
noise sources both of 145 GHz and 220 GHz band. This is the main reason why we
could not measure optical efficiency by measurement described in Ref. [115, 114].

6.3.2 The forecasting of the atmospheric observation by the GroundBIRD
with the prototype MKID

We forecast the performance of the prototype MKID for the observation and con-
ventional onsite calibration. The main optical loading in the observation is atmo-
spheric emission. The atmospheric emission in the GroundBIRD observational site
is as mentioned in Chapter 1. The liquid nitrogen (LN2) and room temperature
(300 K) blackbody source covering the telescope window is the conventional cal-
blation method of the optical response (hot and cold method) as mentioned in Ap-
pendix C.

For calculating the optical loading, we applied the total transmission of the sum-
mation of the GroundBIRD optical filter for 145 GHz band and 220 GHz band, and
the atmospheric transmission given in Figure 1.6 and in Figure 1.7, respectively.
When ηopt = 0.39 [54, 66, 67] for 145 GHz and ηopt = 0.30 [54, 68, 67] for 220 GHz,
PWV = 3.8 mm, Pread = −80 dBm, and TN = 5 K, the complex transmission of the
prototype MKID as a function of readout frequency for 145 GHz band and 220 GHz
band for each observations are shown in Figure 6.16 and Figure 6.17, respectively,
and the PSD with the atmospheric observation for 145 GHz (220 GHz) is shown in
Figure 6.18 (Figure 6.19). In the calculation, the absorbed power for each situation
are summarized in Table 6.5.

Figures 6.16 and 6.17 show that the value of the internal quality factor and that
of coupling quality factor are about same for the atmospheric observation.

Our results show that the performance of the prototype MKID is not the BLIP
noise limit. In the phase PSD at 1 Hz, the TLS noise is 13 dB higher than the BLIP
noise. According to the observational results by the GroundBIRD [53], we could not
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FIGURE 6.14: The each component and summation of the phase NEP
at 1 Hz (left figure) and at 100 Hz (right figure) of the prototype MKID
design of 145 GHz band in the controllable blackbody measurement.
The black line shows the summation of NEP in the phase. The ma-
genta, green, and blue solid lines show the TLS noise, the LNA noise,
and the BLIP noise. The dark blue, cyan, and orange dashed lines

show the photon, the photon bunch, and the G-R noise.
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FIGURE 6.15: The each component and summation of the phase NEP
at 1 Hz (left figure) and at 100 Hz (right figure) of the prototype MKID
design of 220 GHz band in the controllable blackbody measurement.
The black line shows the summation of NEP in the phase. The ma-
genta, green, and blue solid lines show the TLS noise, the LNA noise,
and the BLIP noise. The dark blue, cyan, and orange dashed lines

show the photon, the photon bunch, and the G-R noise.

145 GHz 220 GHz

atmosphere (PWV = 3.8 mm) [pW] 3 5
LN2 [pW] 8 7

300 K [pW] 30 29

TABLE 6.5: The absorbed power in the calculation.
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FIGURE 6.16: The amplitude (left figure) and the phase (right figure)
of the complex transmission S21 as a function of readout frequency of
the prototype MKID design of 145 GHz band in atmospheric (PWV =
3.8 mm, cyan solid line), LN2 (blue solid line), and 300 K (red solid

line) radiation.
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FIGURE 6.17: The amplitude (left figure) and the phase (right figure)
of the complex transmission S21 as a function of readout frequency of
the prototype MKID design of 220 GHz band in atmospheric (PWV =
3.8 mm, cyan solid line), LN2 (blue solid line), and 300 K (red solid

line) radiation.
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FIGURE 6.18: The each component of PSD (TLS noise, BLIP noise
and LNA noise) and sum of the PSD of the prototype MKID design
of 145 GHz band in atmospheric (PWV = 3.8 mm) observation. The
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FIGURE 6.19: The each component of PSD (TLS noise, BLIP noise
and LNA noise) and sum of the PSD of the prototype MKID design
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measure the BLIP noise for MKID device (The MKID design is not same as men-
tioned in this chapter) mounted on the GroundBIRD telescope due to the high 1/f
type noise. This can be explained by this model.

6.4 The problems and improvement of the prototype MKID
for the GroundBIRD observation.

It is found that the prototype MKID design is not suitable for the GroundBIRD ob-
servations. The following is summary of the problems and improvements for the
new design.

• The 1/f type noise from the TLS noise is higher than the BLIP noise. The 1/f
type noise needs to be less than the BLIP noise at the GroundBIRD rotational
speed (0.3 Hz). As mentioned in Chapter 2 and this chapter, the TLS noise is
reduced using the large geometry (see Appendix D).

• Since the BLIP noise level depends on the responsivity of the MKID, to get high
responsivity is also important. The responsvitity depends on the volume of the
absorb part as mentioned in Chapter 3. Using small volume of the absorb part
also solves the 1/f type noise problem.

We propose the new MKID design for the GroundBIRD observation to solve the
problems in the next Chapter.

6.5 Discussion and Conclusion

We develop the MKID performance forecaster. It is dramatic reduction of the time
consumption for the MKID research and development cycle. At first, we model the
performance of the hybrid type MKID in the dark condition. We add the tempera-
ture dependence in the TLS noise model based on the previous study. We compare
the parameters calculated by the forecaster and results as mentioned in Chapter. 3.
The difference of these results is less than 70%. It confirms that our forester pro-
vides reasonably good evaluation of the MKID performance in the dark condition.
We also checked our PSD model comparing previous results by S. Verhuel [110] and
we obtain same results. We expand the model for the optically bright condition
and forecast MKID performance in the conventional blackbody measurement and
GroundBIRD observation.

The results explain why the prototype MKID does not achieve the BLIP noise
in our past measurement. The 1/f type noise of the prototype in the atmospheric
observation condition is higher than the BLIP noise at 100 Hz. The 1/f type noise
needs to be less than the BLIP noise at the GroundBIRD rotational speed (0.3 Hz). In
the next chapter, we propose new design to solve the problem using the forecaster.

As mentioned in Chapter 4, Chapter 5, and previous study [71, 72, 73, 74, 57,
75, 65], the excess quasiparticles are also generated by the readout power. We will
model and include this effect in our forecaster for the future.

More detail comparison between the results from the forecaster and our measure-
ment results is necessary for future work. Based on the real measurement results, we
have a plan to feed back to the model improvement.

The other advantage of the development of the forecaster is to estimate supercon-
ducting properties, TLS noise, and optically bright conditions at one time. Commer-
cial electromagnetic simulation software is unable or limited in its ability to simulate
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these components. And, the forecaster takes less calculation time than the commer-
cial simulation software.
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Chapter 7

New MKID design for the
GroundBIRD

We develop MKID performance forecaster introduced in the previous chapter. The
performance of the prototype MKID design is not suitable for the GroundBIRD ob-
servation. The 1/f type noise due to the TLS noise is much higher than the BLIP
noise. We optimize the geometry of the new design MKID using the forecaster in
order to suppress the 1/f type noise less down to the BLIP noise at the GroundBIRD
rotational speed (0.3 Hz). We forecast the performance of new MKID design in the
controllable blackbody measurement and GroundBIRD observation.

7.1 The design optimization for the GroundBIRD observa-
tion

In the previous chapter, it is found that the prototype MKID design is not suitable
for the GroundBIRD observation. The following is summary of the problems of the
prototype MKID and improvements of the new design.

• The 1/f type noise from the TLS noise is higher than the BLIP noise. The 1/f
type noise should be less than the noise level of the BLIP noise above the ro-
tation scan frequency of the GroundBIRD (0.3 Hz). As mentioned in Chapter
2 and Chapter 6, the TLS noise is able to be reduced by enlarging size of the
resonator (see Appendix D). To suppress the 1/f type noise, we optimize the
geometry of the CPW line of the transmission part.

• Since the amplitude of the BLIP noise increases with improving the respon-
sivity of the MKID while keeping the 1/f type noise level, the improving re-
sponsivity is the another approach to reduce the relative contribution of the
1/f type noise to the BLIP noise. It is realized by increasing responsivity with
decreasing volume of the absorb part and adjusting the length of the transmis-
sion part.

In this section, we describe the optimization of the MKID design for the Ground-
BIRD observation. The material parameters in Table 7.1 are used in the optimization.
At first, we optimize the effect of the Low Noise Amplifier noise (LNA noise) in PSD
phase noise. As shown in the previous chapter, since the BLIP noise of the phase is
higher than that of the amplitude, the phase PSD is less affected by the LNA noise
than amplitude PSD. Therefore, we consider only phase PSD in this section. Since
the value of the internal quality factor Qi and that of the coupling quality factor Qc
should optimize to the GroundBIRD atmospheric observation, the optimized LNA
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Aluminum Niobium reference

Tc 1.28 K 9.2 K [65, 85]
ρN 1.5 µΩ · cm 5 µΩ · cm [110, 85]

Sref/ f 2
r −185 dB −185 dB [88, 110]

TABLE 7.1: The material parameters for new MKID design. The ab-
sorb, and transmission material are Aluminum and Niobium, respec-
tively. Tc is the superconducting transition temperature. ρN is the
low temperature resistivity. Sref/ f 2

r is the TLS reference parameter
described in the previous chapter.

noise SLNA,opt using Eq. 6.36 is given by

SLNA,opt =
16kBTN

Pread
, (7.1)

where TN is the thermal noise temperature of the amplifier and Pread is the readout
power. As shown in Eq. 6.57, the BLIP noise of the PSD is proportional to square
of the phase response, dθ/dPabs. As shown in Eq. 6.54, the phase response of the
MKID is proportional to the change of the quasiparticle, dθ/dNqp. As shown in
Eq. 6.19, dθ/dNqp is almost proportional to inverse of the volume of the absorb
part. Therefore, to increase the sensitivity, the volume of the absorb part should be
smaller. Further, this results in increase of the BLIP noise. As a result, the noise
contribution due to the LNA becomes less significant. We change the center strip
width of the absorb part from 4 µm to 2 µm and the thickness of the absorb part
from 0.1 µm to 0.05 µm from the prototype design to the new design. The values are
the limits of that our fabrication process can produce stably. We did not change the
length of the absorb part because the optical efficiency becomes smaller when the
length of the absorb part is shortened [110].

We optimize the length of the transmission part. Since the readout frequency
band of the GroundBIRD telescope is 4 − 8 GHz limited by the frequency range
of the HEMT amplifier at 4 K stage, we need to optimize the resonance frequency
within the readout frequency range. Since the resonance frequency depends on the
length of the resonator, we calculate the relation between the resonance frequency
and the length of the transmission part. We estimate the difference between the de-
signed resonator frequency and real resonator frequency by the fabrication accuracy
and the difference between the material properties shown in the Table 7.1 and the
real material properties of the fabricated MKID. Based on the Table 6.4, the differ-
ence between calculated resonator frequency by the forester and measured that is
400 MHz. Considering the difference, we optimize the length of the transmission
part when the resonant frequency included in the range of 4.4 − 7.6 GHz. When
the lengths of the transmission part are 1230 µm to 4050 µm for 145 GHz band and
1220 µm to 4030 µm for 220 GHz band, the resonance frequencies under the Ground-
BIRD atmospheric observation are within the readout frequency band. To reduce the
LNA noise effect in NEP is to have a large deference between the BLIP noise and the
optimized LNA noise in PSD. When ηopt = 0.39 for 145 GHz band, ηopt = 0.30 for
220 GHz band, PWV = 3.8 mm, Pread = −80 dBm, and TN = 5 K, we calculate the
difference between the BLIP noise and the optimized LNA noise in various length
of the transmission part shown in Figure 7.1. As a result, the deference between
the BLIP noise increases with increasing the length of the transmission part. Since
ltrans = 4050 µm for 145 GHz and ltrans = 4030 µm for 220 GHz are the largest
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FIGURE 7.1: The difference between the BLIP noise and the LNA
noise in various length of the transmission part for 145 GHz (left fig-
ure) and 220 GHz (right figure) band, respectively. The difference

increase with increasing the length of the transmission part.

deference between the BLIP noise and the optimized LNA noise within the readout
frequency band, we adopt this value for the new design.

As mentioned in the previous chapter, the main origin of the 1/f type noise in
the phase PSD is the TLS noise of the transmission part and the TLS noise decreases
with increasing the total width of the CPW line of the transmission part. However,
there are two main trade off caused by the wider CPW line.

One is the magnetic vortex loss effect. It is known that the center strip of CPW
line traps magnetic vortex, when high magnetic field is applied during supercon-
ducting transition. The vortex works as a excess resistance for complex conductivity
[116]. The number of magnetic vortexes depends on the strength of the environmen-
tal magnetic field and the center strip width of the CPW line. However, the CPW
line can not trap magnetic field under the threshold magnetic field which is perpen-
dicular to the CPW line (Bth) during the superconducting transition. The threshold
magnetic field [117] is given by

Bth =
πΦ0

4s2 , (7.2)

where s is the center strip width, and Φ0 is the flux quantum given by

Φ0 =
h
2e

= 2.07× 10−15 [Tm2], (7.3)

where e is the elementary charge and h is the Planck constant. We evaluate the effect
of the ambient magnetic field around the focal plane of the GroundBIRD telescope.
The geomagnetism at the GroundBIRD observational site is ∼ 30 µT. The Ground-
BIRD has a magnetic shield which reduce the external magnetic field below 1/100
[118, 97]. If the center strip width of the CPW line exceeds 70 µm, it may trap the
vortex.

The other problem is radiation loss [119, 120]. If the phase velocity in the line ex-
ceeds the phase velocity in the substrate, the shock wave like a Cherenkov radiation
is caused. The shock wave causes the loss in the MKID. The loss parameter α [119,
120] is given by

α =
(π

2

)5
2
(
(1− cos(Ψ)2)2

cos(Ψ)

)
(s + 2w)2ε3/2

sub
c3K(k′)K(k)

f 3, (7.4)
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where εsub is the relative permittivity of the substrate, k = s/(s + w) (s: center strip
width, w: center strip slot width), k′ =

√
1− k2, K is the complete elliptic integral, f

is the readout frequency, c is the speed of light, and Ψ is the angle of the shock wave
radiated in substrate given by

cos(Ψ) =

√
ε′eff

√
εsub

, (7.5)

where ε′eff is the effective dielectric constant including the superconducting features
given by

ε′eff = c2LtotCl , (7.6)

where Ltot is the total inductance which is the summation of the kinetic inductance
and the geometrical inductance, and Cl is the transmission capacitance per unit
length. The quality factor of the radiation loss is given by

Qrad =
β

2α
, (7.7)

where β is 2π/λ (λ is the wavelength of the readout microwave signal). Since the
loss parameter is proportional to the square of the total width of the CPW line,
the quality factor of the radiation loss increases with increasing the total CPW line
width. Including the quality factor of the radiation loss, the resonator quality factor
Qr is redefined by

1
Qr

=
1

Qc
+

1
Qi

+
1

Qrad
. (7.8)

The noise level of the BLIP noise is proportional to square of dθ/dNqp. The dθ/dNqp
is proportional to the resonator quality factor as shown in Eq. 6.19. Therefore, the
noise level of the BLIP noise is proportional to square of resonator quality factor.
Therefore, the deference between the BLIP noise and the optimized LNA noise de-
creases with increasing the total CPW width of the transmission part due to the
radiation loss.

We consider the trade off of the radiation loss to reduction of the TLS noise in
the phase PSD. We include the radiation loss effect in the forecaster. Although these
equations are not for the hybrid type MKID, we use these equations to pessimisti-
cally estimate the radiation loss by calculating that the same structure and mate-
rials are used as in the transmission part. In typical observation using MKID, the
BLIP noise is over 10 dB higher than the LNA noise in the phase PSD. Since using
common mode nose suppression which subtract readout noise using off resonance
fluctuation, the noise level of the LNA noise becomes 3 dB higher than that without
this method. Considering the effect, we optimize the total width of the CPW line of
the transmission part within over 13 dB deference between the BLIP noise and the
optimized LNA noise. When ηopt = 0.39 for 145 GHz band, ηopt = 0.30 for 220 GHz
band, PWV = 3.8 mm, Pread = −80 dBm, and TN = 5 K, the relation between
the center strip width and the deference between the BLIP noise and the optimized
LNA noise is shown in Figure 7.2. In the calculation, the ratio of the center strip
width of the transmission part to the slot width of the transmission part is fixed at a
constant 3:2. The maximum center strip width (slot width) of the transmission part
for 145 GHz and 220 GHz are 39 µm(15 µm) and 26 µm(10 µm), when the deference
between the BLIP noise and the optimized LNA noise is over 13 dB. As a results, the
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FIGURE 7.2: The difference between the BLIP noise and the opti-
mized LNA noise in various center strip width of the transmission
part. The ratio of the center strip width of the transmission part to
the slot width of that is fixed at a constant 3:2 in the calculation for
145 GHz (left figure) and 220 GHz (right figure) band, respectively.
The difference decreases with increasing the center strip width of the
transmission part due to the radiation loss. The yellow region shows
deference between the BLIP noise and the optimized LNA noise is

less than 13 dB.

Aluminum Niobium

l 2300 µm 4050(4030) µm
s 2 µm 39(15) µm
w 2 µm 16(9) µm
d 0.05 µm 0.2 µm
dg / 0.2 µm

TABLE 7.2: The geometry of new MKID design. l is the length of
the resonator for 145 GHz band (220 GHz band). s is the center strip
width for 145 GHz band (220 GHz band). w is the slot width between
the center strip and groundplane for 145 GHz band (220 GHz band).
d and dg are the thickness of the center strip and groundplane, respec-

tively.

magnetic vortex effect is negligible for the new design in the GroundBIRD observa-
tion. We adopt these values for the geometry of new design MKID. Table 7.2 is the
geometry of the new design MKID.

We adjust the coupling geometry to optimize the coupling quality factor. When
ηopt = 0.39 for 145 GHz band, ηopt = 0.30 for 220 GHz band, PWV = 3.8 mm, the
internal quality factors for 145 GHz band and 220 GHz band of the new design for
the GroundBIRD atmospheric observation are 1.2× 104 and 1.1× 104, respectively.
We calculate the geometry of the coupling to be Qi = Qc using the public code
"cpw_coupling" [111] as mentioned in the previous chapter. As a result, Table 7.3
shows the geometry of the coupling for 145 GHz band and 220 GHz band.
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145 GHz band 220 GHz band

lc 430 µm 420 µm
sc 39 µm 15 µm
wc 26 µm 10 µm
v 3 µm 3 µm
st 10 µm 10 µm
wt 6 µm 6 µm

TABLE 7.3: The geometry of coupling for new design for 145 GHz
band and 220 GHz band. lc is the coupling length. sc is the coupling
line width. wc is the coupling slot width. v is the deference between
the coupling and the feedline. st is the feedline strip width. wt is the

feedline slot width.
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FIGURE 7.3: The amplitude (left figure) and the phase (right figure)
of the complex transmission S21 for 145 GHz in the controllable black-
body observation for new design. The label shows the radiation tem-
perature of the controllable blackbody. The label shows the black-

body temperature.

7.2 The new design performance forecast in measurement
and observation

7.2.1 The measurement with balckbody source

We evaluate the performance of the new design in the controllable blackbody mea-
surement as mentioned in the previous chapter using the forecaster. The amplitude
and the phase of the complex transmission S21 of 145 GHz band and 220 GHz band
in the controllable blackbody measurement are shown in Figure 7.3 and Figure 7.4,
respectively, when ηopt = 0.5. Since the resonance frequencies in any case are within
the readout frequency range, the optimization of the length of the transmission part
is no problem for the controllable blackbody measurement.

The each component of the phase NEP at 1 Hz and at 100 Hz for both of 145 GHz
band and 220 GHz band in the controllable blackbody measurement are shown in
Figure 7.5 and Figure 7.6, respectively. The TLS noise and the LNA noise are enough
lower than the BLIP noise in the all radiation temperature condition. It is easy to
evaluate the optical efficiency for the new design using the blackbody measurement.
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FIGURE 7.4: The amplitude (left figure) and the phase (right figure)
of the complex transmission S21 for 220 GHz in the controllable black-
body observation for new design. The label shows the radiation tem-
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FIGURE 7.5: The each component and summation of the phase NEP
at 1 Hz (left figure) and at 100 Hz (right figure) for new design of
145 GHz band in the controllable blackbody measurement. The black
line shows the summation of NEP in the phase. The magenta, green,
and blue solid lines show the TLS noise, the LNA noise, and the BLIP
noise. The dark blue, cyan, and orange dashed lines show the photon,

the photon bunch, and the G-R noise.
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FIGURE 7.6: The each component and summation of the phase NEP
at 1 Hz (left figure) and at 100 Hz (right figure) for new design of
220 GHz band in the controllable blackbody measurement. The black
line shows the summation of NEP in the phase. The magenta, green,
and blue solid lines show the TLS noise, the LNA noise, and the BLIP
noise. The dark blue, cyan, and orange dashed lines show the photon,
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FIGURE 7.7: The amplitude (left figure) and the phase (right figure) of
the complex transmission S21 as a function of readout frequency for
new design of 145 GHz band in atmospheric (PWV = 3.8 mm, cyan
solid line), LN2 (blue solid line), and 300 K (red solid line) radiation.

7.2.2 The forecast of the GroundBIRD observation for new design

We evaluate the new design performance for the GroundBIRD observation using
the forecaster. When ηopt = 0.39 for 145 GHz band, ηopt = 0.30 for 220 GHz band,
PWV = 3.8 mm, Pread = −80 dBm, and TN = 5 K, the amplitude and the phase of
the complex transmission S21 for new design of 145 GHz band and 220 GHz band
in atmospheric, LN2, and 300 K observation are shown in Figure 7.7 and Figure 7.8,
respectively. The PSD in the atmospheric observation for new design 145 GHz band
and for 220 GHz band are shown in Figure 7.9 and Figure 7.10, respectively.

The resonance shape is suitable because of Qi = Qc in the atmospheric observa-
tion. Since the resonance frequencies in any case are within the readout frequency
range, the optimization of the length of the transmission part is no problem for the
GroundBIRD observation. The LNA noise is lower than the BLIP noise both of the
frequency band in the phase PSD. The 1/f type noise is less than the BLIP noise at
the GroundBIRD rotational speed (0.3 Hz). It concludes that the new design meets
the requirements of GroundBIRD observation.
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the complex transmission S21 as a function of readout frequency for
new design of 220 GHz band in atmospheric (PWV = 3.8 mm, cyan
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7.3 Discussion and Conclusion

In order to solve problems of prototype design as mentioned in the previous chapter,
we propose new MKID geometry for the GroundBIRD observation. The feature of
the design is to select suitable Qc value under the atmospheric observation and to
use wider CPW line of the transmission part, small volume of the absorb part, and
long length of the transmission part to reduce the 1/f type noise less below the BLIP
noise at the GroundBIRD rotational speed (0.3 Hz). The trade off problems of using
wide CPW line are vortex effect and radiation effect. We include the radiation loss
effect in the forecaster and we optimize the geometry to the extent that radiation loss
is negligible. And we also check that the magnetic vortex effect is also negligible for
the magnetic field environment of the GroudBIRD. We forecast the performance of
the new design in the controllable blackbody measurement and GroundBIRD obser-
vation. As a results, the performance of new design for the GroundBIRD observation
meets the observational requirements of the GroundBIRD.

We include radiation loss effect in the forecaster, however the equations of the
radiation loss are not for the hybrid type MKID. For the future plan, we would like
to develop the equations of the radiation loss for hybrid type MKID, since we can
forecast the more realistic performance of the MKID.
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Chapter 8

Impact of our works on the
GroundBIRD experiment

We invented the novel method to calibrate the responsivity of MKID [75, 65] based
on the creation of the quasiparticles by the readout microwave signal [71, 72, 73,
74, 57] as shown in Chapter 4. Since the GroundBIRD needs cooling cycle every-
day, the responsvity of MKID must be calibrated every cooling cycle for the pre-
cise observation. The conventional method consumes 2 hours for the calibration.
The calibration of the responsivity should be performed when the atmospheric or
instrumental conditions are changed. The reduction of the time duration for the re-
sponsivity calibration down to 10 minutes contributes to significant maximization of
the data acquisition. Further, the conventional method accompanies the systematic
uncertainty whether the device temperature is same as the temperature measured
by the thermometer. Since our proposed method is free from this kind of systematic
uncertainty, our method contributes to improve the accuracy of the obtained data by
the GroundBIRD.

We invented the novel measurement method of the superconducting transition
temperature (Tc) [65] of the MKID as shown in Chapter 5. Since there was no method
to measure Tc for the hybrid type MKID, the cited values of Tc varies largely from
Tc = 1.1 to 1.5 K for an aluminum. This results in 20% uncertainty of the NEP for
the optical bright condition at the GroundBIRD observation site. This method have
opened a channel to measure the superconducting transition temperature of the hy-
brid type MKID at the first time. Since the value of the Tc controls the performance
of the MKID, our method dramatically reduces the uncertainty of the performance
of the MKID at the time of the design. Therefore, our method contributes to fabricate
the MKID optimized to the GroundBIRD experiment and to extract the maximum
performance of the GroundBIRD experiment.

In spite of the development of the MKID more than the past five years by the
Japanese GroundBIRD team, yet the MKID applicable to the GroundBIRD observa-
tion has not been completed. On the other hand, the high performance hybrid type
MKIDs applicable to the astronomical observations have been already developed in
Netherlands and US. Number of knowledge of the development of the hybrid type
MKID have been reported in many papers in the course of these developments. To
accelerate the research and development cycle of hybrid type MKID optimized to
the GroundBIRD experiment, we have developed the performance forecaster of hy-
brid type MKID by summarizing the knowledge of the development of the hybrid
type MKID obtained by the previous studies as shown in Chapter 6. It allows to
forecast the sensitivity of the hybrid type MKID by just inputting the design and
observational condition parameters. With this tool, the main cause which degrades
the performance of the hybrid type MKID developed by the Japanese team is iden-
tified. We are able to propose new design of the hybrid type MKID optimized to
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the GroundBIRD observation by improving the defect with the tool. Although the
actual performance is not clear until the performance verification of the newly de-
signed hybrid type MKID will be done, it is very confident that the hybrid type
MKID fabricated with the proposed design may have enough performance to pro-
ceed GroundBIRD experiment since we identified the defect of the former design
and improved it. The fabrication of the hybrid type MKID based on the new design
is underway as the collaborative work with Netherlands Institute for Space Research
(SRON). The fabrication and the performance verification experiment are going to
be completed until the end of March 2021. After April 2021, we may able to start
the observation with enough sensitivity for the CMB observations at the first time.
Therefore, we can say that the development of the forecaster plays a crucial role to
proceed the GroundBIRD experiment.
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Chapter 9

Conclusion and Future plan

We invented the novel method to calibrate the responsivity of MKID [75, 65] based
on the previous studies [71, 72, 73, 74, 57]. For the precision observation, the re-
sponsvity of MKID must be calibrated every cooling cycle. Conventionally, the
MKID responsivity has been calibrated by changing the device temperature using
heater. However, this method is inevitable from following systematic error. It al-
ways accompanies uncertainties whether the plate temperature measured by the
thermometer coincides with the detector temperature. This method is also time con-
suming. The invention of the novel calibration method of the MKID responsivity
was highly demanded. Since the microwave readout power signal through MKID
deposits the energy in the resonator and creates quasiparticles, we can observe the
time evolution of the number of quasiparticles by changing microwave power from
high power to low power abruptly and can extract the time constant of the resonator.
We can evaluate the number of quasiparticles by comparing the measured time con-
stant with the theoretical formula. By using these results, the responsivity is able
to be measured. The results obtained by applying our method are compared with
the result obtained by the conventional methods [70], [71]. We confirmed that our
method reproduces the previously reported results reasonably well. We suppose
that a little differences of the results obtained by these two methods are mainly com-
ing from the uncertainty of the device temperature in the conventional method, the
uncertainty of the PSD method due to the difficulty of inclusion of the TLS noise pre-
cisely, and the uncertainty of the superconducting transition temperature. Since our
method is free from the above mentioned systematic accompanying in the conven-
tional method, our method provides much more secure results compared with the
conventional method. Further, time duration consumed for the calibration is dra-
matically shortened, down to 10 minutes, by applying our calibration method. For
the GroundBIRD observation, the available time for observational becomes 1.5 times
longer when the responsivity calibration method is changed to the proposed method
from the conventional method. Since the time constant extracted from the roll off
appeared in the frequency dependence of PSD provides the most secure value, it is
important to compare the time constant obtained by our method with that extracted
from the roll off appeared in PSD for checking the accuracy of our method. Unfortu-
nately the noise level of the prototype MKID is too bad to extract the time constant
from the measured PSD. This test should be done in future with better performance
MKID. This method also opens a possibility for evaluating degradation of the per-
formance of the MKID due to the excess quasiparticles generated by the readout
microwave signal [73].

We invented the novel measurement method of the superconducting transition
temperature (Tc) [65] of the MKID. The superconducting transition temperature Tc
of the MKID is an important parameter for both fixing design and evaluating perfor-
mance. However, there is no method which is able to measure the superconducting
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transition temperature of the hybrid type MKID directly. By extrapolating the results
of the relation between the phase response of the MKID and quasiparticle lifetime
when the microwave power is changed rapidly, we can obtain the intrinsic quasi-
particle lifetime which is not biased by the excess quasiparticles generated by the
readout microwaves input. The intrinsic quasiparticle lifetime is theoretically mod-
eled by Tc, the physical temperature of the device, and other known parameters. We
can extract Tc by comparing the measured lifetime with theoretical model [79, 80].
Using an aluminum MKID, we checked the validity of this method. The results are
consistent with those obtained by Tc measured by monitoring the transmittance of
the readout microwaves while changing the device temperature. This method have
opened a channel to measure the superconducting transition temperature of the hy-
brid type MKID directly. We evaluate the systematic uncertainty of Tc in various
observation. For the GroundBIRD observation the uncertainty of Tc causes 20% un-
certainty of the NEP. For the CMB satellite mission using MKID, the Tc causes 10%
uncertainty of the NEP. For the dark condition, the uncertainty of Tc causes tenfold
uncertainty of the NEP. Moreover, since we evaluate some parameters, e.g. opti-
cal efficiency, and responsivity using equation included in Tc, the uncertainty of Tc
causes the uncertainty of the such parameters.

We show that the performance of the prototype MKID is far from the Ground-
BIRD observation requirements based on the results of our performance verification
experiments. The 1/f type TLS noise dominates over the generation and recombi-
nation noise below 100 Hz. To mitigate the 1/f atmospheric fluctuation by the rapid
rotation scan strategy of the GroundBIRD, the TLS noise must be suppressed not to
be dominant above 0.3 Hz.

To accelerate the research and development cycle of MKID, we have developed
the performance forecaster of MKID. The reliability of the forecaster has been checked
by comparing the extracted results with the results of the performance measurement
for the prototype GroundBIRD MKID and with the results reported in Ref. [110]. By
inputting the design parameters of the prototype GroundBIRD MKID into the fore-
caster, we confirmed that the TLS noise dominates over the generation and recom-
bination noise below 100 Hz and that the main problem of the prototype MKID is
its design. Since the total width of the CPW made from Nb of the prototype MKID
is too narrow, the contribution of the TLS noise became prominent. A new design
of MKID with widening the total center strip width of the CPW made from Nb is
proposed. Enlarging the center strip width of CPW line results in the increase of
number of trapped vortex [117] and the increase of the resistance loss due to the
trapped vortex. Further, energy loss due to the Cherenkov type radiation emitted
from the CPW line [120, 119] is increased. We include the radiation loss effect in the
forecaster. We optimize the total center strip width in the range of negligible of the
radiation loss. We also checked the magnetic vortex effect is also negligible for the
magnetic field environment of the GroundBIRD. The noise behavior of the new de-
sign is checked by using the forecaster. We showed that the TLS noise is significantly
reduced from that of the prototype MKID and is suppressed below the BLIP noise
down to 0.3 Hz.

More detailed comparison between the results from the forecaster and our mea-
surement results is necessary for future work. Based on the real measurement re-
sults, we have a plan to feed back to the model improvement. In addition, based
on these studies, we fabricate new design MKID for the GroundBRID observations
for the future plan. We developed Graphical User Interface tool of the MKID perfor-
mance forecaster. In the tool, when we input the material parameters, geometry, and
measurement condition, the expected MKID performance is outputted. We plan to
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develop the tool available on the web for everyone to use for the future.
We mentioned temperature, readout power, and geometry dependence for TLS

noise in this thesis. The TLS noise also has a superconducting material dependence
[91, 94]. The TLS noise exist at an oxide of the substrate and the metal interface.
In order to suppress the effect, the nitride metal, e.g. NbTiN [91] and TiN [94] is
advantage. MKID group in SRON and TUDelft develop high quality NbTiN film
[91, 92] and use it for MKID. The TLS noise level of NbTiN film is 11 dB lower than
that of Nb film studied by J. Gao et al.[88]. We start the development of NbTiN-Al
hybrid type MKID for the GroundBIRD telescope with them.

The other issue for the ground-based observation using MKID with wide fre-
quency band is the noise from low noise amplifier. When the thermal noise of the
low noise amplifier is lower, the range of optimization of the design is wide. In
the superconducting quantum computer, the Josephson Parametric Amplifier (JPA)
whose noise level achieves quantum noise limit is widely used [121]. The noise
level of JPA is ∼ 10 dB less than the commercial low nose amplifier which we use.
However, the dynamic range of readout power for JPA (< −100 dBm) is lower than
the MKID operation readout power (> −100 dBm) and the bandwidth is narrow
(< 1 GHz). In recent, the kinetic inductance traveling wave parametric amplifier
(KIT) [122] is the cutting-edge superconducting amplifier for superconducting quan-
tum computer and astronomical observation using MKID. It has a wide dynamic
range (< −40 dBm) and wide band width (∼ 4 GHz). Previous studies shows the
noise level reduces almost quantum noise limit. For the future, precise astronomi-
cal observation using MKID, the development of these amplifier will be important
topic.
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Appendix A

Big Bang model

A.1 Homogeneous and isotropic universe

It is known that the universe is the homogeneous and isotropic in the large scale.
It is called the cosmological principle. A number of observations, not just the CMB
observations, have proved that the cosmological principle is suitable approximation.
In 1920s, the metric satisfying with the principle is proposed. It is called Friedmann-
Lemaître-Robertson-Walker (FLRW) metric given by

ds2 = −c2dt2 + a2(t)
[

dr2

1− Kr2 + r2(dθ2 + sin2 θdφ2)

]
(A.1)

where c is the speed of light, a is the scale factor which represents the cosmological
expansion, K is the curvature of space (K = 0: the flat universe, K < 0: the closed
universe, and K > 0: the open universe). The relation between the stress-energy
tensor and the metric tensor which is called Einstein equation, is given by

Gµ
ν =

8πG
c4 Tµ

ν . (A.2)

In a zero-order approximation, the material distribution in the universe is homoge-
neous. For the perfect fluid, the stress-energy tensor is given by

Tµ
ν =

 −ρc2 0 0 0
0 p 0 0
0 0 0 p

 , (A.3)

where ρ and p are the mass density and pressure, respectively. Using Eq. (A.2), two
equation which represents evaluation of the homogeneous universe in zero-order
approximation which is called Friedman equation is given by(

ȧ
a

)2

=
8πG

3
ρ− c2K

a2 (A.4)

and,
ä
a
= −4πG

3

(
ρ + 3

p
c2

)
. (A.5)

Using the two equation and eliminating ä, the equation corresponding the energy
conservation law of adiabatic change is given by

ρ̇ + 3
ȧ
a

(
ρ +

p
c2

)
= 0. (A.6)
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state density parameter ω mass density ρ

non relativistic matter 0 a−3

relativistic matter 1/3 a−4

cosmological constant −1 const

TABLE A.1: The state density parameter and energy density

We define the relation between the stress and the mass density given by

p = ωρc2, (A.7)

where ω is state density parameter summarized in Table A.1. In the Friedman equa-
tion, ω < −1/3 means the universe expansion. In general, the material has no
negative pressure. Therefore the universe has deceleration expansion. However,
Einstein considered the scale of the universe was not changed. In order to cancel the
declaration expansion he introduced cosmological constant in the Einstein equation
given by

Gµ
ν + Λδ

µ
ν =

8πG
c4 Tµ

ν . (A.8)

where Λ is the cosmological constant. Using the modified Einstein equation, the
Friedman equation in the cosmological constant is rewritten by(

ȧ
a

)2

=
8πG

3
ρ− c2K

a2 +
c2Λ

3
=

8πG
3

(
ρ +

Λc2

8πG

)
− c2K

a2 , (A.9)

and

ä
a
= −4πG

3

(
ρ +

3p
c2

)
+

c2Λ
3

= −4πG
3

(
ρ + 3

p
c2

)
+

4πG
3

(
Λc2

4πG

)
. (A.10)

In the Friedman equation, the cosmological constant represents as the expansion
of the universe. Using Eq. (A.9) and (A.10), the density and the pressure of the
cosmological constant are given by

ρΛ =
Λc2

8πG
, (A.11)

and

pΛ = − Λc4

8πG
. (A.12)

It is consistent for ω = −1 in the Eq. (A.7).
Edwin Hubble denied the existence of the cosmological constant and the static

universe which Einstein proposed observing the redshift of the galaxies. However,
observational results of the supernova expansions in the distant universe suggests
the accelerated expansion of the universe [123, 124]. In order to describe the expan-
sion universe, the cosmological constant is needed. It is know that the material for
expanding the universe is called the dark energy. The state density parameter ω is
less than −1/3 for the accelerated expansion of the universe. It means the dark en-
ergy has ω < −1/3. The results of the Planck satellite also suggested the existence
of the dark energy [4]. We consider the origin of the accelerated expansion of the
universe as the dark energy.
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A.2 Cosmological parameter

When each component’s energy conservation laws are independent, using Eq. (A.7),
the relation between the density and the scale factor is given by

ρ ∝ a−3(1+ω). (A.13)

The current (t = t0) Hubble parameter which is the expansion rate of our universe
is given by

H0 =

(
ȧ
a

)
t=t0

. (A.14)

Using Eq. (A.9), the current Hubble constant is given by

H2
0 =

8πG
3

ρ0 − c2K, (A.15)

where ρ0 is the current density and we used the current scale factor a0 = 1. In the
case of the flat universe (K = 0), the current density is given by

ρcr,0 =
3H2

0
8πG

. (A.16)

where ρcr,0 is called the critical density. When the critical density is same as a total
density, the curvature of the universe is flat. The density parameter which represents
the component of the density divided by the critical density is given by

ΩA0 =
ρA0

ρcr,0
=

8πGρA0

3H2
0

(A.17)

where A = r (radiation), m (material), K (curvature), and λ (cosmological constant).
Using the relation, Eq. (A.9) is rewritten by(

ȧ
a

)2

= H2
0

(
Ωr0

a4 +
Ωm0

a3 +
ΩK0

a2 + ΩΛ0

)
, (A.18)

where the density parameter of the curvature is given by

ΩK0 = − c2K
H2

0
. (A.19)

In the current universe the material density is more than the radiation one. As the
past universe, the material density is the same as the radiation one. The era is called
the energy equality. Before the energy equality, the universe is the radiation domi-
nant. In current, the universe is dark energy dominant.

A.3 Inflationary cosmology

The Big Bang theory explained a various astronomical observation results. However,
the theory is expected to cause an unnatural initial state in the early universe e.g. the
horizon problem and the flatness problem. In 1980s, Alan Guth and Katsuhiko Sato
proposed the inflationary cosmology [7, 8]. Assuming the universe had a exponen-
tially expanding period at the very beginning of the universe, they showed that these
problems are naturally solved.
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A.3.1 Horizon problem

The era of CMB photon emission is 370 k years from the beginning of the universe.
The era is called the last scattering surface. At the last scattering surface, the appar-
ent angular size of the particle horizon is ∼ 2 deg[1]. However, the fluctuation of
CMB temperature with larger than a few degree are found (COBE/DIRBE, WMAP,
Planck reference). Why the coherent structures are imprinted in the CMB tempera-
ture fluctuation exceeding the particle horizon is the horizon problem.

A.3.2 Flatness problem

It is observationally confirmed that the curvature of the current universe is close
to zero, in other word the geometry of the current universe is close to flat[5, 6].
The most updated Planck result is ΩK0 = 0.0007± 0.0019 [4]. Using the Friedman
equation (A.18), ΩK ∝ a−2H−2 in early universe, where a is the scale factor and H
is the Hubble constant at the time. The relation between the curvature of current
universe and that of the past universe is given by

ΩK =
H2

0
H2

ΩK0

a2 =

(
ȧ0

ȧ
ΩK0

)2

. (A.20)

Since ȧ is increasing as going back the time in the standard Big Bang theory, the right
hand of Eq. (A.20) is decreasing as going back the time. In the era of the radiation
dominant (a ∝ t1/2), the relation between scale factor and time is given by(

ȧ0

ȧ

)
=

(
t
t0

)2

=

(
a
a0

)2

. (A.21)

Since the adiabatic condition that the production of the CMB temperature and the
scale factor is constant is applicable with good accuracy from the begging of the
universe to the current universe, the density parameter of the curvature at the Planck
time (tpl ∼ 5.39× 10−44 sec) is given by

ΩK(tpl) ∼
(

kBT0

mpc2

)
ΩK0 ∼ 10−62ΩK0, (A.22)

where mplc2 =
√

h̄c/G = 1.2× 1019 GeV is the Planck mass. Since ΩK0 ∼ 0, the
curvature of the universe at the begging of the universe must be tuned to a value
close to zero with an accuracy of more than 62 orders. This fine tuning problem is
called the flatness problem.

A.3.3 Cosmic inflation

The flatness and horizon problems are solved if the universe has the acceleration
expansion period in the early epoch. The inflation theory predicts that the universe
has a nearly exponentially expanding period at the very early epoch. This period
is called inflationary period. During the inflationary period, ȧ is decreasing func-
tion with going back time. Therefore, the fine tuning problem of the initial density
parameter of the universe is relaxed and the flatness problem is able to be solved.
During the inflationary period, the radius of the current observable universe shrinks
exponentially as going back time. Therefore, the even particle horizon of the current
universe was contracted to very small scale and less than the particle horizon at
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the time. This provides the solution to the horizon problem since all the structures
within the current particle horizon was once contained in the causally contactable
scale.

The model proposed that the nearly exponential expansion during the inflation-
ary period is realized by the vacuum energy of the scalar field φ called "Inflaton".
When the effective potential of the Inflaton field is V(φ), the action of the inflaton
field is given by

I =
∫ √

−gd4x
[
−1

2
gµν∂µφ∂νφ−V(φ)

]
, (A.23)

where g is the determinant of the metric tensor given by g = det(gµν) and the
adopted the metric in the local inertial frame is ηµν = (−1, 1, 1, 1). In zeroth order,
the action is reduced to

I =
∫

d4xa3
[

φ̇2

2c2 −V(φ)

]
, (A.24)

where homogeneous, isotropic and spatially flat are assumed to the zeroth order
universe. Using Euler–Lagrange equation, the equation of the motion of scalar field
is given by

φ̈ + 3Hφ̇ + c2V ′(φ) = 0, (A.25)

where φ̇ = dφ/dt and V ′ = dV/dφ. The energy density of the Inflaton field is given
by

ρφc2 =
φ̇

2c2 + V(φ). (A.26)

Using Noether’s theorem, the pressure of the Inflaton field is given by

pφ =
φ̇2

2c2 −V(φ). (A.27)

When φ̇2/c2 � V(φ), the equation of state is reduced to pφ = −ρφc2 that is equiv-
alent to the cosmological constant. Using ρφ = V/c2 and solving the Friedman
equation as the Inflaton dominant, the expansion law scale is given by

a = C exp(Ht), (A.28)

where the Hubble constant is given by

H =

√
8πGV(φ)

3c2 . (A.29)

The era of inflationary period is that the universe is exponential expanding by the
vacuum energy from the Inflaton field. It is known that the scale of universe is
expanded ∼ 1030 times in ∼ 10−34 s.

A.3.4 The slow-roll inflation

The slow-roll inflationary model is one of the standard inflationary model. In the
model, the scalar field φ moves to the minimum value of the inflationary potential
in the Inflaton potential V while keeping |φ̇|2 � c2V as shown in Figure A.1. As
a result, nearly exponential expansion is realized. When the scalar field fall down
to the minimum value of the inflaton potential, the era of inflation is finished and
the difference between the potential energy is released as latent heat of the vacuum
and all species of the particles such as photon, dark matter particles, baryons and
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reheating

Inflation

φ
φiφin

V(φ)

FIGURE A.1: The potential of the scalar field. The exponential expan-
sion occurs at φin. After the expansion, reheating occurs.

leptons etc. The era is called reheating period. In order to maintain φ̇2 � c2V, the
acceleration of the scalar field must be also sufficiently small. The first term of the
left hand side of equation (A.25) is compared with other two terms. The equation is
reduced to

φ̇ ∼ − c2

3H
V ′(φ). (A.30)

Also, in the case of φ̇2 � c2V, the Hubble constant is also approximated as

H ∼
√

8πGV(φ)

3c2 . (A.31)

We introduce two parameters as slow roll parameters defined as

ε ≡ c4

16πG

(
V ′

V

)2

, (A.32)

and

η ≡ c4

8πG
V”
V

. (A.33)

The ratio of kinetic energy of the scalar field to its potential is described by the slaw
roll parameter as

1
2c2 φ̇2

V
∼ 1

2
1
V

V ′2

9H2 ∼
1
3

c4

16πG

(
V ′

V

)2

=
1
3

ε. (A.34)

Time derivative of square of the Hubble constant is given as

2HḢ ∼ 8πG
3c2 V ′φ̇. (A.35)
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Dividing this equation by H3 and using Eq. (A.30), we get

Ḣ
H2 = −4πG

3c2
c2V ′2

3H4 ∼ −ε. (A.36)

From the time derivative of Eq. (A.30), we get

3Hφ̈ + 3Ḣφ̇ = −V”φ̇c2. (A.37)

The ratio between the first term and the second term of Eq. (A.25) is given by

φ̈

3Hφ̇
∼ − c2V”

9H2 −
Ḣ

3H2 ∼ −
1
3

c4V”
8πGV

+
1
3

ε =
1
3
(−η + ε). (A.38)

Therefore in order to realize the slow roll inflation, ε� 1 and |η| � 1 are required.

A.3.5 Physical essence of the realization of scalar and tensor perturbation
due to quantum fluctuation during the inflation period

Any inhomogeneity existing before the inflation are erased due to the exponential
expanding during the inflation. Pair creation and annihilation of particle and an-
tiparticle always happen in the nature due to quantum fluctuation of the vacuum.
The life time of the pair created particles of energy of E till annihilation, ∆t, is esti-
mated from the uncertainty principle as

∆t ∼ h̄
E

. (A.39)

In the time scale of the normal life in the present universe, these effect does not have
any observable effect. In the standard inflation model, it is assumed that the inflaton
field is described by real scalar field. Therefore, antiparticle of inflaton is inlfaton
itself. Since the tensor mode of the metric perturbation is also real field, antiparticle
of graviton is also graviton itself. Since the event horizon of c/H exists during the
inflation period, the separation of the pair created particles which have life time of
longer than the Hubble time, exceeds the event horizon that is

c∆t >
c
H

. (A.40)

This pair created particles misses the chance to encounter and to annihilate. These
remain in the universe. Since the quantum fluctuation of the vacuum is random
process, distribution of the realized particles is inhomogeneous. This is the origin of
the scalar and tensor perturbation. These considerations lead that the typical energy
scale of the fluctuation of the inflaton field and graviton is both E ∼ h̄H.

A.3.6 The scalar perturbation of the metric

For simplicity, reheating happens suddenly when the vacuum expectation value of
the inflaton field reaches the valley of the inflaton potential shown in Figure A.1.
Let’s consider the region accompanying the inflaton field fluctuation of δφ. Assume
the amplitude is positive. The reheating of the region happens prior to the average
region where accompanies no fluctuation. The difference of the reheating time of the
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region prior to the average universe is given by

δtreh = −δφ

φ̇
, (A.41)

where δtreh < 0. Under abrupt reheating assumption, dominant component of the
energy density of the universe switch to inflaton potential to energy of the relativistic
particles. Before reheating the expansion law of the region is nearly exponential
expansion. After reheating the expansion law of the region abruptly changes to t1/2.
Therefore, the change of the radius of the universe of the already reheated region
during−δtreh which gives the time duration till the reheating of the average region is
happened after the reheating the region is happened, is negligible compare with the
change of the radius of the universe of the average universe, that is ∆a = ȧ(−δreh).
In other word, the radius of the universe of the already reheated region is smaller
than the average region amount of−∆a. This results in the perturbation of the scalar
curvature of the region as

ϕ ∼ −∆a
a

=
ȧδtreh

a
= −Hδφ

φ̇
. (A.42)

Therefore, the power spectrum of the scalar curvature perturbation is given by the
power spectrum of the inflaton perturbation as

Ps(k) =
(

H
φ̇

)2

Pφ(k) =
(

H
φ̇

)2 ( H
2π

)2

k=aH
, (A.43)

where we use Pφ = (H/2π)2/2k3, k is comoving wave number of the perturbation
and subscript k = aH/c defines the Hubble constant when the perturbation with
wavelength of a/k exits the event horizon 1/H. Note that the natural unit is adopted
in this discussion. The following definition of the power spectrum of variable X is
applied;

< X~kX~k′ >≡ (2π2)δ3(~k− ~k′)
PX(k)

k3 . (A.44)

Using (
H
φ̇

)2

∼ 9H4

c4V ′2
= 4πG

16πGV2

c4V ′2
= 4πG

1
ε

, (A.45)

the power spectrum of scalar curvature is given by

Ps(k) =
4πG

ε

(
H
2π

)2

k=aH
. (A.46)

It predicts that the scalar curvature perturbation is almost scale invariant.
Equation (A.46) says that amplitude of power spectrum of scalar perturbation

for some wave number is given by the Hubble constant at the time of horizon exit
of the perturbation. In the slow roll inflation model, the value of the Hubble con-
stant during the inflation that is the value of the inflaton potential, is monotonically
decreasing with time as shown in Figure A.1. Further, the larger the wave number
of the perturbation exits the event horizon later. Therefore the power spectrum of
scalar curvature decreases with increasing wave number. Suppose the horizon exit
time of the perturbation with wave number of k + δk delays δt from the horizon
exit time of the perturbation with k. Using k = aH, the wave number deference is
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rewritten as
dk ∼ (ȧH + aḢ)dt ∼ ȧdtH = −aH2 dφ

φ̇
= −kH

dφ

φ̇
. (A.47)

Therefore,
d

d ln k
=

kd
dk
∼ − φ̇

H
d

dφ
∼ − c4

8πG
V ′

V
d

dφ
. (A.48)

and
dε

d ln k
= −1

2
1

(8πG)2
V ′

V

(
2V ′V”

V2 =
2V ′2

V2

)
= −2ηε + 4ε2, (A.49)

is obtained. The power index of the power spectrum of the scalar curvature pertur-
bation is deduced as

d ln Ps(k)
d ln k

= 2η − 6ε. (A.50)

The power spectrum of the density fluctuation is defined as

< δρ2
k >∝ kns . (A.51)

Poisson equation ∇2Φ ∝ δρk provides Φ ∝ k−2δρk. Therefore,∫
d ln kPs(k) ∝

∫
k2dk|Φk|2 ∝

∫
dkk−2|δρk|2 ∝

∫
d ln kkns−1. (A.52)

Therefore, the power spectral index of the scalar curvature is given by ns − 1 and

ns − 1 = 2η − 6ε. (A.53)

When ε = 0 and η = 0, the scale invariant so-called Harison-Zel’dovich spectrum
of ns = 1 is recovered. The most updated Planck results [4] shows that the spectral
index of the scalar perturbation is

ns = 0.9649± 0.0042. (A.54)

A.3.7 The tensor perturbation

The power spectrum of the tensor perturbation is given by

Pt(t) = 64πG
(

H
2π

)2

k=aH
. (A.55)

The spectral index is given by

nt =
d ln(Pt)

d ln k
∼ −2ε. (A.56)

A.3.8 The tensor-to-scalar ratio

The ratio of the power spectrum of the scalar perturbation and the power spectrum
of the tensor perturbation is called tensor-to-scalar ratio r. The tensor-to-scalar ratio
is defined as

r =
Pt(k)
Ps(k)

= 16ε. (A.57)
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The relation between the potential V and tensor-to-scalar ratio is given by

V1/4 = 1.06× 1016 ×
( r

0.01

)1/4
GeV. (A.58)

When we know the tensor-to-scalar ratio by the observations, we can estimate the
energy scale at the inflation era. It is known that the energy scale is close to that of
the grand unified theory (GUT) scale. The current lower limit of the tensor-to-scalar
ratio is r < 0.07 (95%, C.L.)[12]. From eq.(A.57), the lower limit on r provides the
lower limit of ε as ε < 0.04375. By combining with Planck results Eq.(A.54) and
eq.(A.53), we get η < −0.00465. The inflaton potential model with negative η is
favored more than one sigma significance.

A.4 Cosmic Microwave Background

If there is the cosmic inflation at the beginning of our universe, the primordial grav-
itational waves are generated. This should make specific polarization pattern in the
CMB polarization map. It is called B-mode polarization. The detection of CMB B-
mode polarization is supposed to be smoking gun evidence to confirm inflation.

In order to measure the tensor-to-scalar ratio r, the CMB polarization observa-
tion is the most promising approach today [9]. The primordial gravitation waves
originated from the quantum fluctuation of the space time metric during inflation
imprints the odd parity polarization pattern to the CMB called "B-mode" polariza-
tion.

A.4.1 The brief history of CMB observations

Arno Penzias and Robert Wilson observed the CMB for the first time using 20 feet
horn antenna at the Crawford Hill location of Bell Telephone Laboratories in 1964
[125].

In 1989, the COBE (Cosmic Background Explorer) satellite measured the CMB
monopole power spectrum using the spectroscope named FIRAS (Far Infrared Ab-
solute Spectroscopy). The CMB monopole spectrum meets 2.725 K blackbody spec-
trum shown in Figure A.2 [126, 127, 128]. The DMR (Differential Microwave Ra-
diometer) on COBE probed that there is 10−5 temperature fluctuation with respect
to the CMB temperature. It is known that the fluctuation is the origin of the large
scale structure of the universe.

A.4.2 CMB polarization

Before the clear up of the universe, the proton and electron moved separately. The
photon is scattered by the electron which is called Thomson scattering. Since the
electron captured by proton in the last scattering state, the photon was not scattered
by the electron.

In the redshift z ∼ 20, the photon was re-scattered by the electron created by the
UV radiation from the first stars. The era is called reionization. The expected power
spectrum of the B-mode polarization has the bump affected by the reionization at
angular scale l < 10.

In the observational results (COBE/DMR, WMAP, Plnack), the CMB has a tem-
perature fluctuation. Therefore the CMB has a polarization. The photon scattered by
the electron create perpendicular polarization at the line of site. When the universe
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FIGURE A.2: The CMB spectrum with 100σ error bars as a function
of frequency measured by the COBE/FIRAS. The green line shows

2.725 K blackbody spectrum. The data is available from [129]

is isotropic, the polarization is canceled out by the various direction polarization
whose intensity is same. Otherwise, when the universe has a quadrupole distribu-
tion, the polarization is not canceled out, and it remains the polarization along the
line of hot region shown in Figure A.3. Because the polarization from hot region
(low energy density region) is higher than that from cold region (high energy den-
sity region). When the polarization are overlapped, the angle of polarization from
hot region remains.

A.4.3 Stokes parameter

We define electrical fields Ex and Ey (Ex ⊥ Ey). The phase difference of the fields is
defined δ. The Stokes parameters is given by

I = E2
x + E2

y, (A.59)

Q = E2
x − E2

y, (A.60)

U = ExEy cos δ, (A.61)

and
V = ExEy sin δ, (A.62)

where I is the intensity, Q is the intensity deference of x and y direction, U is the
intensity difference of x and y direction inclined by 45 degrees, and V is the inten-
sity deference of right and left circular polarization. It is known that the circular
polarization of CMB polarization is too weak. The stokes parameter V is negligible
for CMB polarization observation. The CMB intensity is proportional to the fourth
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FIGURE A.3: The CMB polarization from the quadrupole anisotorpy.
The photon scattered by the electron. When the quadrupole ansi-

toropy, the polarization is created aligned to the hot region.

power of CMB temperature (δT/T = δI/4I). Similarly, we define the dimensionless
stokes parameters Q′ and U′ as the stokes parameters Q and U divided by 4I given
by

Q′ =
Q
4I

, (A.63)

and
U′ =

U
4I

. (A.64)

A.4.4 E-mode and B-mode polarization

The dimensionless stokes parameters Q′ and U′ is defined by the coordinate of the
observer. Using wave number vector, the parameters is changed to an observer in-
dependent parameters. We define Q̄(~l) and Ū(~l) as making Q′ and U′ Fourier trans-
form, respectively. Using two dimensional wave number vector (~l), we change the
coordinate given by(

E(~l)
B(~l)

)
=

(
cos 2φl sin 2φl
− sin 2φl cos 2φl

)(
Q̄(~l)
Ū(~l)

)
, (A.65)

where φ is the angle between two dimensional wave number vector and Q̄, Ū. E(~l)
and B(~l) are called E-mode polarization and B-mode polarization respectively. E-
mode polarization is parallel or perpendicular to the wave number vector in the real
space. B-mode is 45 deg or 135 deg tilted to the wave number vector in the real
space. The power spectrum of the E-mode and B-mode polarization are given by

< E∗(~l)E(~l′) >= (2π)2δ2(~l −~l′)CEE
l , (A.66)
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h+

h×

FIGURE A.4: The polarization from the primordial gravitational
waves. The primordial gravitational wave stretched the space and
create CMB polarization by the Thomson scattering. The blue and
red region are cold and hot region, respectively. The h+ polarization
creates E-mode polarization. The h× mode creates B-mode polariza-

tion.

and
< B∗(~l)B(~l′) >= (2π)2δ2(~l −~l′)CBB

l , (A.67)

respectively.
To observe B-mode polarization is the direct proof of the inflationary cosmology.

The cosmology predicts the existence of the primordial gravitational waves. The
wave causes the fluctuation to the space component of the metric tensor (gij). The
metric tensor is given by

gij(~x, t) = ḡij(~x, t) + δgij(~x, t), (A.68)

where δgij(~x, t) is given by

δgij(~x, t) =

 Φ 0 0
0 Φ 0
0 0 Φ

+ a2

 0 0 h1
0 0 h2
h1 h2 0

+ a2

 h+ h× 0
h× −h+ 0
0 0 0

 , (A.69)

where the first term of the right hand is scalar perturbation, the second term of that
is vector perturbation, and third term of that is tensor perturbation. Φ is the grav-
itational potential and h+, h× shown in Figure A.4 is the metric tensor caused by
the primordial gravitational waves. When the gravitational waves penetrate the last
scattering surface, the space is stretched. It causes quadruple distribution and CMB
polarization. h+-mode causes E-mode polarization, however it is not identified that
the polarization is caused by the temperature perturbation or primordial gravita-
tional waves. h×-mode causes B-mode polarization. The polarization is not created
by the temperature perturbation. Therefore, to observe B-mode polarization is direct
proof of the inflationary cosmology shown in Figure A.5).
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FIGURE A.5: The gravitational wave propagate the last scattering sur-
face (top figure). The CMB polarization at the last scattering surface

(bottom figure). The~k is the vector of the wave number.
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Appendix B

Superconducting photon detectors

B.1 Transition Edge Sensor

A transition edge sensor (TES) [23] shown in Figure B.1 is a superconducting de-
tector. The detector is widely used for millimeter, submillimeter astronomical ob-
servation. And the detector is also used dark matter search experiment and have a
plan to be used for the X-ray satellite observation. The combination of the detector
and SQUID (superconducting quantum interference device) amplifier can be multi-
plexed. This makes a large focal plane detector. The superconducting absorber of
TES is maintained the slightly below transition temperature. An incoming photon
is changed the resistance of the TES dramatically. When the TES is connected to the
bias voltage source, we can measure the incoming light power by the current change.

B.2 Superconducting Tunnel Junction

A superconducting tunnel junction (STJ) [130, 131] shown in Figure B.2 is a super-
conducting detector. The detector used Josephson effect as a detection mechanism.
It consists of a superconducting-normal-superconducting junction. The radiation
breaks Cooper pairs and generates quasiparticles. The radiation power is estimated
by the Josephson current which is quasiparticles tunneled very thin insulator film.
The detectors are being developed for submillimeter and optical/UV and X r-ray
observation. Same mechanism is used in the superconducting mixer for millimeter
and submillimeter astronomical observations.

FIGURE B.1: The illustration of Transition Edge Sensor (TES).
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FIGURE B.2: The illustration of Superconducting Tunnel Junction
(STJ).

FIGURE B.3: The illustration of Superconducting Nanowire Single-
Photon Detector (SNSPD).

B.3 Superconducting Nanowire Single-Photon Detector

A superconducting nanowire single-photon detector (SNSPD) [132, 133] shown in
Figure B.3 is a type of near-infrared and optical single-photon detector. It based on
current-biased superconducting nanowire. It was developed at Moscow State Ped-
agogical University and the University of Rochester in 2001. In 2018, the SNSPD is
the fastest single-photon detector for photon counting measurement. The SNSPD
consists of a thin and narrow superconducting nanowire whose length is typically
hundreds micrometers. The detector is maintained below superconducting transi-
tion temperature and biased DC current which is slightly below critical current. The
incoming photon breakers Cooper-pairs and reduces the local critical current and
creates non-superconducting region. The incoming photon energy is measured by
the voltage change.
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FIGURE B.4: The illustration of Hot Electron Bolometer (HEB).

B.4 Hot Electron Bolometer

A hot electron bolometer [134] shown in Figure B.4 is a type of semiconductor or
superconducting direct detector. The electrons in the metal is coupled with phonon
included in substrate in low temperature. When the detector is absorbed radiation,
the electrons is decoupled phonon. The decoupled electron in the metal is called
"hot electron". When the resistance is depend on the temperature of the electrons,
we can use this mechanism as a bolometer.

B.5 Metallic Magnetic Calorimeter

A metallic magnetic calorimeter (MMC) [135] shown in B.5 is based on the mea-
surement for the change of magnetization of superconducting metal. The change is
proportional to the temperature change caused by the absorption of the radiation.
We measure this change by SQUID.
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FIGURE B.5: The illustration of Metallic Magnetic Calorimeter
(MMC).
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Appendix C

Calibration for GroundBIRD
telescope

C.1 The elevation scan

The elevation scan is to calibrate detector responsivity, because the radiation power
from the sky is changed by the thickness of atmosphere. The minimum elevation
angle of the GroundBIRD telescope is 60 deg. The radiation temperature of the ele-
vation scan is given by

Tsky,elevation =
Tsky

cos(90− θelevation)
(C.1)

where θelevation is the telescope elevation and Tsky is the radiation temperature from
the sky at θelevation = 90 deg. The sky temperature as a function of elevation angle
for 145 and 220 GHz is in Figure C.1.

C.2 The moon observation

The moon is the good calibration source for the millimeter telescope [136]. To ob-
serve the moon is useful to calibrate the responsivity of the detector, the polarization
of the detector and the beam of the telescope. The moon polarization is distributed
radially from the center. We can use this polarization for the polarization calibration.
The radiation temperature of the moon is ∼ 200 K. The moon centered map simula-
tion for the GroundBIRD 20 RPM observation for 145 and 220 GHz is in Figure C.2
and C.3. The parameter of the simulation is in tab. C.1. The center temperature for
the moon observation is 67 K for 145 GHz and 110 K for 220 GHz. The maximum
and minimum polarization temperature difference is±0.4 K for 145 GHz and±1.3 K
for 220 GHz.

Radiation temperature 200 K
Reflection index 1.8
The moon radius 0.25 deg

Angular resolution 0.60 deg(0.42 deg)

TABLE C.1: The parameter of the moon observation simulation for
145 GHz(220 GHz) [136, 54]
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FIGURE C.2: The moon observation simulation for 145 GHz with
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C.3 The blackbody radiation measurement

The method that the telescope window is covered by the blackbody radiation source
is one of the most common calibration method for radio astronomical observation.
We usually use commercial blackbody source called "AN-72". It is ideal blackbody
source. When the ambient temperature is 300 K, the absorbed power from the black-
body source is given by

Pabs−hot,145 GHz = 80ηopt pW (for 145 GHz), (C.2)

and
Pabs−hot,220 GHz = 101ηopt pW (for 220 GHz). (C.3)

In the case of the telescope window covering by the liquid nitrogen blackbody
source (Trad = 77 K) the absorbed power from the blackbody source is given by

Pabs−cold,145 GHz = 20ηopt pW (for 145 GHz), (C.4)

and
Pabs−cold,220 GHz = 26ηopt pW (for 220 GHz). (C.5)





123

Appendix D

The model of the geometrical
dependence of Two Level System
noise in the PSD

In Chapter 6, we include the simple geometrical scaling of the TLS noise level shown
in Eq. 6.30 in the MKID forecaster. In this Appendix, we evaluate more realistic
geometrical dependence of TLS noise based on semiemprical model proposed by J.
Gao et al. [89].

D.1 The geometrical dependence of the TLS noise model

J. Gao et al. [89] proposed semiempirical noise model for TLS noise in frequency
PSD, S fr / f 2

r , given by

S fr

f 2
r
= κ( f , ω, T)

∫
Vh
|~E|3d~r

(ClV2
0 l)2

, (D.1)

where the latter term shows the geometrical dependence of the TLS noise, κ( f , ω, T)
is the sampling frequency, readout frequency, and temperature dependence, V0 is
the voltage at open end, l is the resonator length, E is the electric field, Vh is the TLS
host material volume, and Cl is the capacitance of the coplanar waveguide (CPW)
line given by

Cl = 4ε0εeff
K(k)
K(k′)

, (D.2)

where ε0 is the permittivity of vacuum and εeff is the effective dielectric constant of
the CPW line, K is the complete elliptic integral, k = s/(s + 2w) (s and w are the
center strip and gap width of the CPW line, respectively.), and k′ =

√
1− k2. The

relation between the voltage at open end and geometry is given by [84]

V0 ∝ 2K(k′). (D.3)

The TLS noise mainly exists at metal substrate interface, metal air interface, sub-
strate air interface and the edge of the metal [92, 137] shown in Figure D.1. The
TLS noise is proportional to the third power of the electric field |E|3. Based on the
knowledge, we calculate the relative geometric dependence of the TLS noise effect
by considering the third power of the electric field distribution at the metal and the
substrate surface using Schwarz-Christoffel mapping which is a type of the confor-
mal mapping useful in microwave engineering. The relation between the geometry
and the summation of the third power of the electrical field at surface of the metal
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in the PSD
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FIGURE D.1: The TLS noise distribution. The figure shows the cross
section of the CPW line. The TLS noise is mainly distributed at metal
substrate interface (red region), at metal edge (blue region), at metal
substrate interface (green region), and at substrate air interface (ma-

genta region).

and substrate influencing the TLS noise is given by [89, 84]∫
Vh

|~E|3d~r ∝
4
a2

(∫ 1/k0

0
G′(u)du +

∫ 1

1/k0

G′(u)du +
∫ ∞

1/k1

G′(u)du

+
∫ 1/k1

1/k
G′(u)du +

∫ 1/k

1
G′(u)du

)
=

4
a2 I′,

(D.4)

where first, second, third, forth, and fifth terms represent the relation between the
geometry and the third power of the electric field influencing the TLS noise at the
center strip interface, at the metal edge of the center strip, at the interface of the
groundplane, at the metal edge of the groundplane, and at the substrate air interface,
respectively, a = s/2, k0 = 1 + 2t

πa (t is the half thickness of the resonator), k1 =
a
b

(
1− 2t

πb

)
(b = s/2 + w) [84], and G′(u) represents the third power of the electric

field distribution using Schwarz-Christoffel mapping given by

G′(u) =
1∣∣∣(1− k2

0u2)(1− k2
1u2)

√
(1− u2)(1− k2u2)

∣∣∣ . (D.5)

Therefore the relative geometrical dependence of the TLS noise is given by∫
Vh
|~E|3d~r

(ClV2
0 l)2

∝
I′

64a2ε2
0ε2

effK(k)
2K(k′)2l2

. (D.6)

Using Eq. D.6, we can evaluate the relative geometrical dependence of TLS noise in
the PSD.

D.2 The geometrical dependence of the TLS noise for PEC

In the case of perfect electric conductor (PEC), the effective dielectric constant εeff is
given by

εeff =
1 + εsub

2
, (D.7)

where εsub is the relative permittivity of substrate. We calculate relative geometrical
dependence of the TLS noise by Eq. (D.6) as a function of total CPW width for
PEC using the python package (scipy.integrate.quad). To avoid the singularities in
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FIGURE D.2: To avoid the singularities in Eq. D.6. The angle of the
metal edge is set βπ(< π/2).

Eq. D.6, we must consider the angle of the metal edge to be less than π/2 [89].
When the edge angle is βπ shown in Figure D.2, the third power of the electric field
distribution using Schwarz-Christoffel mapping G′(u) is rewritten by

G′(u) =
1
a2

∣∣∣∣∣ [(1− u2)(1− ku2)]2β[
(1− u2)(1− ku2)]3/2[(1− k2

0u2)(1− k1u2)
]2β

∣∣∣∣∣ . (D.8)

When β = 89.5
180 , the relative geometrical dependence of TLS noise as a function

of total CPW line width are shown in Figure D.3. We normalize the results by the
result at s = 3 µm and w = 2 µm. All results are calculated for CPW thicknesses
of d = 200 nm. As a results, even if the total CPW width is same, the amplitude of
the TLS noise effect in the the PSD at the ratio fixed s : w = 3 : 2 is lower than that
fixed s = 3 µm and w = 2 µm. The results are almost same results proposed by R.
Barends et al. [92].

D.3 The geometrical dependence of the TLS noise including
the superconducting features

The effective dielectric constant including the superconducting features [120] is given
by

ε′eff = c2LtotCl = c2 Lg

1− αk
Cl , (D.9)

where Ltot is the total inductance of the CPW line which is summation of the kinetic
inductance Lk and geometrical inductance Lg, and αk is the kinetic inductance frac-
tion which is the kinetic inductance per total inductance. The geometric inductance
is given by

Lg =
µ0

4
K(k′)
K(k)

, (D.10)

where mu0 is the vacuum permeability. Therefore, the effective dielectric constant
including in the superconducting features is given by

ε′eff =
εeff

1− αk
. (D.11)
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FIGURE D.3: The relative geometrical dependence of the TLS noise as
a function of total center strip width. We normalize the results using
the result at s = 3 µm and w = 2 µm. All results are calculated with
the thickness of CPW of d = 200 nm. The blue line shows the relative
geometrical dependence of the TLS noise fixed the ratio s : w = 3 : 2.
The red line shows the relative geometrical dependence of the TLS
noise fixed w = 2 µm. The green line shows the relative geometrical

dependence of the TLS noise fixed s = 3 µm.

Using this effective dielectric constant, the geometrical dependence of the TLS noise
is redefine by ∫

Vh
|~E|3d~r

(ClV2
0 l)2

∝
(1− α2

k)I′

64a2ε2
0ε2

effK(k)
2K(k′)2l2

. (D.12)

The result shows that the TLS noise effect decrease with increasing the kinetic in-
ductance fraction. The kinetic inductance of the NbTiN is higher than the kinetic
inductance of Nb with same geometry, because the penetration depth of NbTiN is
larger than that of Nb. R. Barends et al. [92] propose the TLS noise effect of NbTiN
film is 11 dB lower than that of Nb film studied by J. Gao et al. [88]. We estimate the
results can be explained by Eq. (D.12).
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