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Summary

1.1 Convection-diffusion equations

One of the main research areas on the theory of partial differential equations is the

well-posedness issue on the Cauchy problems, that is, existence of solutions, uniqueness

of solutions and continuous dependence of initial data. In particular, it is noteworthy

to query whether the Cauchy problem for partial differential equations has a solution or

not. Such a problem has been attracting much interest not only in mathematical but also

other related fields. The purpose of this thesis is to consider the existence of solutions

and the well-posedness of the Cauchy problem to the convection–diffusion equations.

Let Rn be the n-dimensional Euclidean space with n ≥ 1 and a ∈ Rn. We consider

the following Cauchy problem to the convection-diffusion equations{
∂tu−∆u = a · ∇(|u|p−1u), t > 0, x ∈ Rn,

u(0, x) = u0(x), x ∈ Rn,
(1.1.1)

where u = u(t, x) : R+ × Rn → R is the unknown function, p > 1 is the fixed non-linear

exponent, a ∈ Rn is an arbitrary fixed vector denotes the direction of the convection

and u0 = u0(x) : Rn → R is given initial data. We denote ∆, ∂t and ∇ by the n-

dimensional Laplacian, the partial derivative with respect to t and the gradient in x

variables, respectively.

In this thesis, we show the existence and uniqueness of a solution and establish the

well-posedness to the Cauchy problem (1.1.1) in a uniformly local Lebesgue space and

amalgam spaces.

Semilinear parabolic problems often appear in various mathematical models such as

heat transfer models, chemical reaction models, biochemical reaction models, nonlinear

radiation laws, growth models of tissues in living bodies and so on. The well-posedness

of the Cauchy problem to semilinear parabolic equations depends on a lot of factors such

as effect of diffusion terms, nonlinear terms, boundary conditions and the shape of initial

data. This is one of the reason why the issue has been attracting much attention from

many mathematicians with the development of nonlinear analysis.

The convection-diffusion equations describe physical phenomena such as the dynamics

of a physical substance governed by the motion derived by two processes: the convection

and the diffusion. The convection term stems from the movement of molecules consisting

the fluids whereas the diffusion describes the spread of particles from regions of higher

concentration to regions of lower concentration through a random diffusive process of

motion.
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1.2 Nonlinear heat equations of Fujita type

One of a simplest model of nonlinear parabolic equations is the following Cauchy prob-

lem of the nonlinear heat equation. In particular, the problem is called the Fujita type

nonlinear heat equation{
∂tu−∆u = up, t > 0, x ∈ Rn,

u(0, x) = u0(x) ≥ 0, x ∈ Rn,
(1.2.1)

where n ≥ 1 and p > 1 was proposed as a simple model to know the dynamics of the

solution to the Navier-Stokes equations by Fujita [29]. When we consider the Cauchy

problem for a semilinear heat equation (1.2.1) with initial data is the Lebesgue spaces

u0 ∈ Lr(Rn), where p > 1, 1 < r < ∞, and Lr(Rn) denotes the r-th powered integrable

functions with the Legesgue measure in x. It is well known that if the initial data u0 ∈
L∞(Rn), then there exists T (u0) > 0 and a unique solution u ∈ L∞(0, T ;L∞(Rn)) of

(1.2.1) (cf.[53]). On the other hand, the first result with a singular initial data is due

to the pioneering work of Weissler [68, 69]. For such power type nonlinearities, the scale

invariance property plays an important role. If the function u(t, x) satisfies (1.2.1), then

for any λ > 0, the scaled function

uλ(t, x) = λ
2

p−1u(λ2t, λx)

also satisfies the equation (1.2.1) again. Moreover, the Lr- norm is invariant under this

scaling if and only if

r = rc :=
n(p− 1)

2
.

With regard to this critical exponent, one can classify the existence and uniqueness results

of the (1.2.1) into the following two cases:

Case A. If r ≥ rc and r > 1 or r > rc and r ≥ 1, Weissler [68] and Brezis–Cazenave [7]

proved that for any u0 ∈ Lr(Rn) there exists a positive time T = T (u0) and a

unique solution to (1.2.1) in u ∈ C([0, T ];Lr(Rn)) ∩ L∞
loc((0, T );L

∞(Rn)).

Case B. If r < rc,Weissler [68] and Brezis–Cazenave [7] indicated that there exists no positive

solution in any weak sense (cf. Haraux–Weissler [39], Tayachi [66]).

Those results are considered along the theory of evolution equations using the semi-group

theory developed by Hille-Yosida and it is common idea to introduce the notion of the

mild solutions, i.e., u is called as the mild solutions to (1.2.1) if

u(t) = et∆u0 +

∫ t

0

e(t−s)∆
(
|u(s)|p−1u(s)

)
ds (1.2.2)

in C([0, T ];Lr(Rn)), where et∆ is the standard heat evolution operator (see [68, 69] and

to study the problem of existence and uniqueness in the larger class of functions is a
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basic target in this research field. Brezis-Cazenave [7] proved unconditional uniqueness

for r > rc, r ≥ p and for r = rc, r > p to the equation(1.2.1) In the double critical case

r = rc = p, namely p = r = n
n−2

, Ni–Sacks [59] proved that unconditional uniqueness does

not hold on the unit ball in Rn . In [67] Terraneo extended this non-uniqueness result to

the whole space Rn for suitable initial data.

In the critical case r = rc and n ≥ 3, Weissler [69] proved a global existence of a

solution to (1.2.1) under a smallness assumption on the initial data of (1.2.1). Some

generalization to a semilinear parabolic equation with a nonlinear gradient term was done

by Snoussi–Tayachi–Weissler [65]. For the related and extended results see the references

[28], [44]–[48].

On the other hand, our main problem, the Cauchy problem (1.1.1) has a very similar

nature with the problem (1.2.1). It has the scaling invariant property with respect to the

corresponding scale transformation, i.e., if the function u(t, x) satisfies (1.1.1), then for

any λ > 0, the scaled function

uλ(t, x) = λ
1

p−1u(λ2t, λx), t > 0, x ∈ Rn,

also satisfies the equation of (1.1.1). The space of initial data Lr(Rn) is invariant under

this scaling if and only if

r = rc = n(p− 1).

This exponent plays an important role for the well-posedness of the problem (1.1.1) as

a limiting or critical exponent. It is pointed out by the pioneering work of Weissler [69]

that the ill-posedness of the positive solution occurs on the scale invariant function space

in the case of the Fujita critical exponent. These facts lead that very similar facts would

hold even in a problem (1.1.1) closer to the fluid model with the nonlinear term which

involves the derivative.

The problem (1.1.1) has been considered by a number of authors (see e.g. [1], [14]–

[20], [36], [55], [74], [75]). Among others, Escobedo–Zuazua [16] showed that for initial

data u0 ∈ L1(Rn), there exists a unique global classical solution u ∈ C([0,∞);L1(Rn)) of

(1.1.1) in

u ∈ C((0,∞);W 2,q(Rn)) ∩ C1((0,∞);Lq(Rn)),

for every q ∈ (1,∞). When p > 1 + 1
n
, they prove that the global existence and the

large time behavior of solutions is given by the heat kernel. When p = 1 + 1
n
, they prove

that the large time behavior of solutions (1.1.1) with initial data in L1(Rn) is given by

a self-similar solution. The solution to (1.1.1) preserves the initial mass
∫
Rn u0dx for all

t > 0, namely ∫
Rn

u(t, x)dx =

∫
Rn

u0(x)dx,

and if u0(x) ≥ 0 this implies the L1- conservation law. In this case, the Fujita critical

exponent corresponding to the nonlinear term ∇(|u|p−1u) is given by p = 1 + 1
n
, which is
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expected by the scale invariance. Unlike the case of nonlinear heat equation (1.2.1) the

solution does not develop the singularity within a finite time for all exponent p > 1. On

the other hand, for the time local well-posedness of the Cauchy problem (1.2.1), the result

is very similar to one of the Fujita type problem by Weissler [69]. The (1.2.1) with a power

type nonlinearity is ill-posed. The vorticity Navier-Stokes equations is well-posed and the

well-posedness property changes subtly depending on the structure of the problem. In

order to consider the time local well-posedness of the problem for the critical exponent

p = 1+ 1
n
, we construct the solution by the method of the integral equations via the heat

semigroup in the case including the exponents before and after, in particular case of the

critical exponent, the solution can be appropriately obtained even in the critical space

L1
uloc,ρ(Rn).

1.3 Uniformly local Lebesgue spaces

Definition (Uniformly local Lebesgue spaces). Let 1 ≤ r ≤ ∞ and ρ > 0. The uniformly

local Lebesgue spaces on Ω ⊆ Rn denoted by Lr
uloc,ρ(Ω), is defined by

Lr
uloc,ρ(Ω) :=

{
f ∈ L1

loc(Ω) : ∥f∥Lr
uloc,ρ

< ∞
}
,

where for ρ > 0

∥f∥Lr
uloc,ρ

=


sup
x∈Ω

(∫
Bρ(x)∩Ω

|f(y)|rdy

) 1
r

, 1 ≤ r < ∞,

sup
x∈Ω

sup
y∈Bρ(x)∩Ω

|f(y)|, r = ∞.

(1.3.1)

where Bρ(x) := { y ∈ Ω : |x − y| < ρ} denotes a open ball in Ω with radius ρ > 0 and

center x ∈ Ω. Here we identify L∞
uloc,ρ(Ω) as L∞(Ω). The space Lr

uloc,ρ(Ω) is a Banach

space with the norm defined in (1.3.1).

The Sobolev spaces W k,r
uloc,ρ(Ω) for 1 ≤ r ≤ ∞, ρ > 0 and k = 1, 2, . . . are analogously

introduced. We define by

W k,r
uloc,ρ(Ω) :=

{
f ∈ Lr

loc(Ω) : ∥f∥Wk,r
uloc,ρ

< ∞
}
,

where for ρ > 0,

∥f∥Wk,r
uloc,ρ

= ∥f∥Lr
uloc,ρ

+
∑
|α|=k

∥∂α
x f∥Lr

uloc,ρ
. (1.3.2)

We denote W 1,2
uloc,ρ(Ω) as H

1
uloc,ρ = H1

uloc,ρ(Ω). for simplicity. Bounded uniformly contin-

uous functions BUC(Ω) is not dense in uniformly local Lebesgue spaces Lr
uloc,ρ(Ω).
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Definition (Lr
uloc,ρ(Ω)). We define the subspace Lr

uloc,ρ(Ω) of L
r
uloc,ρ(Ω) as the closure

of the space of bounded uniformly continuous functions BUC(Ω) in the space Lr
uloc,ρ(Ω),

i.e.,

Lr
uloc,ρ(Ω) := BUC(Ω)

∥·∥Lr
uloc,ρ

and define L∞
uloc,ρ(Ω) = BUC(Ω). The space Lr

uloc,ρ(Ω) is a Banach space with the norm

defined in (1.3.1).

The authors in [4]–[6], [50] and [57] also make use spaces of functions which have the

property that their elements have some uniform size when it is measured in balls of fixed

radius but arbitrary center. These are the so-called uniformly local spaces. It turns out

that these spaces are very natural and useful for equations in unbounded domains since,

as in the case of bounded ones, they enjoy suitable inclusion properties, they have locally

compact embeddings and constant functions belong to them. In particular, when trying

to analyze parabolic equations in unbounded domains, these spaces will allow to consider

large classes of initial data with no prescribed behavior at infinity and even allowing for

local singularities.

1.4 Well-posedness in uniformly local spaces

We introduce mild solutions to (1.1.1) in uniformly local Lebesgue spaces Lr
uloc,ρ(Rn).

Definition (Mild solutions). Let p > 1, 1 ≤ r < ∞ and T > 0. Suppose u0 ∈ Lr
uloc,ρ(Rn).

The function u is called a mild solution of the convection–diffusion equations (1.1.1) on

[0, T )× Rn if u satisfies

u(t) = et∆u0 +

∫ t

0

a · ∇e(t−s)∆
(
|u(s)|p−1u(s)

)
ds (1.4.1)

in C([0, T );Lr
uloc,ρ(Rn)), where et∆ denotes the heat semigroup defined by

et∆f = Gt ∗ f with Gt(x) =

(
1

4πt

)n
2

e−
|x|2
4t , t > 0. (1.4.2)

Under the framework on the evolution equation, once we establish the existence and

uniqueness of the mild solution the above, the standard theory of the evolution equation

over any Banach space ensure that the regularity of the mild solution. Namely one can see

that the following setting of standard mild solutions (the strong solution) can be derived

from our main theorem for the well-posedness of the mild solution.

For the same initial data in the above definition, the function u is called a strong

mild solution of the convection–diffusion equations (1.1.1) on [0, T ) × Rn if u satisfies

u ∈ C
(
(0, T );L∞(Rn) ∩W 1,r

uloc,ρ(Rn)
)
and it satisfies

u(t) = et∆u0 +

∫ t

0

e(t−s)∆a · ∇
(
|u(s)|p−1u(s)

)
ds (1.4.3)
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in C([0, T );Lr
uloc,ρ(Rn)). It is straightforward to see that the strong mild solution satisfies

the equation (1.1.1) in Lr
uloc,ρ(Rn) and hence the solution is the strong solution.

We state the well-posedness result to (1.1.1) in uniformly local Lebesgue spaces Lr
uloc,ρ(Rn).

Theorem 1.4.1 (The local well-posedness). Let n ≥ 1, p > 1 and 1 ≤ r < ∞ with
r ≥ n(p− 1) if p > 1 + 1

n
,

r ≥ 1 if p = 1 + 1
n
,

r ≥ 1 if p < 1 + 1
n
.

(1.4.4)

Assume that 1 ≤ q < ∞ with p ≤ q ≤ pr and r < q. Then for any u0 ∈ Lr
uloc,ρ(Rn),

there exists T = T (u0) > 0 and a unique mild solution u ∈ C([0, T );Lr
uloc,ρ(Rn)) ∩

C((0, T );Lq
uloc,ρ(Rn)) satisfying (1.4.3). Furthermore, the Cauchy problem (1.1.1) is well-

posed in

C([0, T );Lr
uloc,ρ(Rn))∩C((0, T );Lq

uloc,ρ(R
n)).

Namely for any initial data u0, v0 ∈ Lr
uloc,ρ(Rn) and the corresponding solutions u(t), v(t)

to (1.1.1), u(t) → v(t) in C([0, T );Lr
uloc,ρ(Rn)) as u0 → v0 in Lr

uloc,ρ(Rn).

Remark. Since our convection-diffusion equations(1.1.1) has a scale invariance property

so for scaling critical class global existence result holds for small initial data.

It is interesting and meaningful to compare our result to the result for the Fujita type

nonlinear heat equation. For the subcritical case r > rc = n(p − 1), the problem (1.1.1)

is time locally well-posed and it is the same as the case of the problem (1.2.1). However,

for the Fujita critical case p = 1 + 1
n
, the solution exists even for the positive initial

data and it does not blow up in a finite time. Such a behavior can be expected by the

Escobedo-Zuazua result [16]. Moreover, the Cauchy problem remains well-posed even for

the scaling critical case r = rc = 1 for the Fujita critical case p = 1 + 1
n
. This is also

expected from the result in [16] but our result support that the local well-posedness can

be reflecting the local property of the problem only.

On the other hand, the difference of the local well-posedness theory is on the uncon-

ditional uniqueness that is proven by Brezis-Cazenave [7] for the Fujita type equation. In

the convection-diffusion equations, the unconditional uniqueness and even unconditional

well-posedness under the mild solutions frame work, it is not clear if it is true for the

scaling critical case r = rc = 1 if the Fujita critical case p = 1 + 1
n
.

Those difference indeed stems from the structure of the nonlinear term in (1.1.1),

namely the nonlinear term involves the derivative. Upon this view point, it is also mean-

ingful to compare with the result for the Cauchy problem of the incompressible Navier-

Stokes equations. It is proven that the Navier-Stokes equations remains well-posed in the
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scaling critical spaces:
∂tu−∆u+ u · ∇u+∇p = 0, t > 0, x ∈ Rn,

div u = 0, t > 0, x ∈ Rn,

u(0, x) = rot u0(x), x ∈ Rn,

where u = u(t, x) : R+ ×Rn → Rn denotes the fluid velocity and p = p(t, x) : R+ ×Rn →
R stands for the pressure. It is well-known that the Navier-Stokes equations have a

similar scaling invariant structure in Ln(Rn) and it is well-posed in such a space (cf.

Giga-Miyakawa [33], Giga-Miyakawa-Osada [34] and Giga-Giga-Saal [32]. Our result is

corresponding to the Navier-Stokes case and it is possible to extend our result to the case

the Navier-Stokes equations.

1.5 Weak solutions in uniformly local spaces

Let Ω ⊂ Rn be an unbounded domain with uniform C2 boundary. We introduce the

weak solutions to (1.1.1) in uniformly local Lebesgue spaces Lr
uloc,ρ(Ω). We consider weak

solutions in uniformly local Lebesgue spaces because the weak solutions case uniqueness

result hold on larger class. For this case we consider the Cauchy-Dirichlet problem of a

time dependent convection-diffusion equation: For a ∈ Rn,
∂tu−∆u = a · ∇(|u|p−1u), t > 0, x ∈ Ω,

u(t, x) = 0, t > 0, x ∈ ∂Ω,

u(0, x) = u0(x), x ∈ Ω,

(1.5.1)

where u = u(t, x); R+ × Ω → R is the unknown function, and u0 = u0(x); Ω → R is a

given initial data.

Let BUC∞
c (Ω) denotes a class of infinitely many time differentiable uniformly con-

tinuous bounded functions whose supports are away from the boundary. Namely for

f ∈ BUC∞
c (Ω), supp f ∩ ∂Ω = ∅. We should note that the class of the infinitely many

differentiable compact supported functions C∞
0 (Ω) ⊊ BUC∞

c (Ω) if Ω in an unbounded

domain.

Definition(H1
c,uloc,ρ(Ω)). Let W1,r

c,uloc,ρ(Ω) be the closure of the BUC∞
c (Ω) in W 1,r

uloc,ρ(Ω).

We denote H1
c,uloc,ρ(Ω) for W

1,2
uloc,ρ(Ω).

As is commented in the aboveW1,r
c,uloc,ρ(Ω) is larger class thanW 1,r

0,uloc,ρ(Ω) ≡ C∞
0 (Ω)

W 1,r
uloc,ρ(Ω)

if the domain is unbounded.

Definition (Weak Lr
uloc(Ω)-solutions). Let 1 ≤ r < ∞, ρ > 0. For an initial data

u0 ∈ Lr
uloc,ρ(Ω) and T > 0, we say that u is a weak Lr

uloc(Ω)-solution of (1.5.1) in (0, T )×Ω,

if
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1) u ∈ C([0, T ) : Lr
uloc,ρ(Ω)) ∩ L2(0, T : H1

c,uloc,ρ(Ω) ∩ Lr
uloc,ρ(Ω)),

2) u(t) ⇀ u0 in ∗-weakly in Lr
uloc,ρ(Ω),

3) u satisfies ∫ T

0

∫
Ω

{
− u∂tϕ+∇u · ∇ϕ+ a|u|p−1u · ∇ϕ

}
dxdt = 0

for all ϕ ∈ C∞
0 ((0, T )× Ω).

Theorem 1.5.1 (Existence and uniqueness of a weak solution [37] ). Let p > 1 and

1 ≤ r < ∞ with 
r ≥ n(p− 1) if p > 1 + 1

n
,

r > 1 if p = 1 + 1
n
,

r ≥ 1 if 1 < p < 1 + 1
n
.

(1.5.2)

There exists a positive constant γ0, depending only on n, p and r, such that, if for any

initial data u0 ∈ Lr
uloc,ρ(Ω) satisfies

ρ
1

p−1
−n

r ∥u0∥Lr
uloc,ρ

≤ γ0 (1.5.3)

for some ρ > 0, then there exists a unique weak Lr
uloc(Ω)-solution u of (1.5.1) in (0, µρ2)×

Ω such that

sup
0<t<µρ2

∥u(t)∥Lr
uloc,ρ

≤ C∥u0∥Lr
uloc,ρ

, (1.5.4)

where C and µ are independent of u. Besides the solution has a uniform estimate

∥u∥L∞((0,µρ2)×Ω) ≤ C

(∫ µρ2

0

∥u(t)∥rLr
uloc,ρ

dt

) 1
r

(1.5.5)

and hence u ∈ L∞((0, µρ2)× Ω
)
for some µ > 0.

In the assumption on the initial data (1.5.3), the constant γ0 > 0 is a constant only

depending on n, r and p. Hence one can regard this condition on the initial data as the

restriction on the choice of ρ > 0. Since the function class Lr
uloc,ρ(Ω) does not depend on

ρ > 0, we have a room for the choice of ρ > 0 depending on the initial data. This choice

is reflecting how long the local solution can be continued.

As a corollary of Theorem 1.5.1, we have:

Corollary 1.5.2 (Global existence [37]). Let p > 1 + 1
n
. Then there exists a constant

γ > 0 such that, if u0 ∈ Ln(p−1)(Ω) and ∥u0∥Ln(p−1)(Ω) ≤ γ, then problem (1.5.1) has a

global solution.
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1.6 Weak solutions in amalgam spaces

Let Ω ⊂ Rn be an unbounded domain with uniform C2 boundary. We introduce the weak

solutions to (1.5.1) in amalgam spaces Lr,ν
ρ (Ω).

Definition (Amalgam spaces). Let 1 ≤ r, ν < ∞. The amalgam spaces on Ω ⊆ Rn,

Lr,ν
ρ (Ω) is defined by

Lr,ν
ρ (Ω) := {f : ∥f∥Lr,ν

ρ
< ∞},

where for ρ > 0

∥f∥Lr,ν
ρ

=

( ∑
xk∈ρZn

∥f∥νLr(Bρ(xk)∩Ω)

) 1
ν

, (1.6.1)

the usual adjustments being made if r or ν is infinity. The space Lr,ν
ρ (Ω) is a Banach

space with the norm defined in (1.6.1).

The Sobolev spaces W k,r,ν
ρ (Ω) for 1 ≤ r, ν ≤ ∞, ρ > 0 and k = 1, 2, . . . are analogously

introduced. We define by

W k,r,ν
ρ (Ω) :=

{
f : ∥f∥Wk,r,ν

ρ
< ∞

}
,

where for ρ > 0,

∥f∥Wk,r,ν
ρ

= ∥f∥Lr,ν
ρ

+
∑
|α|=k

∥∂α
x f∥Lr,ν

ρ
.

We denote W 1,2,2
ρ (Ω) as H1

ρ(Ω) for simplicity.

Definition (Weak Lr,ν(Ω)-solutions). Let 1 ≤ r, ν < ∞, ρ > 0 and H1
0,ρ(Ω) be the closure

of the C∞
0 (Ω) in H1

ρ(Ω). For an initial data u0 ∈ Lr,ν
ρ (Ω) and T > 0, we say that u is a

weak Lr,ν(Ω)-solution of (1.5.1) in (0, T )× Ω, if

1) u ∈ C([0, T ) : Lr,ν
ρ (Ω)) ∩ L2(0, T : H1

0,ρ(Ω) ∩ Lr,ν
ρ (Ω)),

2) u(t) ⇀ u0 in ∗-weakly in Lr,ν
ρ (Ω),

3) u satisfies ∫ T

0

∫
Ω

{
− u∂tϕ+∇u · ∇ϕ+ a|u|p−1u · ∇ϕ

}
dxdt = 0

for all ϕ ∈ C∞
0 ((0, T )× Ω).

Finally, we state the existence and uniqueness result to (1.5.1) in amalgam spaces Lr,ν
ρ (Ω).

Theorem 1.6.1 (Existence and uniqueness of a weak solution). Let p > 1 and 1 ≤ r, ν <

∞ with 
r ≥ n(p− 1) if p > 1 + 1

n
,

r > 1 if p = 1 + 1
n
,

r ≥ 1 if 1 < p < 1 + 1
n
.

(1.6.2)
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There exist a positive constant γ0, depending only on n, p and r, such that, if for any

initial data u0 ∈ Lr,ν
ρ (Ω) satisfies

ρ
1

p−1
−n

r ∥u0∥Lr,ν
ρ

≤ γ0 (1.6.3)

for some ρ > 0, then there exists a unique weak Lr,ν(Ω)- solution u of (1.1.1) in (0, µρ2)×
Ω such that

sup
0<t<µρ2

∥u(t)∥Lr,ν
ρ

≤ C∥u0∥Lr,ν
ρ
,

where C and µ are independent of u. Besides the solution has a uniform estimate

∥u∥L∞((0,µρ2)×Ω) ≤ C

(∫ µρ2

0

∥u(t)∥rLr,ν
ρ
dt

) 1
r

and hence u ∈ L∞((0, µρ2)× Ω
)
for some µ > 0.

The authors in [9]–[12], [25, 41, 51], make use the amalgam spaces. Amalgam spaces are

Banach spaces of functions determined by a norm which distinguishes between local and

global properties of functions. These spaces arise naturally in harmonic analysis. In 1926,

Norbert Wiener, who was the first one to introduce the amalgam spaces, consider some

special cases in [71]–[73]. Amalgams have been reinvented many times in the literature;

the first systematic study appears by Holland in [43]; an excellent review article is [26]. H.

Feichtinger [22]–[24] introduced a far-reaching generalization of amalgam spaces to general

topological groups and general local/global function spaces. The amalgams distinguish

between local Lp and global lq properties of functions in the ways we expect. For example,

rearrangements do not have identical norms in general and inclusions behave correctly.

Furthermore, amalgam spaces is a space between usual Lebesgue spaces and uniformly

local Lebesgue spaces.

The rest of this thesis is organized as follows. We introduce some properties of the

uniform local Lebesgue spaces and show some important inequalities and lemmas used

for the proof. The dissipative estimate for the heat kernel in the uniformly local space

is shown which plays an important role in Chapter 3. In Chapter 3 we prove the well-

posedness for the Cauchy problem (1.1.1), Theorem 1.4.1 using the Banach fixed point

theorem. We then consider the weak solution for (1.5.1) in Chapter 4 in the uniformly

local Lebesgue spaces and show the proof of Theorem 1.5.1. Finally, we show the proof of

Theorem 1.6.1 by establishing a crucial a priori estimate in the amalgam space in Chapter

5.

Notations

We denote N and R be the set of natural numbers and set of real numbers respectively.

For any n ∈ N, Rn denotes the n-dimensional Euclidean space.
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For x = (x1, x2, · · · , xn) ∈ Rn and t > 0, we regard the notation of derivative as

∂t :=
∂

∂t
, ∇ := (

∂

∂x1

,
∂

∂x2

, · · · , ∂

∂xn

), ∆ :=
n∑

i=1

∂2

∂xi
2 .

The notation Bρ(x) express the open ball in Rn with radius ρ > 0 and center x ∈ Rn,

that is, for any x ∈ Rn and ρ > 0, Bρ(x) := { y ∈ Rn : |x − y| < ρ}. The beta function

B(p, q) is defined by

B(p, q) =

∫ 1

0

zp−1(1− z)q−1dz, p > 0, q > 0.

We introduce basic function spaces. Let Ω ⊂ Rn be a domain. Ck(Ω) denotes sets of

all functions having continuous derivative up to order k on Ω. Ck
0 (Ω) denotes set of all

functions in Ck(Ω) whose supports are compact in Ω. C∞(Ω) denotes set of all functions

which are infinitely differentiable on Ω. BUC(Ω) denotes bounded uniformly continuous

functions on Ω. C∞
0 (Ω) denotes set of all functions in C∞(Ω) whose supports are compact

in Ω. W k(Ω) denotes set of all functions having weak derivative up to order k on Ω.

For 1 ≤ q ≤ ∞, the Lebesgue space on any domain Ω ⊂ Rn; Lq(Ω) is defined by

Lq(Ω) := {f : measurable function on Ω such that ∥f∥Lq(Ω) < ∞},

where

∥f∥Lq(Ω) =


(∫

Ω

|f(x)|qdx
) 1

p

, 1 ≤ q < ∞,

ess sup
x∈Ω

|f(x)|, q = ∞.

We use an abbreviated notation ∥·∥Lq instead of ∥·∥Lq(Rn) for 1 ≤ q ≤ ∞. For 1 ≤ q < ∞,

Lq
loc(Ω) is defined by

Lq
loc(Ω) := {f : measurable on Ω such that ∥f∥Lq(K) < ∞ for any compact set K ⊂ Ω.}

Let X be a Banach space, I be an interval on R and 1 ≤ r ≤ ∞. The vector valued

function space Lr(I;X) is called Bochner space and defined by

Lr(I;X) := {f : I → X : strongly measurable function ∥f∥Lr(I;X) < ∞},

where

∥f∥Lr(I;X) =


(∫

I

∥f(t)∥rXdt
) 1

r

, 1 ≤ r < ∞,

ess sup
t∈I

∥f(x)∥X , r = ∞.

Let k ≥ 0 and p ≥ 1 and let Dαf be the αth- weak derivative of f . The Sobolev space

on Ω, W k,p(Ω) is defined by

W k,p(Rn) := {f ∈ W k(Ω);Dαf ∈ Lp(Ω), for any α with |α| < k},
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endowed with the norm

∥f∥Wk,p(Ω) =



∑
|α|≤k

∫
Rn

|Dαf |pdx

 1
p

, 1 ≤ p < ∞,

∑
|α|≤k

ess sup
x∈Rn

|Dαf |, p = ∞.
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